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Abstract

More than 800 million people suffer from kidney disease, yet the mechanism of kidney 

dysfunction is poorly understood. Here we define the genetic association with kidney function 

in 1.5 million individuals and identify 878 (126 novel) loci. We map the genotype effect on 

the methylome in 443 kidneys, transcriptome in 686 samples, and single-cell open chromatin in 

57,229 kidney cells.

Heritability analysis reveals that methylation variation explains a larger fraction of heritability 

than gene expression. We present a multi-stage prioritization strategy, and prioritize target genes 

for 87% of kidney function loci. We highlight key roles of proximal tubules and metabolism in 

kidney function regulation. Furthermore, the causal role of SLC47A1 in kidney disease is defined 

in mice with genetic loss of Slc47a1 and in human individuals carrying loss-of-function variants. 

Our findings emphasize the key role of bulk and single-cell epigenomic information in translating 

genome-wide association studies into identifying causal genes, cellular origins and mechanisms of 

complex traits.
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Introduction

The kidney maintains electrolyte and water balance, and plays a major role in blood 

pressure regulation and excretion of toxins. Kidney disease is a major global health burden, 

responsible for roughly one million (1 in 60) yearly deaths worldwide. Kidney disease-

associated mortality increased by more than 40% in the last two decades, making it one 

of the fastest-growing major causes of death1. Despite the major personal and economic 

burden, few new therapeutics have been registered to treat or cure kidney disease over the 

last 40 years.

Both genetic predisposition and environmental changes are critical for kidney disease 

development. Association of common variants with kidney function has been mapped 

in genome-wide association studies (GWAS)2–5. Despite efficient GWAS locus mapping, 

translating this information into improved mechanistic understanding is still challenging as 
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more than 90% of kidney function-associated variants are located in the non-coding region 

of the genome6.

Integration of GWAS data and expression quantitative trait loci (eQTL) has been 

instrumental for GWAS target gene identification7–11. However, previously published eQTL 

datasets were only able to prioritize target genes for a small fraction (<20%) of GWAS 

loci4,7. Recently developed statistical methods suggested that eQTLs only explain a small 

fraction (~11%) of GWAS heritability12, requiring increasingly diverse functional genomic 

readouts beyond gene transcription to identify disease mechanisms.

The epigenome13 describes the cellular gene expression regulatory logic and integrates 

effects from genetic variation and environmental changes. Thus, epigenomic profiling data 

could provide critical insight into kidney disease development, as they have in previous 

work for other complex diseases14. DNA methylation, a key component of the epigenome, 

can regulate gene expression by altering transcription factor binding strength or recruiting 

proteins involved in gene repression15,16. Previous studies have cataloged the genotype 

effect on methylation (methylation quantitative trait loci, meQTL) in accessible tissues, for 

example blood cells17–19; however, kidney-specific meQTL data are not readily available.

Results

Kidney function GWAS for 1.5 million individuals

For comprehensive identification of genetic variants associated with kidney function 

(eGFRcrea: glomerular filtration rate estimated by serum creatinine), we conducted a meta-

analysis of publicly available GWAS information from the CKDGen4, Pan-UK Biobank, 

MVP5, PAGE20, and SUMMIT21 consortia (Fig. 1a and Supplementary Table 1). These 

GWAS results were pooled via sample size-weighted meta-analysis of z-scores using 

METAL22, to allow for differences in eGFRcrea estimation and scaling (Methods), resulting 

in a comprehensive eGFRcrea GWAS catalog of 12,653,804 variants with a total sample size 

of 1,508,659 (Extended Data Fig. 1a,b). Using the genome-wide significance cut-off (p < 

5×10−8), we identified 90,950 variants associated with eGFRcrea, most (81.9%) of which 

were validated by serum cystatin C based eGFR (eGFRcys) and/or blood urea nitrogen 

(BUN) (Extended Data Fig. 1c–e).

Further, we discovered 878 independent loci (Methods, Fig. 2a, Extended Data Fig. 

