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Abstract

More than 800 million people suffer from kidney disease, yet the mechanism of kidney
dysfunction is poorly understood. Here we define the genetic association with kidney function
in 1.5 million individuals and identify 878 (126 novel) loci. We map the genotype effect on

the methylome in 443 kidneys, transcriptome in 686 samples, and single-cell open chromatin in
57,229 kidney cells.

Heritability analysis reveals that methylation variation explains a larger fraction of heritability
than gene expression. We present a multi-stage prioritization strategy, and prioritize target genes
for 87% of kidney function loci. We highlight key roles of proximal tubules and metabolism in
kidney function regulation. Furthermore, the causal role of SLC47A1 in kidney disease is defined
in mice with genetic loss of S/c47a1 and in human individuals carrying loss-of-function variants.
Our findings emphasize the key role of bulk and single-cell epigenomic information in translating
genome-wide association studies into identifying causal genes, cellular origins and mechanisms of
complex traits.
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Introduction

The kidney maintains electrolyte and water balance, and plays a major role in blood
pressure regulation and excretion of toxins. Kidney disease is a major global health burden,
responsible for roughly one million (1 in 60) yearly deaths worldwide. Kidney disease-
associated mortality increased by more than 40% in the last two decades, making it one

of the fastest-growing major causes of death?. Despite the major personal and economic
burden, few new therapeutics have been registered to treat or cure kidney disease over the
last 40 years.

Both genetic predisposition and environmental changes are critical for kidney disease
development. Association of common variants with kidney function has been mapped

in genome-wide association studies (GWAS)2-5. Despite efficient GWAS locus mapping,
translating this information into improved mechanistic understanding is still challenging as
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more than 90% of kidney function-associated variants are located in the non-coding region
of the genome®.

Integration of GWAS data and expression quantitative trait loci (eQTL) has been
instrumental for GWAS target gene identification’~11. However, previously published eQTL
datasets were only able to prioritize target genes for a small fraction (<20%) of GWAS
loci#’. Recently developed statistical methods suggested that eQTLs only explain a small
fraction (~11%) of GWAS heritability!2, requiring increasingly diverse functional genomic
readouts beyond gene transcription to identify disease mechanisms.

The epigenomel3 describes the cellular gene expression regulatory logic and integrates
effects from genetic variation and environmental changes. Thus, epigenomic profiling data
could provide critical insight into kidney disease development, as they have in previous
work for other complex diseases'4. DNA methylation, a key component of the epigenome,
can regulate gene expression by altering transcription factor binding strength or recruiting
proteins involved in gene repression1>16, Previous studies have cataloged the genotype
effect on methylation (methylation quantitative trait loci, meQTL) in accessible tissues, for
example blood cells}’-19: however, kidney-specific meQTL data are not readily available.

Kidney function GWAS for 1.5 million individuals

For comprehensive identification of genetic variants associated with kidney function
(eGFRcrea: glomerular filtration rate estimated by serum creatinine), we conducted a meta-
analysis of publicly available GWAS information from the CKDGen#, Pan-UK Biobank,
MVP?, PAGEZ, and SUMMIT?2L consortia (Fig. 1a and Supplementary Table 1). These
GWAS results were pooled via sample size-weighted meta-analysis of z-scores using
METALZ22, to allow for differences in eGFRcrea estimation and scaling (Methods), resulting
in a comprehensive eGFRcrea GWAS catalog of 12,653,804 variants with a total sample size
of 1,508,659 (Extended Data Fig. 1a,b). Using the genome-wide significance cut-off (p <
5x1078), we identified 90,950 variants associated with eGFRcrea, most (81.9%) of which
were validated by serum cystatin C based eGFR (eGFRcys) and/or blood urea nitrogen
(BUN) (Extended Data Fig. 1c—e).

Further, we discovered 878 independent loci (Methods, Fig. 2a, Extended Data Fig.

2a,b, and Supplementary Table 2), including 126 novel loci compared to previously
reported GWAS sentinel variants#°20:21.23.24 3nd whole-exome association studies25:26
(Supplementary Fig. 1-3). Most (81.0%) novel eGFRcrea loci included at least one
nominally significant (p < 0.05) association with eGFRcys and/or BUN (Extended Data
Fig. 2c). Novel eGFRcrea GWAS loci were significantly enriched in genome regions
around genes whose mutations are known to cause phenotypic abnormalities in the kidney,
including Meprin A Subunit Alpha (MEP1A)??, ATP Binding Cassette Subfamily C
Member 2 (ABCC2)?8 and Nuclear Factor | A (NVFIA)?? (Extended Data Fig. 2d—g). Most
newly discovered common variants had small effect size, while newly discovered rare
variants had larger effect size (Fig. 2b).
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Genotype effect on renal gene expression (eQTL)

To comprehensively annotate the genotype effect on gene expression in the kidney, we
integrated all publicly available kidney eQTL datasets from the Genotype-Tissue Expression
(GTEX) project (v8)8, the Cancer Genome Atlas by Ko et al.?, the Nephrotic Syndrome
Study Network eQTL (NephQTL) by Gillies et al.19, and our prior publication by Sheng
etal.11, using fixed effects inverse-variance meta-analysis (Fig. 1a and Supplementary

Table 3). The meta-analysis eQTL dataset included 201,627,059 associations with a total
sample size of 686 (Methods, Fig. 2¢c and Extended Data Fig. 3). We identified 10,430
genes with eQTLs at a 1% false discovery rate (FDR) g value (hereafter referred to as
eGenes), of which 11% (1,146) have not been previously reported’11:30 (Supplementary
Fig. 4 and Supplementary Table 4), including genes with known roles in kidney function,
for example, Transcription Factor AP-2 Beta (7£4P2B)3! and Solute Carrier Family 22
Member 1 (SLC22A1)32. Comparing to eQTLs of 48 GTEX tissues, we identified 64,328
kidney-specific eQTLs associated with 3,046 eGenes (m-value > 0.9 in less than five
tissues, including kidney) (Supplementary Table 5). Kidney-specific eQTL variants were
significantly enriched for eGFRcrea GWAS (odds ratio (OR) = 1.67, y? test p = 8.4x107210)
and other kidney disease traits (Fig. 2d). Kidney-specific eGenes showed significant (p

= 1.3x1079) enrichment for metabolic pathways indicating the key role of the kidney in
metabolism (Supplementary Table 6).

Robust identification of meQTL in the human kidney

The genotype effect on the epigenome has not been well characterized in the kidney;
therefore, we performed high-density genotyping and high throughput DNA methylation
profiling in 506 human kidneys (Fig. 3a). After quality control (Supplementary Table 7-9),
we performed meQTL mapping in 443 kidney samples using an additive linear model

with covariates including technical and clinical variables and probabilistic estimation of
expression residuals (PEER) factors (Supplementary Fig. 5a,b). We identified 139,313 CpGs
with meQTLs at a 1% FDR (hereafter referred to as mCpGs) (Fig. 3b and Supplementary
Table 10-11), providing a comprehensive landscape of genetic effect on kidney epigenome
(Supplementary Fig. 6). Significant meQTL SNPs were mostly located within 100kb of
target CpGs, and significantly enriched on kidney enhancer regions (OR = 1.71, y? test p<
1x1073%0) (Fig. 3¢ and Supplementary Fig. 5c—e).

To identify kidney-specific meQTLs, we compared kidney meQTLs to whole blood33 and
skeletal muscle!® meQTLs, and identified 19,458 mCpGs with high kidney specificity
(m-value > 0.9 only in kidney) (Fig. 3d and Extended Data Fig. 4a). Kidney-specific

mCpGs were enriched on kidney enhancers (OR = 1.23, /1/2 test p = 2.2x10721), kidney-
specific transcription factor binding sites (for example HNF4A) and proximal tubule-specific
accessible chromatin regions (OR = 2.23, y? test p = 4.9x107167) (Fig. 3e and Extended
Data Fig. 4b—d). Kidney-specific meQTL variants showed significant enrichment for kidney
function traits including creatinine (OR = 1.51, ¥ test p= 7.3x1078) (Extended Data Fig.
4e).
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Expression quantitative trait methylation analysis (eQTM)

Next, we obtained gene expression information via RNA sequencing for the analyzed
kidney samples (N=414) and explored the relationship between CpG methylation and

gene expression via expression quantitative trait methylation (eQTM) analysis (Methods,
Extended Data Fig. 5a,b). We identified 33,616 unique CpGs whose methylation levels
correlated with expression of 8,908 unique genes at a global FDR < 0.05, enabling target
genes identification for mCpGs (Extended Data Fig. 5¢c—d and Supplementary Table 11,12).
Most (64%) eQTM CpGs showed the canonical negative association with their target gene
expression, as observed in other tissues19:34-36 (Extended Data Fig. 5c,e,f). The negative
eQTM CpGs showed significant enrichment on active promoters (OR = 1.83, ;(2 test p=
2.5x107217) and distal enhancers (OR = 1.61, y? test p= 9.7x107102), while positive eQTMs
CpGs were enriched on repressed polycomb areas marked by H3K27me3 (OR = 1.91, /1/2
test p = 7.3x107102) (Extended Data Fig. 5g—j). The (canonical) negative eQTM genes were
enriched for metabolic pathways (Supplementary Table 13).

Methylation explains more GWAS heritability than expression

Next, we aimed to estimate kidney disease heritability mediated by DNA methylation and
gene expression using the recently developed mediated expression score regression (MESC)
method’2 (Fig. 4a). To this end, MESC was applied to kidney methylation and expression
data obtained from 414 individuals (78% European ancestry) and six GWAS datasets of
kidney function biomarkers (Supplementary Table 14). Across three kidney function traits
(eGFRcrea of UKBB, eGFRcys and BUN), the average proportion of heritability (defined
as hzm/hzg) mediated by gene expression was around 0.21 (+ 0.017 standard error) (Fig.

