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AI assistants, such as ChatGPT, are being increasingly used by students in higher
education institutions. While these tools provide opportunities for improved teaching
and education, they also pose significant challenges for assessment and learning
outcomes. We conceptualize these challenges through the lens of vulnerability, the
potential for university assessments and learning outcomes to be impacted by student
use of generative AI. We investigate the potential scale of this vulnerability by measuring
the degree to which AI assistants can complete assessment questions in standard
university-level Science, Technology, Engineering, and Mathematics (STEM) courses.
Specifically, we compile a dataset of textual assessment questions from 50 courses at
the École polytechnique fédérale de Lausanne (EPFL) and evaluate whether two AI
assistants, GPT-3.5 and GPT-4 can adequately answer these questions. We use eight
prompting strategies to produce responses and find that GPT-4 answers an average
of 65.8% of questions correctly, and can even produce the correct answer across at
least one prompting strategy for 85.1% of questions. When grouping courses in our
dataset by degree program, these systems already pass the nonproject assessments
of large numbers of core courses in various degree programs, posing risks to higher
education accreditation that will be amplified as these models improve. Our results call
for revising program-level assessment design in higher education in light of advances
in generative AI.

LLM | education | generative AI | education vulnerability

ChatGPT, a system using a large language model (LLM), GPT-3.5, as its foundation,
was released in November 2022 to broad adoption and fanfare, reaching 100M users
in its first month of use and remaining in the public discourse to this day. As arguably
the most hyped AI system to date, its release has prompted a continuing discussion of
societal transformations likely to be induced by AI over the next years and decades.
Potential changes in modern educational systems have remained a core topic in this
discussion, with early reports highlighting the risk of these AI systems as tools that
would allow students to succeed in university coursework without learning the relevant
skills those courses are meant to teach. Despite this concern, there has yet to be a
comprehensive empirical study of the potential impact of LLMs (and derivative tools)
on the assessment methods that educational institutions use to evaluate students. A few
studies have explored the interesting subtask of how well models perform on problems
related to topics typically taught in many university courses and aggregated relevant
question sets for this purpose (1–5). However, none of these works extrapolate these
findings to assess the downstream impact of these tools on degree programs, where
the risk of these technologies relative to their pedagogical benefits must actually be
measured.

In this work, we conduct a large-scale study across 50 courses from EPFL to measure
the current performance of LLMs on higher education course assessments. The selected
courses are sampled from 9 Bachelor’s, Master’s, and Online programs, covering between
33% and 66% of the required courses in these programs. From these courses, we compile
a bilingual dataset (English and French) of 5,579 textual open-answer and multiple-
choice questions (MCQ). All questions were extracted from real exams, assignments,
and practical exercise sessions used to evaluate students in previous years. The course
distribution is presented in Fig. 1, and the dataset statistics are shown in Table 1 (stratified
by particular dataset attributes).

Significance

Universities primarily evaluate
student learning through various
course assessments. Our study
demonstrates that AI assistants,
such as ChatGPT, can answer at
least 65.8% of examination
questions correctly across 50
diverse courses in the technical
and natural sciences. Our analysis
demonstrates that these
capabilities render many degree
programs (and their teaching
objectives) vulnerable to potential
misuse of these systems. These
findings call for attention to
assessment design to mitigate the
possibility that AI assistants could
divert students from acquiring
the knowledge and critical
thinking skills that university
programs are meant to instill.
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Using this dataset, we subsequently test two commonly used
models, GPT-4 (6), the system widely considered to be the most
performant (7) among public AI assistants* and GPT-3.5 (8), a
highly performant freely available system. We generate responses
from these systems using a range of prompting strategies (9–
16), each of which varies in complexity, but all of which could
easily be applied by a lay practitioner with minimal training
in prompt engineering (17). We evaluate these systems using
both automatic and manual grading, where manual grading of
open-answer questions is performed by the same faculty staff
that designed these problems and who have experience grading
student answers to them. Subsequently, we conduct a detailed
analysis of the generated outputs and their assessment results,
considering factors such as the number of courses that would be
passed, their distribution across university programs, as well as
the effects of the question difficulty and language.

