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Abstract

Type 2 epithelial cytokines, including thymic stromal lymphopoietin
and IL-33, play central roles in modulation of type 2 immune cells,
such as basophils. Basophils are a small subset of granulocytes
within the leukocyte population that predominantly exist in the
blood. They have non-redundant roles in allergic inflammation in
peripheral tissues such as the lung, skin and gut, where they
increase and accumulate at inflammatory lesions and exclusively
produce large amounts of IL-4, a type 2 cytokine. These
inflammatory reactions are known to be, to some extent,
phenocopies of infectious diseases of ticks and helminths. Recently,
biologics related to both type 2 epithelial cytokines and basophils
have been approved by the US Food and Drug Administration for
treatment of allergic diseases. We summarised the roles of Type 2
epithelial cytokines and basophils in basic science to translational
medicine, including recent findings.
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INTRODUCTION

Basophils are one of the rarest granulocytes in
peripheral blood leukocytes. They produce
chemical mediators such as histamine and secrete
prostaglandins and proinflammatory cytokines,
which lead to inflammatory reactions, contribute
to allergic inflammation including atopic
dermatitis and pulmonary diseases and also
protect against helminth infections.1–8 Biologics
are medicines that have been isolated from
natural sources, although they may be produced
by artificial methods. Basophil-related biologics
such as IgE (Omalizumab), IL-4 receptor a chain
(Dupilumab), IL-5 (Reslizumab and Mepolizumab),
IL-5 receptor a chain (Benralizumab) and IL-13

(Tralokinumab) have been approved by the US
Food and Drug Administration (FDA) for the
treatment of allergic diseases (Table 1, Figure 1).

Type 2 epithelial cytokines are produced mainly
from epithelial cells, induce type 2 immune
responses and are associated with allergic disease
and helminth infection.9 It has been well
established that basophils are involved in thymic
stromal lymphopoietin (TSLP) and IL-33-mediated
response to allergens and helminths.5,10,11 The
role of IL-25 has also been discussed in relation to
the functions of basophils.12,13 Specifically, prior
studies have shown that basophils are a source of
IL-25, express IL-4 and IL-13 and upregulate
surface markers in response to IL-25 through their
IL-25 receptors; however, another report showed
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that basophils do not respond to IL-25.12,14,15

Despite these findings, we have not found any
clinical trials targeting IL-25 and its receptor in
basophil-related diseases. In this review, we focus
on both basic and clinical research investigating
basophils and type 2 epithelial cytokines of TSLP
and IL-33.

Research indicates that basophils display some
activities in homeostasis and have immune
suppressive functions.16,17 Specifically, mouse
basophils produce Amphiregulin, which activates
regulatory T cells (Tregs) in mouse models of
UVB-induced suppression of contact
hypersensitivity, IL-4 and other factors that
support the resolution of inflammation in atopic
skin inflammation, improve myocardial infarction
and prime group 2 innate lymphoid cells (ILC2s) in
response to neuron-derived signals for
homeostasis of tissue integrity.18–20 Conversely,
human Tregs activate basophils to produce pro-
inflammatory cytokines and upregulate expression
of basophil activation markers such as CD69 and

CD203c in vitro.19,21 Additionally, the role of
basophils has been discussed in the progression of
several cancers, but the relationship with TSLP and
IL-33 remains to be discovered.22–24 Understanding
novel functions of basophils may help to better
understand the outcomes from biologics related
to basophils in clinical trials.

THYMIC STROMAL LYMPHOPOIETIN

TSLP belongs to the IL-2 cytokine family, has four
a-helix bundle structures,25 and is expressed by
epithelial cells at the barrier surfaces of organs
including the lungs, skin and gastrointestinal
tract in both homeostatic and inflammatory
conditions.26–29 Haematopoietic cells, including
dendritic cells, basophils and mast cells, are also
sources of TSLP.30–32 Mechanical injury, infection,
inflammatory cytokines and proteases such as
trypsin and papain can initiate release of TSLP
from epithelial cells.26,33,34 Two different isoforms
of TSLP are known in humans. The long isoform is

Table 1. US Food and Drug Administration (FDA) approved biologics related to basophils

Characteristic

Therapeutic

target Mechanism of action Indications Prescribing information

Omalizumab

(XOLAIR�)