4b,c and Extended Data Fig. 6a). Meanwhile, the average hzmd/hzg mediated by methylation
was around 0.46 (+ 0.051 standard error), potentially indicating the key role of methylation
in mediating heritability. We consistently observed that larger fraction of GWAS heritability
explained by DNA methylation than gene expression when we applied MESC to European-
ancestry only datasets and at different sample sizes as well (Fig. 4c and Extended Data Fig.
6b,c).

To understand whether the kidney meQTL-improved heritability estimates are specific for
kidney traits, we analyzed 28 non-kidney function GWAS traits (average N = 421,000
individuals from the UK Biobank)3”. Compared to non-kidney traits, kidney traits showed
higher estimates of hzme(,/hzg by kidney meQTL and eQTL (Fig. 4b). Compared to blood
meQTL33 and 48 non-kidney GTEX tissues eQTLSE, kidney meQTL explained the highest
hzm/hzg for eGFRcrea and eGFRcys GWAS (Fig. 4d and Extended Data Fig. 6d), indicating
important tissue-specific heritability of traits38. Compared with non-kidney tissue eQTL,
kidney eQTL mediated higher fraction of heritability for kidney traits, but lower fraction of
heritability for non-kidney traits (Extended Data Fig. 6a,€).

To gain further insight into methylation-mediated heritability, we estimated heritability
enrichment for chromatin states. We consistently observed that kidney methylation-mediated
heritability for kidney function traits was enriched on kidney enhancers (Fig. 4e and
Supplementary Fig. 7), when comparing to enhancers from 127 different Roadmap tissues3?
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(Fig. 4f and Extended Data Fig. 7). In summary, our results indicate that a greater fraction
of kidney function heritability is mediated by kidney-specific methylation, with specific
enrichment at kidney enhancers.

Human kidney single cell open chromatin information

Next, we wanted to identify cell types within the human kidney causally associated with
specific traits. To this end, we generated single nucleus (sn)ATAC-seq data from six

adult human kidney samples and analyzed open chromatin in 57,229 cells after quality
control (Fig. 5a, Supplementary Table 15 and Methods). First, we estimated enrichment
of methylation-mediated heritability at cell type-specific open chromatin areas. We found
eGFRcrea GWAS heritability mediated by methylation was enriched at proximal tubule-
specific accessible chromatin (Fig. 5b and Supplementary Fig. 8a), which was further
confirmed in single cell GWAS trait enrichment analysis for 63 complex trait fine mapped
causal variants using gchromVAR?? (Fig. 5¢ and Supplementary Fig. 8b). In addition,
collecting duct principal cell-specific accessible areas showed enrichment for systolic blood
pressure GWAS (Fig. 5b,c).

Next, we used the snATAC-seq data to prioritize target genes for eGFRcrea GWAS variants.
We found that most eGFRcrea GWAS variants were located on proximal tubule open
chromatin areas (Fig. 5d and Supplementary Fig. 8c). We performed single-cell chromatin
co-accessibility analysis by Cicero*! and identified 1,024 target genes associated with 7,829
eGFRcrea GWAS variants from 531 independent loci (Fig. 5e and Supplementary Table 16).
To illustrate the key role of single cell co-accessibility information, we highlight the UMOD
locus in which variants showed strong GWAS association. Our co-accessibility analysis
prioritized 96 GWAS variants in this locus, most (93.8%) of which showed co-accessibility
with the UMOD promoter, including the locus lead variant (rs77924615~eGFRcrea
association p = 1.2x107348; rs77924615~UMOD co-accessibility score = 0.68) (Fig. 5f).

In summary, our results indicate that human kidney single cell accessibility maps enable
identification of cell types and genes related to kidney functions.

Integrative analysis improves target gene prioritization

To prioritize target genes for kidney function GWAS loci, we first used Bayesian
colocalization (coloc) to identify loci where the genotype effect on eGFRcrea, methylation
and gene expression were shared (Methods and Supplementary Fig. 9a). Using a strict
posterior probability cutoff (H4 > 0.8), we observed colocalization events between at

least two traits for 44,819 variants from 576 (66% of total) independent loci (Fig.

6a and Supplementary Fig. 9b), 4,613 mCpG and 626 coding eGenes (Fig. 6b and
Supplementary Tables 17-19). We prioritized 330 target genes with colocalization between
eGFRcrea GWAS and kidney eQTL, including 188 novel genes, more than previously
reported*>.7:11.24 (Sypplementary Fig. 9c—¢). In particular, we identified multiple-trait
colocalization (moloc, PPA.abc > 0.8) among eGFRcrea GWAS, meQTL, and eQTL in 152
independent loci for 236 eGenes including 13 Mendelian nephropathy genes*? (Fig. 6b,c
and Supplementary Table 20). These moloc prioritized genes showed greater protein-protein
interaction (o = 4.2x1078, Supplementary Fig. 9f) and were enriched for metabolic functions
(Supplementary Table 21).
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Next, we performed summary-data-based mendelian randomization (SMR). We detected
2,467 mCpGs (74.8% of coloc mCpGs) associated with eGFRcrea GWAS at Pgpr <
1.52x107° (Bonferroni threshold accounting for 3,286 tested CpGs, i.e. 0.05/3,286) and
266 coding eGenes (80.6% of coloc eGenes) associated with eGFRcrea GWAS at Pyyr
< 1.52x107* (i.e. 0.05/330 tested genes) (Fig. 6d and Supplementary Table 17,18,19,22).
To distinguish pleiotropy from linkage, a follow-up test for heterogeneity in dependent
instruments (HEIDI) identified 1,607 mCpGs (48.7% of coloc mCpGs) and 204 eGenes
(61.8% of coloc eGenes) whose associations with eGFRcrea GWAS were caused by
pleiotropy at Przp, > 0.0143 (Fig. 6d).

Further, we developed a prioritization scoring system to identify target genes for eGFRcrea
GWAS loci by integrating evidence from eight different omics datasets or analytical tools,
such as eQTL, meQTL and eQTM, coloc (GWAS and eQTL), moloc (GWAS, eQTL

and meQTL), SMR, HEIDI, single cell co-accessibility, and Activity-by-Contact Model44
(Methods and Extended Data Fig. 8a). For each significant GWAS variant, we searched

for potential target genes within 1Mb window and the top gene with most supporting data
was assigned. This strategy enabled us to prioritize target genes for 55,825 variants from
761 (86.7% from total 878) independent loci, including 498 newly prioritized loci without
overlap with previously prioritized GWAS signals? or creatinine-associated exome rare
variants2>:26 (Fig. 6e, Extended Data Fig. 8b,c and Supplementary Table 23,24).

Finally, we focused on 328 independent eGFRcrea GWAS loci with priority score = 3
(Extended Data Fig. 8d). A single target gene could be assigned to majority (66.5%) of 328
loci. Some (110) loci had multiple prioritized target genes, most of which showed strongly
correlated expression between nearby genes or had multiple GWAS signals at the same
locus (Fig. 6f and Supplementary Fig. 10). For more than 60% of variants, the prioritized
gene was not the closest gene, indicating the importance of multi-omics datasets (Fig. 6g).
Next, we examined features of the top prioritized variants in these loci, and observed that
83% of the top prioritized variants were supported by eQTL associations and 75% of these
variants were localized to human kidney open chromatin regions (SnATAC-seq) (Extended
Data Fig. 8d). We found 559 prioritized genes that were significantly enriched for kidney
cortex expression (hypergeometric test p = 1.3x10712) (Fig. 6h and Extended Data Fig.
8e,f). These prioritized genes were significantly enriched for kidney function traits and
biological processes related to metabolism (Supplementary Table 25,26). Furthermore, a
large number (n=92) of prioritized genes can be targeted by drugs already approved by the
FDA*® (Supplementary Table 27).

Identification of SLC47A1 as a kidney disease risk gene

Finally, we focused on the eGFRcrea GWAS locus on chromosome 17 where causal variants
underlying kidney function and target gene SLC47A1 were prioritized by all 8 omics
datasets and statistical models (Fig. 6e and Supplementary Table 24). The top prioritized
variant rs2252281 showed significant association with kidney function (eGFRcrea GWAS
p=2.5x1077%), CpG methylation (cg15971010 meQTL p = 1.5x1073%) and SLC47A1
expression (eQTL p = 5.4x1078), and colocalization among all these associations (moloc
PPA.abc=0.98) (Fig. 7a—c). Summary Mendelian randomization showed that SL C47A1
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expression mediated the genotype effect of kidney function by pleiotropy (Supplementary
Table 18). Cg15971010 methylation negatively correlated with SLC47A1 expression which
was validated in multiple datasets (Supplementary Fig. 11a). Furthermore, more severe
kidney disease (higher fibrosis and worse kidney function) was associated with higher
methylation of cg15971010 and lower expression of SLC47A1 (Supplementary Fig. 11b).
The prioritized variants in this locus showed kidney-specific open chromatin, promoter
(H3K4me3) and enhancer (H3K27ac and H3K4mel) marks, and lower methylation level in
human and mouse kidneys (Supplementary Fig. 12,13). S/c47al expression was restricted
to the proximal tubules in the mouse kidney single-cell RNA-seq data (Supplementary Fig.
13c).

To define the causal role of SLC47A1 in kidney disease development, we performed

a predicted loss-of-function (pLOF)-based gene burden phenome-wide association study
(PheWAS) using phenotypes of 32,268 individuals with whole exome sequencing data in the
UK Biobank. We found a significant association (Bonferroni adjusted p= 0.030) of acute
renal failure in individuals with loss-of-function variants (Fig. 7d). Similar PheWAS in the
BioMe Biobank showed enrichment for renal dialysis (p = 0.043) (Extended Data Fig. 9a).
Furthermore, even a single variant rs111653425 (the local top variant of eGFRcrea GWAS,
p=1.0x10779) PheWAS indicated significant associations with renal phenotypes including
acute renal failure (o= 0.047 in UK Biobank) and renal dialysis (p = 0.0066 in BioMe
Biobank) (Extended Data Fig. 9b,c).