Our results show that AI systems are relatively capable of
answering questions used in university assessments. GPT-4
responds correctly to ∼65.8% of questions when aggregating
responses across the different prompting strategies using a simple
majority vote (i.e., a knowledge-free setting that assumes the user
would use this tool with no subject knowledge). Furthermore,
across the eight prompting strategies, GPT-4 can generate at
least one correct response for 85.1% of questions (maximum
performance), indicating even greater assessment vulnerability
in a setting where a user may have enough subject knowledge
to select a correct answer even if they cannot produce it. This
performance is relatively stable across courses in various scientific
disciplines, impacting courses regardless of their subject and size.
Importantly, we find that these results indicate that large numbers
of university degree programs are highly vulnerable to these tools,
with the nonproject components of many core courses being
passed in multiple degrees offered by our institution.

Fig. 1. Overview of Courses. Courses represented in our dataset, grouped
by program and degree. Courses may belong to multiple programs, in which
case their partition is split into chunks of equal size, with one chunk assigned
to each program.

*As of November 2023.

Table 1. Dataset statistics
Category Total questions

Level Bachelor’s courses 2,147 (38.5%)
Master’s courses 1,631 (29.2%)
Online programs 1,801 (32.3%)

Language English 3,933 (70.5%)
French 1,646 (29.5%)

Question type MCQ 3,460 (62%)
Open-answer 2,119 (38%)

Finally, we observe that while these systems are capable of
reaching passing grades in many university assessments, they
struggle with more complex question types where students also
tend to perform most poorly. Taken together, these results
indicate a possibility that these systems could be used to achieve
passing marks in university courses while circumventing the
process by which students acquire basic domain knowledge and
learn to extend it to more complex problems. We conclude with
a discussion on mitigations to university assessment settings, an
outlook on how university systems should adapt to the increased
use of these tools, and a discussion of limitations of our study,
specifically with respect to how it diverges from exact assessment
and grading policies at our institution.

Data Collection

We compile a dataset of assessment questions from 50 courses
offered at our institution from both on-campus and online classes.
Following data preprocessing and filtering steps, this dataset
consists of a total bank of 5,579 textual multiple-choice (MCQ)
and open-answer questions in both English and French. These
questions span various levels (e.g., Bachelor, Master), and cover
a broad spectrum of STEM disciplines, including Computer
Science, Mathematics, Biology, Chemistry, Physics, and Material
Sciences. Table 1 and Fig. 1 provide an overview of the dataset’s
main statistics and the distribution of questions across different
topics. Additionally, we have collected course-specific attributes
such as the year when the course is first offered in our institution’s
degree programs (e.g., Master’s year 1), the program designation
(e.g., Physics), the language of instruction (e.g., French), and the
average student enrollment over recent years. Finally, certain
questions have been labeled by the instructor who designed the
question with a subjective annotation of the question’s difficulty.

Experimental Findings

In our study, we investigate the vulnerability of university
programs to generative AI systems using our question bank of
5,579 evaluation questions from 50 courses. We consider two
models, GPT-4 and GPT-3.5, selected due to their popularity
and usage rates. GPT-4 is considered the most performant model
among all publicly accessible LLMs but is only available through
a premium subscription, impeding its use by many students.
GPT-3.5 is a less performant alternative, but free to use. We
generate responses to questions from these models using eight
relatively easy-to-apply prompting methods (implementation
details are described in SI Appendix, section 2). For multiple-
choice questions, we assess whether a response is correct by
comparing the selected choice with the annotated correct answer
option. For open-response questions, we use GPT-4 to rate the
quality of the response on a four-point scale: Correct, Mostly
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Correct, Mostly Incorrect, Incorrect, which we map to scores of
1, 0.66, 0.33, and 0, respectively, for calculating performance.†

Can LLM Systems Pass University-Level Courses? We begin our
analysis by assessing model performance in a setting where the
user has zero knowledge about the question topic. In the simplest
scenarios, where we use the most straightforward prompting
strategies such as directly asking a question (zero-shot) or asking
the model to provide a reasoning chain before answering the
question (zero-shot chain-of-thought), GPT-4 achieves average
accuracies of 55.9% and 65.1%, respectively. With a slightly
more complex zero-knowledge strategy, such as majority voting
over the eight answers generated by the different prompting
strategies, they would receive a correct answer to 65.8% (on
average) of questions using GPT-4 (and 52.2% using GPT-
3.5). We observe that this performance trend holds regardless
of the language of the assessment, with English exhibiting
slightly better results than French. Further experimental re-
sults for assessments in English and French are detailed in
SI Appendix, section 5.C.