2a,b, and Supplementary Table 2), including 126 novel loci compared to previously 

reported GWAS sentinel variants4,5,20,21,23,24 and whole-exome association studies25,26 

(Supplementary Fig. 1–3). Most (81.0%) novel eGFRcrea loci included at least one 

nominally significant (p < 0.05) association with eGFRcys and/or BUN (Extended Data 

Fig. 2c). Novel eGFRcrea GWAS loci were significantly enriched in genome regions 

around genes whose mutations are known to cause phenotypic abnormalities in the kidney, 

including Meprin A Subunit Alpha (MEP1A)27, ATP Binding Cassette Subfamily C 

Member 2 (ABCC2)28 and Nuclear Factor I A (NFIA)29 (Extended Data Fig. 2d–g). Most 

newly discovered common variants had small effect size, while newly discovered rare 

variants had larger effect size (Fig. 2b).
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Genotype effect on renal gene expression (eQTL)

To comprehensively annotate the genotype effect on gene expression in the kidney, we 

integrated all publicly available kidney eQTL datasets from the Genotype-Tissue Expression 

(GTEx) project (v8)8, the Cancer Genome Atlas by Ko et al.9, the Nephrotic Syndrome 

Study Network eQTL (NephQTL) by Gillies et al.10, and our prior publication by Sheng 

et al.11, using fixed effects inverse-variance meta-analysis (Fig. 1a and Supplementary 

Table 3). The meta-analysis eQTL dataset included 201,627,059 associations with a total 

sample size of 686 (Methods, Fig. 2c and Extended Data Fig. 3). We identified 10,430 

genes with eQTLs at a 1% false discovery rate (FDR) q value (hereafter referred to as 

eGenes), of which 11% (1,146) have not been previously reported7–11,30 (Supplementary 

Fig. 4 and Supplementary Table 4), including genes with known roles in kidney function, 

for example, Transcription Factor AP-2 Beta (TFAP2B)31 and Solute Carrier Family 22 

Member 1 (SLC22A1)32. Comparing to eQTLs of 48 GTEx tissues, we identified 64,328 

kidney-specific eQTLs associated with 3,046 eGenes (m-value > 0.9 in less than five 

tissues, including kidney) (Supplementary Table 5). Kidney-specific eQTL variants were 

significantly enriched for eGFRcrea GWAS (odds ratio (OR) = 1.67, χ2 test p = 8.4×10−210) 

and other kidney disease traits (Fig. 2d). Kidney-specific eGenes showed significant (p 
= 1.3×10−9) enrichment for metabolic pathways indicating the key role of the kidney in 

metabolism (Supplementary Table 6).

Robust identification of meQTL in the human kidney

The genotype effect on the epigenome has not been well characterized in the kidney; 

therefore, we performed high-density genotyping and high throughput DNA methylation 

profiling in 506 human kidneys (Fig. 3a). After quality control (Supplementary Table 7–9), 

we performed meQTL mapping in 443 kidney samples using an additive linear model 

with covariates including technical and clinical variables and probabilistic estimation of 

expression residuals (PEER) factors (Supplementary Fig. 5a,b). We identified 139,313 CpGs 

with meQTLs at a 1% FDR (hereafter referred to as mCpGs) (Fig. 3b and Supplementary 

Table 10–11), providing a comprehensive landscape of genetic effect on kidney epigenome 

(Supplementary Fig. 6). Significant meQTL SNPs were mostly located within 100kb of 

target CpGs, and significantly enriched on kidney enhancer regions (OR = 1.71, χ2 test p < 

1×10−300) (Fig. 3c and Supplementary Fig. 5c–e).

To identify kidney-specific meQTLs, we compared kidney meQTLs to whole blood33 and 

skeletal muscle19 meQTLs, and identified 19,458 mCpGs with high kidney specificity 

(m-value > 0.9 only in kidney) (Fig. 3d and Extended Data Fig. 4a). Kidney-specific 

mCpGs were enriched on kidney enhancers (OR = 1.23, χ2 test p = 2.2×10−21), kidney-

specific transcription factor binding sites (for example HNF4A) and proximal tubule-specific 

accessible chromatin regions (OR = 2.23, χ2 test p = 4.9×10−167) (Fig. 3e and Extended 

Data Fig. 4b–d). Kidney-specific meQTL variants showed significant enrichment for kidney 

function traits including creatinine (OR = 1.51, χ2 test p = 7.3×10−85) (Extended Data Fig. 

4e).
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Expression quantitative trait methylation analysis (eQTM)

Next, we obtained gene expression information via RNA sequencing for the analyzed 

kidney samples (N=414) and explored the relationship between CpG methylation and 

gene expression via expression quantitative trait methylation (eQTM) analysis (Methods, 

Extended Data Fig. 5a,b). We identified 33,616 unique CpGs whose methylation levels 

correlated with expression of 8,908 unique genes at a global FDR < 0.05, enabling target 

genes identification for mCpGs (Extended Data Fig. 5c–d and Supplementary Table 11,12). 

