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Erythroglycan biosynthesis in K-562 cells
Inhibition of synthesis by tunicamycin and lack of attachment to the G-protein of vesicular-stomatitis virus
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K-562 cells, which express foetal erythroglycan, are shown to synthesize the lipid-linked
oligosaccharide intermediates commonly found in tissues and cultured fibroblasts. The
addition of tunicamycin, which blocks the formation of these intermediates and thus of
asparagine-linked oligosaccharides, inhibits the synthesis of erythroglycan (Mr
7000-11000). Vesicular-stomatitis-virus infection of K-562 cells results in the gly-
cosylation of the G-protein with the transferrin-type oligosaccharide (M, 3000), but
not with the larger erythroglycan. These results suggest that, in K-562 cells, the early
stages of erythroglycan biosynthesis are the same as those of the transferrin-type
oligosaccharides. However, maturation of the oligosaccharide is influenced by protein
structure such that erythroglycan is only expressed on specific glycoproteins.

K-562 cells, originating from the pleural effusion
of a chronic-myelogenous-leukaemia patient, have
been shown to express a long-chain N-linked
oligosaccharide (Mr 7000-11000; 'erythroglycan')
on specific cell-surface glycoproteins (Turco et
al., 1980). The distinct feature of erythroglycan
is the presence of keratan-like repeating
Galfil -4GlcNAcfll-43 sequences attached to the
polypeptide via a mannose-containing core (Jarne-
felt et al., 1978). This cell line also synthesizes the
common bi- and tri-antennary types of N-linked
'complex' glycopeptides such as those that can be
isolated from bovine transferrin (Mr 3000) and that
differ from erythroglycan by the absence of repeat-
ing N-acetyl-lactosamine units. The common com-
plex chains have already been shown to be syn-
thesized via lipid-linked oligosaccharide inter-
mediates (Parodi & Leloir, 1979), and the present
study, with the use of the antibiotic tunicamycin,
provides evidence that the larger complex chains are
synthesized in a similar manner.

In addition, we have examined vesicular-
stomatitis-virus-infected K-562 cells in order to
evaluate the selectivity of N-glycosylation of the
viral glycoprotein in a cell line known to produce
several kinds of N-linked saccharides. Vesicular-
stomatitis virus is a lipid-enveloped RNA virus
containing one glycoprotein (G-protein) in its mem-
brane. It is an appropriate model system to address
this aspect, since normal host protein, as well as
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RNA synthesis, is inhibited during viral infection
(Etchison et al., 1977). The G-protein is reported to
be glycosylated with two transferrin-type oligo-
saccharides by host enzymes in fibroblastic cell lines
such as BHK (baby-hamster kidney) (Reading et al.,
1978). Thus we decided to determine whether the
G-protein could be glycosylated with the erythro-
glycan chain in K-562 cells.

In the present paper we show that the G-protein is
glycosylated in K-562 cells only with oligosac-
charides of approx. Mr,3000 and not with the
longer-chain erythroglycan. The results indicate that
there are at least two pathways of synthesis via
lipid-linked intermediates of N-linked glycopeptides
of the complex type in K-562 cells. The G-protein of
vesicular-stomatitis virus appears to be selectively
glycosylated by the transferrin-type pathway, lead-
ing to typical bi- and tri-antennary oligosaccharide
structures (Kornfeld & Kornfeld, 1976).

Materials and methods
Materials

Endo-fJ-galactosidase from Escherichia freundii
was generously given by Professor Y.-T. Li (Tulane
University, New Orleans, LA, U.S.A.). Other
materials were as follows: [6-3Hlglucosamine
(18.8 Ci/mmol), [2-3Hlmannose (18.4 Ci/mmol)
and [3Hlleucine (51.6Ci/mmol) from New England
Nuclear Corp.; Bio-Gel P-4 from Bio-Rad Labora-
tories; Sephadex G-50 from Sigma. Tunicamycin
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was obtained from Dr. Robert Hamill of Eli Lilly
Co.

Cell culture
K-562 cells were obtained from Professor C. B.

Lozzio (University of Tennessee, Knoxville, TN,
U.S.A.) as passage no. 211. The cells were main-
tained in RPM 1- 1640 medium (Gibco) supple-
mented with 10% (v/v) foetal-calf serum (Gibco).
Cell cultures were determined to be free of myco-
plasma as described by Livingston et al. (1975). All
experiments were performed on cells below passage
no. 240.

