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ABSTRACT

Single-cell technologies have undergone a significant transformation, expanding from their initial focus on transcriptomics to
encompass a diverse range of modalities. Recent advancements have markedly improved scalability and reduced costs, facil-
itating the processing of larger cell populations and broadening the scope of single-cell research. The incorporation of clustered
regularly interspaced short palindromic repeats (CRISPR)-based perturbations has revolutionized the field by enabling precise
functional genomics and detailed studies of gene regulation at the single-cell level. Despite these advancements, challenges
persist, particularly in achieving genome-wide perturbations and managing the complexity of high-throughput data. This review
discusses the technological milestones that have driven these changes, the current limitations of single-cell CRISPR technolo-

gies, and the future directions needed to address these challenges and advance our understanding of cellular biology.
© 2024 The Author(s). Published by Elsevier Inc. on behalf of Korean Society for Molecular and Cellular Biology. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

The field of single-cell transcriptomics has evolved significantly
since the concept of single-cell transcriptome analysis was first
established (Tang et al., 2009). A major milestone was achieved
2 years later with the introduction of barcoding techniques for
multicellular analysis, which accelerated the advancement of
single-cell technology (Islam et al., 2011).

The single-cell-level enzymatic reactions, enabled by in-
novations in microplates, microfluidic chambers, and droplet-
based systems, have expanded the technology beyond
transcriptomics. It now includes genome and epigenome
analysis, epitope profiling, and adaptive immune receptor
repertoire (AIRR) sequencing (Buenrostro et al., 2015; Dey
et al., 2015; Stoeckius et al., 2017; Tu et al., 2019). This in-
novation has been accompanied by an exponential increase
in the scale of analyses, progressing from dozens of cells to
millions over the past decade (Jia et al., 2022). The in-
troduction of clustered regularly interspaced short palin-
dromic repeats (CRISPR) genome editing technology has
accelerated the integration of functional genomics with
single-cell analysis (Jinek et al., 2012). This has led to the
development of CRISPR-based perturbations combined with
various single-cell technologies, enabling the digital tracking
of gene modifications and their effects on cellular behavior.

Perturb-seq and CRISPR droplet sequencing (CROP-seq)
have emerged, facilitating the systematic study of gene
function by linking genetic perturbations to transcriptional
responses in single cells (Datlinger et al., 2017; Dixit et al.,
2016) (Table 1, Fig. 1).

This review will explore the evolution of single-cell omics
technologies from various perspectives, including modality and
throughput. We will also discuss the significance of integrating
these technologies with functional genomics and address the
current limitations and challenges in the field.

SINGLE-CELL MULTIOMICS TECHNOLOGIES

The pursuit of extracting multilayered information from single cells
began with advances in combining transcriptome and genome
analyses. The first-generation single-cell multiomics technologies,
such as gDNA-mRNA sequencing (DR-seq) and genome-and-
transcriptome sequencing (G&T-seq), marked significant progress
by enabling the simultaneous observation of gene expression and
genome-wide copy numbers within individual cells (Dey et al., 2015;
Macaulay et al., 2015). Despite subsequent innovations such as
simultaneous isolation of genomic DNA and total RNA (SIDR) and
TARGET-seq, there are still important considerations associated
with whole genome sequencing, including high costs per cell and
allelic or locus dropout (Han et al., 2018; Rodriguez-Meira et al.,
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2020). In light of these considerations, there is growing attention to
transcriptomic analyses that account for allele-specific expression
and coding mutations, which can enhance the integration of
genome and transcriptome data (Deng et al., 2014; Muyas et al.,
2023; Petti et al., 2019; Qi et al., 2023).