Most (64%) eQTM CpGs showed the canonical negative association with their target gene 

expression, as observed in other tissues19,34–36 (Extended Data Fig. 5c,e,f). The negative 

eQTM CpGs showed significant enrichment on active promoters (OR = 1.83, χ2 test p = 

2.5×10−217) and distal enhancers (OR = 1.61, χ2 test p = 9.7×10−102), while positive eQTMs 

CpGs were enriched on repressed polycomb areas marked by H3K27me3 (OR = 1.91, χ2 

test p = 7.3×10−102) (Extended Data Fig. 5g–j). The (canonical) negative eQTM genes were 

enriched for metabolic pathways (Supplementary Table 13).

Methylation explains more GWAS heritability than expression

Next, we aimed to estimate kidney disease heritability mediated by DNA methylation and 

gene expression using the recently developed mediated expression score regression (MESC) 

method12 (Fig. 4a). To this end, MESC was applied to kidney methylation and expression 

data obtained from 414 individuals (78% European ancestry) and six GWAS datasets of 

kidney function biomarkers (Supplementary Table 14). Across three kidney function traits 

(eGFRcrea of UKBB, eGFRcys and BUN), the average proportion of heritability (defined 

as ℎ2
med/ℎ2

g) mediated by gene expression was around 0.21 (± 0.017 standard error) (Fig. 

4b,c and Extended Data Fig. 6a). Meanwhile, the average ℎ2
med/ℎ2

g mediated by methylation 

was around 0.46 (± 0.051 standard error), potentially indicating the key role of methylation 

in mediating heritability. We consistently observed that larger fraction of GWAS heritability 

explained by DNA methylation than gene expression when we applied MESC to European-

ancestry only datasets and at different sample sizes as well (Fig. 4c and Extended Data Fig. 

6b,c).

To understand whether the kidney meQTL-improved heritability estimates are specific for 

kidney traits, we analyzed 28 non-kidney function GWAS traits (average N = 421,000 

individuals from the UK Biobank)37. Compared to non-kidney traits, kidney traits showed 

higher estimates of ℎ2
med/ℎ2

g by kidney meQTL and eQTL (Fig. 4b). Compared to blood 

meQTL33 and 48 non-kidney GTEx tissues eQTL8, kidney meQTL explained the highest 

ℎ2
med/ℎ2

g for eGFRcrea and eGFRcys GWAS (Fig. 4d and Extended Data Fig. 6d), indicating 

important tissue-specific heritability of traits38. Compared with non-kidney tissue eQTL, 

kidney eQTL mediated higher fraction of heritability for kidney traits, but lower fraction of 

heritability for non-kidney traits (Extended Data Fig. 6a,e).

To gain further insight into methylation-mediated heritability, we estimated heritability 

enrichment for chromatin states. We consistently observed that kidney methylation-mediated 

heritability for kidney function traits was enriched on kidney enhancers (Fig. 4e and 

Supplementary Fig. 7), when comparing to enhancers from 127 different Roadmap tissues39 
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(Fig. 4f and Extended Data Fig. 7). In summary, our results indicate that a greater fraction 

of kidney function heritability is mediated by kidney-specific methylation, with specific 

enrichment at kidney enhancers.

Human kidney single cell open chromatin information

Next, we wanted to identify cell types within the human kidney causally associated with 

specific traits. To this end, we generated single nucleus (sn)ATAC-seq data from six 

adult human kidney samples and analyzed open chromatin in 57,229 cells after quality 

control (Fig. 5a, Supplementary Table 15 and Methods). First, we estimated enrichment 

of methylation-mediated heritability at cell type-specific open chromatin areas. We found 

eGFRcrea GWAS heritability mediated by methylation was enriched at proximal tubule-

specific accessible chromatin (Fig. 5b and Supplementary Fig. 8a), which was further 

confirmed in single cell GWAS trait enrichment analysis for 63 complex trait fine mapped 

causal variants using gchromVAR40 (Fig. 5c and Supplementary Fig. 8b). In addition, 

collecting duct principal cell-specific accessible areas showed enrichment for systolic blood 

pressure GWAS (Fig. 5b,c).