Metabolic labelling and extraction
Exponentially growing cells (106 cells/ml) were

centrifuged (1000g) for 5min to remove the medium
and washed with 10ml of phosphate-buffered saline
(0.8% NaCI/0.02% KCI/0.115% Na2HPO4/0.2%
KH2PO4/0.01% CaCI2/0.01% MgCI2). The cells
(107) were incubated in 1 ml of Dulbecco's modified
Eagle's medium containing 2% of the normal
concentration of glucose (20,ug/ml) and [3H]glu-
cosamine (20,uCi/ml) or [3Hlmannose (20,uCi/ml)
and supplemented with 10% dialysed foetal-calf
serum and glutathione (lug/ml). After 18 h of
incubation at 37°C, the cells were separated from
the medium by centrifugation, washed with 10 ml of
phosphate-buffered saline and the labelled proteins
extracted with chloroform/methanol/water (3:2: 1,
by volume). The insoluble residue obtained by
extraction of the [3Hlmannose-labelled cells was
washed with water and extracted with chloro-
form/methanol/water (10: 10: 3, by volume), which
solubilized the oligosaccharide-lipid fraction (Turco
etal., 1977).
Preparation ofprotein-derived oligosaccharides

The oligosaccharides were released from the
lipid-extracted pellet by hydrazinolysis with freshly
distilled anhydrous hydrazine at 1000C for 20 h
(Bayard & Roux, 1975). The hydrazine was
removed by rotary evaporation under reduced
pressure and by drying, under a stream of N2, with
toluene three to five times. The amino sugars in the
oligosaccharides were re-N-acetylated by treatment
with pyridine/acetic anhydride (1: 1, v/v) for 1 h at
1000C, followed by de-O-acetylation with 0.1 M-
KOH in toluene/methanol (1:3, v/v) at room
temperature for 4 h. The oligosaccharides were then
reduced with 1 M-NH3/0.1 M-NaBH4, neutralized
with acetic acid and chromatographed on Sephadex
G-50.

Vesicular-stomatitis-virus infection ofcells
Exponentially growing K-562 (2 x 101-

20 x 0I cells/ml) or BHK cells (2 x 10S-
20 x 105 cells/60mm-diam. plate) were infected with

vesicular-stomatitis virus (multiplicity of infec-
tion = 5-10). At 5 h after infection the medium was
removed and the cells were incubated for 60min in
Dulbecco's modified Eagle's medium supplemented
with dialysed 10% foetal-calf serum and the appro-
priate radioisotopically labelled amino acid or sugar.
Then the medium was removed and the cells were
washed twice with phosphate-buffered saline. The
cells were precipitated with 5% trichloroacetic acid
and washed with ice-cold acetone.
The radiolabelled proteins were dissolved and

separated by polyacrylamide-gel electrophoresis as
described by Laemmli (1970). The separating gel
was 10% acrylamide and the stacking gel was 3.6%
acrylamide. Electrophoresis was carried out for 5h
at 25 mA. After electrophoresis, the gels were
subjected to fluorography as described by Bonner &
Laskey (1974), Kodak XR-5 film being used.

Results

The pathway of biosynthesis of erythroglycan is
unknown; however, preliminary information con-
cerning its expression in K-562 cells was obtained by
examining the distribution of lipid-linked oligo-
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Fig. 1. Bio-Gel P-4 chromatogram of K-562-cell-derived
[3Hlmannose-labelled oligosaccharides released from

lipid by mild acid hydrolysis
The 13H-Manloligosaccharide-lipid fraction, ob-
tained as described in the Materials and methods sec-
tion, was subjected to mild acid hydrolysis (Turco et
al., 1977), treated with endo-fl-N-acetylglucosaminid-
ase H (Robbins et al., 1977), mixed with l14C-
Manloligosaccharide standards (not plotted) and
applied to a column (1 cm x 240 cm) of Bio-Gel P-4
(400 mesh); 0.5 ml fractions were collected. Letters
above the peaks refer o the elution positions of
standards (Liu et al., 1979): 0, Glc3Man9GlcNAc;
A, Glc2Man9GlcNAc; B. Glc1Man9GlcNAc; C,
Man9GlcNAc; D, Man8GlcNAc.
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saccharide intermediates synthesized in these cells
and by determining the effect of tunicamycin on
metabolic carbohydrate labelling of high-molecular-
weight oligosaccharides. As shown in Fig. 1, the
profile of radioactivity from [3H]mannose labelling
in vivo of lipid-linked oligosaccharides is similar to
that reported in numerous cell systems (Robbins et
al., 1977). Thus the largest labelled lipid-derived
oligosaccharide is believed to be Glc3Man9GlcNAc2,
with lesser amounts of smaller lipid-derived oligo-
saccharides thought to be precursors to
Glc3Man9GlcNAc2-lipid intermediate. With vari-
able labelling times, oligosaccharides of unusual
size were not observed.

