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Introduction: Metabolic disorders and autoimmune diseases elicit distinct 
yet interconnected manifestations of inflammation, which may be  boosted 
by an excess of body adiposity. The purpose of this investigation was to 
analyze anthropometric, biochemical, and inflammatory/coagulation variables 
concerning patients diagnosed with systemic lupus erythematosus (SLE) 
exploiting low-grade metabolic inflammation (MI), as reference.

Methods: A population stratification by body mass index (BMI), allowed 
to assess the impact of adiposity on the putative role of gut microbiota 
composition on coagulation markers. A total of 127 participants with MI and 
SLE were categorized into two main groups based on their BMI, following WHO 
criteria: a low BMI group (<30  kg/m2) and a high BMI group (≥30  kg/m2). Each 
group included recorded data on demographics, comorbidities, and key clinical 
markers. Anthropometric and body composition variables, clinical features, 
and inflammatory/coagulation markers were measured while fecal 16S rRNA 
sequencing was examined at the genus Bifidobacterium. Regression models 
were fitted to evaluate the relationship between gut microbiota, inflammatory/
coagulation markers, and body weight in these types of diseases.

Results: The study revealed worse clinical outcomes in anthropometric, body 
composition, and clinical markers in low-grade MI conditions as compared to 
SLE. However, inflammatory and coagulation markers such as C-reactive protein 
(CRP) and fibrinogen were significantly more elevated in patients with SLE, which 
was exacerbated by high BMI/ body fat as compared to the other screened 
groups. An interaction analysis revealed that fibrinogen levels showed different 
trends when Bifidobacterium was increased depending on BMI/adiposity, which 
evidenced an effect modification by this microorganism in patients with SLE.

Discussion: These findings underline that gut microbiota composition, particularly 
the presence of Bifidobacterium, may play a crucial role in modulating inflammation 
and coagulation processes in patients with SLE and high fat. These insights highlight 
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the potential of targeting gut microbiota as a therapeutic strategy to mitigate 
inflammation and improve clinical outcomes in SLE patients.
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Bifidobacterium, body mass index, fibrinogen, low-grade metabolic inflammation, 
systemic lupus erythematosus

1 Introduction

Chronic metabolic disorders and autoimmune diseases are 
marked by complex interactions between inflammatory processes, 
immune system alterations, coagulation disorders and metabolic 
problems (Uddin et al., 2022). Thus, autoimmune diseases such as 
systemic lupus erythematosus (SLE) and rheumatoid arthritis are 
characterized by abnormal immune responses directed against self-
antigens, resulting in tissue damage and cell dysfunction (Szekanecz 
et al., 2021). Furthermore, in addition, inflammatory disorders can 
manifest systemically, affecting multiple organ systems, while 
metabolic disorders, such as fat accumulation, insulin resistance, and 
dyslipidemia, reflect adverse biochemical, immunological, and 
pathophysiological outcomes (Khanna et al., 2022).

Recent studies highlight the important role of adiposity in 
exacerbating inflammation and altering immune responses in patients 
with SLE and metabolic disorders (Geng et al., 2022). Excess body 
weight contributes to a state of chronic low-grade inflammation, 
characterized by elevated levels of proinflammatory cytokines such as 
tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and 
interleukin-1β (IL-1β) (Geng et al., 2022; Karczewski et al., 2021). In 
addition, visceral fat accumulation has been linked to increased 
intestinal permeability and dysbiosis, which can perpetuate systemic 
inflammation and metabolic dysregulations (Wang et al., 2022; Xu 
et al., 2022). This chronic inflammatory state is also often associated 
with alterations in liver function and other pathophysiological 
processes, further dysregulating coagulation, systemic inflammation, 
and immune responses (Pietzner et al., 2017). In addition, excess body 
weight has been closely related to alterations in gut microbiota 
composition and function (Turnbaugh et al., 2006).

In this context, gut microbiota assessment has emerged as a 
potential tool in the prognosis and diagnostic examination of various 
diseases, highlighting a specific role in health status (Duan et  al., 
2024). Dysbiosis, characterized by a putative imbalance in gut 
microbial communities, has been implicated in the pathogenesis of 
SLE, affecting both disease severity and overall inflammatory status 
(Zeng et al., 2017; Zhao et al., 2023). Such an imbalance is associated 
with increased intestinal permeability, microbial translocation, and 
release of proinflammatory molecules such as lipopolysaccharides 
(LPS) into the systemic circulation, thereby perpetuating inflammation 
and exacerbating metabolic dysfunctions (Geng et al., 2022; Wang 
et  al., 2020; Zeng et  al., 2017). Specific bacterial genera, such as 
Bifidobacterium, have been associated with positive health outcomes 
and may play a protective role against inflammation and autoimmune 
responses (Duan et  al., 2024). Conversely, reduced diversity and 
abundance of beneficial gut bacteria may exacerbate the inflammatory 
milieu in SLE patients (Zeng et al., 2017).

Hypercoagulation is common in SLE, and elevated fibrinogen 
levels reflect both inflammation and an increased risk of thrombosis 
in these patients (Sulimai et al., 2022; Wolberg, 2023). Fibrinogen is 

an acute phase reactant that increases in response to injury and disease 
associated with inflammatory conditions (Cicarini et al., 2020; Sulimai 
et al., 2022). Also, fibrinogen monitoring in SLE patients has been 
shown critical to assess cardiovascular risk, guide SLE treatment and 
manage chronic inflammation associated with the disease (Cicarini 
et al., 2020; Zadeh et al., 2020). Other markers, such as D-dimer, are 
also altered in these SLE patients being associated with a 
hypercoagulation state and increased risk of venous 
thromboembolism, underlining the importance of comprehensive 
coagulation monitoring in this autoimmunity population (Zinellu and 
Mangoni, 2024).

Holistic interventions that focus on dietary modifications, 
microbiota modulation, and body weight control show promise in 
precision nutrition by potentially enhancing clinical outcomes 
through the restoration of gut microbiota balance and reduction of 
inflammation (Dasriya et al., 2024). By exploring the interactions 
among inflammation, coagulation, and gut microbiota composition 
in affected individuals, precision medicine strategies can be tailored 
to meet the unique needs of each patient, ultimately leading to more 
effective management and improved clinical outcomes with integrated 
information (Ball and Athanasiadou, 2021).

