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Abstract: Hepatocellular carcinoma (HCC), which originates from hepatocytes, accounts for the majority of primary 
liver cancers. Globally, HCC ranks among the most common cancers and is a leading cause of cancer-related 
deaths. Obesity, a growing health issue worldwide, is increasingly recognized as a critical risk factor for HCC, influ-
enced by both epidemiological and clinical factors. Adipokines, secreted by adipocytes, have been shown to play 
pivotal roles in the tumor microenvironment, affecting cancer progression, metastasis, and resistance to therapies 
through various signaling mechanisms. Despite inconsistencies in certain findings, a substantial body of research 
supports the significant role of adipokines in HCC development. This review focuses on exploring newly identified 
adipokines and their mechanisms in HCC, with the goal of uncovering potential therapeutic targets for improved 
management and treatment strategies.
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Introduction

Cancer continues to pose a significant global 
health challenge, with its incidence rate esca-
lating worldwide [1, 2]. By 2025, it is projected 
that over one million individuals will be diag-
nosed with cancer annually. Liver cancer stands 
as one of the predominant malignant tumors, 
primarily comprising two pathological histolo- 
gical types: hepatocellular carcinoma (HCC) 
and intrahepatic cholangiocarcinoma (iCCA) 
[3]. There is increasing evidence that adipose 
tissue, inflammation, non-alcoholic fatty liver 
disease (NAFLD), and alcoholic fatty liver dis-
ease (AFLD) are closely linked to the risk of  
HCC occurrence [4-6]. Therefore, maintaining a 
healthy lifestyle and avoiding hepatocellular 
carcinoma risk factors are additional strategies 
for the prevention of HCC [7]. Currently, in 
blood-based surveillance tests, detection of 
elevated serum alpha-fetoprotein levels is usu-
ally used as an adjunct to liver ultrasonography, 
but its use as a surveillance test for HCC 
remains controversial because of its low sensi-
tivity of 40-60% and specificity of 80-90% [8].

Adipocytes function as a crucial endocrine 
organ, secreting various functional adipokines, 
peptides, and non-coding RNAs. These act on 
adipose tissue itself or other distant tissues or 
organs via autocrine, paracrine, or endocrine 
mechanisms [9-11]. Adipokines exhibit diverse 
roles across various cancer types, often influ-
encing cell proliferation, migration, invasion, 
and metastasis pathways in contradictory ways. 
This complexity necessitates further research 
into the role of adipokines in the tumor environ-
ment. In recent years, the number of identified 
adipokines has surged, including adiponectin, 
resistin, visfatin, apelin, retinol-binding pro-
tein-4, serum amyloid A, plasminogen activator 
inhibitor-1, angiotensinogen, vaspin, omentin, 
chemerin, and zinc-alpha2-glycoprotein. Pro-
inflammatory cytokines produced by macro-
phage infiltration into white adipose tissue, 
such as tumor necrosis factor-α (TNF-α) and 
interleukin-6 (IL-6), are also classified as adipo-
kines [12].

It is widely recognized that metabolic disorders 
elevate the risk of cancer and its associated 
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mortality [13]. Growing evidence indicates that 
these disorders can also instigate HCC and are 
linked to its progression [14]. In recent years, 
the correlation between metabolic syndrome 
(MS), a cluster of conditions encompassing 
insulin resistance, obesity, hypertension, and 
hyperlipidemia, and malignancies has gained 
significant attention [15]. A comprehensive 
review and meta-analysis of data on the pre-
vention of future cancer post-bariatric surgery 
revealed a reduced incidence of subsequent 
HCC [16]. Several large-scale epidemiological 
investigations have demonstrated that individ-
uals with overweight and obesity exhibit elevat-
ed risks of liver cancer compared to the general 
populace [17, 18]. Furthermore, patients with 
obesity not only face an increased likelihood of 
developing HCC but also a heightened risk of 
liver cancer-related mortality [17, 19].