Concurrently, multiomics approaches have emerged that
leverage short-read sequencing technologies, barcoding for indirect
modality information, and the efficient cell processing capabilities of
microfluidic droplet platforms (Buenrostro et al., 2015; Stoeckius
et al., 2017). Epigenome analysis has gained significant attention
for its ability to provide valuable insights into the upstream reg-
ulatory mechanisms of the transcriptome in individual cells. This
modality leverages a robust technical foundation, incorporating es-
tablished methods such as assay for transposase-accessible
chromatin using sequencing (ATAC-seq), chromatin im-
munoprecipitation sequencing (ChIP-seq), and high-throughput
chromatin conformation capture (Hi-C), which facilitate detailed
exploration of chromatin accessibility, protein-DNA interactions, and
genome organization, respectively (Buenrostro et al., 2015; Nagano
etal., 2015; Rotem et al., 2015). Consequently, epigenome analysis
has become a key component of single-cell multiomics technology,
offering rich, complementary data to enhance our understanding of
gene expression and cellular function (Muto et al., 2021; Pan et al.,
2022; Wu et al., 2024). In a recent study, single-cell RNA and ATAC
analysis revealed a TIM-3+ CD8 T cell subpopulation with a term-
inally exhausted phenotype and critical antitumor capacity asso-
ciated with BATF motif activity. This is an example of how
multiomics can be used to precisely phenotype cells while si-
multaneously  uncovering functional mechanisms  (Minnie
et al., 2024).

Single-cell ATAC-seq has been further integrated into various
single-cell technologies (Buenrostro et al., 2015). For instance,
combinatorial indexing methods such as sci-CAR and SHARE-seq
(Cao et al., 2018; Ma et al., 2020), along with droplet-based tech-
niques such as SNARE-seq (Chen et al., 2019), enable concurrent
analysis of transcriptome and chromatin accessibility. The com-
mercial adoption of these technologies by companies, such as 10X
Genomics, has facilitated seamless integration of RNA and epi-
genome analyses. Additionally, advanced trimodal approaches, in-
cluding scTrio-seq and scNMT-seq, exhibit considerable promise for
a wide range of applications in single-cell multiomics (Clark et al.,
2018; Hou et al., 2016).

In the realm of single-cell analysis, protein analysis has histori-
cally been at the forefront due to the long-established reputation of
flow cytometry, a technique developed in the 1960s (Dittrich and
Guhde, 1971). This prominence in single-cell analysis was further
advanced by innovations such as cellular indexing of tran-
scriptomes and epitopes by sequencing (CITE-seq) and RNA ex-
pression and protein sequencing assay (REAP-seq), introduced in
2017 (Peterson et al., 2017; Stoeckius et al., 2017). These methods
utilize existing flow cytometry antibodies by conjugating them with
oligonucleotides, which enables the conversion of protein expres-
sion data into sequence-read information. While quantification of
proteins using such oligonucleotide-based methods was originally
proposed with immune-PCR, its conjunction with modern paired-
end sequencing techniques and droplet-based systems marks a
significant advancement (Niemeyer et al., 2005). Although these
methods do not represent proteome analysis, as they still depend
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on antibodies, they offer substantial advantages by mitigating the
signal overlap issues of traditional flow cytometry, expanding the
range of epitopes. The development of single-cell RNA and Im-
muno-detection (RAID-seq) and intranuclear CITE-seq (inCITE-
seq) has enabled the analysis of intracellular proteins by utilizing
plate-based and droplet-based systems, further advancing the
depth of protein analysis in single-cell technologies (Chung et al.,
2021; Gerlach et al., 2019).