The primary objective of this research was to investigate clinical 
characteristics, adiposity metrics, biochemical markers, and 
inflammation/coagulation biomarkers in patients with SLE compared 
to those with low-grade metabolic inflammation (MI), analyzing these 
features in relation to body mass index (BMI). Additionally, we aimed 
to explore the potential role of the gut microbiota, particularly to 
identify similarities and differences in coagulation pathways impacted 
by SLE and MI. Specifically, we hypothesized that there are significant 
interactive effects (effect modification) between Bifidobacterium levels 
and BMI on coagulation markers, such as fibrinogen, in SLE patients. 
By elucidating these relationships, this study aims to contribute to a 
deeper understanding of gut microbiota’s impact on inflammation and 
coagulation in SLE, advancing the development of targeted 
interventions for optimized patient outcomes.

2 Materials and methods

2.1 Study design

This study is part of the “METAINFLAMMATION” project (ref. 
Y2020/BIO-6600), a prospective and controlled investigation. 
Participant recruitment occurred between January 2022 and June 
2023 at the Internal Medicine Service of Puerta de Hierro 
Majadahonda University Hospital in Madrid, Spain. The enrollment 
process involved obtaining participant agreement for inclusion in the 
study and ensuring the completion of informed consent forms. The 
study was conducted in compliance with the Declaration of Helsinki 
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principles and received approval from the Research Ethics Committee 
of Puerta de Hierro Majadahonda University Hospital (file number PI 
164–21). All data collection was performed following ethical 
guidelines and strict hospital protocols.

2.2 Participants, inclusion, and exclusion 
criteria

This research involved 127 participants, both men (28%) and 
women (72%) of Caucasian/Hispanic ancestry, which is considered 
adequate to meet the stated analytical objectives, based on the existing 
literature and prior project data, a sample size of 127 participants is 
suited to meet the analytical objectives of this study (Martinez-
Urbistondo et  al., 2020). In the development of the 
METAINFLAMMATION project, weight was initially used as the 
primary variable, setting a target sample size of 80 participants. 
Additionally, when an a posteriori calculation was conducted to 
determine the necessary sample size with fibrinogen (mg/dL) as the 
primary variable and assuming a mean difference of 50, a standard 
deviation of 100, a significance level (α) of 0.05, and a power (β) of 80%, 
it was estimated that a total sample size of 100 participants is required, 
further supporting the sufficiency of the current sample for the study’s 
objectives. The participants were assigned into two groups according to 
the medical diagnoses received: low-grade MI and SLE, both diseases 
are considered complex conditions that are characterized by an 
inflammatory state (Xiao et al., 2021). The low-grade MI refers to a 
chronic subclinical inflammatory state that occurs in the absence of 
acute infection which is often found in excessive weight conditions 
(Khanna et al., 2022; Van de Vyver, 2023). This phenomenon results 
largely from metabolic dysregulation, common in conditions such as 
obesity and related metabolic disorders, leading to sustained immune 
activation (Polak-Szczybyło, 2023; Terkawi et al., 2022). Concerning our 
analysis, we grouped together normoweight and overweight individuals 
to capture how metabolic inflammation may be consistently present 
across different body weight profiles, while excluding clinical obesity. 
This classification aligns with medical literature indicating that 
metabolic inflammation can occur even in overweight individuals who 
are not classified as obese, potentially serving as an early indicator for 
metabolic disease development (Hotamisligil, 2006; Lumeng and Saltiel, 
2011). In terms of low BMI, we defined this as a BMI under 30 kg/m2, 
consistent with WHO criteria, which categorize individuals below this 
threshold as non-obese but overweight if BMI > 25 kg/m2. The diagnostic 
criteria established by the World Health Organization (WHO) and the 
National Education Program on Cholesterol (NECP) were used to 
identify patients with obesity and metabolic syndrome (World Health 
Organization, 2024), while for the SLE group, the classification criteria 
established by the European League Against Rheumatism/American 
College of Rheumatology were applied (EULAR/ACR) (Aringer et al., 
2019). Body weight stratification was performed using the definition of 
BMI according to the World Health Organization (WHO) (World 
Health Organization, 2024) criteria, which establishes obesity with a 
BMI of ≥30 kg/m2. The groups were subdivided into two categories: low 
BMI (≤ 30 kg/m2) and high BMI (≥30 kg/m2).

The participants met the following inclusion criteria: 
age > 18 years, a body mass index >18 kg/m2 and < 50 kg/m2 and 
diagnosis of low-grade MI and SLE confirmed by the medical staff 

of the Internal Medicine service of the Puerta de Hierro 
Majadahonda University Hospital (Madrid, Spain). Patients with 
obesity and metabolic syndrome presented a series of alterations 
such as excessive adiposity, glucose intolerance, central obesity, 
dyslipidemia, and hypertension according to adult treatment panel 
III criteria (ATP III) (Khanna et  al., 2022). Meanwhile, patients 
diagnosed with SLE in a stable state and under protocolized 
supervised medical treatment were selected, which allows us to 
minimize biases related to disease activity and to provide a 
comprehensive understanding of the cohort features and the 
homogeneity of the patient population. All patients followed a 
uniform treatment protocol, and no relevant differences were 
observed between patients. In addition, the impact of corticosteroids 
in these patients is minimal due to controlled doses and disease 
stability, which significantly reduces their influence on the results. It 
should be noted that corticosteroids were administered only in acute 
situations and not as a persistent treatment. Several clinical variables 
were assessed in these patients, including serological activity (SA), 
presence of active disease (AD), achievement of complete remission 
(CR) and maintenance of a low disease activity state (LDAS) to 
harmonize the clinical diagnosis and therapeutical homogeneity of 
the SLE population (Gladman et al., 1997; Moreno-Torres et al., 
2022). Exclusion criteria included the presence of severe psychiatric 
disorders, the current use of body weight-modifying agents, 
difficulty for scheduling appointments, pregnancy, lactation, and 
patients with changes in pharmacological prescription one year 
before. Participants who regularly consumed probiotics or recent 
antibiotics at least 3 weeks before the collection of the fecal sample 
were also excluded.