Next, we used the snATAC-seq data to prioritize target genes for eGFRcrea GWAS variants. 

We found that most eGFRcrea GWAS variants were located on proximal tubule open 

chromatin areas (Fig. 5d and Supplementary Fig. 8c). We performed single-cell chromatin 

co-accessibility analysis by Cicero41 and identified 1,024 target genes associated with 7,829 

eGFRcrea GWAS variants from 531 independent loci (Fig. 5e and Supplementary Table 16). 

To illustrate the key role of single cell co-accessibility information, we highlight the UMOD 

locus in which variants showed strong GWAS association. Our co-accessibility analysis 

prioritized 96 GWAS variants in this locus, most (93.8%) of which showed co-accessibility 

with the UMOD promoter, including the locus lead variant (rs77924615~eGFRcrea 

association p = 1.2×10−348; rs77924615~UMOD co-accessibility score = 0.68) (Fig. 5f). 

In summary, our results indicate that human kidney single cell accessibility maps enable 

identification of cell types and genes related to kidney functions.

Integrative analysis improves target gene prioritization

To prioritize target genes for kidney function GWAS loci, we first used Bayesian 

colocalization (coloc) to identify loci where the genotype effect on eGFRcrea, methylation 

and gene expression were shared (Methods and Supplementary Fig. 9a). Using a strict 

posterior probability cutoff (H4 > 0.8), we observed colocalization events between at 

least two traits for 44,819 variants from 576 (66% of total) independent loci (Fig. 

6a and Supplementary Fig. 9b), 4,613 mCpG and 626 coding eGenes (Fig. 6b and 

Supplementary Tables 17–19). We prioritized 330 target genes with colocalization between 

eGFRcrea GWAS and kidney eQTL, including 188 novel genes, more than previously 

reported4,5,7,11,24 (Supplementary Fig. 9c–e). In particular, we identified multiple-trait 

colocalization (moloc, PPA.abc > 0.8) among eGFRcrea GWAS, meQTL, and eQTL in 152 

independent loci for 236 eGenes including 13 Mendelian nephropathy genes42 (Fig. 6b,c 

and Supplementary Table 20). These moloc prioritized genes showed greater protein-protein 

interaction (p = 4.2×10−8, Supplementary Fig. 9f) and were enriched for metabolic functions 

(Supplementary Table 21).
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Next, we performed summary-data-based mendelian randomization (SMR). We detected 

2,467 mCpGs (74.8% of coloc mCpGs) associated with eGFRcrea GWAS at PSMR < 

1.52×10−5 (Bonferroni threshold accounting for 3,286 tested CpGs, i.e. 0.05/3,286) and 

266 coding eGenes (80.6% of coloc eGenes) associated with eGFRcrea GWAS at PSMR 

< 1.52×10−4 (i.e. 0.05/330 tested genes) (Fig. 6d and Supplementary Table 17,18,19,22). 

To distinguish pleiotropy from linkage, a follow-up test for heterogeneity in dependent 

instruments (HEIDI) identified 1,607 mCpGs (48.7% of coloc mCpGs) and 204 eGenes 

(61.8% of coloc eGenes) whose associations with eGFRcrea GWAS were caused by 

pleiotropy at PHEIDI > 0.0143 (Fig. 6d).

Further, we developed a prioritization scoring system to identify target genes for eGFRcrea 

GWAS loci by integrating evidence from eight different omics datasets or analytical tools, 

such as eQTL, meQTL and eQTM, coloc (GWAS and eQTL), moloc (GWAS, eQTL 

and meQTL), SMR, HEIDI, single cell co-accessibility, and Activity-by-Contact Model44 

(Methods and Extended Data Fig. 8a). For each significant GWAS variant, we searched 

for potential target genes within 1Mb window and the top gene with most supporting data 

was assigned. This strategy enabled us to prioritize target genes for 55,825 variants from 

761 (86.7% from total 878) independent loci, including 498 newly prioritized loci without 

overlap with previously prioritized GWAS signals24 or creatinine-associated exome rare 

variants25,26 (Fig. 6e, Extended Data Fig. 8b,c and Supplementary Table 23,24).

Finally, we focused on 328 independent eGFRcrea GWAS loci with priority score ≥ 3 

(Extended Data Fig. 8d). A single target gene could be assigned to majority (66.5%) of 328 

loci. Some (110) loci had multiple prioritized target genes, most of which showed strongly 

correlated expression between nearby genes or had multiple GWAS signals at the same 

locus (Fig. 6f and Supplementary Fig. 10). For more than 60% of variants, the prioritized 

gene was not the closest gene, indicating the importance of multi-omics datasets (Fig. 6g). 