IgE Binds to free IgE, inhibits binding

to FceRI on mast cells,

basophils, and plasmacytoid

dendritic cells; FceRII on

dendritic cells and eosinophils

Moderate–severe asthma and

allergic asthma; chronic

idiopathic urticaria; nasal

polyps; food allergies

https://www.gene.com/download/pdf/

xolair_prescribing.pdf

Dupilumab

(DUPIXENT�)

IL-4Ra Binds to IL-4Ra, blocking the

downstream effects of both IL-4

and IL-13

Moderate–severe asthma with an

eosinophilic phenotype;

moderate-severe atopic

dermatitis; chronic RSwNP;

eosinophilic esophagitis

https://www.accessdata.fda.gov/

drugsatfda_docs/label/2017/

761055lbl.pdf

Tralokinumab

(ADBRYTM)

IL-13 Binds to free/circulating IL-13,

thereby inhibiting interaction

with its receptor

Moderate–severe atopic

dermatitis in adults

https://www.accessdata.fda.gov/

drugsatfda_docs/nda/2022/

761180Orig1s000lbl.pdf

Mepolizumab

(NUCALA)

IL-5 Binds to free/circulating IL-5,

thereby inhibiting interaction

with its receptor

Severe asthma with an

eosinophilic phenotype; EGPA

https://www.accessdata.fda.gov/

drugsatfda_docs/label/2019/

761122s000lbl.pdf

Reslizumab

(Cinqair)

IL-5 Binds to free/circulating IL-5,

thereby inhibiting interaction

with its receptor

Severe asthma with an

eosinophilic phenotype

https://www.accessdata.fda.gov/

drugsatfda_docs/label/2016/

761033lbl.pdf

Benralizumab

(FASENRA�)

IL-5Ra Binds to the IL-5Ra chain,

resulting in rapid depletion of

eosinophils via antibody-

dependent cellular cytotoxicity

Severe asthma with an

eosinophilic phenotype

https://www.accessdata.fda.gov/

drugsatfda_docs/label/2017/

761070s000lbl.pdf

Tezepelumab

(TEZSPIRE�)

TSLP Binds to TSLP, thereby inhibiting

interaction with its receptor

Add-on maintenance treatment

in severe asthma

https://www.accessdata.fda.gov/

drugsatfda_docs/label/2021/

761224s000lbl.pdf
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upregulated in human bronchial epithelial cells
and keratinocytes by stimulation with toll-like
receptor ligands, whereas the short isoform is
mostly decreased or unaltered by those
stimulations. It is unknown whether mice have
multiple isoforms; however, administration of the
synthetic short form TSLP reduced house dust
mite-induced inflammatory response in mice and
prevented signalling of long form TSLP.35

The receptor for TSLP is composed of a TSLP
Receptor (TSLPR) subunit and IL-7 receptor a
chain.25 TSLP signalling has both homeostatic and
inflammatory functions. TSLP has anti-apoptotic
effects to induce expression of Bcl-xL in primary
human bronchial epithelial cells and Bcl-2 in both
human and mouse breast cancer cells.36,37 Growth
of human cervical cancer cells is associated
with TSLP autocrine.38 Additionally, TSLP also
contributes to anti-apoptotic effects on intestinal
epithelial cells in both humans and mice through
induction of an endogenous inhibitor, secretory
leukocyte peptidase inhibitor (SLPI), for neutrophil
elastase that contributes to inflammatory bowel
diseases.39–42 TSLP has also been implicated in
regulating Tregs in the skin, thymus and gut,
leading to anti-inflammatory effects in both
humans and mice.43–45 Dendritic cell (DC)-derived
TSLP is important for mouse gut homeostasis.46,47

TSLP signalling on DCs promotes Tregs in the gut
to prevent bacteria-mediated inflammation and
TSLP signalling via interaction between DCs
and T cells promotes Treg development, resulting
in protection against colitis in a mouse model.45,47

Intriguingly, TSLP-responding Tregs are associated
with progression of colorectal cancer in both
humans and mice.48

TSLP also initiates inflammation via type 2
immune responses in haematopoietic cells such as
eosinophilia.49 TSLP signalling induces activation
of DCs to differentiate T helper 2 (Th2) cells
through upregulation of OX40L.50 TSLP acts on
T cells and B cells to modulate T-cell
differentiation and antibody production,
respectively.51,52