2.3 Anthropometrics and clinical data

Anthropometric measurements were assessed by skilled dietitians 
using validated techniques (Martínez Urbistondo et al., 2021). Body 
weight was determined using a bioimpedance scale (TANITA SC-330; 
Tanita Corporation Pais), which also provided (absolute or relative) 
estimates of body composition (skeletal muscle mass, body fat and 
visceral fat). Waist circumference was measured with a standard tape 
measure following established protocols and performed by trained 
dietitians, while BMI was calculated as the ratio of body weight to the 
square of height (kg/m2) as described elsewhere (Martínez Urbistondo 
et al., 2021).

2.4 Biochemical data

Blood samples were assessed under fasting conditions through 
venipuncture. The samples underwent analysis for platelets and red cell 
distribution width (RDW) utilizing an SYSMEX XN-20 automated 
hematology analyzer (Roche, Basel, Switzerland) following validated 
procedures. Routine biochemical markers, including glucose, total 
cholesterol, glycated hemoglobin, folic acid, bilirubin, vitamin D, 
ferritin, high density lipoprotein (HDL), low density lipoprotein (LDL), 
triglycerides, and transferrin, were measured following standardized 
hospital protocols using a quality-controlled autoanalyzer (Atellica™ 
Solution Pais) as per established criteria (Martinez-Urbistondo et al., 
2020). C-reactive protein (CRP), fibrinogen, insulin, interleukin-6 
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(IL-6), and D-dimer also followed analytically standardized procedures, 
primarily employing specific ELISA kits (Sigma-Aldrich ELISA Kit 
Pais) as outlined by the suppliers.

2.5 Metagenomic analysis

Fecal samples were collected using OMNIgene® •GUT kits (DNA 
Genotek, Ottawa, ON, Canada), according to the supplier instructions 
(Cuevas-Sierra et  al., 2022). Bacterial DNA was isolated with the 
QIAamp® DNA kit (Qiagen, Hilden, Germany) following the 
manufacturer’s protocol and the V3-V4 hypervariable regions of the 16 S 
rRNA gene were amplified by paired-end DNA sequencing in the MiSeq 
System (Illumina, San Diego, CA, USA) at Novogene Sequencing- 
Europe Service (Cambridge, United Kingdom). Also, the primers used 
for the PCR reactions were (16S Amplicon PCR Forward Primer = 5 0 
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGG 
NGGCWGCAG, 16S Amplicon PCR Reverse Primer = 5 0 
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACH 
VGGGTATCT AATCC). PCR reactions were carried out with 15 μL 
of Phusion® High – Fidelity PCR Master Mix (New England Biolabs); 
0.2 μM of forward and reverse primers, and about 10 ng template 
DNA. Thermal cycling consisted of initial denaturation at 98°C for 
1 min, followed by 30 cycles of denaturation at 98°C for 10 s, annealing 
at 50°C for 30 s, and elongation at 72°C for 30 s and 72°C for 5 min. 
The PCR products were purified using magnetic beads and the 
samples were mixed in equidensity ratios based on the concentration 
of PCR products. After thorough mixing, the PCR products were 
detected, and target bands were recovered. For library preparation, 
sequencing libraries were generated, and indexes were added. The 
library was checked with Qubit and real-time PCR for quantification 
and bioanalyzer for size distribution detection. Quantified libraries 
were pooled and sequenced on Illumina platforms, according to 
effective library concentration and data amount required. For 
bioinformatic analysis, paired- end reads were assigned to samples 
based on their unique barcode and truncated by cutting off the 
barcode and primer sequence. Paired-end reads were merged using 
FLASH V1.2.7 (USA1) (Magoč and Salzberg, 2011), while quality 
filtering on the raw tags were performed using the FASTP V0.23.1 
(China, FASTP Software2) to obtain high-quality clean tags (Bokulich 
et al., 2013). The tags were compared with the reference Silva database 
(16S/18S3; UNITE Database4) to detect chimera sequences, and then 
the chimera sequences were removed (Frank et al., 2011). For the 
effective tags obtained previously, denoise was performed with 
DADA2 or deblur module in the QIIME2 software (Version 
QIIME2-202202, USA5) to obtain initial ASVs (Amplicon Sequence 
Variants). Species annotation was performed using QIIME2 software 
(SILVA Database) and to study phylogenetic relationship of each ASV 
and the differences of the dominant species among different samples 
(groups), multiple sequence alignment was performed using QIIME2 

1 http://ccb.jhu.edu/software/FLASH/

2 https://github.com

3 https://www.arb-silva.de/

4 https://github.com/torognes/vsearch/

5 https://qiime2.org

software and displayed with R software (Version 2, USA6) (Bolyen 
et al., 2019).