Beyond overall performance across the question bank, Fig. 2
presents the proportion of passed courses for our sample of 50
courses based on varying passing thresholds. Alarmingly, GPT-4
can easily be used to reach a 50% performance threshold (which
could be sufficient to pass many courses at various universities)
for 89% of courses with MCQ-based evaluations and for 77%
of courses with open-answer ones. While not performing quite
as well, GPT-3.5, the freely available model, can reach a 50%
threshold for 70% of courses with MCQ-based assessments and
for 50% of courses with open-answer questions. As passing
thresholds may not be set to 50% for all institutions, we vary
this threshold and find that GPT-4 still passes 68% of courses at
a 60% passing threshold, and 38% of courses at a 70% passing
threshold for MCQ. Similar results are found for open-answer
questions.

Our results suggest that users with no knowledge of a par-
ticular subject could solve enough questions to pass nonproject
assessments in a majority of the courses in our dataset. While
these observations make a compelling argument that AI assistants

Fig. 2. Course Pass Rate of Generative AI Assistants. Proportion of 50
courses that models successfully pass at various performance thresholds.
Results are presented independently for multiple-choice (MCQ) and open-
answer (Open) question types for both GPT-3.5 and GPT-4. Model responses
are aggregated using the majority vote strategy.

†Analysis of the quality of this automated grading is provided in Materials and Methods
and SI Appendix, section 4. Importantly, we note that GPT-4 gives slightly higher average
grades (on average ∼2.75%) than humans for responses to a sample of questions graded
by both.

Table 2. Program results
% Courses passed Question

Program � = 50% � = 60% � = 70% Max count

Engineering 80.0 60.0 40.0 0.83 1,343
Chemistry 83.3 66.7 50.0 0.85 1,417
Life science 85.7 71.4 57.1 0.85 1,477
Physics bachelor 100.0 55.6 33.3 0.86 958
CS bachelor 91.7 66.7 50.0 0.87 1,487
CS master 100.0 83.3 50.0 0.87 1,514
Data science master 90.0 70.0 30.0 0.86 1,576
Physics online 100.0 63.6 27.3 0.84 837
Life science online 85.7 71.4 57.1 0.75 996

For each program, the first three columns show the percentage of courses for which
GPT-4 surpasses the thresholds � = 50, 60, 70% correctly answered questions using
the majority vote strategy. “Max” represents the proportion of questions in this degree
correctly answered by at least one prompting strategy. Program levels are specified as
Bachelor, Master, or Online. The first three programs (Engineering, Chemistry, Life Science)
are first-year Bachelor course programs.

could potentially augment student learning as support tools, they
simultaneously indicate a credible short-term risk to educational
systems if institutions are not adapted to protect against the
misuse of these technologies. Finally, we expect this problem to
only grow worse over time, as continual model improvements in
the years to come will make these tools even more performant in
academic contexts.

How Do These Results Affect University Programs? The average
performance across courses demonstrates each course’s potential
vulnerability to generative AI tools, which is particularly impor-
tant if considerable portions of degree programs can be completed
using these tools. To evaluate this program vulnerability, we
aggregate the questions in our datasets according to the study
programs in which they are core courses. Specifically, we include
four program types: first-year Bachelor, Full Bachelor, Full
Master, and Online courses. We separate the first year of the
Bachelor’s degree because, at many institutions (including ours),
the first year of the Bachelor’s may have a fairly standardized
curriculum that serves a special purpose (e.g., replacing or
complementing entrance exams). Full Bachelor’s and Master’s
correspond to regular Bachelor’s and Master’s programs. We
also include online courses, as official certifications can often be
awarded for completing a sequence of these courses. For each
program, our dataset contains a sample of courses that cover
from 33% to 66% of the required courses for that program. For
more program statistics, see SI Appendix, section 3.A.

We consider the same two aggregation strategies across the
responses provided by the eight prompting methods: majority
vote and maximum performance. For the majority vote, given
the eight prompting strategies we have, the final answer to the
question is the one that is the most frequent across all strategies. In
the maximum performance aggregation, only a single prompting
strategy is required to answer correctly for the model to be deemed
correct in its response, approximating a pseudo-oracle setting
that remains contextually realistic, as a user might be able to
distinguish the answer when presented with it, even if they could
not find it on their own.