Finally, we found significant negative correlations between SLC47A1 expression and
expression of markers of kidney injury (LCN2), fibrosis (COL1A1, COL3A1, VIM and
ACTA?), inflammation (CCL2Z, TNFand /L1B), macrophages (ADGREI), and necroptosis
(RIPK3, MLKL and NLRP3) (Supplementary Fig. 14). These results support the causal role
of SLC47A1in kidney disease development in patients.

Slc47al loss confers kidney disease risk in mice

Slc47al is a multi-drug extrusion protein, playing a key role in transporting a large

number of drugs and toxins, therefore several prior studies suggested that the gene is a
creatinine secretion marker rather a true kidney disease gene*®-4°. Our results, however,
indicated consistent association with cystatin C-based kidney function measurements as well
(rs111653425 with p = 5.3x10° in eGFRcys GWAS) (Supplementary Fig. 15).

To further support the causal role of SLC47A1 in kidney disease development, we
characterized S/c47al-deficient mice. Global knockout S/c47a1 mice were phenotypically
normal. We reasoned that S/c47a1 loss might alter injury response, especially following a
toxic injury, and thus we modeled kidney injury in wild-type (WT) and S/c47a17~ (KO)
mice (Fig. 8a,b). To recapitulate chronic kidney disease and fibrosis, we injected mice with
low dose cisplatin repeatedly and sacrificed animals 4 weeks later. We found that markers
of kidney dysfunction, such as serum creatinine and BUN levels were significantly higher in
Slc47a17~ mice when compared with wild-type animals (p < 0.01) following repeated low
dose cisplatin injection (Fig. 8c,d).
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Histological examination indicated increased hyaline casts, cytoplasmic vacuolization, loss
of brush border and tubular lumen dilation in cisplatin-treated S/c47a17~ mice (Fig.

8e). Tubule injury markers, for example, expression of Lipocalin-2 (ANgal) and kidney
injury molecule 1 (Kim1) were markedly higher in cisplatin-treated S/c47a1~~ mice when
compared to cisplatin-treated wild-type mice (Fig. 8f). We observed increased collagen
accumulation by Sirius red staining and markedly higher pro-fibrotic gene expression
(Colial, Col3al, Col4al, Fnl1, Ctgfand Vim) and aSMA protein levels in cisplatin-treated
Slc47a17~ mice (Fig. 8g—i and Extended Data Fig. 10a). Expression of pro-inflammatory
cytokines (Ccl2, Tnfa, Tnfsfl12and //16) and macrophage marker (£4/80, also known as
Adgre) were prominently increased in kidneys of cisplatin-treated S/c47a17~ mice (Fig. 8
and Extended Data Fig. 10b).

To understand the pathomechanism of S/c47a1 loss-associated kidney disease development,
we focused on necroptosis, a regulated cell death pathway playing an important role in acute
kidney injury (AKI) to chronic kidney disease (CKD) progression®%-52, Transcript levels

of Ripk3and MIki, were noticeably increased in kidneys of cisplatin-treated S/c47a17~
mice when compared with cisplatin-treated wild-type mice (Fig. 8k). We further confirmed
the increase in RIPK3 protein level in kidneys of cisplatin-treated S/c47a1~~ mice (Fig.

8i). We also observed a higher level of pyroptosis marker, NLRP3 (NOD-like receptor
family pyrin domain-containing 3) in kidneys of cisplatin-treated S/c47a17~ mice (Fig. 8i).
These results suggest enhanced cisplatin-induced kidney injury in S/c47a17~ mice, inducing
inflammatory cell death pathways, cytokine secretion, and renal fibrosis.

Discussion

In this study, we provide a comprehensive analysis of genetic determinants of human kidney
function. We generated genetic maps for eGFRcrea GWAS (n=1.5 million), human kidney
eQTL (n=686), methylation quantitative trait loci (n=443) and human kidney single cell
open chromatin and expression data. We identify more than 800 kidney function loci and
prioritize disease-causing genes, cell types and regulatory circuits for 576 loci. We show
that DNA methylation explains a higher portion of kidney disease heritability than gene
expressionl2. We identify the critical convergence of kidney function-associated variants in
kidney proximal tubules. Finally, we focus on the chromosome 17 locus and demonstrate
that SLC47A1is a kidney disease risk gene.

Recent studies, by estimating heritability mediated by expression, revealed that tissue

eQTL information only explains a modest proportion (average 0.11) of GWAS trait
heritability123, Consistently, we observed a similar proportion (average 0.10) of heritability
of kidney function traits explained by non-kidney GTEX tissue eQTLs, and a higher
proportion (average 0.20) of heritability mediated by kidney eQTLs (n=414 human kidney
tissue samples). Recent studies reported splicing QTLs>* and mMRNA AB-methyladenosine
QTLs®® independently explained complex trait variation, but a smaller fraction than
eQTLs855, Our analysis indicates that kidney meQTLs mediate a higher fraction (average
0.46) of heritability for kidney function traits using individual-level methylation profiles
from the same human kidney samples (n=414), and underscores that new epigenetic datasets
will be critical for GWAS functional follow-up studies.
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Incorporating cell-type epigenome data such as human kidney single-nuclear ATAC-seq
further improved causal cell type, target gene and variant identification. We observed a
marked enrichment (averaging 6.7-fold) of heritability mediated by kidney methylation
in proximal tubule-specific accessible regions for kidney function traits”-°6:57, We also
observed enrichment of heritability mediated by kidney methylation for blood pressure
GWAS hits in the principal cells of the collecting tubule, consistent with our previous
study!?. This cell type plays key roles in sodium balance and blood pressure regulation.

Multiple factors can explain the more prominent role of tissue methylation and single

cell epigenome variation mediating GWAS heritability compared to gene expression.

Gene expression measures transcriptional output at a single time-point and condition.

To reduce confounders in eQTL estimations, we often measure gene expression at
baseline or at healthy state; however, genotype-driven differences in gene expression

could become apparent in disease or stressed state, which would be missed by traditional
eQTL analysis®8. Our recent studies indicate that regulatory variants could play role in
modulating gene expression changes during development (for example Uncxand Shroom3)
and these genes could be silenced in adulthood®?:60, The improved GWAS heritability
mediation could also be explained by multiple factors, such as that the epigenome captures
gene expression potentials, prior developmental trajectory and integrates effects from
environmental variation.

Our data highlight the critical role of multi-staged omics for GWAS annotation. We

show that our 8-pronged prioritization strategy has notably improved target variant, gene
and cell type identification. It is important to mention that we found that the different
omics datasets provided both complementary and confirmatory information for target
prioritization; however it appears, that no single dataset and method can define the “ground
truth”. Future studies should focus on integration and optimization of target identification
strategies.

Finally, we show multiple lines of converging evidence indicating a causal role for
SLC47A1in kidney disease development. The association between kidney function traits
and common non-coding variants in the SLC47A1 region has been identified in large
eGFRcrea GWAS studies*1. However, the exact causal variants and regulatory mechanisms
involved at this locus remains unknown. In this study, we show a causal role of S/c47a1

in kidney disease development by analyzing the phenotypes of individuals with rare loss-of-
function coding variants and S/c47a1 knock-out mice. SLC47A1 can transport creatinine, so
the genetic variant can influence creatinine-based kidney function estimates. Here we show
that SLC47A1is also a kidney disease risk gene, most likely acting by influencing toxin
uptake and secretion of tubule epithelial cells.

Overall, we report, a comprehensive analysis of the genetic determinant of human kidney
function and show the key role of epigenetic changes mediating phenotype development.
Our extensive post-GWAS annotation provide new biological insight into 576 GWAS
identified loci. We highlight the key contribution of proximal tubules, metabolism and
cell death pathways in kidney function. We define the role of SLC47A1 in kidney disease
development and uncover potential new therapeutics for the treatment of kidney disease.
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Sample procurement

Deidentified human kidney tissue collection was approved by the institutional review board
(IRB) of the University of Pennsylvania. The study was deemed IRB exempt (exemption
IV), as no identifiable private information was collected. Kidney samples were obtained
from the non-neoplastic portion of surgical nephrectomies via the Cooperative Human
Tissue Network. Laboratory and demographic and clinical information including age, sex,
self-reported ethnicity, diabetes and hypertension status was collected from medical records
by an honest broker (Supplementary Table 7). eGFRcrea values were calculated using

the CKD Epidemiology Collaboration equation®2. Histopathologic descriptor measurements
including tubulointerstitial fibrosis were scored by a specialized renal pathologist using
Periodic Acid-Schiff stained slides. DNA was isolated by the Qiagen DNAeasy or
MagAttract High Molecular Weight DNA Kits (Qiagen No. 67563), according to the
manufacturer’s instructions. DNA was quantified by the Invitrogen Quant-iT PicoGreen
dsDNA Assay Kit (Invitrogen No. P11496).

Data generation

Genotype data. Genomic DNA isolated from kidney samples was used for genotyping. After
quality control using PLINK (v1.9)%3, genotypes were phased with SHAPEIT2 (v2.17)%4
and imputed by IMPUTE2 (v2.3.2)%5:66 (See Supplementary Table 8 and Supplementary
Note).

DNA methylation data.—DNA methylation at over 850,000 methylation sites was
measured in 506 kidney samples using Infinium Methylation EPIC BeadChip. SeSAMe
(v1.5.3)87 was used for pre-processing and quality control steps, resulting 701,519 CpG sites
(see Supplementary Table 9 and Supplementary Note).

Gene expression data.—RNA was isolated using RNeasy mini kit (Qiagen No. 74106)
from tubular compartment and profiled by RNA-Seq. Reads were aligned to the human
genome (hg19) using STAR (v2.4.1d)%8, and expression was quantified by RSEM (v1.3.1)69
(See Supplementary Note).