Adipose tissue, with its inherent metabolic 
activity, secretes cytokines known as adipo-
kines. These adipokines can either promote or 
inhibit hepatocarcinogenesis. They play a cru-
cial role in regulating cell growth, proliferation, 
the cell cycle, angiogenesis, and tumor growth 
and metastasis [20]. For instance, substantial 
evidence suggests that leptin and adiponectin 
may exacerbate steatohepatitis in patients with 
viral hepatitis, thereby increasing the likelihood 
of HCC [21]. Adipokines are believed to facili-
tate cancer progression by enhancing grow- 
th, inflammation, migration, and anti-apoptotic 
mechanisms, which in turn promote cancer 
metastasis [22]. Recent studies have revealed 
that a deficiency in p62 in adipose tissue sup-
ports the nutritional supply of cancer cells by 
inhibiting energy utilization pathways in adipo-
cytes [23]. The systemic and hepatic molecular 
mechanisms involved in obesity and NAFLD-
induced hepatocarcinogenesis, as well as po- 
tential early markers of hepatocellular carcino-
ma, are currently under extensive investigation. 
Adiponectin and leptin are recognized adipo-
kines that can influence the regulation of liver 
cancer. Adiponectin induces apoptosis and 
inhibits hepatic stellate cells, affects Kupffer 
cell survival, and promotes the transformation 
to M2 phenotype to release mediators that 
stimulate M1 macrophage apoptosis [24]. Lep- 
tin is reported to stimulate liver cancer cell  
proliferation and inhibit apoptosis [25]. Leptin 
induces autophagy through the p53/Foxo3A 
axis, thereby eliminating cancer cell apoptosis 
[26]. However, data on the role of certain adipo-

kines in the pathogenesis of HCC in patients 
with viral hepatitis are contradictory. For ex- 
ample, visfatin is elevated in CHC and HCC 
patients, but increased visfatin concentration 
is also associated with reduced necroinflam-
matory activity in the liver [27, 28]. On the basis 
of above, we explore and summarize the ef- 
fects of novel adipokines on HCC in this review 
(Table 1).

Metrnl/meteorin-β/IL-41

Meteorin-like (Metrnl), also known as me- 
teorin-β or IL-41, is a novel secreted protein 
that shares homology with the neurotrophic 
factor metrnl, which is also referred to as come-
tin, subfatin, and interleukin 39. This nomen-
clature reflects its diverse functions, including 
neurotrophic action, adipokine activity, and 
potential roles as a cytokine [29]. Identified as 
a potential diagnostic marker for hepatoce- 
llular carcinoma (HCC), Metrnl exhibits marked 
upregulation in HCC tissues and high expres-
sion in the serum of patients with alpha-feto-
protein (AFP)-negative HCC, demonstrating its 
diagnostic value [30]. Consequently, Metrnl 
could serve as a novel serum marker for the 
diagnosis of AFP-negative HCC.

Immunohistochemistry analysis reveals that 
high tissue expression of Metrnl correlates with 
early recurrence, mortality, multiple metasta-
ses, and microvascular invasion post-HCC re- 
section, suggesting that Metrnl could be a pre-
dictive factor for poor prognosis and malignant 
progression of HCC [30]. In terms of treatment, 
Metrnl may modulate the response of liver can-
cer patients to chemotherapy drugs. It has 
been shown to mitigate doxorubicin-induced 
cardiotoxicity without compromising its anti-
cancer effects [31]. Du et al. demonstrated 
that Metrnl overexpression significantly inhibits 
the release of pro-inflammatory cytokines TNF 
and IL-1β, reduces chemokine-dependent in- 
flammatory cell infiltration into the liver, and 
ameliorates acute hepatitis in mice [32]. In con-
trast, a study by Liu et al. found reduced serum 
Metrnl levels in adult non-alcoholic fatty liver 
disease (NAFLD) patients, suggesting that 
Metrnl may act as a protective factor in the 
pathogenesis of NAFLD [33].