In Table 2, we present the number of courses that would be
passed by GPT-4 across the 9 tested degree programs for various
course passing thresholds � (i.e., the performance that must be
achieved to consider the course passed). Our results show that
the general course vulnerability observed in the previous section
extends to program vulnerability. At the � = 50% threshold for
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A B C
Fig. 3. Model Performance Stratified by Question Difficulty. (A and B) 376 Bachelor’s and 693 Master’s questions, respectively, annotated using instructor-
reported difficulty levels. (C) 207 questions annotated using Bloom’s taxonomy by two researchers in the learning sciences. Across all categorization schemes,
GPT-4 performance slightly degrades as the questions become more complex and challenging. Performance is aggregated by the majority vote strategy. Error
bars represent 95% CIs using the nonparametric bootstrap with 1,000 resamples.

passing a course, at least 83% of courses are passed in each of
the evaluated programs. In certain programs, such as the Physics
Bachelor and Computer Science Master, all tested courses are
passed. While this number drops as we raise the passing threshold
�, the maximum performance for each program typically remains
above 80%, indicating that a combination of clever prompting
and partial subject knowledge may be sufficient to achieve high
marks on assessment questions.

Topically, we find that the models consistently exhibit lower
performance on assessments of courses involving mathematical
derivations. Conversely, the model demonstrates strong perfor-
mance on problems that have straightforward generation formats,
such as text or code. For example, models consistently yield high
performance in subjects such as Software Engineering and Intro
to Machine Learning. This observation is further supported by
the difference in performance between Master’s and Bachelor’s
level courses (shown across Fig. 3 A and B). In our dataset,
Bachelor’s courses feature more mathematical derivations, while
Master’s courses have more text and code-based problems.
In SI Appendix, section 5.A, we provide further performance
comparisons between the courses representing each program. In
SI Appendix, section 5.B, we analyze model performance across
all prompting strategies and both question types.

Finally, we highlight that these models are effective in courses
that large portions of the student body must take, increasing the
overall vulnerability of course programs. Fig. 4 demonstrates
that some of the largest classes on campus, with upward of
300 students, are also some of the most vulnerable, with
GPT-4 achieving (using the majority vote strategy) an average
performance of 69.9% in these classes (while hovering around
60% for other class sizes). This result is particularly problematic
because larger courses are often limited in terms of the monitoring
and mitigation strategies they can implement due to the number
of students. While smaller courses may more easily be able to
combat the misuse and unethical use of generative AI tools, larger
courses, which are often mandatory for degree completion, must
ensure fair and scalable solutions for a larger student population.

More Challenging Assessments Are Only a Half-Solution. One
possible solution to mitigate assessment vulnerability would be
to increase their difficulty beyond what generative AI systems
are capable of solving, as we observe that the performance of
these systems does decrease on more challenging assessment
questions (Fig. 3). We measure the difficulty using a subsample
of our question bank that is annotated according two different

categorizations of their difficulty: 1) instructor-reported question
difficulty, a five-point difficulty categorization for Bachelor
courses and two-point for Master’s courses provided by the course
instructors, and 2) Bloom’s taxonomy (18), a six-point scale that
measures the cognitive complexity of a question.‡

For the instructor-reported difficulty categorization, we collect
annotations from course instructors for a subset of 376 questions
from the Bachelor’s program (n.b., the instructors that designed
the questions). The instructor-reported rating ranges from “Very
Easy” to “Very Hard” on a 5-point scale. We also collect 693
questions from the Master’s program annotated on a 2-point
scale, ranging from “Medium” to “Hard” (the original scale
was meant to be 3-point, but no instructor reported an “Easy”
question). In Fig. 3 A and B, we show the model’s performance
on questions stratified by their difficulty rating and observe
that GPT-4 performs worse on questions that instructors deem
harder. For example, in Bachelor courses, there is a 38%
difference in accuracy between “Very Easy” and “Very Hard”
questions. However, the differences between Bachelor’s “Easy”

Fig. 4. Course Performance by Course Size. Average course performance of
GPT-4 with the majority vote strategy stratified by the course size, measured
by the number of enrolled students. GPT-4 successfully answers questions
for assessments in some of the largest courses by enrollment, amplifying the
potential impact of assessment vulnerability. Error bars represent 95% CIs
using the nonparametric bootstrap with 1,000 resamples.

‡More details about Bloom’s Taxonomy can be found in SI Appendix, section 3.B.
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Fig. 5. Comparison of Student Performance and GPT-4. Average student
performance for a subset of 197 questions is computed and stratified along
10-point intervals from 0 to 100. The model’s performance with the majority
vote strategy is assessed by human graders using a 4-point scale. We observe
the model typically correctly answers questions that students also answer
correctly.

and “Hard” questions or Master’s “Medium” and “Hard”
questions are only 11.5% and 15.75%, respectively.