In some models, ILC2s are critical for
TSLP-associated allergic inflammation, especially
steroid-resistant allergic airway inflammation.53–58

Patients with atopic allergic diseases such as
AD, asthma, allergic rhinoconjunctivitis and
eosinophilic esophagitis (EoE) are known to have
dysregulated expression of TSLP linked to genetic
variants of TSLP.59,60 Overexpression of TSLP has
been reported in AD, Netherton syndrome,
asthma, COPD and EoE.27,61 Some sensory neurons
expressing TSLPR can drive the itch reaction in
allergic diseases such as atopic dermatitis (AD) in

Figure 1. Biologics related to basophils. (a) Omalizumab binds to free IgE to inhibit binding to FceRI on basophils. (b) Benzralizumab binds to IL-

5Ra and Mepolizumab binds to free IL-5 to inhibit interaction between IL-5 receptor and IL-5. (c) Dupilumab binds to IL-4Ra to block

downstream effects of both IL-4 and IL-13. Taralokinumab binds to free IL-13 to inhibit the interaction with its receptor.
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response to TSLP.62,63 Blockage of TSLP signalling
has been tested in clinical trials in several diseases
such as asthma, atopic dermatitis, cat allergy and
EoE (Table 2). Tezepelumab (anti-TSLP antibody)
was approved for severe, uncontrolled asthma by
the FDA in 2022.64 Tezepelumab has been tested
in a Phase 3 trial (NCT05583227) for efficacy and
safety in patients with EoE. In another trial,
subcutaneous Tezepelumab did not reach
statistically significant improvements in patients
with moderate-to-severe atopic dermatitis.65

TSLP AND BASOPHILS

The role of basophils has been investigated in
TSLP-dependent inflammation in mice, using
topical vitamin D3 analogue (MC903)-induced skin
inflammation, which is akin to atopic dermatitis in
humans. In this model, basophils lacking expression
of IL-4, Il4 30 untranslated region (Il4 30UTR) mice,
exhibit impairment of skin inflammation including
swelling, reduction of levels of antigen-specific IgE
in serum and production of type 2 cytokines in
draining lymph nodes.66 Human basophils
in peripheral blood lack the function of antigen
presentation because of low or negative expression
of MHC class II and co-stimulatory molecules,67,68

whereas mouse basophils exhibit antigen
presentation and contribute to an increase in Th2
cells. Mouse basophils can acquire the expression
MHC class II complexes by trogocytosis, which is the
transfer of a part of the cellular membrane
including surface proteins via cell-contact from
dendritic cells after treatment of mice with MC903
plus antigen69 (Figure 2).

Basophils are also involved in oral
allergen-induced anaphylactic reactions in mice
sensitised with TSLP.70 Basophils promote
differentiation of Th2 cells through production of IL-4
during Trichinella spiraris (Ts), Heligmosomoides
polygyrus (Hp) and Litomosomoides sigmodontis
filaria infections.71–73 In addition, TSLPR-deficiency
but not that of IL-3R impairs basophils in the
draining lymph nodes during Ts infection, leading to
reduction of Th2 cells. These suggest that
basophil-derived IL-4 can enhance Th2 responses in
TSLP sensitised mice. In addition, basophils produce
IL-4 to enhance subsequent production of ILC2 in
response to TSLP in skin inflammation.74

However, bone marrow chimera experiments
exhibiting TSLPR-deficiency on basophils did not
confer protection from the inflammation in skin or
reduce level of IgE in serum in topical

MC903-induced skin inflammation.5 This experiment
was conducted by transferring bone marrow cells
from Mcpt8Cre mice,2 which lack basophils by Cre
toxicity only in basophils, into either wild
type (WT) mice as a control or TSLPRa�/� mice as
basophil-specific TSLPR-deficient mice. Furthermore,
TSLPR-floxed mice crossed with Mcpt8cre,75