Human kidney single nucleus ATAC seq (SNATAC-seq).—Six fresh human kidneys
were collected for single nucleus ATAC-seq. Reads were aligned to human genome (hg19)
with SnapATAC (v2.0)70. After quality control and peak calling, 12 clusters (57,229

cells) were annotated using a published list of cell-type marker genes®®, and cell type-
specific differentially accessible regions (DARs) were identified for each cell type (See
Supplementary Table 15 and Supplementary Note).

eGFRcrea GWAS meta-analysis

To identify genetic variants associated with kidney disease, we performed a meta-analysis
of eGFRcrea GWAS based on the summary statistics obtained from five non-overlapping
multi-ancestry studies from CKDGen, Pan-UK Biobank, MVP, PAGE, and SUMMIT
consortium#5:20.21 (see detailed information in Supplementary Table 1). For each GWAS
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dataset, low frequency variants with a minor allele frequency (MAF) of <0.1% were
filtered out. Five GWAS results were pooled via sample size-weighted meta-analysis of z
scores (Stouffer’s method’1) implemented by METAL (version 2011-03-25)22, to allow for
differences in eGFRcrea estimation and scaling’2, with genomic control correction for each
input study (genomic control score 1.322 for CKDGen, 1.438 for UKBB, 1.186 for MV/P,
1.082 for PAGE and 1.047 for SUMMIT, respectively) and assessment of between-study
heterogeneity with the Cochran’s Q-test and / statistic. After meta-analysis of 32,220,823
variants, 12,653,888 variants available in at least two studies and at least for 500,000
individuals were retained. We filtered out 84 unplaced and non-autosomal variants. Finally,
our meta-analysis resulted in a comprehensive eGFRcrea GWAS of 12,653,804 variants
with a sample size of 1,508,659 cross-ancestry individuals (~80% are of European ancestry,
Supplementary Table 1). For the summary statistics of meta-analysis, we confirmed that
the Al and A2 alleles are matched with the alternate alleles and reference alleles based

on the annotation of dbSNP (release version 151) and they were corrected if they were
unmatched to make sure the effect was always reported to the alternate allele?3. Effect sizes
were estimated from the z statistics of the meta-analysis following a method proposed by
Zhu et al.”3, and then compared with effect sizes of each source GWAS summary statistics
(Extended Data Fig. 1b).

Next, we defined variants associated with eGFRcrea by genome wide significance level

(p< 5%1078). Specifically, variants with between-study heterogeneity (Cochran’s Q-test
HetlSq > 50 or / statistic HetPVal < 0.05) were selected as significant variants only

when they passed genome-wide significance level (p < 5x1078) in the meta-analysis and

at least one original study. In total, we identified 90,950 genome-wide significant variants
associated with eGFRcrea, including 8,877 variants at the major histocompatibility complex
(MHC) region. For validation, we obtained GWAS data for eGFR based on cystatin C
(eGFRcys) of 421,714 individuals from Pan-UK Biobank and blood urea nitrogen (BUN) of
852,678 individuals from CKDGen Consortium?24. For each eGFRcrea-associated variant, its
relevance to kidney function was treated as “validated” if it showed nominally significant

(p < 0.05) association with eGFRcys in the same effect direction or nominally significant
(0 < 0.05) association with BUN in the opposite effect direction (Extended Data Fig. 1c—e).
The enrichment analysis of variants associated with eGFRcrea in different kidney cell types
was performed by comparing the number of significant variants and non-significant variants
overlapped with DARs identified in given cell type and those in other cell types.

Independent loci were defined for 82,073 non-MHC variants using the following method.
First, we clumped (/2> 0.1) the significant variants following clump command “p/ink1.9
--bfile <1000G Phase 3 European file> --clump <summary statistics of 82,073 significant
variants> --clump-p1 5e-8 --clump-p2 5e-8 --clump-r2 0.1 --clump-kb 10000°23:83  resulting
in 1,687 leading variants. The 1000 genome Phase 3 (European ancestry, n = 503) was used
as reference panel for clumping because most (80%) individuals in meta-analysis GWAS
were of European ancestry. To avoid calling multiple associations for very large signals,

lead variants within 0.1cM of each other (derived from 1,000 Genomes phase 3 European
samples, n = 503) were merged. The MHC region was treated as a single locus. Finally, we
identified 878 independent loci (Supplementary Table 2). For each locus, the variant with the
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minimum p value was chosen to find the closest coding gene based on distance from variant
to gene transcription start site.

To identify novel loci, we first collected the leading SNPs reported by six published GWAS
studies*5:20.21.23.24 ‘ndependent loci by meta-analysis were defined as novel if they fulfilled
all following criteria: 1) did not pass genome-wide cutoff o < 5x1078 in any previous study,
2) 500Kb away from any of previously reported sentinel variants tagging independent loci
and 3) LD r? < 0.001 with any of previously reported sentinel variants tagging independent
loci (Extended Data Fig. 2a,b). Functional annotation for novel loci was performed using
Genomic Regions Enrichment of Annotations Tool (GREAT v4.0.4)4, counting the variants
validated by eGFRcys and/or BUN, literature search and single cell expression analysis
(Extended Data Fig. 2c—g).

Cis-eQTL meta-analysis

To obtain a comprehensive cis-eQTL map, we performed a meta-analysis based on the eQTL
summary statistics obtained from four non-overlapping studies®-11 (Supplementary Table

3), and identified 10,430 eGenes and 1,222,250 significant SNP-gene pairs (Supplementary
Table 4). Novel eGenes were determined if they were not included in any of eGene lists in
six reference studies’~11:30 (See Supplementary Note).

Cis-meQTL association analysis

We conducted cis-meQTL (referred to as meQTL) association analysis using 443 samples
with imputed genotyping data of 5,736,252 SNPs and methylation data of 701,503 CpGs
(See Supplementary Note). Missing values in methylation data were imputed based on
nearest neighbor averaging implemented by R package impute (v1.64.0). Beta values of
each CpG were transformed by inverse-normal transformation (INT)°. For each SNP-CpG
pair within a cis window of £1Mb from the queried CpG site, the association between INT
transformed methylation and genotype dosage was quantified using MatrixQTL (v2.1.0) R
package’® using an additive linear model. This model was fitted with covariates including
general variables (sample collection site, age, sex, top five genotype PCs, degree of bisulfite
conversion, sample plate, and sentrix position) and 35 PEER factors’’ (See Supplementary
Note).

The significance of the top associated variants per CpG was estimated by adaptive
permutation in FastQTL’8 using the covariates above and the setting “--permute 1000”.
Beta distribution-adjusted empirical p-values from FastQTL were used to calculate g-values
using Storey’s q method”®, and a false discovery rate (FDR) threshold of < 0.01 was
applied to identify CpGs with a significant meQTL (referred as mCpG). Then, a genome-
wide nominal pthreshold was defined as the empirical p of the CpG closest to the 0.01
FDR threshold, was further used to calculate a nominal o threshold for each CpG based

on the beta distribution model (from FastQTL) of the minimum p distribution obtained
from the permutations for the CpG site. For each mCpG, the variants with a nominal p
below the cutoff was defined as significant SNPs. Totally, we identified 139,313 mCpGs
and 13,771,378 significant SNP-mCpG pairs (Supplementary Table 10,11). For validation,
meQTL effect sizes were compared to a recently published (smaller) meQTL dataset (using
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195 kidney samples and total 374,826 CpGs) 30 (Supplementary Fig. 6). Further, kidney-
specific meQTLs were identified and analyzed by comparing meQTLs from whole blood
(n = 473)33 and skeletal muscle samples (n = 265)19, using METASOFT (v2.0.1)89 (See
Supplementary Note).

Cis-eQTM associations mapping and analysis

To identify associations between methylation of CpG sites and expression of genes within
a +1Mb window of the queried gene TSS, expression quantitative trait methylation (eQTM)
analysis was performed using a linear regression model implemented in 414 human kidney
samples using the MatrixeQTL R package’® (See Supplementary Note).

GWAS heritability mediated by methylation and expression

To estimate kidney disease heritability mediated by CpG methylation levels and gene
expression levels, we applied mediated expression score regression (MESC)2 for
individual-level genotypes, methylation, and expression data of 414 human kidney samples
(78.0% are of European ancestry) with all three datasets. In this study, MESC was used to
estimate methylation-mediated heritability (hzmm) for each of 34 GWAS traits (including
six kidney function traits, Supplementary Table 14) by regressing GWAS summary statistics
on kidney cis-meQTL effect summed across all CpGs. In brief, the meQTL effect sizes

for each CpG was estimated using individual-level genotypes and methylation data, with
covariates (general variables and PEER factors used in meQTL mapping above), and then
multiplied by the element-wise squared LD matrix to obtain methylation scores. LD matrix
was estimated using 503 European ancestry samples from the 1000 genome Phase 3, as most
(78%) kidneys samples used in this analysis are of European ancestry. Methylation scores
were further used to estimate methylation-mediated heritability 2,...,, based on GWAS
summary statistics for each of 34 GWAS traits. The proportion of heritability mediated by
methylation was defined as /2., where hzg is the GWAS trait heritability estimated by
stratified LD-score regression. For all quantities, standard errors and P values were estimated
by jack-knifing over blocks of SNPs. Similarly, expression scores were estimated based

on individual-level genotypes and expression data, and then used to estimate expression-
mediated heritability (hzm‘,w) and proportion of heritability mediated by kidney expression

(hzm /hzg)for each trait. To validate these findings, we performed heritability analysis in
323 samples of European-ancestry, and different number of samples randomly selected from
the 414 kidneys used above (See Supplementary Note).

To perform a comprehensive comparison, MESC was applied to estimate heritability
mediated by non-kidney tissue expression for 34 GWAS traits, using expression scores
computed for 48 non-kidney GTEXx v8 tissues by Yao et al.12. For each GWAS trait, the best
non-kidney tissue resulting in the highest estimates of 42,.... /hzg among non-kidney GTEXx
tissues was identified to compare with kidney eQTL. Further, we also estimated eGFRcrea
heritability mediated by blood meQTLs by applying MESC on individual-level genotypes
and whole blood methylation data (n = 473), with covariates (including age, batch effect, top
10 PCs of genetic background, hypertension, and whole-blood cell subtype proportions, and
20 PEER factors33).
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Single cell co-accessibility

To explore the regulatory function of distal open chromatin areas, we applied Cicero
(version 1.0.15)*! to predict cis-regulatory interactions by examining the co-accessibility
of SnATAC peaks. We used function make_cicero_cdsin Cicero package to aggregated
cells based on 50 nearest neighbors and then calculated co-accessibility scores with a
window size 500kb and distance constraint 250kb. Cicero connections between two peaks
were determined by co-accessibility score > 0.2. To prioritize target genes of eGFRcrea
GWAS variants, we extracted protein-coding genes within 1Mb from significant eGFRcrea
variants and defined their promoters as regions +2000bp from the transcription start sites

of protein-coding transcripts (GENCODE v35lift37)81. For each eGFRcrea GWAS variant,
potential target genes were identified by co-accessibility connections with one end covering
variant and another end overlapping with gene promoters. Finally, target gene was defined
for each variant as the gene with the highest co-accessibility score if multiple potential target
genes were available for the same variant.