The need for simultaneous AIRR and RNA analysis arises from
the necessity to understand both the functional characteristics of
immune cells along with their clonotypes at the single-cell level. The
widely used 10X Chromium system and many alternative technol-
ogies adopt a 5’ end sequencing approach to sequence the V(D)J
region via short-read sequencing (Benotmane et al., 2023). Various
tools have been developed to generate dimensional reductions or
shared representations that comprehensively reflect both T cell or B
cell clonotype information and transcriptomic data. TCR functional
landscape estimation supervised with scRNA-seq analysis
(TESSA) employs a Bayesian approach to iteratively construct a
TCR network and estimate the association between TCR embed-
ding and gene expression (Zhang et al., 2021). Benisse identifies a
common latent space that couples BCR embedding with gene ex-
pression and detects BCR networks within this latent space (Zhang
et al., 2022). Clonotype neighbor graph analysis (CoNGA) con-
structs graphs for gene expression and TCR, identifying graph-
graph and graph-feature similarities across modalities (Schattgen
et al., 2021). Additionally, single-cell inference of class-switch re-
combination (sciCSR) utilizes a hidden Markov model to learn and
predict B cell class switch dynamics by integrating B cell gene ex-
pression and BCR profiles (Ng et al., 2023). These tools explore the
relationships between AIRR and RNA data. Integrating these data
allows researchers to trace lymphocyte lineages, understand cell
differentiation during clonal expansion, and predict epitopes. In
2021, a pivotal study analyzed peripheral blood mononuclear cells
from over 100 COVID-19 patients across varying severities using
single-cell RNA, protein, and AIRR multiomics technologies. This
integrative approach, combining RNA data with surface protein
expression, enabled refined cell type annotations and a more pre-
cise understanding of immune cell activation and interactions. TCR
analysis further illuminated clonal expansion patterns associated
with disease severity, while BCR profiling revealed gender-specific
differences in clonality and mutation frequency. This research has
provided a significant foundation for subsequent studies on the
immune response to COVID-19 (Stephenson et al., 2021).

Single-cell multiomics technologies have evolved rapidly over a
short period, with each technology adapting to advancements in
others, resulting in dynamic and interdependent development.
Consequently, contemporary technologies exhibit a blend of fea-
tures from earlier methods, resulting in approaches that are both
mutually compatible and feasible. For example, expanded CRISPR-
compatible cellular indexing of transcriptomes and epitopes by se-
quencing (ECCITE-seq) extends the capabilities of CITE-seq by
integrating cell hashing, RNA, protein, and V(D)J analysis (Mimitou
et al., 2019). ATAC with select antigen profiling by sequencing
(ASAP-seq) merges single-cell ATAC sequencing (SCATAC-seq)
with oligo-labeled antibodies to simultaneously assess proteins and
chromatin accessibility (Mimitou et al., 2021). These innovative
combinations represent a significant leap forward in single-cell
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analysis, offering new ways to explore cellular complexity and
function.

SCALABLE TECHNOLOGIES FOR SINGLE-CELL
MULTIOMICS

In single-cell multiomics technologies, scalability is as crucial as
the innovative approaches used for sequencing diverse mod-
alities. This discussion assesses scalability from two key per-
spectives: the number of samples that can be distinguished in a
single experiment and sequencing run, and the number of cells
that can be processed simultaneously.

The core value of single-cell analysis is in capturing diversity
within and between biological conditions, requiring concurrent
analysis of multiple samples to minimize batch effects and enhance
productivity. Addressing these challenges, Ye's group developed a
method utilizing “natural barcodes,” such as SNPs, for demulti-
plexing (Kang et al., 2017). By leveraging genetic variants, this
technique effectively deconvolves pooled transcriptomes. Further-
more, identifying genetic variants of different donor origins from a
single droplet introduces a novel method for multiplet removal, im-
proving upon traditional biological doublet detection. This innovation
has set a new standard in computational tool development, leading
to algorithms such as Souporcell, Vireo, and scSplit (Heaton et al.,
2020; Huang et al., 2019; Xu et al., 2019). These tools have ad-
vanced to enable genotype-free demultiplexing, offering robust and
efficient solutions for scenarios where specific donor identification is
unnecessary, such as simultaneous analysis of samples from the
same experimental group or when prior genotype information is
unavailable.

Around the same period, the developers of CITE-seq introduced
the concept of cell hashing by demonstrating that barcodes in-
cluded in oligo-conjugated antibodies could be used for sample
identification (Stoeckius et al., 2018). This experimental approach
enables sample multiplexing and the detection of multiplets
containing multiple hashtags. Despite the risk of cell loss due to
nonspecific cross-binding, it is an appealing alternative when gen-
otype-based methods are impractical, such as in studies of paired
samples from the same individual. While cell hashing necessitates
additional experimental steps, using genotype-based methods in-
volves generation of genetic variant reference from BAM files and
demands substantial computational resources for the deconvolution
(Brouard et al., 2019). In this context, each approach consequently
embodies its own distinct strengths and limitations.