Mcpt8creTslprfl/fl mice, in a pulmonary inflammation
model did not alter the magnitude of the airway
inflammation, increase in Th2 cells, or IgE titres in
serum after administration of intranasal antigen
with topical MC903 treatment in the skin. This
suggests that TSLPR on DC and CD4+T cells, but not
basophils nor ILC2s, are predominantly reactive to
TSLP in this type 2 inflammation.76 Although the
above two independent mouse lines expressing Cre
recombinase under gene locus of mouse mast cell
protease 8 (mMCP8) have been established,2,75

expression of mMCP8 is not critically restricted to
basophils; the expression of mMCP8 has been
detected in various cell lineages, including a type of
macrophage and inflammatory mast cells.77–80 Thus,
further studies are needed to clarify the role of
basophils and TSLP via methods using mouse lines
expressing Cre recombinase in basophils by other
genes, such as Cpa3-Cre mouse81 or using antibodies
for depletion of basophils such as anti-FceRia
antibody (MAR-1) and anti-CD200R3 Ab (Ba103 and
Ba160, which are the same hybridomas as both of
them have the same characters including CDR3
sequences and were generated in the single
experiment).1,2,79,80,82,83

It is unclear whether human basophils can
respond to TSLP. The TSLP risk allele for EoE is
associated with an increase in frequency of
circulating basophils.84 A different single
nucleotide polymorphism of the TSLP allele is also
associated with a number of basophils.85 Two
independent groups showed that activated
basophils express TSLPR and basophils from
patients with allergy upregulate expression of
CD203c and release histamine in response to
TSLP, which is compatible with IgE-cross linking
and IL-3.86,87 Rhinovirus infection, a risk factor for
asthma exacerbations among atopic patients, also
increases the expression of TSLPR on basophils.88

Furthermore, TSLP promotes the differentiation of
human CD34+ cells into basophils and eosinophils,
which is also one of the ways to enhance
basophil-mediated allergic responses by TSLP.
However, Salabert-Le Guen et al.89 showed that
human basophils from healthy donors and
patients with allergies express TSLPR on the cell
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surface, but do not express of IL-7Ra and have
altered phosphorylation of STAT5. Gambardella
et al.15 detected production of IL-4, IL-13 and
CXCL8 from human basophils from healthy donors
when in vitro stimulated with IL-3 and IL-33, but
not TSLP and IL-25.

Overall, basophils enhance type 2 immune
responses, including allergic responses to TSLP
stimulation in both humans and mice, although it
remains unclear whether those responses of
basophils to TSLP are because of initiation
through TSLPR on basophils.

IL-33

IL-33 is an IL-1 family cytokine identified by
bioinformatic analysis of the human genome. The
IL-1 cytokine family contains 11 cytokines including
IL-1a, IL-1b, IL-18 and IL-33.90,91 Although IL-1
cytokines are widely expressed in haematopoietic
cells, which are associated with inflammatory
responses and host defences,92,93 IL-33 is
predominantly produced by epithelial cells such
as alveolar type II cells in bronchus and airways,
fibroblasts and smooth muscle cells. IL-33 is hardly
detected in mouse blood vessels during
homeostasis, whereas human endothelial cells are
known to express IL-33 constitutively and to be a
major source of IL-33 mRNA in inflamed tissues
from patients with rheumatoid arthritis, psoriasis
and Crohn’s disease.94–97 In human, bronchial
epithelial cells and endothelial cells are the major
sources of IL-33 in human lungs, whereas IL-33 is
mainly expressed in alveolar type 2 cells in
mice.98–100 During mouse lung development, IL-33,

mainly expressed in alveolar type 2 cells, guides the
maturation and immunomodulatory functions of
alveolar macrophages through activation of
basophils.100 The IL-33 receptor consists of IL-1
receptor accessory protein (IL-1RAP) and
suppression of tumorigenicity 2 (ST2). IL-1RAP is a
ubiquitous protein, also associated with IL-1
receptor type 1 (IL-1R1) and the IL-36 receptor.101

Expression of ST2 is restricted to a subset of T cells,
including pathogenic memory Th2 cells (Tpath2),
ILC2s, basophils, mast cells, eosinophils and
macrophages in humans and mice.102–110 Although
residential Tregs also highly express ST2 compared
to circulating Tregs, IL-33/ST2 axis is dispensable for
accumulation and residence in nonlymphoid
organs.111,112 The IL-33/ST2-IL-1RAP axis induces
myeloid differentiation primary response gene 88
(MyD88), IL-1 receptor-associated kinase 1 and
4 and TNF receptor associated factor 6.113,114 The
IL-33 signalling can inhibit proliferation and induce
apoptosis in MIA PaCa-2, a human pancreatic
cancer cell line.115