Tunicamycin inhibits the glycosylation of gly-
coproteins with N-linked oligosaccharides by block-
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Fig. 2. Inhibition of svnthesis of protein-derived oligo-
saccharides by tunicamycin

K-562 cells (2 x 106 cells) were preincubated with
tunicamycin for 2h and labelled with [3Hlglu-
cosamine (20,uCi) for 16h in the presence of
tunicamycin. After labelling, protein-derived [3Hi-
mannose-labelled oligosaccharides were prepared as
described in the Materials and methods section and
subsequently chromatographed on Sephadex G-50
(Turco et al., 1980). Protein was determined from
duplicate plates of cells. The radioactivity (c.p.m./,ug
of protein) in oligosaccharides of Mr 7000-11 000
(®) and 3000 (0) is shown.
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ing the formation of dolichyl pyrophosphate N-
acetylglucosamine and consequently all N-acetyl-
glucosamine-lipid intermediates (Hickman et al.,
1977). As previously reported (Turco et al., 1980),
metabolic labelling of K-562 cells with 13HI-
mannose results in the incorporation of label into
glycoproteins whose glycopeptides can be separated
into two major size classes by gel filtration on
Sephadex G-50; 'erythroglycan' (Mr 10000), and bi-
and tri-antennary structures of the transferrin-type
(M, 3000). As shown in Fig. 2, tunicamycin inhibits
the incorporation of [3HImannose into both of
these size classes to comparable extents. At a
tunicamycin concentration of 4,ug/ml, specific radio-
activity (c.p.m./,ug of cell protein) found in erythro-
glycan decreased by 75% and in transferrin-type
structures by 82%. At this concentration of tunica-
mycin, total cellular protein was only 14% less than
that present in control cultures, indicating that the
primary effect of the antibiotic is on glycoprotein
glycosylation. Increasing the tunicamycin concen-
tration to lOg/ml had no further significant effect
on synthesis of either erythroglycan or the 3000-M,
saccharides. The incorporation of [3Hlglucosamine
into erythroglycan was decreased by 66% at 4,ug of
tunicamycin/ml; no further decrease in synthesis was

Relative mobility,

Fig. 3. Gel profiles of radiolabelled proteins of vesicular-
stomatitis-virus-infected K-562 and BHK cells

Radiolabelled proteins were obtained as described in
the Materials and methods section. Shown are
soft-laser-densitometer tracings of a fluorogram (7
days exposure). L, G, N, NS and M indicate the
proteins of vesicular-stomatitis virus, as described
by Wagner et al. (1972). (a) [3HlLeucine-label-
led vesicular-stomatitis-virus-infected K-562 cells;
(b) [3Hlleucine-labelled vesicular-stomatitis-virus-
infected BHK cells; (c) I3Hlmannose-labelled
vesicular-stomatitis-virus-infected K-562 cells; (d)
[3Hlglucosamine-labelled vesicular-stomatitis-virus-
infected K-562 cells.
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Fig. 4. Gel filtration of G-protein glvcopeptides on

Sephadex G-50
[3HlMannose- and [3Hlglucosamine-labelled G-pro-
tein from vesicular-stomatitis-virus-infected K-562
cells were excised from a polyacrylamide gel (Fig.
3), freed of the polyacrylamide by electrophoresis,
precipitated with 5% (w/v) trichloroacetic acid,
washed twice with ice-cold acetone, and the glyco-
peptides prepared by Pronase digestion. The Sepha-
dex G-50 column (1.5 cm x 40cm) was eluted with
0.1 M-pyridine/acetic acid, pH 5.0. Fractions of
2.0 ml were collected and radioactivity was moni-
tored by liquid-scintillation counting of appropriate
samples. 0, P3HlMannose-labelled G-protein glyco-
peptides; *, 13Hlglucosamine-labelled G-protein
glycopeptides.