This pattern is also observed in our assessment of question
difficulty performed using Bloom’s taxonomy, which classifies ed-
ucational learning objectives into levels of complexity and speci-
ficity: remember, understand, apply, analyze, evaluate, and create.
Two researchers in the learning science manually annotated
207 questions from our dataset according to Bloom’s taxonomy
(18). While the taxonomy typically associates questions into six
categories, we found that most course assessment questions were
covered by the first four categories. The results, grouped by
taxonomy category in Fig. 3C, illustrate that GPT-4 performance
is negatively correlated with the cognitive complexity of the
question, with higher performance on lower-level tasks compared
to higher-level analysis and application tasks.

However, harder assessments may not necessarily be a suitable
solution for this vulnerability as they would also likely lead to
lower student performance. When comparing the performance
of students and GPT-4 on problem sets from a subset of questions
for which student performance statistics were collected (Fig. 5),
we note that the model tends to excel on questions where students

also perform well. This pattern perhaps exacerbates fairness as
GPT-4 (and similar models) could be used to achieve average
results on an assessment while providing few benefits to students
who can already complete the easier portion of assessments but
struggle with harder questions. Notably, however, we observe
that for a subset of problems, the model typically struggles,
receiving “Mostly Incorrect” or “Incorrect” marks, while students
demonstrate relatively strong performance, with scores ranging
from 0.5 to 0.9. These problems typically require mathematical
derivations and extensive computations.

Discussion

Summary. In this work, we tested the ability of LLMs to solve
assessment questions for a large number of courses from technical
and natural sciences academic programs at EPFL. We find that
LLMs are generally capable of answering 50 to 70% (depending
on the model) of questions correctly given no subject-related
knowledge, and up to 85.1% of questions correctly when some
subject-specific knowledge is assumed (i.e., the ability to recog-
nize the correct answer). Most importantly, when considering
performance across programs, GPT-4 can achieve greater than
50% performance for 83% to 100% of courses (depending on
the program) with an average program pass rate of 91.7%. While
a higher per-course passing threshold of 70% would only result
in 23% to 50% of courses being passed across our programs
(with an average of 37%), this would also lead to higher student
fail rates as passing thresholds would similarly affect them.
Given that continuous advancements in LLM technology will
likely further improve these LLM performance numbers in the
future, we conclude that higher-education assessment schemes
are immediately vulnerable to student exploitation of generative
AI tools, specifically in the engineering and natural sciences.

Assessment Vulnerability. Our results indicate that the broad
availability of generative AI tools should urgently trigger discus-
sion on the design and implementation of assessments. Naturally,
our results must be placed in the context where they would
normally be observed. In many educational institutions, student
assessments are frequently closed-book, thereby precluding the
direct use of generative AI tools. Many course assessments
(e.g., assignments), though, are completed at home without

A B
Fig. 6. Comparison of Human and GPT-4 grading. Average model and human performance for a subset of 933 questions and answers from (A) GPT-4 and (B)
GPT-3.5 generated with the metacognitive prompting method.
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supervision. In the same vein, most online courses typically
evaluate students without any supervised, in-person assessment.
In these unsupervised settings, the availability of generative AI
tools for aiding in the completion of assessments poses risks for
many commonly used student evaluation methods.

One general trend that we observe from our data (Fig. 3 A–C )
is that models perform well on basic learning tasks, such as
memorizing factual knowledge. In courses where memorization
of factual knowledge is a core evaluation objective, students
should not be allowed to use these tools in nonproctored
settings, and these courses should perhaps return to traditional
in-person examination (19). Barring this possibility, in the case
of nonproctored assessments, we recommend that their design
should not only consider the possibility of assistance from
generative AI but actively assume its use. At the very least,
assessments should be designed with generative AI in the loop to
design AI-adversarial evaluations that remain fair to students.

At the same time, these findings provide an opportunity to
improve and diversify student learning through assessments.
Students acquire relevant skills when assessments emphasize
analytical and applied knowledge settings (20). Rather than
using proctored exams, then, or limited practical works, such
as assignments, students should be evaluated using assessments
requiring a more composite application of course concepts, such
as broader class projects. Project settings more closely assess
students on problems resembling real-world challenges, would
provide students with more opportunities to make problem-
solving decisions, such as problem simplification, decomposition,
and planning (21), and would mitigate the impact of generative
AI tools (Fig. 3C ).

Education Vulnerability. While our results point to an urgent
need to mitigate assessment vulnerabilities in higher education, a
longer-term view requires considering how education as a practice
should evolve alongside the availability of generative AI tools.
Since the release of ChatGPT, ongoing discussions have revolved
around this topic with both negative and optimistic views.
Although numerous studies explore the ways AI can enhance
learning, ethical concerns related to plagiarism, biases, and
overreliance on technology have also been highlighted (22–28).