Next, we examined features of the top prioritized variants in these loci, and observed that 

83% of the top prioritized variants were supported by eQTL associations and 75% of these 

variants were localized to human kidney open chromatin regions (snATAC-seq) (Extended 

Data Fig. 8d). We found 559 prioritized genes that were significantly enriched for kidney 

cortex expression (hypergeometric test p = 1.3×10−12) (Fig. 6h and Extended Data Fig. 

8e,f). These prioritized genes were significantly enriched for kidney function traits and 

biological processes related to metabolism (Supplementary Table 25,26). Furthermore, a 

large number (n=92) of prioritized genes can be targeted by drugs already approved by the 

FDA45 (Supplementary Table 27).

Identification of SLC47A1 as a kidney disease risk gene

Finally, we focused on the eGFRcrea GWAS locus on chromosome 17 where causal variants 

underlying kidney function and target gene SLC47A1 were prioritized by all 8 omics 

datasets and statistical models (Fig. 6e and Supplementary Table 24). The top prioritized 

variant rs2252281 showed significant association with kidney function (eGFRcrea GWAS 

p = 2.5×10−75), CpG methylation (cg15971010 meQTL p = 1.5×10−39) and SLC47A1 
expression (eQTL p = 5.4×10−8), and colocalization among all these associations (moloc 

PPA.abc=0.98) (Fig. 7a–c). Summary Mendelian randomization showed that SLC47A1 
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expression mediated the genotype effect of kidney function by pleiotropy (Supplementary 

Table 18). Cg15971010 methylation negatively correlated with SLC47A1 expression which 

was validated in multiple datasets (Supplementary Fig. 11a). Furthermore, more severe 

kidney disease (higher fibrosis and worse kidney function) was associated with higher 

methylation of cg15971010 and lower expression of SLC47A1 (Supplementary Fig. 11b). 

The prioritized variants in this locus showed kidney-specific open chromatin, promoter 

(H3K4me3) and enhancer (H3K27ac and H3K4me1) marks, and lower methylation level in 

human and mouse kidneys (Supplementary Fig. 12,13). Slc47a1 expression was restricted 

to the proximal tubules in the mouse kidney single-cell RNA-seq data (Supplementary Fig. 

13c).

To define the causal role of SLC47A1 in kidney disease development, we performed 

a predicted loss-of-function (pLOF)-based gene burden phenome-wide association study 

(PheWAS) using phenotypes of 32,268 individuals with whole exome sequencing data in the 

UK Biobank. We found a significant association (Bonferroni adjusted p = 0.030) of acute 

renal failure in individuals with loss-of-function variants (Fig. 7d). Similar PheWAS in the 

BioMe Biobank showed enrichment for renal dialysis (p = 0.043) (Extended Data Fig. 9a). 

Furthermore, even a single variant rs111653425 (the local top variant of eGFRcrea GWAS, 

p = 1.0×10−79) PheWAS indicated significant associations with renal phenotypes including 

acute renal failure (p = 0.047 in UK Biobank) and renal dialysis (p = 0.0066 in BioMe 

Biobank) (Extended Data Fig. 9b,c).

Finally, we found significant negative correlations between SLC47A1 expression and 

expression of markers of kidney injury (LCN2), fibrosis (COL1A1, COL3A1, VIM and 

ACTA2), inflammation (CCL2, TNF and IL1B), macrophages (ADGRE1), and necroptosis 

(RIPK3, MLKL and NLRP3) (Supplementary Fig. 14). These results support the causal role 

of SLC47A1 in kidney disease development in patients.

Slc47a1 loss confers kidney disease risk in mice

Slc47a1 is a multi-drug extrusion protein, playing a key role in transporting a large 

number of drugs and toxins, therefore several prior studies suggested that the gene is a 

creatinine secretion marker rather a true kidney disease gene46–49. Our results, however, 

indicated consistent association with cystatin C-based kidney function measurements as well 

(rs111653425 with p = 5.3×105 in eGFRcys GWAS) (Supplementary Fig. 15).