With the availability of various sample multiplexing methods
suited to different research needs, the ability to process large
numbers of cells has directly contributed to significant cost reduc-
tions in research. The evolution of single-cell analysis technology
has seen significant advancements in cell processing capabilities.
Beginning with manual cell picking, the field progressed to FACS-
based single-cell isolation, microwell plates, microfluidic chambers,
and droplet-based systems (DelLaughter, 2018; Klein et al., 2015;
Macosko et al., 2015; Tang et al., 2009; Rodriguez-Meira et al.,
2020). While this increase has significantly reduced the cost per
cell, challenges remain, particularly for rare cell identification, large
cohort studies, and cell atlas construction. Consequently, re-
searchers continue to focus on enhancing throughput to address
these ongoing needs.
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A major advancement in ultra—high-throughput single-cell
sequencing is the introduction of single-cell combinatorial in-
dexing RNA sequencing (sci-RNA-seq) (Cao et al., 2017). This
technique employs a combinatorial indexing approach to ana-
lyze hundreds of thousands of cells in a single experiment.
Split-pool ligation-based transcriptome sequencing (SPLiT-seq)
provides ultra—high-throughput capabilities, enabling the ana-
lysis of millions of cells with standard laboratory equipment,
achieving a remarkably low library construction cost
(Rosenberg et al., 2018). sci-RNA-seq 3, capable of processing
around 2 million cells per analysis, represents a notable ad-
vancement, though multiple rounds of indexing on plates pose
feasibility challenges (Cao et al., 2019).

The introduction of single-cell combinatorial fluidic indexing
(scifi)}-RNA-seq 2 years later represented a major development by
integrating combinatorial indexing with droplet microfluidics
(Datlinger et al., 2021). By assigning indices to every single tran-
script, individual sequencing reads can be traced back to their cell
origins even if multiplets are formed. This approach effectively ad-
dresses the major limitation of droplet-based technologies—una-
nalyzable multiplets—allowing for processing of over 15 times more
cells than traditional methods. Building on these, droplet-based ul-
tra—high-throughput approaches have been extended to other
modalities. Droplet-based single-cell combinatorial indexing for
ATAC-seq (dsciATAC) enables large-scale single-cell chromatin
accessibility profiling (Lareau et al., 2019) and scifi-ATAC-seq fur-
ther advanced the throughput with reduced cross-cell contamination
compared to earlier methods (Zhang et al., 2024b). 10X-compatible
combinatorial indexing ATAC-seq (txci-ATAC-seq) provides en-
hanced performance over dsciATAC, further refining single-cell
chromatin accessibility analysis (Zhang et al., 2024a).

These advancements have also been applicable to multio-
mics technologies. Single-cell combinatorial indexed cytometry
sequencing (SCITO-seq) leveraged splint oligo-tagged anti-
bodies compatible with various 10X Genomics Chromium sys-
tems, facilitating ultra—high-throughput analysis of proteins
(Hwang et al., 2021). In 2023, five prime end single-cell com-
binatorial indexing RNA sequencing (FIPRESCI) also combined
multiple indexing rounds with Chromium’s 5’ end RNA and V(D)
J analysis method (Li et al., 2023). Paired-seq and single-cell
ultra-high-throughput multiomic sequencing (SUM-seq) utilize
combinatorial indexing to efficiently perform simultaneous RNA
and ATAC analysis, with Paired-seq employing a plate-based
approach and SUM-seq utilizing a droplet-based system
(Lobato-Moreno et al., 2024; Zhu et al., 2019). These scalable
single-cell technologies have unlocked new opportunities for
extensive screening, multiplexed experiments, and the analysis
of rare cell populations, placing a responsibility on researchers
to leverage these advancements for detailed scientific inquiries.