An important dimension of these discussions emphasizes the
need to revisit evaluation procedures to ensure that students
acquire necessary skills and critical thinking abilities in the face
of AI adoption (29–32). For instance, observations from various
works (and our study) show that models excel in generating code
to solve software problems (33–37). While this capability reduces
the burden on professional (and hobbyist) software developers, it
also poses a risk for learners by potentially offering shortcuts that
impede the acquisition of fundamental coding and engineering
skills (38). Coding tools such as GitHub’s Copilot or OpenAI’s
Codex may lead novices to overrely on autosuggested solutions.
This overreliance may diminish their engagement with compu-
tational thinking (29, 30), which is arguably the most important
skill that is learned in any computer science course or program.

Beyond this example, many studies underscore the significance
of adapting course materials and assessments to promote critical
thinking, encourage student collaboration, develop practical
skills, enhance soft skills, and promote interdisciplinary learning,
all with the aim of cultivating graduates equipped with a diverse
range of competencies (32, 39–41). In particular, reinforcing
our conclusions above, open-ended assessments are proposed
to promote originality and creativity, potentially discouraging
reliance on generative AI tools and fostering unique ideas and

critical analysis (41, 42). One example of program reconsider-
ation is teaching students at computer science courses prompt
engineering, which would be essentially programming in natural
language (43). This would prioritize problem-solving and higher-
level concepts over the technical syntax of programming lan-
guages. Ultimately, many of these studies suggest the greater risk
of generative AI may be its potential to enable the unintentional
circumvention of the frameworks by which learners are taught the
foundations to learn later skills, and that teaching and assessment
should be adapted for this risk.

Finally, assuming that students will use and become acquainted
with the capabilities of these technologies, we recommend that
students should not only be educated on the technical and
ethical challenges of generative AI systems but also on the critical
thinking required to successfully engage with such tools (44). One
such measure could involve establishing committees for ethical
oversight and adding classroom discussions on the use of AI
tools. Such discussions would clarify what constitutes plagiarism
and address potential ethical concerns, ensuring that students
understand the importance of academic integrity and discern
the boundaries between legitimate assistance and academic
misconduct (31, 38–42).

Limitations

While our study offers preliminary insights into the vulnerability
of degree programs to student use of AI assistants for assessments,
we acknowledge several limitations in our study.

First, our study excluded any multimodal inputs, such as
questions containing diagrams, figures, or graphs, which were
omitted from our dataset. Approximately 57% of the initially
collected data did not qualify for inclusion in the final dataset
of 5,579 questions. Consequently, models were solely evaluated
with text-only questions. This approach likely resulted in
performance outcomes that are higher than what these models
would attain when tested on question sets that include these other
modalities, though we also note rapid growth in the multimodal
capabilities of these models (45).

Our results for GPT-4’s performance on open-answer ques-
tions may have also been slightly overestimated because we also
used GPT-4 model as a grader As this dual use of GPT-4 could
introduce potential grading bias (46), we compared the grades
provided by GPT-4 to human scores on a subset of the questions.
When comparing the alignment between human-assigned and
model-assigned grades for responses from both GPT-4 and GPT-
3.5, our results show minimal bias toward GPT-4’s responses
relative to GPT-3.5.

Simultaneously, our findings might underestimate the perfor-
mance potential that students could attain through collaboration
with these systems. Although we conducted a thorough examina-
tion of prompting strategies, our methods are limited by the fact
that they 1) rely solely on published prompting strategies, 2) are
generally noninteractive, and 3) are tailored for scalability across
all questions to facilitate a comprehensive study. Students aiming
to address individual questions could devote more time and
devise more interactive, less standardized prompting strategies
to collaboratively guide the models toward improved solutions.

Finally, we acknowledge certain gaps between our evaluation
of AI systems in this study, and how students are normally
evaluated in these courses. First, our study standardizes system
evaluation across all course assessments, removing course-specific
assessment policies for questions. For example, certain courses,
beyond not giving points for correct answers to multiple-choice
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questions, might also penalize incorrect answers more than
leaving a question unanswered, while our study simply gives zero
points for incorrect answers. Second, our dataset of questions for
each course is not necessarily balanced according to a course’s
grading rubric. As an example, our dataset may contain a
balanced mixture of questions from assignments and exams for
a particular course, while the overall evaluation of a student in
this same course would compute their grade as a 10% mixture
of assignments, and 90% mixture of exam questions. Similarly,
many courses at our institution also include lab or project
components as part of their final grade. Since these parts of
the assessment do not have a “correct answer” that can be easily
marked, they are not included in our dataset.