To further support the causal role of SLC47A1 in kidney disease development, we 

characterized Slc47a1-deficient mice. Global knockout Slc47a1 mice were phenotypically 

normal. We reasoned that Slc47a1 loss might alter injury response, especially following a 

toxic injury, and thus we modeled kidney injury in wild-type (WT) and Slc47a1−/− (KO) 

mice (Fig. 8a,b). To recapitulate chronic kidney disease and fibrosis, we injected mice with 

low dose cisplatin repeatedly and sacrificed animals 4 weeks later. We found that markers 

of kidney dysfunction, such as serum creatinine and BUN levels were significantly higher in 

Slc47a1−/− mice when compared with wild-type animals (p < 0.01) following repeated low 

dose cisplatin injection (Fig. 8c,d).
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Histological examination indicated increased hyaline casts, cytoplasmic vacuolization, loss 

of brush border and tubular lumen dilation in cisplatin-treated Slc47a1−/− mice (Fig. 

8e). Tubule injury markers, for example, expression of Lipocalin-2 (Ngal) and kidney 

injury molecule 1 (Kim1) were markedly higher in cisplatin-treated Slc47a1−/− mice when 

compared to cisplatin-treated wild-type mice (Fig. 8f). We observed increased collagen 

accumulation by Sirius red staining and markedly higher pro-fibrotic gene expression 

(Col1a1, Col3a1, Col4a1, Fn1, Ctgf and Vim) and αSMA protein levels in cisplatin-treated 

Slc47a1−/− mice (Fig. 8g–i and Extended Data Fig. 10a). Expression of pro-inflammatory 

cytokines (Ccl2, Tnfa, Tnfsf12 and ll1b) and macrophage marker (F4/80, also known as 

Adgre1) were prominently increased in kidneys of cisplatin-treated Slc47a1−/− mice (Fig. 8j 

and Extended Data Fig. 10b).

To understand the pathomechanism of Slc47a1 loss-associated kidney disease development, 

we focused on necroptosis, a regulated cell death pathway playing an important role in acute 

kidney injury (AKI) to chronic kidney disease (CKD) progression50–52. Transcript levels 

of Ripk3 and Mlkl, were noticeably increased in kidneys of cisplatin-treated Slc47a1−/− 

mice when compared with cisplatin-treated wild-type mice (Fig. 8k). We further confirmed 

the increase in RIPK3 protein level in kidneys of cisplatin-treated Slc47a1−/− mice (Fig. 

8i). We also observed a higher level of pyroptosis marker, NLRP3 (NOD-like receptor 

family pyrin domain-containing 3) in kidneys of cisplatin-treated Slc47a1−/− mice (Fig. 8i). 

These results suggest enhanced cisplatin-induced kidney injury in Slc47a1−/− mice, inducing 

inflammatory cell death pathways, cytokine secretion, and renal fibrosis.

Discussion

In this study, we provide a comprehensive analysis of genetic determinants of human kidney 

function. We generated genetic maps for eGFRcrea GWAS (n=1.5 million), human kidney 

eQTL (n=686), methylation quantitative trait loci (n=443) and human kidney single cell 

open chromatin and expression data. We identify more than 800 kidney function loci and 

prioritize disease-causing genes, cell types and regulatory circuits for 576 loci. We show 

that DNA methylation explains a higher portion of kidney disease heritability than gene 

expression12. We identify the critical convergence of kidney function-associated variants in 

kidney proximal tubules. Finally, we focus on the chromosome 17 locus and demonstrate 

that SLC47A1 is a kidney disease risk gene.

Recent studies, by estimating heritability mediated by expression, revealed that tissue 

eQTL information only explains a modest proportion (average 0.11) of GWAS trait 

heritability12,53. Consistently, we observed a similar proportion (average 0.10) of heritability 

of kidney function traits explained by non-kidney GTEx tissue eQTLs, and a higher 

proportion (average 0.20) of heritability mediated by kidney eQTLs (n=414 human kidney 

tissue samples). Recent studies reported splicing QTLs54 and mRNA N6-methyladenosine 

QTLs55 independently explained complex trait variation, but a smaller fraction than 

eQTLs8,55. Our analysis indicates that kidney meQTLs mediate a higher fraction (average 

0.46) of heritability for kidney function traits using individual-level methylation profiles 

from the same human kidney samples (n=414), and underscores that new epigenetic datasets 

will be critical for GWAS functional follow-up studies.