seen up to lO,g/ml of tunicamycin. These results
strongly suggest that the tunicamycin-sensitive
biosynthetic steps leading to the common N-linked
glycopeptides (transferrin-type) are the same as the
initial stages of erythroglycan synthesis.
As discussed in the introduction, we decided to

determine whether erythroglycan could be attached
to the G-protein of vesicular-stomatitis-virus-in-
fected K-562 cells, since these cells potentially could
glycosylate the G-protein with the smaller trans-
ferrin-type, as is the case with BHK cells or with the
long-chain versions of 'complex' units (erythro-
glycan). As seen in the densitometer scans of
radioautograms of sodium dodecyl sulphate/poly-
acrylamide gels in Fig. 3, 5.5 h after infection of
K-562 cells (a) with vesicular-stomatitis virus the
same proteins are radiolabelled with [3Hlleucine as
in vesicular-stomatitis-virus-infected BHK cells (b).
Fig. 3 further reveals that only the G-protein of
vesicular-stomatitis-virus-infected K-562 cells is
labelled when either [3HImannose (c) or PHi-
glucosamine (d) is incubated with the cells 5.5 h after
infection. Fig. 4 shows the profile of the gly-
copeptides derived from Pronase-digested [3Hlglu-
cosamine and [3Hlmannose-labelled G-protein from
vesicular-stomatitis-virus-infected K-562 cells. All of
the resultant glycopeptides are co-eluted with stan-
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Fig. 5. Gel filtration of endo-f3-galactosidase-digested
[3Hlglucosamine-labelled G-protein glycopeptides on

Bio-Gel P-2
13HlGlucosamine-labelled G-protein glycopeptides
from vesicular-stomatitis-virus-infected K-562 cells
were treated with 200 munits of endo-JJ-galactos-
idase in 0.05 M-sodium acetate, pH 5.8, for 18 h. The
sample was then applied to a column (1.5 cm x
100cm) of Bio-Gel P-2 and eluted with 15% (v/v)
acetic acid. Fractions of 1.5 ml were collected. I, II
and III indicate the elution volumes of authentic tetra-
saccharide ((tAcNeu l-3,6#Ga 1l-4#GlcNAc l -3-
/Gal), trisaccharide (/Gal l-4#GGcNAc l-3-#Gal),
and disaccharide (fGlcNAc l-3flGal) isolated
previously (Turco et al., 1980).

dard glycopeptides of M, 3000 isolated from bovine
transferrin. No glycopeptides of Mr= 7000-11000
(the size of erythroglycan) were obtained. Con-
sistent with this result, the [3H]glucosamine-labelled
G-protein glycopeptides were found to be resistant
to degradation by endo-fJ-galactosidase from E.
freundii as shown in Fig. 5. This enzyme is specific
for keratan-like molecules with a repeating N-
acetyl-lactosamine structure of Gal/fl -4GlcNac-
,1 -3. No di-, tri- or tetra-saccharide products
were obtained as for foetal erythroglycan
(Fukuda et al., 1979; Turco et al., 1980), indi-
cating the absence of the GIcNAcGal repeating
unit. From these data we conclude that K-562
cells do not glycosylate the G-protein with erythro-
glycan N-acetyl-lactosamine repeating units.

Discussion

In the biosynthetic scheme for glycosylation of
protein with N-linked saccharides [see Parodi &
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Leloir (1979) for review], the initial glycosylation is
achieved by the transfer of the Glc3Man9GlcNAc2
oligosaccharide from a lipid intermediate to an
asparagine residue on the protein. The pathways
leading to the formation of this lipid-linked oligo-
saccharide can be blocked by tunicamycin (Hick-
man et al., 1977).

In our experiments, the synthesis of both erythro-
glycan and transferrin-type glycopeptides is inhibit-
able by tunicamycin to the same extent, suggesting
that both proceed via similar pathways using
lipid-linked intermediates. The observation that
specific glycoproteins of K-562 cells and erythro-
cyte membranes are not randomly glycosylated with
all available N-linked chains, but specifically with
erythroglycan, suggests that a strictly controlled
branch point in the synthetic mechanisms must exist.
In the accepted scheme for the synthesis of the
transferrin-type oligosaccharides, glucose and man-
nose residues are removed sequentially from
the non-reducing ends of the protein-bound
Glc3Man9GlcNAc2 oligosaccharide, and the man-
nose core is then elaborated with two to four
disaccharides consisting of Galf,l-4GlcNAc. Each
of these disaccharides is then normally terminated
by an N-acetylneuraminic acid residue (Schachter et
al., 1970) before leaving the Golgi apparatus. In the
case of erythroglycan, the repeating chain of
Galfl 1-4GlcNAcfl1-+3 is presumably added to the
mannose core region in a series of additions to
produce the higher oligomers found in erythrocyte
membranes (Jarnefelt et al., 1978; Krusius et al.,
1978). Information encoded in the nascent protein
must signal whether the processed oligosaccharide
chain will be elongated to produce erythroglycan or
terminated by N-acetylneuraminic acid. The gly-
cosyltransferase systems of the endoplasmic
reticulum must somehow be sensitive to this
information in order to accomplish the observed
selective glycosylation.
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