2.6 Statistical analyses

Variables were expressed as means (x̄) and standard deviations (SD) 
for quantitative variables and number of cases (n) and proportions (%) for 
qualitative variables. Normality of the data was assessed by the Shapiro–
Wilk test. Student’s t and Mann–Whitney tests were implemented 
depending on normality to compare the means of the continuous 
variables at the beginning of the study and the categorical variables were 
statistically screened using the chi-square (χ2) test. BMI was used as a 
proxy of adiposity in some analyses, since this estimation showed a high 
correlation with body fat (R2 = 0.7433 and p value<0.001) and has a higher 
value for translational purposes. While body fat offers a more direct 
measure of adiposity and related effects, BMI was chosen for its ease of 
interpretation in clinical and research settings. The differences and 
interactions between the two types of diseases and the BMI stratified by 
low BMI (≤ 30 kg/m2) and high BMI (≥30 kg/m2) were studied with a 2 
× 2 factorial ANOVA design (2 diseases x 2 levels of BMI) for 
anthropometric variables, body composition, biochemical markers, 
inflammatory and coagulation features concerning 
METAINFLAMMATION study participants by RStudio 4.3.0 [University 
of Auckland, New Zealand (see Footnote 6)]. The analysis of microbiota 
was evaluated comparing the two types of inflammatory diseases, adjusted 
by BMI levels, age and sex to avoid potential confounders. Alpha diversity 
was calculated by determining the Shannon index using 
MicrobiomeAnalyst 2.0 (University of McGill, Canada7) (Dhariwal et al., 
2017; Konopiński, 2020) and compared by t-test and illustrated with 
boxplots. Beta diversity was calculated using Bray Curtis index and 
PERMANOVA test and then visualized by means of principal coordinate 
analysis (PCoA). In addition, linear discriminant analysis (LDA) effect 
size (LEfSe 1.0) (Harvard University; USA8) was used to compare groups 
and to report the results using taxonomic bar charts. Zero-inflated 
Gaussian (metagenomeSeq) analysis was for finding families that differed 
significantly in abundance between normal body weight and obese 
subjects. Differential abundance analysis was performed using EdgeR 
method, and FDR correction (Trimmed- mean of M value for 
normalization). Random forest was used to rank the importance of 
predictive variables related to type of disease using R 3.5.3 [University of 
Auckland, New  Zealand (see Footnote 6)] and Receiver Operating 
Characteristic curve (ROC) was performed to validate the Random Forest 
results. To enhance data reliability, a low count filter was applied to 
remove features with limited prevalence or low abundance across samples. 
Specifically, features with fewer than four observations were excluded, and 
only those present in at least 20% of the samples were retained. This 
filtering process reduced the dataset from the initial 458 sequenced genera 
to 311, focusing the analysis on consistently observed taxa and minimizing 
noise from rare or low-abundance features. A random forest model was 
then applied using 500 trees, where feature importance was assessed using 
the “mean decrease in accuracy” metric. This metric evaluates each 
feature’s impact on prediction accuracy by measuring the error increase 

6 https://www.R-project.org/

7 https://www.microbiomeanalyst.ca/

8 http://huttenhower.sph.harvard.edu/galaxy/
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when a feature is removed or permuted. For clarity, only the top 10 most 
impactful features were presented graphically to ensure readability. 
Potential interactions between bacteria, type of disease and inflammatory 
status were investigated with multiple regression models adjusted for age, 
sex, BMI, disease, Bifidobacterium, Bifidobacterium adolescentis, 
Bifidobacterium longum, and the interaction between bacteria and BMI 
levels using RStudio 4.3.0 (USA) (see Footnote 6) and for graphs of 
interaction between Bifidobacterium abundance, fibrinogen levels, and 
both BMI and body fat levels in SLE patients, Stata 12 (StataCorp LLC, 
College Station, TX, USA9) was used. The stratification of body fat was 
carried out taking as reference the average, low fat <36 and high fat ≥36. 
Normalization of the microbiota data was performed according to the 
centered log ratio (CLR) method, to ensure reliable, meaningful results in 
our analysis of microbiota and its associations with health outcomes, as it 
has been established as best practice for compositional data (Gloor et al., 
2017). This approach not only aligns with rigorous statistical standards 
but also reinforces the validity of our findings (Gloor et al., 2017; Palarea-
Albaladejo and Martín-Fernández, 2015). A value of p < 0.05 was 
considered statistically significant.

3 Results

3.1 Comparison of anthropometric, body 
composition, biochemical, and clinical 
markers in patients with low-grade MI and 
SLE according to BMI levels

Table 1 shows the distinct anthropometric and body composition 
profiles between patients with low-grade MI and SLE stratified by BMI 
levels. Participants with high BMI showed significantly higher values 
for all variables in both types of disease. In addition, in the SLE group, 
skeletal muscle did not present significant differences when compared 
according to BMI. The comparison of variables according to the group 
of disease without considering BMI status (Group of disease column, 
Table 1) showed significant differences between groups of disease for 
these variables in this population, excepting in body fat, while the 
comparison of variables according to the BMI without considering the 
type of disease (BMI levels column, Table  1) showed significant 
differences between groups of BMI for these variables in this 
population, excepting in gender distribution and the interaction effect 
between groups of disease and BMI levels (Interaction column, 
Table 1) was significant for body fat and waist circumference, showing 
a modification of the effect of BMI on these anthropometric variables 
according to the type of inflammatory disease.

Table 2 shows the comparison of biochemical profiles between 
patients with low-grade MI and SLE, according to the type of disease 
and BMI levels. Patients with low-grade MI and high BMI displayed 
significantly higher levels of insulin levels, bilirubin, and vitamin 
D. On the contrary, SLE patients with increased BMI exhibited 
significantly higher levels of triglycerides, glycated hemoglobin, 
insulin, and transferrin. Furthermore, subgroup analysis based on the 
group of disease without considering BMI (Group of disease column, 
Table 2) showed significant differences in glucose, HDL-cholesterol, 

9 http://www.stata.com

glycated hemoglobin, and bilirubin, being higher in low-grade MI 
group, excepting in HDL-cholesterol, which was higher in SLE group.

The comparison of BMI levels without considering the type of 
disease (BMI level column, Table 2) revealed significant differences in 
HDL-cholesterol, glycated hemoglobin, insulin, and transferrin, being 
significantly higher in the participants with more BMI, excepting in 
HDL-cholesterol which was lower. The 2×2 ANOVA interaction 
analysis (Interaction column, Table 2) showed a trend of significance 
in bilirubin levels, suggesting that this variable could present a 
modification of the effect depending on the type of inflammatory 
disease and BMI status.

Table 3 shows the comparison of inflammatory and coagulation 
profiles between patients with low-grade MI and SLE, considering the 
impact of BMI levels. In patients with low-grade MI and high BMI, 
significant differences in CRP levels were observed. In contrast, 
patients with SLE and high BMI showed more significant increases in 
both fibrinogen and CRP. Additionally, regression analysis indicated 
a significant association between elevated BMI and increased CRP 
levels (p = 0.0003).

The analysis performed according to type of diseases without 
considering the BMI revealed significant differences in ferritin levels, 
showing increased values in low-grade MI group. Additionally, a 
subgroup analysis based on BMI levels (BMI levels column, Table 3) 
revealed a trend of significance (p = 0.05) for CRP, which was higher 
in high BMI groups. Moreover, the analysis of the interaction between 
disease type and BMI levels revealed that RDW and fibrinogen were 
significantly different in this METAINFLAMMATION cohort, 
suggesting a modification of the effects for these variables according 
to the type of inflammatory disease and BMI.