IL-33 displays a role in homeostatic and
inflammatory responses. Adventitial stromal cells in
mouse lung parenchyma also express IL-33 and TSLP,
supporting accumulation and activation of ILC2 cells,
which may contribute to subsequent inflammatory
reactions.116 In the bleomycin-induced lung fibrosis
mouse model, airway epithelial cells and alveolar
macrophages produce IL-33 to exacerbate lung
fibrosis.117 IL-33 signalling contributes to protection
against helminth infections in mice such as
Heligmosomoides polygylus, L. sigmodontis,
Nippostrongylus brasiliensis, Strongyloides ratti and
Trichinella spiralis.108,118–123

Elevation of the expression of IL-33 has been
shown in a large number of allergic disorders,
including asthma, chronic rhinosinusitis, allergic
rhinitis, atopic dermatitis and eosinophilic
esophagitis.124–129 Insulation of cell or tissues,
exposure to allergens and infection with nematodes
or viruses trigger IL-33 release in humans and mice.
Airborne allergens of the products from fungi
including Alternaria alternata and Aspergillus
fumigatus, German cockroach and house dust mite
contain proteinase activity. Protease allergens can
activate proteinase-activated receptor-2 (PAR-2)
through oxidative stress and ATP secretion, resulting
in IL-33 release.107,130–132 Laundry detergents and
surfactants also have activity to increase oxidative
stress that induce expression of IL-33 from airway
epithelial cells.133 In addition, cigarette smoke
induces expression of IL-33. In the case of COPD,

Figure 2. Basophils are acquired to express MHC class II complexes

by trogocytosis from dendritic cells after treatment of mice with

MC903, leading to induction of Th2 cells.
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tobacco smoke plus viral damage elevates severity of
COPD via increase in IL-33.134 IL-33 expression in
epithelial cells and endothelial cells is also increased
by other various stimuli including diesel
exhaust particles (DEPs), chitin, silica crystals,
hydroxypropyl-b-cyclodextrin, viral infection and
Toll-like receptor ligands.135–142 Genetic studies have
shown significant associations between IL1RL1 and
IL33 genetic variants and allergic diseases such as
asthma, atopic dermatitis and EoE in humans.143–151

Anti-IL-33 antibodies have been tested as therapies
for pulmonary diseases including asthma and COPD
as a Phase II trial (Table 3). Treatment with anti-IL-33
receptor antibodies (CNTO 7160) blocks IL-33
signalling in mild asthma; however, clinical benefits
were not found for patients in this clinical trial.152 In
the other clinical trial, patients with uncontrolled
asthma may have clinical benefits from treatment
with anti-IL-33 receptor antibodies compared to
placebo (GSK37772847), but more studies are
needed.153 Treatment with Etokimab, an IL-33
antibody, desensitised peanut-allergic individuals to
efficiently tolerate peanut protein with fewer
adverse events and reducing Th2 cytokine
production and serum IgE for peanuts compared to
placebo in Phase 2a of a clinical trial.154 Furthermore,
in a Phase 2a study for patients with moderate-
to-severe atopic dermatitis, administration of
Etokimab improved eczema area and severity index
(EASI) 50 and EASI75 scores and reduced eosinophils
in peripheral blood.155

IL-33 AND BASOPHILS

Basophils and mast cells, which are both
granulocytes, are associated with allergic disease in
mice and humans expressing ST2, a component of
the IL-33 receptor.156 Treatment with IL-33 activates
basophils, leading to enhancement of the
degranulation and production of pro-inflammatory
cytokines such as IL-4, and IL-13 in mouse.157,158 IL-33
itself also activates human basophils to degranulate
and secrete various cytokines such as IL-1b, IL-4, IL-5,
IL-6, IL-8, IL-13 and granulocyte-macrophage
stimulating factor.158–160 IL-33 activates NF-kB and
p38 MAP-kinase on human basophils.159

Intriguingly, treatment with long-acting muscarinic
antagonist alters the IL-33-induced IL-4 production
from basophils in both humans and mice, leading
to amelioration of eosinophilic inflammation.161 It
has been shown that the expression of IL-33 is
elevated in allergic inflammation such as in
atopic dermatitis and gastrointestinal

inflammation.148,162,163 In IL-33 transgenic mice,
basophils activate ILC2 cells to induce inflammatory
processes such as atopic dermatitis.164 IL-33 induces
activation of mouse basophils through their own
ST2 receptor in epicutaneous sensitisation-induced
experimental eosinophilic esophagitis.165