Bayesian colocalization analysis

We performed Bayesian colocalization analysis to identify the variants where the genotype
effect on kidney function, methylation and gene expression were shared. Bayesian
colocalization analysis was implemented using R package coloc (v5.1.0)82 and moloc
(v0.1.0)83 to estimate posterior probability that a eGFR GWAS variant is associated with
three traits (GWAS and meQTL and eQTL). Posterior probability > 0.8 was considered
evidence of colocalization (See Supplementary Note).

Summary-data-based Mendelian Randomization

We performed summary-data-based mendelian randomization (SMR) analysis in three
configurations, eGFRcrea GWAS and kidney meQTL, eGFRcrea GWAS and kidney

eQTL, kidney meQTL and kidney eQTL, using package SMR (v1.03)#373, and used
heterogeneity in dependent instruments (HEIDI) to distinguish pleiotropy from linkage (See
Supplementary Note).

Prioritization of disease genes for GWAS loci

To prioritize target genes for kidney function GWAS loci, we developed a priority scoring
strategy by integrating evidence from eight different datasets: (1) significant SNP~gene
associations by kidney eQTL (FDR < 0.05); (2) significant SNP~CpG~gene associations

by kidney meQTL (FDR < 0.05) and eQTM (CpG level FDR <0.05); (3) SNP~gene

pairs by coloc analysis between eGFRcrea GWAS and eQTL (H4 > 0.8); (4) SNP~gene
pairs by moloc analysis among eGFRcrea GWAS, eQTL and meQTL (PPA.abc > 0.8); (5)
significant SNP~gene pairs by mendelian randomization analysis between eGFRcrea GWAS
and eQTL (Pgmr < 1.38x1074); (6) SNP~gene pairs passing HEIDI test between eGFRcrea
GWAS and eQTL (Pgps> 0.01); (7) co-accessibility (Cicero connections) identified using
57,229 snATAC-seq cells (co-accessibility score > 0.2); and (8) Enhancer-promoter contacts
identified by Activity-by-Contact (ABC) Model which predicts enhancers regulating genes
based on estimating enhancer activity and enhancer-promoter contact frequency from
epigenomic datasets (ABC scores >= 0.015). Promoters were defined as £2000bp from
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the TSS of protein-coding transcripts from GENCODE v35lift378! to annotate Cicero
connections or ABC connections between gene promoters and eGFRcrea GWAS variants.

For each significant eGFRcrea GWAS variant, we extracted protein-coding genes within
1Mb from the SNP as potential targets. For each SNP~gene pair, we defined a priority score
by counting the number of datasets supporting the association. For each variant, the gene
with highest priority score was assigned as its target gene. If multiple genes shared the
highest priority score, the closest gene with most significant eQTL was assigned as target
gene. For each independent locus, the top target gene was determined according to highest
priority score from all variant gene pairs in the same locus. If multiple genes shared the
highest priority score, the gene targeted by the variant with the most significant GWAS
association was assigned as the top target gene for the locus. Newly prioritized loci were
defined if they did not overlap with 309 independent signals (using gene PrioritiSation score
> 1) prioritized in eGFRcrea GWAS by Stanzick et al.2* or 53 creatinine-associated exome
rare variants identified in exome association studies by Backman et al.2® or Barton eta al.26.

Further, we focused on 328 GWAS loci with 559 target genes with a priority score at

least 3. First, we inspected 110 loci with two or more target genes by counting the

number of independent signals (fine-mapped in 1 million European ancestry individuals24)
and co-expression gene pairs (FDR < 0.05 accounting for all correlation tests) for each
locus. To explore the function of prioritized genes, we performed gene set enrichment for
tissue specificity and GWAS catalog genes using GENE2FUNC of FUMAB84 with protein
coding genes as background gene-set. Functional enrichment analysis for these genes was
performed using DAVID Bioinformatics Resources (v6.8)85. For enrichment to the cell type-
specific genes, we obtained their mouse orthologs and overlapped with cell type-specific
expressed genes identified using mouse scRNA-seq®®. The cell type enrichment significance
was determined using a hypergeometric test.

Phenome-wide association study of SLC47A1

To explore the association of a burden of rare loss-of-function variants of SLC47A1

with disease phenotypes, we performed rare predicted loss-of-function (pLOF)-based

gene burden phenome-wide association (PheWAS) using whole exome sequencing data

of 32,268 European ancestry individuals for the UK Biobank (UKBB)®. Rare predicted
pLOF-based gene burden of SLC47A1 was defined as frameshift insertions/deletions, gain/
loss of stop codon, or disruption of canonical splice site dinucleotides8’. Phenotypes for
each individual were determined by mapping ICD-10 codes to Phecodes via Phecode

Map 1.2b1 using the R package PheWAS (https://phewascatalog.org/phecodes_icd10)88,
Individuals were determined as phenotypic cases for a certain disease phenotype if they
had at least two encounters for the corresponding Phecode diagnosis, while phenotypic
controls consisted of individuals who never had the Phecode as well as those under Phecode
exclusion criteria. Control group for acute renal failure, for instance, excluded acute renal
failure, renal failure, chronic renal failure and several other related diseases of kidney

and ureters (Phecodes ranging from 580 to 590.99). To avoid uncertainties due to low

case numbers, 136 phenotypes with at least 300 cases were included for the PheWAS
analysis. Association between each disease phenotype and gene burden of SL.C47A1 was
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calculated using a logistic regression model adjusted for sex, age, and the first 10 principal
components of genetic ancestry using the R package PheWAS®8. As independent validation,
we also performed PheWAS analysis for pLOF-based gene burden of SLC47A1in 24,016
individuals in the BioMe Biobank, and for a single missense variant (rs111653425) of
SLC47A1in the UKBB and BioMe datasets (See Supplementary Note).

Mouse studies

Slc47a1 knock out mice was generated by the Yan Shu lab at the University of Maryland
Baltimore®?. All experimental protocols were approved by the Institutional Animal Care and
Use Committee (IACUC) of the School of Pharmacy, University of Maryland Baltimore. All
procedures were carried out in accordance with NIH guidelines for animal experimentation
(See Supplementary Note).
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Extended_Data _Fig 1. Meta-analysis of eGFRcrea GWAS and validation using eGFRcys and

BUN GWAS.

a. Manhattan plots of meta-analysis eGFRcrea GWAS (N=1,508,659 individuals) and
eGFRcrea GWAS datasets including CKDGen, UKBB, MVP, PAGE and SUMMIT. For
each panel, the x-axis is chromosomal location of SNP. The y-axis strength of association

-l0og10(p). The two-sided p value was obtained from GWAS studies.
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b. Scatter plot of effect size correlation between meta-analysis eGFRcrea GWAS (x-axis)
and five source eGFRcrea GWAS data from CKDGen, UKBB, MVP, PAGE and SUMMIT
(y-axis). The density of dots from low to high are shown from yellow to red. Correlation
coefficient was calculated using Spearman's rho (R) statistic and two-sided p value was
calculated using asymptotic tapproximation.

c. Scatter plot of effect sizes between eGFRcrea GWAS (N=1,508,659 individuals)

and eGFRcys GWAS (N=421,714 individuals). Significant eGFRcrea GWAS variants
passing two-sided p < 5x1078 in this study were used for the plot. Red dots represent
validated variants showing nominally significant (two-sided GWAS p < 0.05) association
with eGFRcys in the same effect direction. Correlation coefficient was calculated using
Spearman's rf10 (R) statistic and two-sided p value was calculated using asymptotic ¢
approximation.

d. Scatter plot of effect sizes between eGFRcrea GWAS (N=1,508,659 individuals) and
BUN GWAS (N=852,678 individuals). Significant eGFRcrea GWAS variants passing two-
sided p < 5x1078 in this study were used for plot. Blue dots represent validated variants
showing nominally significant (two-sided GWAS p < 0.05) association with BUN in the
opposite effect direction. Correlation coefficient was calculated using Spearman's rf10 (R)
statistic and two-sided p value was calculated using asymptotic #approximation.

e. Venn plot of eGFRcrea GWAS significant variants validated by eGFRcys GWAS or BUN
GWAS. Y-axis is strength of GWAS association -log10(p value based of z statistic).