Liu et al. Page 9

Nat Genet. Author manuscript; available in PMC 2024 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Incorporating cell-type epigenome data such as human kidney single-nuclear ATAC-seq 

further improved causal cell type, target gene and variant identification. We observed a 

marked enrichment (averaging 6.7-fold) of heritability mediated by kidney methylation 

in proximal tubule-specific accessible regions for kidney function traits7,56,57. We also 

observed enrichment of heritability mediated by kidney methylation for blood pressure 

GWAS hits in the principal cells of the collecting tubule, consistent with our previous 

study11. This cell type plays key roles in sodium balance and blood pressure regulation.

Multiple factors can explain the more prominent role of tissue methylation and single 

cell epigenome variation mediating GWAS heritability compared to gene expression. 

Gene expression measures transcriptional output at a single time-point and condition. 

To reduce confounders in eQTL estimations, we often measure gene expression at 

baseline or at healthy state; however, genotype-driven differences in gene expression 

could become apparent in disease or stressed state, which would be missed by traditional 

eQTL analysis58. Our recent studies indicate that regulatory variants could play role in 

modulating gene expression changes during development (for example Uncx and Shroom3) 

and these genes could be silenced in adulthood59,60. The improved GWAS heritability 

mediation could also be explained by multiple factors, such as that the epigenome captures 

gene expression potentials, prior developmental trajectory and integrates effects from 

environmental variation.

Our data highlight the critical role of multi-staged omics for GWAS annotation. We 

show that our 8-pronged prioritization strategy has notably improved target variant, gene 

and cell type identification. It is important to mention that we found that the different 

omics datasets provided both complementary and confirmatory information for target 

prioritization; however it appears, that no single dataset and method can define the “ground 

truth”. Future studies should focus on integration and optimization of target identification 

strategies.

Finally, we show multiple lines of converging evidence indicating a causal role for 

SLC47A1 in kidney disease development. The association between kidney function traits 

and common non-coding variants in the SLC47A1 region has been identified in large 

eGFRcrea GWAS studies4,61. However, the exact causal variants and regulatory mechanisms 

involved at this locus remains unknown. In this study, we show a causal role of Slc47a1 
in kidney disease development by analyzing the phenotypes of individuals with rare loss-of-

function coding variants and Slc47a1 knock-out mice. SLC47A1 can transport creatinine, so 

the genetic variant can influence creatinine-based kidney function estimates. Here we show 

that SLC47A1 is also a kidney disease risk gene, most likely acting by influencing toxin 

uptake and secretion of tubule epithelial cells.

Overall, we report, a comprehensive analysis of the genetic determinant of human kidney 

function and show the key role of epigenetic changes mediating phenotype development. 

Our extensive post-GWAS annotation provide new biological insight into 576 GWAS 

identified loci. We highlight the key contribution of proximal tubules, metabolism and 

cell death pathways in kidney function. We define the role of SLC47A1 in kidney disease 

development and uncover potential new therapeutics for the treatment of kidney disease.
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Methods

Sample procurement

Deidentified human kidney tissue collection was approved by the institutional review board 

(IRB) of the University of Pennsylvania. The study was deemed IRB exempt (exemption 

IV), as no identifiable private information was collected. Kidney samples were obtained 

from the non-neoplastic portion of surgical nephrectomies via the Cooperative Human 

Tissue Network. Laboratory and demographic and clinical information including age, sex, 

self-reported ethnicity, diabetes and hypertension status was collected from medical records 

by an honest broker (Supplementary Table 7). eGFRcrea values were calculated using 

the CKD Epidemiology Collaboration equation62. Histopathologic descriptor measurements 

including tubulointerstitial fibrosis were scored by a specialized renal pathologist using 

Periodic Acid-Schiff stained slides. DNA was isolated by the Qiagen DNAeasy or 

MagAttract High Molecular Weight DNA Kits (Qiagen No. 67563), according to the 

manufacturer’s instructions. DNA was quantified by the Invitrogen Quant-iT PicoGreen 

dsDNA Assay Kit (Invitrogen No. P11496).

Data generation

Genotype data. Genomic DNA isolated from kidney samples was used for genotyping. After 

quality control using PLINK (v1.9)63, genotypes were phased with SHAPEIT2 (v2.17)64 

and imputed by IMPUTE2 (v2.3.2)65,66 (See Supplementary Table 8 and Supplementary 

Note).