3.2 Analysis of alpha and beta diversity of 
gut microbiota

Figure 1 shows the comparison of alpha diversity assessed using 
Shannon index between patients with low and high BMI in low-grade 
MI group (Figure 1A) and low and high BMI in patients with SLE 
(Figure 1B). SLE patients demonstrated significant differences in alpha 
diversity (p = 0.04), while MI patients showed no significant differences 
in alpha diversity between BMI levels (p = 0.54). Analysis indicated 
that the mean alpha diversity values in the high BMI group was higher 
than in the low BMI group, as represented by the black dot. The 
principal coordinate analysis of beta diversity between disease groups 
using the Bray-Curtis index compared by PERMANOVA was 
significantly (p = 0.04) comparing participants in the low-grade MI 
group (Figure  1C) with BMI levels, in contrast to the SLE group 
(Figure 1D) which showed no significant difference.

3.3 Analysis of gut microbiota biomarkers 
and differential abundance between 
groups

Firstly, Figure 2A shows the analysis of the most differential taxa 
between groups of disease. The cladogram and bar chart with LDA 
score (Figure  2A) highlighted an overrepresentation the genus 
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Bifidobacterium, belonging to the Bifidobacteriaceae family, the 
Bifidobacterial order, the Actinobacteria class and the Actinobacteriota 
phyla in the participants with SLE, in this cohort. By the contrary, 
participants with low-grade MI showed an overrepresentation of 
Firmicutes phyla and Clostridia. In addition, the analysis of differential 
abundance assessed by EdgeR revealed that participants with SLE 
presented significantly more abundant Bifidobacterium compared to 
low-grade MI participants in this population (Figure 2B). Likewise, a 
random forest analysis was performed, and the important plot showed 
that Bifidobacterium was an important bacterial genus for 
distinguishing between types of diseases. An operational characteristic 
curve of the receiver (ROC) was performed to validate the results of 
the Random Forest. The ROC analysis showed an area under the 
77.36% curve (AUC) with a 95% confidence interval: 69.32–85.4%. 
This result indicates a good capacity of the model to distinguish 
between patients with SLE and low-grade MI, showing the usefulness 
of identified bacterial biomarkers (Figure 2C), also confirmed in the 
importance plot showed in supplementary Figure 1.

Finally, evaluate the relationship between gut microbiota, 
inflammatory markers and type of disease according to BMI status, a 
regression model was performed, and a significant interaction were found 
between patients with the BMI, the genus Bifidobacterium and fibrinogen 
values (p = 0.008). The interaction plot (Figure 3A) showed that patients 
with a high BMI and a greater abundance of Bifidobacterium presented 
high fibrinogen values. On the contrary, participants with high abundance 
of Bifidobacterium but low BMI, showed lower values for fibrinogen, 
suggesting a modification of the effect on fibrinogen values depending not 
only on the abundance of Bifidobacterium, but also depending on 
BMI. On the other hand, the second interaction plot (Figure 3B) showed 
that patients with high body fat and higher Bifidobacterium abundance 
had higher fibrinogen values. In contrast, participants with high 
Bifidobacterium abundance but low fat showed lower fibrinogen values, 
suggesting a modification of the effect on fibrinogen values depending not 
only on Bifidobacterium abundance, but also on body fat levels (p = 0.025). 

This observation indicates that the high abundance of Bifidobacterium 
seems to modulate both the effects of BMI and body fat on fibrinogen 
levels in patients with SLE in this cohort.

4 Discussion

This study compares patients with two different inflammatory 
diseases – low-grade MI and SLE – analyzing the differential impact 
of BMI and body fat, as well as the possible implications of gut 
microbiota composition in each condition. The findings suggest that 
gut microbiota may play a key role in modulating inflammation and 
coagulation, particularly in patients with SLE and high BMI, 
underscoring the relevance of considering both metabolic and 
microbial factors in the management of these diseases.

The research shows a relevant intersection between SLE and 
low-grade MI in shared immuno-inflammatory mechanisms 
(Pesqueda-Cendejas et al., 2023). When comparing anthropometric 
and body composition profiles of patients with low-grade metabolic 
inflammation and SLE, the former had unhealthy indicators of body 
weight, BMI, skeletal muscle mass and visceral fat, while SLE patients 
had higher levels of body fat. These results are consistent with previous 
studies linking obesity to both metabolic inflammation and SLE, 
noting that elevated BMI in SLE patients is associated with increased 
severity and risk of complications, highlighting the importance of 
considering BMI in assessment and treatment (Forsythe et al., 2008; 
Garcia Cañas et al., 2021; Kono et al., 2021).

Obesity may influence the inflammatory response in patients with 
autoimmune diseases such as SLE, affecting both disease progression 
and response to treatment (Karczewski et al., 2021). This underscores 
the importance of carefully assessing body composition and metabolic 
status in patients with SLE and other inflammatory diseases, as BMI 
impacts various anthropometric parameters regardless of disease type. 

TABLE 1 Comparison of anthropometric measurements and body composition between types of inflammatory conditions (low-grade MI and SLE) and 
according to groups of BMI status.

Variables Hospital 
reference 

values

Low-grade metabolic 
inflammation (MI)

Systemic lupus erythematosus 
(SLE)

p value

Low BMI 
(n  =  24)

High 
BMI 

(n  =  46)

p value Low BMI 
(n  =  39)

High 
BMI 

(n  =  18)

p value Group 
of 

disease

BMI 
levels

Interaction

Age (years) NA 59.9 (9.1) 59.2 (11.2) 0.76 50.1 (11.5) 56.7 (10.8) 0.04 <0.001 0.02 0.08

Gender = Woman (%) NA 14 (58.3) 25 (54.3) 0.95 35 (89.7) 18 (100.0) 0.39 <0.001 0.18 0.37

Body weight (Kg) NA 74.8 (8.8) 96.5 (15.9) <0.001 65.8 (9.6) 87.8 (16.9) <0.001 <0.001 <0.001 0.95

Body mass index 

(Kg/m2)

18.5–24.9 27.7 (1.4) 34.2 (3.2) <0.001 24.9 (3.1) 34.7 (3.8) <0.001 <0.001 <0.001 <0.01