Retinol binding protein 4 (RBP4)

RBP4 is a 21 kDa monomeric binding protein 
crucial for transporting retinol (vitamin A) in the 
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Table 1. Clinical studies concerning the changes of novel adipokines in HCC patients

Adipokines Subjects
Sample size

Change In HCC
Promoting(+)/ 

inhibitory(-)  
effect of cancer

Prognosis Study
HCC Healthy 

controls
Metrnl/IL-41 Human 176 19 Upregulated in HCC tissues + The serum IL-41 level was lower in patients with 

late recurrence (2 years after resection) than in 
patients with early recurrence and death

Yazhao Li et al., 2024 [30]

RBP4 Human 290 269 Reduction in both liver tissues 
and serum samples

- The serum RBP4 level exhibited a negative  
correlation with overall survival time

Fengjie Wan et al., 2024 [48]

Irisin Human 36 7 Reduced irisin concentrations + Low serum irisin levels are associated with high 
CCI scores after hepatectomy in HCC patients

Monika Pazgan-Simon et al., 
2020 [71]

Human 69 20 Decline of serum irisin M Pazgan-Simon et al., 2020 
[72]

Vaspin Human 36 7 Higher concentrations of vaspin + Unkown Monika Pazgan-Simon et al., 
2020 [71]

Human 37 20 Serum vaspin were higher Walaa Abdelhamed, 2023 [86]
LCN-2 Human 167 106 Levels in HCC sera were higher - Blood NGAL levels predict the rate of survival, 

even in patients presenting with HCC
Lin Du, 2022 [151]

sFRP4 Human 142 33 Serum sFRP-4 levels higher - Unkown Cheng Xu, 2015 [122]
ApoM Human 36 64 The plasma relative ApoM 

levels was higher
- Multivariate COX proportional hazard analysis 

suggested that high serum AZGP1 level was  
associated with better survival of HCC patients

Jingting Jiang, 2011 [136]
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blood, primarily secreted by the liver [34, 35]. 
Research has identified RBP4 as a novel adipo-
kine associated with insulin resistance, which 
may impact glucose homeostasis and induce 
inflammation in mice [36]. Further studies have 
linked RBP4 to various metabolic diseases, 
including type 2 diabetes, hepatic steatosis, 
and steatohepatitis [37-39], all of which are 
closely related to primary liver cancer. Addi- 
tionally, RBP4 levels vary in certain tumors, 
such as head and neck cancer, ovarian cancer, 
colorectal cancer, breast cancer, and acute 
lymphoblastic leukemia [40-45]. Relevant re- 
search has demonstrated that serum RBP4 
concentration in early HCV-infected patients is 
inversely proportional to disease severity; as 
liver fibrosis escalates, serum RBP4 concentra-
tion decreases [46, 47].

Research indicates that RBP4 levels in both 
liver tissue and serum samples from HCC 
patients are significantly diminished [48, 49]. 
Moritoshi et al. discovered a strong correlation 
between low RBP4 expression in HCC tissues 
and the incidence of HCC. They identified dif-
ferentially expressed genes associated with 
chronic viral hepatitis in HCC through differen-
tial gene display analysis, revealing insufficient 
expression of the RBP4 gene in cancer tissu- 
es from 12 HCC patients [50]. Consequently, 
RBP4 holds significant potential as a biomar- 
ker due to its substantial diagnostic value, 
serving as a supplement to AFP in HCC diagno-
sis. Recently, Li M et al. employed online bioin-
formatics tools to analyze RBP4, revealing sig-
nificant downregulation of RBP4 expression in 
both HCC and cholangiocarcinoma. This down-
regulation was found to be indicative of poor 
prognosis for HCC and was closely linked to 
immune cell infiltration within the tumor micro-
environment [51]. Furthermore, studies have 
demonstrated a significant correlation bet- 
ween serum RBP4 levels in HCC patients and 
factors such as cirrhosis, tumor size, venous 
invasion, disease stage, and poor prognosis 
[15]. Therefore, it is anticipated that RBP4 
could be integrated into a combined prognostic 
model as a prognostic biomarker, significantly 
enhancing the prognostic efficiency of HCC.