Humanised mouse models show that allergen plus
IgE-induced activation of human basophils and can
confer allergic gut inflammation through
production of platelet-activating factor (PAF) and
histamine.166

In a mouse model of protease-induced
pulmonary inflammation, ILC2 and Th2 cells play a
critical role in development phases of eosinophilic
inflammation in response to type 2 epithelial
cytokines; TSLP is important for Ovalbmin (OVA)
immunisation-induced Th2 cell responses, whereas
IL-33 activates ILC2 cells to promote Th2 cell
responses.167 The similarities between ILC2 and

Figure 3. A model of type 2 airway inflammation. Various

stimulations induce secretion of type 2 epithelial cytokines from

epithelial cells in lung, subsequent activation of basophils and Th2

cells induce expansion and activation of ILC2 cells through production

of IL-4.
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Th2 cells have been studied in chromatin
levels.168 In this case, IL-4 from Th2 cells increase
IL-33-induced ILC2 responses (Figure 3). In a
similar context, basophils produce IL-4 in response
to IL-33 to increase the production of type 2
cytokines, such as IL-5 and IL-13 and the
chemokine CCL11 from ILC2s, resulting in
elevation of eosinophilic airway
inflammation.169,170 It has been demonstrated
that phosphodiesterase (PDE) 4 is involved in IL-3
and IL-33-induced phosphorylation of ERK and
subsequent IL-4 production from mouse basophils
in oxazolone-induced skin inflammation.171 In
addition, treatment with long-acting muscarinic
antagonist alters this IL-33-induced IL-4 production
from basophils in both humans and mice, leading
to amelioration of eosinophilic inflammation.161

On the contrary, mast cells suppress pulmonary
inflammation induced by treatment with papain
through production of IL-2 to promote Tregs in an
IL-33-dependent manner.107 These results suggest
that the role of basophils is distinct from mast
cells in IL-33-contributed airway inflammation.
Collectively, since basophils have unique
pathological roles in IL-33-contributed allergic
diseases, it would be worth targeting both
basophils and mast cells in potential therapies for
IL-33-contributed allergic diseases.

FUTURE RESEARCH DIRECTIONS

The studies summarised in this review indicate that
type 2 epithelial cytokines of TSLP and IL-33 play a
role as positive modulators in activation
of basophils both directly and also indirectly,
leading to exacerbation of allergic reactions. In
addition, anti-IgE antibody therapy (Omalizumab)
has preventive effects in food allergy
(NCT03881696).172 Results suggest that synergistic
effects may be possible if we block both basophils
and type 2 epithelial cytokines in allergic diseases.
For example, a combination of antibodies for type
2 epithelial cytokines using anti-IgE mAb
(Omalizumab) or anti-IL-5Ra mAb (Benralizumab)
treatment, which reduces circulating basophils in
EoE173 (Figure 4). A tri-specific monoclonal antibody
targeting IL-4, IL-13 and IL-33 (PF-07264660) and a
bifunctional nanobody blocking TSLP and IL-13
(SAR443765) are in this context. Administration of
anti-IL-3 Ra (CD123) mAb (Talacotuzumab)
also reduces the frequency of basophils in
the blood174 and reports suggest that the
level of production of IL-3 from
phytohemagglutinin-stimulated peripheral blood
mononuclear cells is correlated with improvement
of lung function in pre-school children with
asthma.175 These future studies will provide novel

Figure 4. A proposed model of combination therapy with anti-IL-33/ST2 mAb or anti-TSLP mAb plus blocking basophils for gastrointestinal

inflammation. Because both type 2 epithelial cytokines and IgE complexes stimulate basophils to exacerbate gut inflammation and Th2 immune

responses, it might be beneficial to block both type 2 epithelial cytokines and basophils.84,165,166
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therapeutic approaches to help patients suffering
from allergic diseases.

CONCLUSION

We have summarised the role of basophils and
type 2 epithelial cytokines, specifically TSLP and
IL-33, in allergic diseases and helminth infections
in humans and mice. We hope this manuscript will
help clinicians and scientists studying translational
and basic science.
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