Nat Genet. Author manuscript; available in PMC 2024 December 09.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Liuetal.

a eGFRcrea GWAS meta-analysis
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878 independent loci

Physically nearby known
sentinel variants

(<500kb or LD r2 > 0.001),
164
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d Function enrichment of 126 novel independent loci by GREAT

Term Name

Fold Observed Observed
P-Value FDR Q-Val Enrichment Region Hits _Gene Hits

Renal/urinary system phenotype

Abnormal renal/urinary system physiology
Abnormal urine homeostasis

Ketoaciduria

Abnormal fatty acid level

Increased circulating calcium level

Abnormal internal female genitalia morphology
Decreased urine albumin level

Absent stapes

Enlarged pancreatic islets

1.98E-08 1.89E-04 2.382665 43 41
3.60E-06 1.72E-02 2.66947 26 25
3.39E-05 5.40E-02 2.983674 18 LI
1.34E-04 1.83E-01 31.26755 3 3
1.34E-04 1.60E-01 3.617431 12 1
2.50E-04 1.84E-01 6.963844 6 5
2.68E-04 1.83E-01 2.52927 18 18
2.94E-04 1.87E-01 81.54581 2z 2
3.28E-04 1.96E-01 12.4762 4 3
4.15E-04 2.09E-01 6.324117 6 6

€ Literature search of
125 closest genes to
126 novel loci

Not g

reported,

83
_ G

Normalized

gene
expression

Locuszoom of three novel independent loci

I *
E

100

(AN/o) 818l UonEUIqUIndSY

RGUE  wopwal, g~ Wl ~gmieo

stcasazr~ oPaiie

$112997117 i
£ E o
. e

100

(Qn/NR) 8jel UoKeUIqWdSY

o Locigiezze s ongr —gmm —popr
Zgori moga~  eneor- Bcce e —owx s~

100

(au/no) ejel uoeuIquIcody

3 0 3 [~ tocrorszseos e

N2 e

Extended_Data Fig2. | dentification and function annotation of independent eGFRcrea GWAS

loci.

a. The strategy to identify independent loci and novel eGFRcrea GWAS loci.

b. Pie chart of the number of independent loci categorized into different groups by
comparing previously reported sentinel variants tagging independent loci.

c. Pie chart of the number of novel independent loci validated by eGFRcys GWAS and/or

BUN GWAS.
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d. Functional enrichment analysis of 126 novel independent loci annotated by GREAT.

The positions of lead SNPs were inputted into GREAT (http://great.stanford.edu/public/
html/), and the two nearest genes within 1Mb were used for function enrichment in

mouse phenotype catalogue. The two-sided uncorrected p-value was calculated by binomial
test over inputted loci, and false discovery rate g-value was calculated for multiple test
correction.

e. Literature-based gene function of the closest genes to the 126 novel kidney disease loci.
f. Expression of the mouse orthologues of 42 kidney disease genes (of the 126 newly
identified GWAS genes) in adult mouse kidney samples (GSE107585). The mean expression
was calculated for each cell types and z-scores were plotted.

g. LocusZoom view of three novel independent loci, MEP1A, ABCC2 and NFIA. Y-axis is
strength of association -log10(two-sided p value from GWAS meta-analysis z-statistic).
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Extended_Data_Fig3. Meta-analysis of the kidney cis-eQTL data.
a. Manhattan plot of eQTL meta-analysis by integrating four eQTL datasets consisting of a

total of 686 kidney samples. X-axis is chromosomal location of SNP, and y-axis is strength
of association -log10 (two-sided p value based z-statistic from eQTL meta-analysis).

b. Manhattan plot of eQTLs by Sheng et al. (1=356 human kidney tubule samples). X-axis
is chromosomal location of SNP, and y-axis is strength of association -log10 (two-sided p
value from linear regression eQTL model).
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c¢. Manhattan plot of eQTLs by Ko et al. (n=91 human kidney cortex samples). X-axis is
chromosomal location of SNP, and y-axis is strength of association -log10 (two-sided p
value from linear regression eQTL model).

d. Manhattan plot of eQTLs by GTEx (v8) (n= 73 human kidney cortex samples). X-axis
is chromosomal location of SNP, and y-axis is strength of association -log10 (two-sided p
value from linear regression eQTL model).

€. Manhattan plot of eQTLs by NephQTL (n=166 human kidney tubule samples). X-axis
is chromosomal location of SNP, and y-axis is strength of association -log10 (two-sided p
value from linear regression eQTL model).

f. Scatter plots of effect size correlation between eQTL meta-analysis and each individual
eQTL datasets. The common variant-gene pairs passing eQTL p < 0.00001 in any of the two
datasets were used for each plot. The density of dots from low to high was represented by
yellow to red. Correlation coefficient was calculated using Spearman's r#0 (R) statistic and
two-sided p value was calculated using asymptotic #approximation.
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Extended_Data_Fig4. Functional annotation of kidney-specific meQTLsand mCpGs.
a. Tissue-specific and shared meQTLs across kidney, blood and skeletal muscle tissue. M

value > 0.9 was used to define meQTL for each set.
b. Fraction of meQTL CpGs annotated by ChromHMM chromatin states in kidney, blood
(CD3+) cell and skeletal muscle.
c. Transcription factor motif enrichment (HOMER) of tissue-specific mCpGs. The p value
was calculated by binomial test.
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d. Enrichment of kidney specific meQTL CpGs to cell type-specific open chromatin regions
determined by snATAC-seq in human kidney. X-axis is odds ratio and Y-axis is strength

of enrichment -log10(two-sided chi-square test p). Size of the dot represents the number of
kidney-specific meQTL CpG sites.
e. Enrichment of kidney specific meQTL SNPs to GWAS traits. X-axis is odds ratio and Y-
axis is strength of enrichment -log10(two-sided chi-square test p). Size of the dot represents
the number of SNPs and colors represent the type of GWAS trait.
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Extended_Data Fig5. Human kidney expression quantitative trait methylation (eQTM)
a. Schematic representation of the eQTM analysis.

b. eQTM discovery rate estimated by the number of identified CpG~Gene pairs using
different number of PEER factors as covariates.

c¢. Volcano plot of eQTMs. The x-axis is the beta value and y-axis the strength of association
(-log10(p)). Negative and positive eQTMs are colored in blue and red, respectively.

d. The fraction of identified meQTL CpGs by eQTM analysis. The red line is the global
FDR, dark blue line CpG level FDR and light blue line is nominal significance threshold.
The x-axis is the eQTM significance and the y-axis is the cumulative fraction of meQTL
CpGs. Vertical line represents the significance cutoff 0.05.

e. Validation of the eQTMs in publicly available eQTM studies. Correlation coefficient was
calculated using Spearman's rh0 (R) statistic and two-sided p value was calculated using
asymptotic fapproximation.

f. Scatter plot of CpG methylation (x-axis) and gene expression of PMD201 and CYP4F1
(y-axis) in 414 kidney samples. Each dot represents one kidney sample. Correlation
coefficient was calculated using Spearman's /0 (R) statistic and two-sided p value was
calculated using asymptotic tapproximation.

g. IGV visualization of eQTM association at the PM20D1, CYP4F11 and TBXS5 loci.

h. Number and fraction of negative and positive eQTM CpGs associated with the expression
of nearest or distal genes. The nearest gene was defined based on the TSS (transcription start
site) to eQTM CpG distance. The distal gene was defined if it was not the closest TSS to the
eQTM CpG. Two-sided p value was calculated by chi-square test.

i. Relative fraction of negative and positive eQTM CpGs localized to regulatory regions in
the Kidney.

j. Profile plot of H3K4me3, H3K4mel, H3K27ac, and H3K27me3 histone modification
across negative and positive eQTM CpGs and 5kb flanking regions.
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Extended_Data_Fig6. Estimated proportion of heritability mediated by kidney methylation and

expression.

a. Estimation of heritability (hzm,,/hzg) mediated by kidney meQTL, kidney eQTL and the
eQTL of best non-kidney GTEX tissue for three kidney function traits based three different
biomarkers (eGFRcrea, eGFRcys and BUN). Here, best non-kidney GTEX tissue refers to
the non-kidney tissue whose eQTL resulted in the highest estimates of hzmd/hzg compared
to all other non-kidney tissues. The x-axis represents different QTL groups and y-axis for
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hz,m/hzg estimated for three kidney function traits Data are presented as mean + SD. P values
were calculated by one-tailed paired t test.

b-c. Estimation of eGFRcrea GWAS heritability (hzm/hzg) mediated by methylation and
expression for different number of human kidneys using multi-ancestry datasets (b) and
European-ancestry datasets(c). The x-axis represents sample sizes used for the meQTL and
eQTL, and y-axis for hzm/hzg estimated for eGFRcrea GWAS.

d. Estimation of eGFRcrea and eGFRcys GWAS heritability mediated by meQTL and eQTL
from different tissues. The x-axis represents hzmed/hzg, while the y-axis represents eQTL or
meQTL data obtained from different tissues. meQTL data is shown in red and eQTL in blue.
e. Estimation of heritability mediated by kidney eQTL and non-kidney eQTL for six kidney
function traits and 28 independent non-kidney GWAS traits. The x-axis represents hzmed/hzg,
while the y-axis represents different GWAS traits. For each trait, kidney eQTL data is shown
in blue and best non-kidney GTEXx tissue in gray. Here, best non-kidney GTEX tissue refers
to the non-kidney tissue whose eQTL resulted in the highest estimates of hzmd/hzg compared
to all other non-kidney tissues.

(b-e) For each bar plot, the centre of error bar represents the value of hzmed/hzg, and error bar

represent jackknife standard error estimated for hzm/hzg.
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b. GWAS heritability mediated by blood methylation categorized as enhancers in 128
tissues/cell types. The x-axis shows the GWAS traits, while the y-axis shows tissue
enhancers in kidney and 127 other tissue samples from the Roadmap project ChromHMM
data. Gray, non-significant, while white to red indicates significant enrichment (nominal
two-sided p < 0.05 calculated by MESC). Asterisk indicates h2,., enrichment passing FDR ¢
< 0.05 (accounting for 4,352 tests for 128 enhancer CpG sets and 34 GWAS traits).
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Extended_Data Fig8. Gene prioritization for eGFRcrea GWAS variants and functional
annotation

a. Schematic representation of gene prioritization strategy based on eight prioritization
datasets and methods.

b. Number of eGFRcrea GWAS variants prioritized using different priority score threshold.
c. eGFRcrea GWAS independent loci prioritized by this study (priority score = 1) and
previous studies. The number represents the number of independent loci overlapping

with independent signals prioritized (GPS score = 1) by Stanzick et al. and/or creatinine-
associated exome rare variants by Backman et al. or Barton et al.

d. Features of the top variants prioritized for the 328 loci with priority score = 3. Each

row shows the top variant for each locus. Loci were ordered from top to bottom based

on priority scores from 8 to 3. Loci with the same priority score were ordered by GWAS
significance from strongest (dark blue) to lowest (light blue). Each column represents a
feature overlapped with the variant. For each feature, the fraction of overlapping variants
is shown in the upper panel. 22 top prioritized genes supported by all eight datasets and
methods were listed.