RBP4 expression has also been linked to 
immune cell infiltration, particularly during 
inflammation [52]. This protein can stimulate 
macrophages and CD4+ T cells via the TLR4 

and JNK-dependent pathway, resulting in the 
production of cytokines such as TNF-α, IL-1β, 
and IL-6 [53, 54]. Consequently, we propose 
that RBP4 may offer a protective effect against 
HCC through metabolic regulation and immune 
cell infiltration. Additionally, it may contribute to 
the development of precancerous liver lesions 
via exosome-mediated macrophage activation. 
Interestingly, RBP4 is inversely correlated with 
the severity of liver fibrosis. This correlation 
could be attributed to diminished RBP4 levels, 
which are involved in the overactivation of 
hepatic stellate cells and the accumulation of 
type I collagen in the liver, promoting the pro-
gression of liver fibrosis [47, 55], potentially 
leading to cirrhosis or HCC.

Irisin

Irisin, the ectodomain of fibronectin type III 
domain-containing protein 5 (FNDC5) [56-58], 
was initially identified in skeletal muscle [59]. 
However, it has been demonstrated to be ubiq-
uitous, with hepatocytes, Kupffer cells, and 
sinusoidal endothelial cells also capable of pro-
ducing it, albeit in small quantities. The role of 
irisin in the liver remains unclear [60]. Studies 
have shown a significant decrease in irisin 
expression in subjects with steatohepatitis [61, 
62] and in mice models of liver injury induced 
by ischemia-reperfusion (I/R) [63, 64]. Long-
term exercise-induced irisin or supplementa-
tion with exogenous recombinant irisin (r-irisin) 
has been found to protect against non-alcohol-
ic fatty liver disease (NAFLD) [65, 66], hepatic 
glucose disorder [67, 68], and I/R-induced liver 
injury [69]. These findings suggest a potential 
role for irisin in myokine-hepatokine crosstalk 
[70].

Studies have indicated that serum irisin levels 
in patients with HCC are diminished, particu-
larly in those with advanced disease grades, 
and are also negatively correlated with the 
severity of liver dysfunction [71, 72]. However, a 
study by Aydin et al. did not detect a significant 
change in irisin protein in HCC tissues [73]. In 
contrast, Melania et al. demonstrated that 
plasma irisin levels were reduced in HCC pa- 
tients [74]. Furthermore, a recent study sug-
gested that the liver could be a target tissue for 
irisin and may contribute to its metabolic clear-
ance in conjunction with the kidney [75]. Given 
that irisin is primarily expressed in skeletal 
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muscle, and that muscle loss progresses as 
liver disease severity increases, this could 
potentially explain the reduction in irisin con-
centration observed in patients with cirrhosis 
and HCC [76].

A study indicated that, among HCC patients 
undergoing hepatectomy, the AFP level in the 
group with low serum irisin was over 14 times 
higher than that in the group with high serum 
irisin [77]. Furthermore, a preoperatively low 
serum irisin level was significantly correlated 
with a high CCI score post-hepatectomy. Con- 
sequently, irisin could be utilized in conjunction 
with AFP for the diagnosis of HCC, and preop-
erative serum irisin levels could serve as a  
predictor of the overall risk of postoperative 
complications.

A recent study demonstrated that exercise-
induced irisin competitively inhibits the binding 
of myeloid differentiation factor 2 (MD2) and 
Toll-like receptor 4 by forming a complex with 
MD2 in hepatocytes, thereby suppressing the 
inflammatory response [78]. The mRNA ex- 
pression of SCD-1, NOTCH1, tumor necrosis 
factor-α, and interleukin-6 is elevated in the liv-
ers of HCC patients. Overexpression of FNDC5/
irisin in HCC-liver tissues correlates with genes 
involved in adipogenesis, inflammation, and 
cancer mediators, suggesting that this hor-
mone may have a protective effect on liver inju-
ry [74]. However, elevated levels of irisin may 
significantly increase cell proliferation, inva-
sion, and migration ability by partially activat- 
ing the PI3K/AKT pathway, indicating its protec-
tive role in hepatocellular carcinoma cells. This 
may promote liver cancer progression and re- 
duce sensitivity to chemotherapy [79]. On the 
other hand, it has also been shown that irisin 
may improve insulin resistance, thereby reduc-
ing the risk of developing HCC in patients with 
viral hepatitis [80-82].