OVERVIEW OF SINGLE-CELL CRISPR TECHNOLOGIES

Although the advent of single-cell technologies has uncovered
the rich tapestry of cell types and states that comprise biological
systems, understanding how specific genetic factors influence
these intricate cellular landscapes requires more than just ob-
servational data. Integrating functional genomics with single-cell
approaches offers a transformative perspective, enabling a
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deeper comprehension of gene regulation at the individual cell
level.

In 2016, significant progress was achieved with the introduction
of Perturb-seq and CRISP-seq (Dixit et al., 2016; Jaitin et al., 2016).
These pioneering studies combined single-cell and CRISPR tech-
nologies to analyze transcriptome changes resulting from genetic
perturbations. Both facilitated single guide RNA (sgRNA) identifi-
cation by inserting guide-identifying barcodes into the mRNA tran-
script, enabling the use of conventional mMRNA analysis systems for
sgRNA detection. In contrast, CROP-seq incorporated guide se-
quences into the 3' long terminal repeat, enabling them to be
transcribed alongside mRNA without interfering with transcriptional
activity (Datlinger et al., 2017). This approach enabled the direct
identification of gRNA sequence, eliminating the need for barcode
insertion. As pioneers in this area, aforementioned methods
merged the strengths of 2 traditional CRISPR screening approa-
ches—pooled and arrayed screening—enabling efficient treatment
with multiple guide RNAs while allowing detailed analysis of in-
dividual transcriptomes.

Following this, many technologies began to adopt mRNA-in-
dependent methods, utilizing invariant regions of sgRNA as an-
nealing sites for reverse transcription. For example, ECCITE-seq,
which relies on a 5" end sequencing system, demonstrated the
ability to capture sgRNA using gel bead oligos, enabling the si-
multaneous analysis of transcriptome, protein, V(D)J, and sgRNA
(Mimitou et al., 2019). Direct-capture Perturb-seq and Direct-seq
also focus on directly capturing sgRNA (Replogle et al., 2020; Song
et al., 2020). Native sgRNA capture and sequencing (NSC-seq)
further advanced this approach by capturing the canonical scaffold
of sgRNA, allowing for the use of conventional KO libraries instead
of relying on modified constant regions (Islam et al., 2024). Tran-
script-informed single-cell CRISPR sequencing (TISCC-seq), on
the other hand, uses a completely different approach to identify
perturbations. Unlike other technologies that rely on guide se-
quence or barcodes, TISCC-seq uses nanopore long-read se-
quencing to directly sequence the mutations in the target gene, still
obtaining the transcriptome through short-read sequencing. This not
only avoids the variant-barcode mis-association issue but also
distinguishes multiple genotypes induced by a single perturbation
(Kim et al., 2023).

In addition to capturing strategies, technologies tailored for
specific screening applications have also been developed. For in-
stance, targeted Perturb-seq (TAP-seq) selectively sequences
target mRNA, enabling cost-effective production of high-quality data
(Schraivogel et al., 2020). sc-Tiling focuses on mutagenesis within
specific domains of coding regions (Yang et al., 2021), while pooled
knockin sequencing (POKI-seq) is designed for large-scale knock-in
screening (Roth et al., 2020). Single-cell expression-based variant
impact phenotyping (sc-eVIP) integrated an open reading frame li-
brary of oncogene coding variants with corresponding barcodes into
Perturb-seq, providing insights into how somatic variants drive on-
cogenesis (Ursu et al., 2022). Furthermore, technologies such as
Perturb-ATAC, CRISPR-sciATAC, and single-cell perturbations with
an accessibility read-out using scATAC-seq (Spear-ATAC) have
been developed to investigate interactions between genetic variants
and chromatin accessibility profiles (Adam Rubin et al., 2019;
Liscovitch-Brauer et al., 2021; Pierce et al., 2021). Mosaic-seq
combines dCas9 with enhancer repressors to screen enhancer
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activity (Xie et al., 2017) and crisprQTL has been advanced with
improved template switching rates and multiplicity of infection
(Gasperini et al., 2019). This ongoing evolution of single-cell
CRISPR technologies promises to advance our understanding of
gene regulatory networks, paving the way for novel therapeutic
strategies.