e. Tissue specificity of 566 prioritized genes (priority score = 3) in 54 tissue types (GTEX
v8) using GENE2FUNC of FUMA. The x-axis is the 54 tissue types ordered according

to significance of enrichment in up-regulated differentially expressed gene sets. Y-axis
represents enrichment significance -log10(p value calculated by hypergeometric test). Tissue
with Bonferroni p value < 0.05 is shown in red.

f. Heatmap of the expression of 417 mouse orthologues of prioritized genes in adult mouse
kidney single cell dataset. The mean expression was calculated for each cell types and
z-scores were plotted. Right panel shows 87 genes with the highest level of expression in
proximal tubule cells.
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Extended_Data Fig9. PheWAS analysis of rs111653425 SL C47A1 variantsin UKBB and BioMe

Biobanks

a. Single variant (rs111653425) PheWAS analysis of SLC47A1 in UKBB dataset. The
x-axis is the strength of association -log10(p value calculated by linear regression PheWAS
model). Blue line is p=0.05 and red line is Bonferroni adjusted p = 0.05. The y-axis is the

analyzed phenotype.

b. SLC47A1 pLOF burden pheWAS analysis in BioMe dataset. The x-axis is the strength of
association -log10(p value calculated by linear regression PheWAS model). Blue line is p=
0.05 and red line is Bonferroni adjusted p= 0.05. The y-axis is the analyzed phenotype.

c. Single variant (rs111653425) pheWAS analysis of SLC47ALl in BioMe dataset. The x-axis
is the strength of association -log10(p value calculated by linear regression PheWAS model).
Blue line is p=0.05 and red line is Bonferroni adjusted p= 0.05. The y-axis is the analyzed

phenotype.
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Extended_Data_Fig10. Slc47al loss conferskidney diseaserisk in mice
a. The relative expression of fibrosis markers; Collagen3 (Co/3al), Collagen4 (Col4al),

Fibronectin (FnI), and Connective tissue growth factor (Ctg#) in kidney of control or
cisplatin treated S/c47a1%/*and Slc47a1~~ mice. Data are presented as mean + SD. P
values were calculated by one-way ANOVA with post hoc Tukey test. n.s., not significant.
n=4 biologically independent S/c47a1** cisplatin mice examined over n=3 independent
Slc47a1*"* control; n=5 biologically independent S/c47a17~ cisplatin mice examined over
n=4 independent Slc47a1** cisplatin mice).

b. Relative expression of markers of inflammation; Adhesion G protein-coupled receptor
E1 (Adgrel), Tumor necrosis factor ligand ( 7nfsf12), Interleukin 1beta (//16) in kidneys
of control or cisplatin treated S/c47a1%/*and Slc47a1~/~ mice. Data are presented as mean
+ SD. P values were calculated by one-way ANOVA with post hoc Tukey test. n.s., not
significant. n=4 biologically independent S/c47a1%/* cisplatin mice examined over n=3
independent S/c47a1*"* control; n=5 biologically independent S/c47a1~ cisplatin mice
examined over n=4 independent S/c47a1** cisplatin mice).
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are publicly available online at the Susztaklab Kidney Biobank (https://susztaklab.com/
GWASY/; https://susztaklab.com/Kidney meQTL/; https://susztaklab.com/Kidney eQTL/)
and figshare (https:/doi.org/10.6084/m9.figshare.1518349599). The GWAS summary
statistics are also available at the GWAS Catalog (Accession GCST90100220). The
RNA-seq and human kidney snTAC-seq data have been deposited with the Gene

Expression Omnibus under accession numbers (GSE115098, GSE173343, GSE172008

and GSE200547) and the Common Metabolic Diseases Genome Atlas (https://cmdga.org/
search/?type=Experiment&searchTerm=FNIH0000000). Integrative Genomics Viewer
visualization of human kidney snATAC-seq is publicly available at https://susztaklab.com/
Human_snATAC/. The summary statistics of five eGFRcrea GWAS datasets used for
GWAS meta-analysis were obtained from consortium websites (Download links provided

in Supplementary Table 1). No consent was obtained to share individual-level genotype
data for kidney samples. There is no mechanism to obtain consent since kidney tissue was
collected as medical discard and the samples were permanently de-identified. Summary
statistic for GWAS heritability analysis were obtained from the Alkes Price lab (https://
alkesgroup.broadinstitute.org/LDSCORE/independent_sumstats/)37. Mouse kidney snATAC-
seq data were obtained from GEO (GSE157079)50 and Mouse kidney scRNA-seq data were
obtained from GEO (GSE107585)°6. Drug-Gene interactions were identified using the Drug
Gene Interaction Database (DGldb v4.2.0, https://www.dgidb.org/)*>.
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Fig. 1. Graphical summary of new datasets created, and analyses performed in this study.
a. Overview of the different genome-wide association and quantitative trait (GWAS, meQTL

and eQTL) datasets generated and used in this study. Cohort abbreviations and details found
in Supplementary Table 1.

b. Schematic representation of our methods and datasets for prioritization and function
analysis of kidney disease genes by integrating genetic, human kidney epigenetic,
transcriptomics, and human kidney single-nuclear open chromatin information.
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Fig. 2. eGFRcrea GWAS of 1.5 million individuals and kidney eQTL for 686 samples.
a. Manhattan plot of eGFRcrea GWAS of 1,508,659 individuals. X-axis is chromosomal

location of SNP. Y-axis is strength of association -log10(p value, GWAS meta-analysis)
(the scale is capped at 150). Lead SNPs for 878 independent loci are highlighted. Cyan
represents loci overlapping or nearby (within 500kb or LD R2? > 0.001) previously reported
sentinel variants, and red represents novel loci. Prioritized genes (score at least 3, in purple
color) or closest genes (in black color) for the 126 novel loci are shown.
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b. Scatter plot of minor allele frequency and effect size (absolute) of lead variants from 878
eGFRcrea GWAS loci. Cyan represents loci overlapping or nearby (within 500kb or LD R2
> 0.001) previously reported sentinel variants, and red represents novel loci.

¢. Human kidney eQTL Manhattan plot (n= 686 kidney samples). X-axis is chromosomal
location of SNP. Y-axis is strength of eQTL association -log10(p value eQTL meta-analysis).
d. Enrichment of kidney specific eQTL SNPs to GWAS traits. X-axis is odds ratio and Y-
axis is strength of enrichment -log10(two-sided chi-square test p). Size of the dot represents
the number of SNPs and colors represent the type of GWAS trait.
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Fig. 3. Robust identification of human kidney meQTL
a. Samples and analytical workflow for the meQTL analyses.

b. Manhattan plot of human kidney meQTL data (n=443). X-axis is chromosomal location.
Y-axis strength of association -log10(two-sided p). The two-sided p value was calculated by
linear regression meQTL model. Only meQTLs with p< 0.01 are shown in the Manhattan
plot.

c. The strength of association (-log10(two-sided p), y-axis) of the best mSNPs (the lead
meQTL for each mCpG) decreases with the increasing distance (x-axis) from the CpG sites.
d. Overlap of meQTL CpGs between kidney, blood, and skeletal muscle.
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e. Enrichment of tissue-specific meQTL CpGs in tissue enhancers. X-axis tissue enhancer,
y-axis tissue meQTLs. The color shows the enrichment odds ratio from low (blue) to high
(red), while the p-value (two-sided chi-square test) is listed in the box.
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Fig. 4. Methylation variation explains a larger fraction of GWAS heritability than gene

expression variation

a. Schematic representation for estimation of heritability mediated by DNA methylation and
gene expression using mediated expression score regression (MESC) analysis.

b. Estimated proportion of heritability (hzm/hzg) mediated by DNA methylation and gene

expression in 414 kidneys across 34 GWAS traits. The y-axis represents hzmed/hzg mediated

by methylation, while the x-axis #2,../h%, mediated by expression. The color represents the

type of the GWAS trait, error bars represent jackknife standard errors estimated for hzm,/hzg

mediated by methylation and expression, respectively.

c. Estimated proportion of heritability (h2med/h2g) by multi-ancestry and European (only)
ancestry datasets for kidney function GWAS traits (eGFRcrea, eGFRcys and BUN). The
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X-axis represents hzmd/hzg. For each bar plot, the center of error bar represents the value of
h,../h>,, and error bar represent jackknife standard error.

d. Estimated proportion of heritability mediated by meQTLs and eQTLs from kidney and
other tissue for eGFRcrea GWAS (n = 421,531 UKBB individuals). The x-axis represents
hzm,,/hzg, while the y-axis represents eQTL or meQTL data obtained from different tissues.
meQTL data are shown in red and eQTL in blue. For each bar plot, the center of error

bar represents the value of hzmed/hzg, and error bar represents jackknife standard error. See
estimates of 4?,../h°, for other QTLs in Extended Data Fig. 6d.

e. Enrichment of kidney methylation-mediated heritability for kidney function GWAS traits
(x-axis) in different ChromHMM regulatory elements (y-axis). White to red indicates 42,.,
enrichment (nominal two-sided p < 0.05 calculated by MESC). Asterisk indicates B e
enrichment passing FDR ¢ < 0.05 (accounting for 374 tests for 11 chromatin state CpG sets
and 34 GWAS traits, Supplementary Fig. 7). TSS, transcription start site.

f. Enrichment of kidney methylation-mediated heritability (x-axis) for eGFRcrea GWAS (n
= 421,531 UKBB individuals) in enhancers of different tissues (y-axis). For each bar plot,
the center of error bar represents the enrichment score, and error bar represents jackknife
standard error. Asterisk indicates »2,., enrichment passing FDR ¢ < 0.05 (accounting for
4,352 tests for 128 enhancer CpG sets and 34 GWAS traits, Extended Data Fig. 7a).
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Fig. 5. Single cell chromatin accessibility map enablestarget cell type and gene prioritization for