Vaspin

The novel adipokine vaspin, also known as 
Visceral Adipose Tissue-Derived Serine Pro- 
tease Inhibitor, was initially identified in obese 
OLETF rats [83]. Primarily expressed in visceral 
adipose tissue, vaspin enhances glucose toler-
ance and insulin sensitivity while simultane-
ously reducing the production of proinflamma-
tory cytokines. Research indicates that serum 
vaspin levels decrease in patients with non-

advanced liver fibrosis due to chronic hepatitis 
C (CHC), and an increase in vaspin levels cor-
relates with the progression of liver fibrosis 
[84]. The heightened expression of vaspin in 
patients with pronounced fibrosis may serve as 
a compensatory mechanism, offering protec-
tion against further liver injury and fibrosis pro-
gression. This hypothesis is supported by ob- 
servations that vaspin can suppress the expres-
sion of leptin, TNF-α, and resistin [85]. However, 
in a study conducted by Monika et al., vaspin 
concentration was significantly elevated in HCC 
patients compared to healthy controls, yet it 
did not emerge as a significant predictor of HCC 
[71]. Furthermore, it has been determined that 
the notable increase in serum vaspin levels in 
HCC patients is associated with tumor staging, 
suggesting its potential as a biomarker for HCC 
[86].

Vaspin exhibits anti-apoptotic effects in various 
cell types, including ovarian cells, osteoblasts, 
macrophages, aortic endothelial cells, hepato-
cellular carcinoma cells, and cardiomyocytes.  
It has also been found to promote the prolife- 
ration of normal and cancerous ovarian cells, 
preadipocytes, hepatocellular carcinoma cells, 
and bone mesenchymal stem cells [87]. Seve- 
ral mechanisms have been proposed to eluci-
date how vaspin can facilitate tumor develop-
ment, including insulin resistance, stimulation 
of growth in cells with malignant potential, and 
prevention of apoptosis through cellular path-
ways [88].

Lipocalin 2 (LCN-2)

Lipocalin-2 (LCN-2), also known as neutrophil 
gelatinase-associated lipocalin (NGAL), is a 
small, secreted protein and iron-binding glyco-
protein that is significantly upregulated during 
the progression of severe cancers [89]. Multi- 
ple in vivo and in vitro studies have consistently 
reported elevated LCN-2 levels in the tissues 
and serum of hepatocellular carcinoma (HCC) 
patients compared to healthy individuals [90]. 
Moreover, LCN-2 is highly expressed in human 
HCC tissues and in the livers of various mouse 
models of HCC, triggered by factors such as 
inflammation or genotoxicity [91-93].

Recent findings suggest that blood LCN-2 lev-
els serve as a reliable prognostic marker for 
survival in chronic liver disease complicated by 
HCC [94]. The upregulation of LCN-2 and its 
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receptor, LCN2R (also known as solute carrier 
family 22 member 17, SLC22A17), in HCC has 
been proposed as a prognostic indicator for 
overall survival [95]. Additionally, studies have 
shown that LCN-2 is primarily produced by dam-
aged tumor AFP-positive hepatocytes, inflam-
matory infiltration, and hepatic progenitor cells, 
highlighting its potential use alongside AFP in 
HCC diagnosis [96]. Notably, LCN-2 levels 
above 225 ng/ml offer superior diagnostic 
accuracy compared to AFP, especially in distin-
guishing HCC from cirrhosis [97].