CHALLENGES IN SINGLE-CELL CRISPR ANALYSIS

Despite the remarkable progress in single-cell CRISPR tech-
nologies, there remains a need to extend perturbations to a
genome-wide scale for comprehensive genetic target coverage.
Achieving this requires addressing both technological and
analytical challenges.

From a technological perspective, increasing cell throughput for
individual perturbations is a major challenge for accurately asses-
sing phenotypic changes. Its necessity is illustrated by a study that
analyzed over 10,000 perturbations across 2.5 million cells
(Replogle et al., 2022). This research utilized single-cell CRISPR
technologies to create a comprehensive and multidimensional
gene-phenotype map that provides insights into gene function and
cellular behavior. By employing CRISPR interference screening to
analyze the transcriptomes of over 100 cells per perturbation, the
study identified novel regulators involved in composite phenotypes,
including ribosome biogenesis, transcription, mitochondrial respira-
tion, aneuploidy, and stress-specific regulation of the mitochondrial
genome. While this study represents a significant achievement in
genome—scale single-cell perturbation screening, it required over
300 sequencing lanes. To expand these screenings to in vivo or
primary cell analysis, it is essential to implement ultra—high-
throughput technologies that have been successfully demonstrated
in other modalities. Current ultra—high-throughput technologies
employ either plate-based combinatorial indexing, as seen in
CRISPR-sciATAC (Liscovitch-Brauer et al., 2021), or initial indexing
through in situ cDNA synthesis followed by incorporation into dro-
plet-based systems. A key technical focus will be integrating these
indexing strategies with sgRNA sequencing to analyze individual
perturbations.

In the context of single-cell CRISPR screening data analysis,
there are 2 primary objectives: (1) systematically elucidating
regulatory circuits to identify novel regulators of specific phe-
notypes, and (2) modeling the effects of genetic perturbations to
predict the outcomes of untested perturbations.

Single-cell CRISPR screens with multiple readouts offer
more than a mere aggregation of individual marker analyses at
the single-cell level. Although pseudobulk-based differential
expression tests are a straightforward approach for analyzing a
small number of perturbations simultaneously, they lack statis-
tical robustness in single-cell data (Barry et al., 2024; Lee and
Han, 2024). For sgRNA enrichment for individual markers at
single-cell resolution, a rank-based test statistic provides a
more robust assessment (Yang et al., 2020).

Nevertheless, as the scale of single-cell CRISPR screens in-
creases, the framework for simultaneously quantifying regulatory
relationships between multiple target genes and markers becomes
crucial (Peidli et al., 2024). Regression-based approaches are
widely employed in this context, utilizing a single-cell guide as-
signment matrix as a covariate and single-cell molecular readouts
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Fig. 1. Overview of single-cell omics technologies. (A) Single-cell isolation methods, where cells are processed using plate-based or droplet-based
systems. (B) Various modalities available for single-cell multiomics analysis, with a focus on chemistries that integrate transcriptomics. (C) Scalable
technologies are designed to increase the throughput and processing capacity of single-cell analysis, enabling the simultaneous study of larger cell
populations across diverse modalities. AIRR, adaptive immune receptor repertoire; sgRNA, single guide RNA.

as responses to simultaneously map the effects of multiple target
guides on various markers (Dixit et al., 2016; Frangieh et al., 2021;
Yang et al., 2020; Zhou et al., 2023). However, permutation tests,
which are commonly used to generate null distributions to calculate
statistical significance, introduce a significant computational bottle-
neck due to their linearly scaling time complexity with the number of
sgRNAs. Despite efforts to reduce computation time (Barry et al.,
2024; Frangieh et al., 2021), permutation-based significance tests
for genome—scale target guides remain computationally expensive.