GWASvariants

a. Single cell resolution accessibility maps for 57,229 human kidney cells by snATAC-seq.
The x-axis and y-axis represent t-SNE dimension 1 and 2, respectively. Each dot represents
a cell and color represents cell type such as PT-S1-3: proximal tubule S1-3 segment, LOH:
loop of Henle, DCT: distal convoluted tubule, PC: principal cell of collecting duct, IC:
intercalated cell of collecting duct, Endo: endothelial cells, Podo: Podocyte, Immune cell,

Lymph cells, and Stroma cell.
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b. Enrichment of kidney methylation-mediated heritability for kidney function GWAS traits
(x-axis) in kidney cell type-specific accessible regions (y-axis). White to red indicates B e

enrichment (nominal p < 0.05 calculated by MESC). Asterisk indicates h>,., enrichment
passing FDR g < 0.05 (accounting for 408 tests for 12 cell type CpG sets and 34 GWAS
traits, Supplementary Fig. 8a).

c. Single cell GWAS trait enrichment in human kidney cells by gchromVAR. X-axis shows
fine-mapped GWAS traits, and y-axis cell types. The single cell GWAS enrichment z-score
mean value of all cells in each cell type is represented by blue (low) to red (high). See
estimates for all 63 GWAS traits in Supplementary Fig. 8b.

d. Enrichment of eGFRcrea GWAS variants in kidney cell type-specific accessible regions.
X-axis is odds ratio, and y-axis is strength of enrichment -log10(p value of two-sided
chi-square test). Dot size represents the number of variants overlapping with differentially
accessible regions in given cell type.

e. GWAS variant target genes prioritized by Cicero co-accessibility. Upper panel is
schematic representation of target gene prioritization using Cicero connections. Lower panel
indicates 1,024 target genes (x-axis) ordered by number of prioritized variants (y-axis).

f. Upper panel. LocusZoom plot of eGFRcrea GWAS associations (n = 1,508,659
individuals) at the UMOD locus. Y-axis is strength of association -log10( value calculated
using z statistic from GWAS meta-analysis). The top variant (rs12917707) tagging the
independent signal closest to UMOD was selected as the index variant to calculate LD (r?)
with other variants, represented from low (blue) to high (red). Lower panel includes meQTL,
eQTL, eGFRcrea GWAS variants, Cicero connections, SNnATAC-seq chromatin accessibility,
histone modifications by ChlP-seq, and chromatin states.
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Fig. 6. I_ntograli_ve analysis of epigenetic and gene expression data improves kidney disease target
geneprioritization

a. Number of eGFRcrea GWAS independent loci showing colocalization across eGFRcrea
GWAS, meQTL and eQTL. The x-axis showed different combination of colocalization types
and the y-axis is number of loci with given colocalization types.

b. Venn diagram showing number of mCpGs and eGenes with different colocalization types
across eGFRcrea GWAS, meQTL and eQTL.
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c¢. Manhattan plot highlighting 330 genes with evidence of multiple traits colocalization. The
x-axis is chromosomal location of the SNP. The y-axis is strength of association -log10(p
value calculated using z statistic from GWAS meta-analysis) (the scale is capped at 300).
The color indicates different type of colocalizations; green: GWAS and methylation; purple:
methylation and expression; blue: GWAS and expression; red: GWAS, methylation and
expression.

d. Number of colocalization mCpGs and eGenes passing SMR and/or HEIDI tests in
Mendelian randomization analysis across eGFRcrea GWAS, meQTL and eQTL.

e. Number of eGFRcrea GWAS independent loci prioritized based on different priority
scores. The y-axis is number of independent loci including at least one prioritized gene with
equal or higher priority score (number of supporting evidence) given on the x-axis. The list
shows genes with priority score of 8.

f. Number of genes prioritized for eGFRcrea GWAS loci by priority score = 3.

g. Fraction of variants targeting closest gene or distal gene (priority score = 3). For each
variant, its target gene is defined as the closest gene if the target gene’s transcript start site is
the closest one to the variant.

h. Mouse kidney cell type expression enrichment of prioritized genes (priority score = 3).
The x-axis represented the odds ratio and the y-axis represented enrichment significance
(-log10 of hypergeometric test p) for the prioritized genes and cell type-specific gene
overlap.

Nat Genet. Author manuscript; available in PMC 2024 December 09.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Liuetal. Page 50
a moloc PPA = 0.98 b eatlp=1s0%  _ © eqTlL, p=saxios
o . o .
< 804 GWAS 52252281  ors111653425  gio %o 3 @ b
= 60, €GFRcrea o Eﬁ% 25 2 i
|> @Q 0.0 ..q_s = 4 % N
£ 40 ° ° E S o 3
= ° oo.“ ° oL 0 8 |
o 20 wso 00 Qo N®
S ") wiasmnidiitacitliotniometiny S O s%
T 0 g '-06 2 g
— 40, meQTL 1$2252281 = S -06{ D
> , . .
5 .| cgt5e71010 5 z T TIC CIC TIT TIC CIC
S . rs2252281 rs2252281
2 204
= d
° 10 = e Phenome-wide association study of SLC47A1 (136 phenotypes)
T 0/000000.038. 7, % * W snckuctmanciome 0
0 o * W % 4 Congestive AAcute renal failure
- 8- eQTL r322522.£31 S 3 AHeart failure ARenal failure
% g SLC47A1 ?° 22
> oo © 1
L o4 sak &..\ ! P e W
S ° e o § A 0 - ps <
-~ 21 S AT I3 LL L @ L & &
o o® Vo S LIS @ S & S &S
5 Rz W o WAGENGEE SIS & $ S F&EL
EPNZ- ~MFAPA = ALDHZAZ ~ 0@6_%‘2)0‘2\)@ Q)&,\@q’ @C\ Q9 N é}\ ,\é@ 30@ Q'o@
‘_;291[1);0 RNF112+ SLC47A1 —SLCazA2 § é\o%o)‘b (?\qy Id %Qo & Oé) ;).
1% & S
O

¢chr17:19,237,187-19,637,187 (400kb)

Fig. 7. Identification of SLCA47A1 asakidney diseaserisk gene
a. LocusZoom plots of GWAS (genotype and eGFRcrea association, n = 1,508,659), kidney

CpG cg15971010 meQTL (genotype and cg15971010 methylation association, n = 443) and
kidney SLC47A1eQTLs (genotype and SLC47A1 expression association, n = 686). The

y axis shows -log10(p) of association tests from GWAS, meQTL and eQTL. Highlighted
variants are rs2252281 with top priority score and rs111653425 (a rare coding variant with
MAF 1.1%) with top GWAS association.

b. Genotype (rs2252281, x-axis) and normalized CpG methylation (cg15971010, y-axis)
association in human kidneys (n=443). Each dot represents a sample. Center lines show the
medians; box limits indicate the 25th and 75th percentiles; whiskers extend to the 5th and
95th percentiles. p value was calculated by linear regression meQTL model.

c. Genotype (rs2252281 x-axis) and normalized gene expression (SLC47A1, y-axis)
association in human kidney tubule samples (n=356). Each dot represents a sample. Center
lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend to
the 5th and 95th percentiles. pvalue was calculated by eQTL meta-analysis in 686 samples.
d. Manhattan plot of phenome-wide association study of predicted loss-of-function (pL OF)
variants in SLC47A1 in UKBB. The x-axis represents phenotypes ordered by p-value within
each disease group and the y-axis the strength of association -log10(p) value calculated by
linear regression PheWAS model. Blue line is p=0.05 and red line is Bonferroni adjusted p
=0.05.
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Fig. 8. Slc47al loss conferskidney diseaserisk in mice
a. Experimental scheme of the cisplatin-induced kidney injury model in wild type

(Slc47a1*"*) and Slc47a1 knockout (S/c47a17") mice.

b. The relative expression of S/c47a1 (y-axis) in kidneys of S/c47a1%/*and Slc47a1~~ mice
treated with cisplatin (Cis) or sham (CTR).

c. Serum creatinine levels (y-axis) in control or cisplatin treated S/c47a1%/#and Slc47a17/~
mice.

d. Serum BUN levels (y-axis) in control or cisplatin treated S/c47a1%/*and Slc47a17~ mice.
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e. Representative image (left panel) and quantification (right panel) of Hematoxylin and
eosin (H&E) stained kidney sections of control or cisplatin treated S/c47a1*/*and Slc47a1™~
mice. Scale bars: 20um.

f. The relative expression of injury markers Lipocalin 2 (Ngal) and kidney injury molecule 1
(Kim1) (y-axis) in kidneys of control or cisplatin treated S/c47a1%*and Slc47a17~ mice.

0. Representative image (left panel) and quantification (right panel) of Sirius red stained
kidney sections of control or cisplatin treated S/c47a1%/*and Slc47a1~~ mice. Scale bar:
20um.

h. The relative expression of fibrosis markers; Collagen 1 (Co/Za) and Vimentin (Vim) in
kidneys of control or cisplatin treated S/c47a1*/*and Slc47a17~ mice.

i. Representative western blot image (top panel) and quantification (bottom panel)

of Receptor interacting serine/threonine kinase 3 (RIPK3), NLR family pyrin domain
containing 3 (NLRP3), Actin alpha 2 (aSMA) in kidney of control or cisplatin treated
Slc47a1**and Slc47a17~ mice. GAPDH was used as a control.

j- Relative expression of markers of inflammation; Chemokine ligand 2 (Cc/2) and Tumor
necrosis factor ( 7773 in kidneys of control or cisplatin treated S/c47a1*/*and Slc47a17/~
mice.

k. Relative expression of cell death and inflammation marker genes; Receptor interacting
serine/threonine kinase 1 (RipkI), Ripk3and Mixed lineage kinase domain like
pseudokinase (Mik) in kidney from S/c47a1*/*and Slc47a1~~ mice treated with or without
repeated cisplatin.

P values were calculated by one-way ANOVA with post hoc Tukey test (b-k, n=4
biologically independent S/c47a1** cisplatin mice examined over n=3 independent
Slc47a1** control; n=5 biologically independent S/c47a1~ cisplatin mice examined over
n=4 independent S/c47a1*/* cisplatin mice). n.s., not significant. Quantitative data are
presented as mean + SD.
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