LCN-2 has also been found to inhibit the prolif-
eration, invasion, and metastasis of HCC, posi-
tioning it as a potential metastatic suppressor 
and therapeutic target [98-100]. Furthermore, 
its overexpression induces apoptosis in HCC 
cells through mitochondrial activity, further 
reinforcing its therapeutic potential [99]. LCN-2 
has been reported to negatively regulate the 
epithelial-mesenchymal transition (EMT) in 
HCC cells, suggesting its role in suppressing 
metastasis warrants further investigation 
[101].

Comprehensive studies have confirmed the 
crucial role of LCN-2 in HCC progression, with 
its expression validated in clinical samples, 
including patient serum and tumor tissues. 
Targeting LCN-2 therapeutically has shown 
strong antitumor effects, such as inhibiting 
angiogenesis, enhancing sensitivity to sora- 
fenib, and promoting natural killer cell cytotox-
icity [102]. In terms of signaling pathways, 
LCN-2 regulates EMT at least partially via the 
EGF (or TGF-β1)/LCN2/Twist1 axis [98]. Addi- 
tionally, LCN-2-induced cell migration has been 
linked to activation of the Met/FAK cascade 
[103]. The apoptotic characteristics induced by 
LCN-2 include the cleavage of caspase-9, -8, 
-3, and PARP proteins, along with a reduction in 
mitochondrial membrane potential (MMP). It 
also downregulates Bcl-2 and upregulates Bax 
expression, contributing to apoptosis. Impor- 
tantly, treatment with a neutralizing antibody 
significantly diminished LCN-2-induced apopto-
sis, suggesting that LCN-2 overexpression 
could effectively induce apoptosis in HCC cells, 
making it a promising therapeutic strategy [99].

In summary, LCN-2 plays a pivotal role in the 
pathogenesis and progression of HCC. Its ele-
vated expression in HCC tissues and serum, 
along with its multifaceted role in inhibiting 

metastasis, promoting apoptosis, and influenc-
ing key signaling pathways, underscores its 
potential as both a diagnostic and therapeutic 
target in HCC. Further research is essential to 
fully explore LCN-2’s clinical applications and 
therapeutic implications.

Neuregulin 4 (NRG4)

Neuregulin 4 (NRG4), a member of the epider-
mal growth factor (EGF) family, binds to and 
activates the receptor tyrosine kinase of Erb-
B2 Receptor Tyrosine Kinase 4 (ErbB4) [104]. 
This secreted factor, originating from adipose 
tissue, influences liver function, thereby main-
taining metabolic health in mice [105-107]. A 
reduction in adipose NRG4 expression and 
plasma levels correlates with human obesity, 
insulin resistance, and non-alcoholic fatty liver 
disease (NAFLD) [107-110]. Furthermore, NRG4 
plays a significant role in the initiation and pro-
gression of various cancers, including prostate 
cancer, breast cancer, and gastrointestinal ma- 
lignant lymphoma [111-113].

Woo Sun Rou et al. demonstrated that Erb-B2 
Receptor Tyrosine Kinase 2 (ERBB2) and NRG4 
serve as independent prognostic indicators  
for tumor recurrence. Moreover, the combined 
assessment of serum levels of ERBB2, NRG4, 
and mitogen-inducible gene 6 (MIG6) offers a 
more accurate prediction of mortality in HCC 
patients compared to AFP [114]. Downregula- 
tion of NRG4 expression has been observed in 
HCC [115]. Emerging evidence suggests a 
novel role for NRG4 in regulating the liver 
immune microenvironment and the develop-
ment of NASH-associated HCC. Several RNA 
sequencing and single-cell transcriptomic stu- 
dies have revealed that NRG4 deficiency pro-
motes the induction of NASH-associated mac-
rophages (NAMs) and exacerbates intrahepatic 
CD8+ T cell exhaustion following diet-induced 
NASH in mice. Conversely, transgenic or recom-
binant adeno-associated virus (AAV)-mediated 
overexpression of NRG4 inhibits NAM marker 
expression and genes associated with T cell 
exhaustion. Thus, NRG4 may function as a hor-
mone checkpoint to suppress tumor-prone 
immune features [115].