Waist circumference 

(cm)

Male <94

Female <80

100.9 (6.0) 115.3 (9.6) <0.001 90.0 (9.6) 111.5 (9.2) <0.001 <0.001 <0.001 0.02

Skeletal muscle mass 

(Kg)

NA 47.9 (7.4) 55.1 (11.8) 0.02 42.9 (5.8) 45.6 (7.4) 0.22 <0.001 <0.001 0.18

Body fat (%) NA 32.8 (4.3) 40.0 (6.6) <0.001 30.9 (6.3) 45.0 (4.1) <0.001 0.12 <0.001 <0.01

Visceral fat (AU) NA 10.6 (3.3) 15.9 (4.5) <0.001 6.7 (3.7) 12.4 (2.1) <0.001 <0.001 <0.001 0.82

Data presented as mean (x ̄), standard deviation (SD), and p values. The significance threshold was set at p < 0.05 *. p value refers to the comparison of variables’ mean between patients with 
low-grade MI and SLE using t-test or Mann–Whitney test, according to the distribution of the data. Low BMI refers to BMI ≤ 30 kg/m2 and high BMI refers to BMI ≥ 30 kg/m2. “Group of 
disease” column is the comparison of variables’ mean between the two inflammatory diseases (without considering BMI status). “BMI levels” column is the comparison of variables’ mean 
between the low and high BMI. Interaction column means the p value of comparison between the two disease groups and the BMI levels (ANOVA 2×2). AU, Arbitrary units. p value lower 
than 0.05 are in bold type.
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When comparing clinical markers between patients with low-grade 
MI and SLE, notable differences were observed: patients with 
low-grade MI and high BMI had elevated CRP levels (Frühbeck, 
2015), while in patients with SLE and high BMI, fibrinogen and CRP 
levels were even higher (Mok et al., 2012). This suggests that, in the 
context of SLE, high BMI intensifies the inflammatory response and 
coagulation markers to a greater extent than in low-grade 
inflammation (Urowitz et al., 2012). The regression analysis reveals 
that the increase in CRP levels in these patients is mainly due to high 
BMI and not only due to SLE disease activity per se (Kono et al., 2021). 

Current evidence highlights the relationship between excessive body 
weight and inflammatory markers, indicating that an elevated BMI 
may play a significant role in increasing inflammation, resulting in 
higher CRP levels in patients with SLE (Karczewski et  al., 2021; 
Khanna et al., 2022). Fibrinogen and CRP are relevant biomarkers in 
SLE because of their association with inflammation and risk of 
thrombotic events, which are critical aspects of this disease (Bazzan 
et al., 2015). Although the pathogenesis of vascular disease in SLE is 
not fully elucidated, evidence suggests that dysregulation of the 
coagulation system may contribute to both onset and progression 

TABLE 2 Comparison of biochemical and clinical markers between low-grade MI and SLE participants and according to groups of BMI of the 
METAINFLAMMATION cohort.

Variables Hospital 
reference 

values

Low-grade metabolic 
inflammation (MI)

Systemic lupus 
erythematosus (SLE)

p value

Low BMI 
(n  =  24)

High BMI 
(n  =  46)

p 
value

Low BMI 
(n  =  39)

High BMI 
(n  =  18)

p 
value

Group 
of 

disease

BMI 
levels

Interaction

Glucose (mg/dL) 60–100 103.8 (18.6) 99.6 (13.5) 0.55 88.8 (8.2) 93.2 (17.2) 0.53 <0.001 0.25 0.11

Insulin (μUI/mL) 0–29.1 8.0 (2.9) 13.6 (9.0) 0.01 8.3 (5.7) 14.4 (9.8) 0.002 0.28 <0.001 0.87

Glycated Hemoglobin (%) 4.5–6.4 5.7 (0.5) 5.6 (0.6) 0.87 5.3 (0.4) 5.5 (0.4) 0.04 <0.01 0.03 0.14

Total cholesterol (mg/dL) 150–200 186.3 (33.1) 185.6 (34.4) 0.94 184.7 (33.6) 168.1 (38.4) 0.13 0.30 0.45 0.23

HDL (mg/dL) 45–90 53.8 (13.8) 50.3 (13.8) 0.33 60.8 (14.5) 54.0 (14.7) 0.08 <0.01 0.01 0.55

LDL (U/L) 70–160 108.6 (30.4) 109.0 (27.1) 0.96 105.0 (26.4) 91.1 (32.4) 0.12 0.11 0.61 0.19

Triglycerides (mg/dL) 30–200 119.7 (45.9) 127.3 (50.3) 0.56 100.1 (74.0) 115.6 (40.5) 0.04 0.06 0.11 0.72

Bilirubin (mg/dL) 0.3–1.1 0.7 (0.3) 1.0 (0.9) 0.02 0.6 (0.4) 0.6 (0.2) 0.86 0.03 0.04 0.05

Vitamin D (nmoles/litro) 37.0–160.0 51.2 (33.4) 63.3 (28.1) 0.02 60.4 (31.8) 65.0 (25.1) 0.53 0.72 0.36 0.62

Transferrin (mg/dL) 200.0–360.0 245.5 (55.0) 252.0 (34.6) 0.48 232.8 (31.7) 251.4 (22.1) 0.03 0.11 0.04 0.40

Folic Acid (ng/mL) 3.1–20.5 8.4 (3.6) 9.2 (7.8) 0.60 10.2 (5.9) 7.8 (4.0) 0.20 0.60 0.51 0.19

Data presented as mean (x̄), standard deviation (SD), and p values. The significance threshold was set at p < 0.05 *. p value refers to the comparison of variables’ mean between patients with 
low-grade MI and SLE using t-test or Mann–Whitney test, according to the distribution of the data assessed by Shapiro–Wilk test. Low BMI refers to BMI ≤ 30 kg/m2 and high BMI refers to 
BMI ≥ 30 kg/m2. “Group of disease” column is the comparison of variables’ mean between the two inflammatory diseases (without considering BMI status). “BMI levels” column is the 
comparison of variables’ mean between the low and high BMI. Interaction column means the p value of comparison between the two disease groups and the BMI levels (ANOVA 2×2). HDL, 
High Density Lipoprotein; LDL, Low Density Lipoprotein. p value lower than 0.05 are in bold type.