As we do not consider these course-specific assessment policies
when computing the course pass rates of our tested AI assistants,
these design decisions introduce a gap between our evaluation and
the actual assessment rubrics by which students are graded in our
institution’s courses. Despite this divergence, however, we note
that other institutions may implement course assessments and
grading rubrics in different ways. As a result, while our study is
not an exact simulation of our institution’s diverse assessment
schemes among its courses, it remains a suitable testbed for
providing insights into how course assessments are vulnerable
to AI assistants, and how this vulnerability would extend to full
university programs without mitigations.

Materials and Methods

In this section, we provide further details on our data collection process,
the prompting strategies used for response generation, and our pipeline for
automated grading.

Dataset Collection. Our data collection was approved by the Human Research
Ethics Committee at EPFL. Data were voluntarily submitted by members of the
Data Consortium, and no materials were used without the permission of the
data owner.

Dataset Preprocessing. To preprocess our data, we collect assessments from
participating faculty, extract questions and answers from these assessments, and
standardize them into a uniform format. After compiling an initial question bank
from the raw data, we filter unsuitable data points by 1) removing questions
that lack the question body or solution, 2) eliminating duplicate questions, and
3) removing questions that require information that cannot be parsed by LLMs
in a textual format (e.g., diagrams, images, plots). In cases where a joint context
is provided for multiple questions, we augment each question individually with
this context.

Prompting Strategies. To generate answers to questions, we employ various
prompting strategies requiring only familiarity with relevant literature and
minimal adaptation. We selected eight distinct prompting strategies that we
broadly categorize into three types: direct, rationalized, and reflective prompting.
Under direct prompting, we use zero-shot, one-shot (9), and expert prompting
(10), where models are directly prompted for an answer without encouraging
any underlying rationale. For rationalized prompting, three strategies are
implemented: zero-shot (12) and four-shot chain-of-thought (11), and tree-
of-thought (13) prompting. Here, language models are prompted to generate a
rationale before providing the final answer. Last, reflective prompting includes
self-critique (14, 15) and metacognitive prompting (16), where models are
asked to reflect on a previously provided answer and adjust their response
according to this reflection. In our experiments, we noted that the prompting
strategy substantially influences model performance, with at least one strategy
consistently producing the correct answer in the majority of cases. A detailed
description of all prompting strategies, along with prompts, is provided in
SI Appendix, section 2.

Evaluation. In this section, we outline the grading strategies used to evaluate
the model’s performance across two question types: multiple-choice (MCQ)
and open-answer questions. For MCQ, grading is automated by comparing
against the annotated answer. Answers receive a binary score of 0/1 if only
one correct option exists, or a proportional score based on the number of
correct choices made for multianswer questions (with no penalty for wrong
choices). SI Appendix, section 4.A provides more details for grading MCQs.
For open-answer questions, we constructed a multistep evaluation pipeline
using GPT-4 as a grader (7), which we describe below. For both types of results,
we report error bars representing 95% CIs (Figs. 3 and 4). These intervals were
computed using the nonparametric bootstrap with 1,000 resamples. We also
tasked human experts with independently grading a subset of model responses
to measure alignment between model and human grading and establish a
confidence level for model-based grading.
Automated grading. A significant portion of the questions we extracted are
open-answer questions, which are challenging to evaluate manually due to the
sheer volume of responses (a total of 33,904 answers from 2,119 questions,
answered by 2 models using 8 prompting strategies). As a result, we use a state-
of-the-art LLM, GPT-4, as a grader. To automate the grading of open answers, we
provide the model with the question, the correct solution from an answer sheet
of the assessment, and the generated answer text, prompting it to assign a rating
basedonthequalityof theresponse.Weprovidethemodelwitha4-pointgrading
scale: Correct, Mostly Correct, Mostly Incorrect, Incorrect. The model is first tasked
with assessing the accuracy and completeness of the answer before assigning
the final grade. Although we do not use these interim accuracy and completeness
scores, we manually observe that these stages enhance the quality of overall
grading. The specific prompting strategy is detailed in SI Appendix, section 4.B.
As an answer was produced for each question using eight distinct prompting
strategies, we obtained eight different answers and corresponding grades. To
present a cohesive performance score for both GPT-4 and GPT-3.5 for a given
question, we employ two aggregation methods: 1) the maximum approach,
which selects the answer with the highest grade for each question as a represen-
tation of model performance, and 2) the majority approach, which considers the
grade that appears most frequently among the eight prompting strategies. As
an example, for a hypothetical question whose generated answers for the eight
prompting strategies received 2 Correct, 2 Mostly Correct and 4 Mostly Incorrect
grades, the maximum grade would be Correct and the majority grade would
be Mostly Incorrect. To report dataset-level performance, we map grade ratings
for each example to a score from a discrete range between 0 and 1: {Correct:
1.0, Mostly Correct: 0.66, Mostly Incorrect: 0.33, Incorrect: 0.0} and average
the scores.
Human grading. To assess how well model grading aligned with human grading
on open-answer questions, we enlisted 28 expert annotators from the teaching
faculty of 11 courses to evaluate 933 questions. The courses chosen for human
expert grading are listed in SI Appendix, section 4.C. Specifically, we requested
graders to assign scores to open-ended responses generated by GPT-4 and
GPT-3.5. Responses for human grading for both models were generated using
two prompting strategies: zero-shot chain-of-thought prompting (11) (a simple
prompting method at the disposal of any student) and metacognitive prompting
(16) (one of the most effective strategies across all courses). We anonymized the
outputs to prevent graders from knowing which model and prompting strategy
they were evaluating. To maintain consistency, we instructed graders to use the
same grading scale as GPT-4’s direct grading. The number of graders per course
varied from 1 to 10, and a total of 3,732 answers were evaluated. On average,
graders spent approximately 5 min assessing each answer.