Previous research has shown that the cellular 
receptor ErbB4 for NRG4 is present on macro-
phages and mediates NRG4’s effects on ma- 
crophage survival and function [116, 117]. 
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Interestingly, liver-specific ErbB4 knockout 
mice exhibit increased susceptibility to liver 
injury and diethylnitrosamine (DEN)-induced 
HCC [118]. The expression of ERBB4 is fre-
quently diminished in cancers and cancer cell 
lines [119], further supporting a potential 
tumor-suppressive role for NRG4-ERBB4 sig- 
naling.

In conclusion, the ability of NRG4 to influence 
multiple aspects of liver biology, including 
hepatic lipid metabolism, hepatocyte injury, 
and the immune microenvironment, strongly 
suggests that this hormone pathway may serve 
as an attractive target for therapeutic interven-
tion in NASH-associated HCC.

Secreted frizzled-related protein 4 (sFRP4)

sFRP4, a member of the secreted frizzled-relat-
ed protein (SFRP) family, contains a cysteine-
rich domain that resembles the putative Wnt 
binding site of coiled-coil proteins [120]. Se- 
veral studies have identified sFRP4 as a tumor 
suppressor in various cancers [121]. Xu et al. 
reported that sFRP4 levels were significantly 
upregulated in the serum of HCC patients, and 
combining sFRP4 with AFP enhanced the diag-
nostic accuracy for HCC [122].

In approximately 30% of HCC patients, the 
Wnt/β-catenin signaling pathway is overacti-
vated [123]. sFRP4 can regulate this pathway 
by directly binding to Wnt ligands, thereby pre-
venting their interaction with Wnt receptors 
[124, 125]. Overexpression of sFRP4 increases 
glycogen synthase kinase-3β (GSK-3β) expres-
sion and decreases β-catenin levels, indicating 
that sFRP4 inhibits the Wnt/β-catenin signaling 
cascade [126]. As a result, sFRP4 suppresses 
the malignant behavior of HCC cells by blocking 
this pathway, suggesting that it plays a nega- 
tive regulatory role in HCC carcinogenesis. 
Therefore, sFRP4 holds potential as a thera-
peutic target for HCC treatment.

Apolipoprotein M (ApoM)

The majority of ApoM is found in high-density 
lipoprotein (HDL), with smaller amounts pres-
ent in low-density lipoprotein (LDL), very low-
density lipoprotein (VLDL), and chylomicrons 
(CM) [127]. Only about 5% of HDL particles and 
less than 2% of LDL particles contain ApoM, 
with a significant correlation observed between 

ApoM levels and HDL concentrations [128, 
129]. Research has shown that ApoM can be 
modulated by various inflammatory factors, 
such as platelet-activating factor (PAF) and lipo-
polysaccharides [130-134].

Through suppression subtractive hybridization 
and cDNA microarray analysis, elevated ApoM 
expression was observed in HCC samples 
[135]. However, further studies revealed that 
HCC tissues have a reduced capacity to synthe-
size ApoM compared to adjacent non-tumor tis-
sues, suggesting that the increased ApoM lev-
els primarily originate from the surrounding 
non-tumorous areas [136]. Additionally, plasma 
ApoM levels in HCC patients were found to be 
higher than those in healthy individuals but 
lower than those in patients with chronic hepa-
titis or cirrhosis. These variations may be link- 
ed to immune system abnormalities or other 
underlying factors [137].