TABLE 3 Comparison of inflammatory and coagulation markers among the two types of inflammatory conditions (low-grade MI and SLE) and 
according to BMI levels.

Variables Hospital 
reference 

values

Low-grade metabolic 
inflammation (MI)

Systemic lupus erythematosus 
(SLE)

p value

Low BMI 
(n  =  24)

High BMI 
(n  =  46)

p 
value

Low BMI 
(n  =  39)

High BMI 
(n  =  18)

p 
value

Group of 
disease

BMI 
levels

Interaction

RDW (%) 8–14.8 13.7 (0.7) 13.6 (0.8) 0.57 13.7 (1.1) 15.4 (5.1) 0.13 0.13 0.25 0.03

Fibrinogen (mg/dL) 200–400 359.5 (95.1) 366.8 (76.4) 0.38 325.8 (79.2) 427.7 (135.3) 0.01 0.73 0.01 0.01

D-dimer (ng/mL) 0.0–500.0 318.2 (137.1) 329.2 (140.3) 0.71 307.0 (156.6) 422.5 (232.9) 0.16 0.57 0.16 0.12

C-reactive protein 

(mg/L)

0.1–10 2.5 (2.7) 4.6 (4.3) 0.02 3.6 (9.7) 8.6 (10.1) 0.003 0.31 0.05 0.31

IL-6 (pg/mL) 0–4.4 3.7 (2.6) 3.5 (1.6) 0.30 3.5 (2.0) 3.7 (1.5) 0.15 0.95 0.90 0.65

Platelets (10E3/μL) 150–400 233.71 (43.7) 240.0 (51.1) 0.75 234.1 (64.3) 237.9 (77.6) 0.72 0.81 0.60 0.92

Ferritin (ng/mL) 5.0–204.0 151.4 (96.7) 120.0 (93.3) 0.18 87.0 (77.0) 75.8 (49.3) 0.83 <0.01 0.75 0.54

Data presented as mean (x̄), standard deviation (SD), and p values. The significant threshold was set at p < 0.05*. p value refers to the comparison of variables’ mean between patients with 
low-grade MI and patients with SLE using t-test or Mann–Whitney test. According to the distribution of the data assessed by the Shapiro–Wilk test. Low BMI refers to BMI ≤ 30 kg/m2 and 
high BMI refers to BMI ≥ 30 kg/m2. “Group of disease” column is the comparison of variables’ mean between the two inflammatory diseases (without considering BMI status). “BMI levels” 
column is the comparison of variables’ mean between the low and high BMI. Interaction column means the p value of comparison between the two disease groups and the BMI levels (ANOVA 
2×2). IL-6, Interleukin-6; RDW, Red Cell Distribution Width. p value lower than 0.05 are in bold type.
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disease (Liang et  al., 2016). Elevated fibrinogen levels indicate an 
increased predisposition to thrombosis, as inflammatory responses 
may induce hypercoagulability through activation of coagulation 
factors and alteration of anticoagulant mechanisms (Schuett et al., 
2015). Furthermore, a correlation between hypercoagulability and 
clinical manifestations of SLE has been observed, highlighting the 
potentially adverse effects of disease activity in patients, especially in 
those with an exacerbated inflammatory response (Liang et al., 2016). 
Whereas CRP acts as a marker of systemic inflammation and disease 
activity. In addition, increased RDW, linked to chronic inflammation 
and cardiovascular risk, highlights the importance of monitoring 
these markers in the clinical management of SLE (Salvagno et al., 
2015). These findings suggest that reducing BMI may help to decrease 
inflammation and reduce the risk of thrombotic complications, 
emphasizing the importance of treatment strategies that address both 
immune and metabolic status in SLE patients.

The diversity of the gut microbiota in patients with SLE and high 
BMI appears to play an important role in modulating the inflammatory 
response (Marchesi et al., 2016; Qin et al., 2010). Recent studies have 
found a higher abundance of the genus Bifidobacterium in SLE 
patients, suggesting that this microorganism may influence the 
regulation of inflammation in this disease (Clemente et  al., 2018; 
Gavzy et al., 2023; Moya-Pérez et al., 2015; Zhernakova et al., 2016). 
In contrast, patients with low-grade metabolic inflammation have a 
microbiota dominated by the phylum Firmicutes and the class 
Clostridia, rather than Bifidobacterium (Scheithauer et al., 2020). The 
abundance of Bifidobacterium in SLE patients has shown an inverse 
relationship with inflammation, suggesting a potential protective 
effect against disease progression. Although causality is not yet fully 
understood, some studies suggest that this increased abundance may 
be an adaptive response to chronic inflammation in SLE (Wang et al., 
2022). These findings highlight the value of microbial profiles as 

FIGURE 1

The alpha diversity index (A,B) and principal coordinate analysis (C,D) show the comparison of microbial diversity in patients with low-grade MI and SLE 
according to BMI levels. Patients with low BMI are represented in orange, and those with high BMI are in blue. In panels (A,B) the differences in box 
heights and outliers allow comparing the internal diversity of each group (alpha diversity) according to BMI. These findings were verified using a t-test. 
In panels (C,D), the dispersion and spacing between the circles reflect the diversity between groups (beta diversity), where a larger distance implies 
more pronounced differences in microbial composition between patients with different BMI.
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FIGURE 2

Cladogram and linear discriminant analysis between low-grade MI and SLE participants. Only taxa meeting a p  <  0.05 and LDA score significant 
threshold |  >  2| are shown. Red bacterial taxa statistically overrepresented in low-grade MI participants; green bacterial taxa overrepresented in 
participants with SLE (A). A bar plot shows the differential abundance of the Bifidobacterium genus, with red boxes for patients with low-grade MI and 
blue boxes for SLE (B). The ROC analysis demonstrates the model’s ability to differentiate between low-grade MI and SLE with an Area Under the Curve 
(AUC) of 77.36% and a 95% Confidence Interval of 69.32–85.4%, highlighting the importance of each feature in classification (C). In panel (A), the 
cladogram and linear discriminant analysis show the bacterial taxa with significant differences. This allows a quick comparison of which bacteria are 
most common in each disease. Panel (B) highlights the abundance of the genus Bifidobacterium, showing that the red and blue colors in the boxes 
correspond to patients with low-grade MI and SLE, respectively. Panel (C) presents an ROC curve assessing the classification performance of the 
model, with an AUC of 77.36%, indicating moderate accuracy in distinguishing between low-grade MI and SLE based on bacterial composition.