Aside from the computational time constraints, the in-
creased number of target guides also results in high sparsity
in the covariate matrix, which can lead to insufficient esti-
mation of effect sizes when using simple linear regression.
One approach addressing this issue is Gaussian Sparse

www.sciencedirect.com/journal/molecules-and-cells

Factor Analysis (GSFA), a Bayesian factor analysis frame-
work (Zhou et al., 2023). GSFA densifies the sparse covariate
matrix by jointly learning a linear weight matrix and a sparse
loading matrix, which map target guides to factors and factors
to markers, respectively. Unlike permutation tests, GSFA
uses Bayesian methods to assess significance, providing a
more sensitive identification of regulatory relationships.
However, the Bayesian end-to-end learning process of weight
matrices in GSFA limits its scalability, making it feasible pri-
marily for hundreds of guides. Therefore, there is room for
improvement in regression-based approaches to address
both computational scalability and statistical robustness as
the number of target guides increases in single-cell CRISPR
screens. Prediction of the effects of unseen perturbations
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primarily relies on generative models, which learn latent re-
presentations for each cell (Bereket and Karaletsos, 2024;
Lopez et al., 2018, 2022; Piran et al., 2024; Roohani et al.,
2024; Tu et al., 2024; Weinberger et al., 2023). Models such
as scVI (Lopez et al., 2018) naturally capture these latent
representations, encoding information about the original cell
profiles, thus are widely used for dimensionality reduction. In
the context of single-cell CRISPR screens, latent re-
presentations of individual cells can be aggregated by target
gene to estimate the effects of individual perturbations. Ad-
ditionally, by manipulating these learned latent representa-
tions, it is possible to generate counterfactual observations
and predict the effects of previously untested perturbations.

Recent advancements in generative models mainly focus on
the interpretability or disentanglement of latent representations.
Specifically, interpretability is enhanced by refining these re-
presentations to be sparse, which makes them aligned with
annotated biological processes (Bereket and Karaletsos, 2024;
Lopez et al., 2022). Efforts are also being made to disentangle
perturbation-specific responses (or salient representations)
from shared background representations (Weinberger et al.,
2023), and incorporation of additional supervised guidance of
salient representation is explored in single-cell CRISPR screens
(Tu et al., 2024).

Noisy observations also pose a significant challenge in
modeling molecular readouts because perturbation readouts
are influenced by stochastic factors, such as limited CRISPR
system efficacy and sequencing dropouts. While the variable
efficacy has been addressed in pooled CRISPR screens, this
concern in single-cell CRISPR screens has not been thoroughly
explored (Morgens et al., 2016). Given that CRISPR perturba-
tions often produce weak signals in molecular readouts, com-
prehensive  benchmarking of representation learning
methods—covering aspects such as interpretability, disen-
tanglement, and sensitivity—is crucial. Nonetheless, this re-
mains challenging due to the relatively small number of genetic
perturbations in typical experiments and the scarcity of geno-
me—scale single-cell CRISPR screen data (Peidli et al., 2024).

CONCLUSION

The evolution of single-cell technologies, which began with tran-
scriptomics, has expanded to encompass genome, epigenome,
and protein analysis, as well as immune profiling and genetic per-
turbation. More recently, innovations have significantly enhanced
scalability in sample and cell numbers, achieved through the de-
velopment of various demultiplexing approaches and combinatorial
indexing methods. By obtaining multilayered information at the
single-cell level from heterogeneous cell populations present in
biological samples, these advancements have enabled the deriva-
tion of unique biological insights and facilitated a more holistic in-
terpretation of cellular behavior, surpassing what could be achieved
through the mere combination of single-omics data.

Although achieving genome-wide scale is crucial for single-
cell CRISPR screening technologies, the necessary ultra—high-
throughput technology to support this has yet to be developed.
Furthermore, from an analytical perspective, analysis methods
should be able to handle inherently complex and noisy

8 Mol. Cells 2024; 47(12): 100147

observations effectively and efficiently, in line with the growing
scale of experimental technologies.

In conclusion, the rapid development and integration of muilti-
plexed, multimodal single-cell technologies have profoundly im-
pacted our understanding of cellular biology. From observational
studies to perturbation analyses, these technologies offer un-
precedented precision and depth, paving the way for novel ther-
apeutic strategies and personalized medicine. As we continue to
address existing challenges and push the boundaries of single-cell
analysis, the future holds immense potential for further discoveries
and applications in biomedical research.
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