Bai et al. demonstrated that deletion of the 
ApoM gene in mice exposed to N-nitroso- 
diethylamine accelerated liver cancer develop-
ment, highlighting ApoM’s antitumor role in 
HCC progression [138]. Xu et al. found that PAF 
significantly increased ApoM mRNA levels in 
HepG2 cell cultures, suggesting that the elevat-
ed ApoM levels in HCC patients may be medi-
ated through PAF-induced inflammatory re- 
sponses [139]. Furthermore, inhibiting ApoM 
gene expression selectively regulated phospho-
fructokinase liver type (PFKL) via the transcrip-
tion factor SREBF1, enhancing PFKL promoter 
activity. This likely explains the significant 
increase in proliferation, migration, and inva-
sion observed in hepatoma cells with ApoM 
knockdown [140]. Reduced ApoM expression 
has also been shown to promote hepatic lipid 
accumulation by inhibiting autophagy in he- 
patocytes [141]. Overexpression of ApoM was 
found to downregulate MUC1 (a gene associat-
ed with ferroptosis suppression) by upregulat-
ing miR-4489, which disrupted the GSH-GPX4 
antiferroptotic mechanism, thereby inhibiting 
hepatoma cell progression [142].

Zinc-alpha2-glycoprotein (AZGP1)

AZGP1, a 42 kDa soluble secreted protein, 
exhibits structural homology and similar amino 
acid sequences to proteins of the major his- 
tocompatibility complex class I family [143]. 
Previously identified as an anti-inflammatory 
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adipokine with the ability to inhibit tumor devel-
opment [12], AZGP1 is also linked to cancer 
cachexia due to its high amino acid sequence 
homology with lipid mobilization factors deriv- 
ed from tumors [144]. In mouse models, where 
AZGP1 is produced, it stimulates lipolysis in 
adipocytes, resulting in cachexia [145].

AZGP1 has been identified as a suppressor of 
HCC cell invasion, functioning by obstructing 
TGF-β-mediated epithelial-mesenchymal tran-
sition (EMT) [146]. This study revealed that the 
transcription factor Ikaros and histone deacety-
lation modulate AZGP1 expression in HCC. 
Additionally, a correlation was observed bet- 
ween the downregulation of AZGP1 in HCC 
serum samples and patient prognosis. Fur- 
thermore, AZGP1 was found to inhibit cell 
migration and invasion by regulating the PTEN/
Akt and CD44s pathways in HCC [147]. Re- 
search conducted by Bingyi Lin et al. indicated 
that the suppression of LINC00844 expression 
significantly contributes to the pathogenesis 
and pathophysiology of HCC by promoting the 
AZGP1-mediated TGFβ1-ERK pathway, leading 

to HCC recurrence and adverse survival out-
comes [148]. Similarly, Ming-Yi Xu et al. discov-
ered that a deficiency in AZGP1 can trigger 
TGFβ1-ERK2 signaling-induced EMT, disrupt 
energy metabolism, decrease cell proliferation 
and induce apoptosis, activate survival signals, 
and promote invasion [149].

Conclusion

Compared to AFP, certain novel adipokines 
demonstrate enhanced sensitivity and speci- 
ficity in predicting the onset of HCC, offering 
significant potential for clinical application. 
However, current research on these adipokines 
in relation to HCC is limited, and the mecha-
nisms of most of these factors remain unclear. 
Existing studies suggest that these adipokines 
primarily influence HCC progression by modu-
lating mechanisms related to growth, inflam-
mation, migration, and apoptosis, as well as 
through pathways such as insulin resistance, 
which can either promote or protect liver can-
cer cells (Figure 1). The prognosis for HCC 
patients remains poor due to the tumor’s high 

Figure 1. The pathways through which novel adipokines affect HCC. Novel adipokines exert their influence on he-
patocellular carcinoma (HCC) development primarily by dysregulating key signaling cascades, including the Wnt/β-
catenin, PI3K/AKT, PTEN/AKT, and TGFβ1/ERK pathways. These cascades, in turn, modulate cellular processes 
such as proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), angiogenesis, and apoptosis, 
often through the interplay with immune signaling pathways.
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propensity for metastasis and its poor respon- 
se to drug treatments [150]. Therefore, iden- 
tifying metastatic factors and elucidating the 
molecular mechanisms related to metastatic 
progression have become critical challenges.  
A deeper exploration of the mechanistic path-
ways involving adipokines could aid in the 
development of novel therapeutic drugs, pro-
viding promising targets for HCC treatment.
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