Fig. 6 indicates a general alignment between human graders and GPT-4
when categorizing answers into a simplified correct/incorrect quadrant. Out of
the examples identified as Correct by graders, the model assigned the same
grade to 61% of them. Similarly, for examples graded as Almost Correct
by graders, the model’s grade matched in 36% of cases. Additionally, in
instances where graders labeled examples as Mostly Incorrect, the model’s
grade aligned with the grader’s assessment 65% of the time. However, we note
certain patterns of discrepancy. For instance, GPT-4 as a grader tends to avoid
explicitly labeling solutions as Incorrect, and instead opts for Mostly Incorrect
(i.e., in 74% of cases that humans annotated a solution as Incorrect, the model
identified it as Mostly Incorrect), potentially due to the practice of aligning
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models for harmlessness (47). We find a few instances where the model rates
an answer as Correct while humans assign a lower score.

Interestingly, upon comparing average grades assigned by human graders
and GPT-4 across 11 courses, we find a difference in average grade of only
2.75%. However, we observe variations between courses, with an average
course grade deviation of 8.5% (and the largest deviation for a course being
26%) between human and model graders. Finally, we also note the performance
correlation between MCQ and open-answer questions in Fig. 2, providing a
comparison point for the rationality of our model-based open-answer grading
results. While scores for open-answer questions are typically lower than MCQ,
the patterns exhibited by both curves are similar across both models. Overall,
we note that the grades provided by humans and models are moderately
correlated and that the summary statistics across courses tend to have a
high correlation. Additional results, such as further comparison of human
and model grades for additional prompting strategies, pairwise agreement
scores between human and model graders, and qualitative human assessments
of the responses for both GPT-3.5 and GPT4, can be found in SI Appendix,
section 4.
Automated grading in prior work. A substantial body of research leverages
LLMs for response evaluation. Traditionally, automated assessment has neces-
sitated high-quality reference data obtained through human grading, which
is both costly and time-intensive. Consequently, there has been considerable
exploration into the potential of LLMs to serve as evaluators (48). Recent research
has found LLMs to be capable of generating quality feedback (15, 49–55), a trend
also reflected in investigations into LLM-based evaluation (7, 56–59).

Automated solutions for student grading have been explored in the field
of learning science, as well, some of which now use LLMs (60). Intelligent
Tutoring Systems, such ALEKS (61), ASSISTments (62), Cognitive Tutor (63), and
MATHia (64) are widely employed to automatically assess student performance
in closed-ended questioning. These systems cater to several hundred thousand
students annually (62, 65). Meanwhile, AES platforms such as e-Rater (66),

IntelliMetric (67), and Intelligent Essay Assessor (68) have emerged as useful
tools for evaluating numerous student essays and responses to open-ended
questions each year (67–71).

Data, Materials, and Software Availability. The data and code are available
under an open-source license to facilitate further research and collaboration
within the community. The course data, model responses, and code can be
accessed at the GitHub repository (https://github.com/epfl-nlp/nlp4education)
(72). The dataset has been anonymized to ensure compliance with privacy
regulations.
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