FIGURE 3

Predicted values of fibrinogen in SLE participants according to the relative abundance of Bifidobacterium and BMI status (A) and body fat levels 
(B) using linear regression models adjusted for age and sex. The red line represents participants with high BMI and the blue line represents participants 
with low BMI. The divergence between the lines suggests how the relative abundance of Bifidobacterium may differentially impact fibrinogen levels 
depending on BMI and body fat, highlighting the potential role of these factors in inflammation among SLE patients.
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potential differentiating biomarkers in inflammatory diseases and 
suggest that, with further research, they could serve as useful 
diagnostic or prognostic tools in the management of SLE and similar 
inflammatory conditions (Hevia et  al., 2014; Mitsuoka, 1990; 
Rodríguez-Carrio et al., 2017).

The adjusted regression model revealed significant 
associations between BMI/ body fat, Bifidobacterium abundance 
concerning fibrinogen levels. This finding suggests a complex 
interaction between gut microbiota, metabolic status and markers 
of inflammation and coagulation. Previous research has 
consistently shown that elevated BMI is associated with increased 
levels of inflammatory markers in patients with autoimmune 
diseases, as seen in studies indicating the prevalence of obesity in 
patients with SLE, correlating with increased disease activity and 
impaired quality of life (Campos-López et al., 2021; Katz et al., 
2011; Katz et  al., 2011). Our findings support this notion, 
corroborating that elevated BMI may exacerbate inflammatory 
processes in SLE. However, the genus Bifidobacterium has been 
documented to have immunomodulatory effects, promoting the 
production of anti-inflammatory cytokines. For example, one 
study showed that certain strains of Bifidobacterium can decrease 
proinflammatory cytokines and enhance immune tolerance 
(Kondo et al., 2010). In contrast, our results indicate that a higher 
abundance of Bifidobacterium is associated with higher levels of 
fibrinogen, contradicting the idea of a protective role against 
inflammation. This discrepancy could be  explained by the 
influence of high BMI on the relative abundance of this 
bacterium. Additionally, patients with active SLE were found to 
have significantly higher fibrinogen levels compared to those in 
remission (Sulimai et  al., 2022). Our results suggest that this 
relationship may be  mediated by the composition of the gut 
microbiota and metabolic factors, implying a more complex 
interaction than previously understood. Previous studies have 
often isolated factors such as BMI, inflammatory markers and gut 
microbiota in their analyses, highlighting the role of fibrinogen 
in coagulation processes without considering the impact of gut 
microbiota (Cicarini et al., 2020). Current study emphasizes the 
need to examine these components as interrelated factors, 
suggesting that traditional approaches may overlook the 
multifactorial nature of SLE. Regression models indicate that 
elevated BMI is associated with elevated fibrinogen levels, 
suggesting a procoagulant and proinflammatory state in SLE 
patients. These features are clinically relevant, as both obesity 
and elevated fibrinogen are independent cardiovascular risk 
factors (Wu et  al., 1992). Therefore, it could be  speculated 
implementing strategies to control weight and promote 
Bifidobacterium abundance could be relevant to reduce fibrinogen 
levels and cardiovascular risk in this population, providing a 
comprehensive approach to SLE treatment.

This investigation has several significant strengths. Firstly, a 
comparative analysis between low-grade inflammation and 
inflammation associated with autoimmune diseases was performed, 
allowing for a comprehensive assessment of the subject. In addition, 
a wide range of anthropometric, biochemical, inflammatory and 
hepatic markers were included, along with an analysis of the 
composition of the gut microbiota. This provided a comprehensive 
perspective on the study population and its potential implications 
for nutrition and personalized medicine. Importantly, all patients 

received comparable drug treatments according to medical 
diagnosis, ensuring that the observed variations in inflammatory 
markers were mainly due to disease activity, rather than differences 
in treatment prescription. Furthermore, another aspect of this 
research is the use of BMI as the primary variable in the analyses. 
While body fat offers a more direct measure of adiposity and related 
effects, BMI was chosen for the high translational value and ease of 
interpretation within clinical and research settings. To further 
understand the relationship between these measures, a correlation 
analysis between BMI and body fat was performed to assess 
their association.

However, the study also has limitations. The sample size was 
relatively small in both groups, which could affect the generalizability 
of the results, although the results are considered plausible. While 
we recognize the importance of independently identifying patients 
with MetS or integrative components, our primary focus was to assess 
the effects of BMI and body fat on fibrinogen levels with respect to gut 
microbiota composition. Accordingly, body fat was included as a 
moderating factor in the regression models between microbiota and 
coagulation markers. Additionally, our regression model was adjusted 
for age, sex, BMI, and comorbidities to enhance its accuracy. Given 
that elevated BMI frequently correlates with MetS components, this 
assumption supports our use of BMI categorization for this study. 
Finally, it is important to highlight that the results of this investigation, 
while revealing significant associations between Bifidobacterium 
abundance, BMI/body fat, and fibrinogen levels, should be interpreted 
as associative trends rather than indicative of causation. The observed 
interactions may be influenced by confounding factors, including diet, 
physical activity, and other health determinants that have not been 
controlled in this analysis, while type I  and II errors cannot 
be discarded.

This research evidences a modification of the effect on fibrinogen 
levels involving the Bifidobacterium genus and high BMI levels in SLE 
patients, highlighting the complexity of interactions between 
coagulation markers, gut microbiota and the host’s immune response, 
reflecting the complexity of SLE as an autoimmune disease. 
Furthermore, the findings highlight the importance of considering gut 
microbiota, BMI and fibrinogen levels as interrelated factors in the 
assessment and treatment of SLE, suggesting that further research into 
these mechanisms could lead to accurate clinical management of 
SLE patients.
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