DNA methylation data.—DNA methylation at over 850,000 methylation sites was 

measured in 506 kidney samples using Infinium Methylation EPIC BeadChip. SeSAMe 

(v1.5.3)67 was used for pre-processing and quality control steps, resulting 701,519 CpG sites 

(see Supplementary Table 9 and Supplementary Note).

Gene expression data.—RNA was isolated using RNeasy mini kit (Qiagen No. 74106) 

from tubular compartment and profiled by RNA-Seq. Reads were aligned to the human 

genome (hg19) using STAR (v2.4.1d)68, and expression was quantified by RSEM (v1.3.1)69 

(See Supplementary Note).

Human kidney single nucleus ATAC seq (snATAC-seq).—Six fresh human kidneys 

were collected for single nucleus ATAC-seq. Reads were aligned to human genome (hg19) 

with SnapATAC (v2.0)70. After quality control and peak calling, 12 clusters (57,229 

cells) were annotated using a published list of cell-type marker genes56, and cell type-

specific differentially accessible regions (DARs) were identified for each cell type (See 

Supplementary Table 15 and Supplementary Note).

eGFRcrea GWAS meta-analysis

To identify genetic variants associated with kidney disease, we performed a meta-analysis 

of eGFRcrea GWAS based on the summary statistics obtained from five non-overlapping 

multi-ancestry studies from CKDGen, Pan-UK Biobank, MVP, PAGE, and SUMMIT 

consortium4,5,20,21 (see detailed information in Supplementary Table 1). For each GWAS 
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dataset, low frequency variants with a minor allele frequency (MAF) of <0.1% were 

filtered out. Five GWAS results were pooled via sample size-weighted meta-analysis of z 

scores (Stouffer’s method71) implemented by METAL (version 2011–03-25)22, to allow for 

differences in eGFRcrea estimation and scaling72, with genomic control correction for each 

input study (genomic control score 1.322 for CKDGen, 1.438 for UKBB, 1.186 for MVP, 

1.082 for PAGE and 1.047 for SUMMIT, respectively) and assessment of between-study 

heterogeneity with the Cochran’s Q-test and I2 statistic. After meta-analysis of 32,220,823 

variants, 12,653,888 variants available in at least two studies and at least for 500,000 

individuals were retained. We filtered out 84 unplaced and non-autosomal variants. Finally, 

our meta-analysis resulted in a comprehensive eGFRcrea GWAS of 12,653,804 variants 

with a sample size of 1,508,659 cross-ancestry individuals (~80% are of European ancestry, 

Supplementary Table 1). For the summary statistics of meta-analysis, we confirmed that 

the A1 and A2 alleles are matched with the alternate alleles and reference alleles based 

on the annotation of dbSNP (release version 151) and they were corrected if they were 

unmatched to make sure the effect was always reported to the alternate allele23. Effect sizes 

were estimated from the z statistics of the meta-analysis following a method proposed by 

Zhu et al.73, and then compared with effect sizes of each source GWAS summary statistics 

(Extended Data Fig. 1b).

Next, we defined variants associated with eGFRcrea by genome wide significance level 

(p < 5×10−8). Specifically, variants with between-study heterogeneity (Cochran’s Q-test 

HetISq > 50 or I2 statistic HetPVal < 0.05) were selected as significant variants only 

when they passed genome-wide significance level (p < 5×10−8) in the meta-analysis and 

at least one original study. In total, we identified 90,950 genome-wide significant variants 

associated with eGFRcrea, including 8,877 variants at the major histocompatibility complex 

(MHC) region. For validation, we obtained GWAS data for eGFR based on cystatin C 

(eGFRcys) of 421,714 individuals from Pan-UK Biobank and blood urea nitrogen (BUN) of 

852,678 individuals from CKDGen Consortium24. For each eGFRcrea-associated variant, its 

relevance to kidney function was treated as “validated” if it showed nominally significant 

(p < 0.05) association with eGFRcys in the same effect direction or nominally significant 

(p < 0.05) association with BUN in the opposite effect direction (Extended Data Fig. 1c–e). 

The enrichment analysis of variants associated with eGFRcrea in different kidney cell types 

was performed by comparing the number of significant variants and non-significant variants 

overlapped with DARs identified in given cell type and those in other cell types.

Independent loci were defined for 82,073 non-MHC variants using the following method. 

First, we clumped (r2 > 0.1) the significant variants following clump command “plink1.9 
--bfile <1000G Phase 3 European file> --clump <summary statistics of 82,073 significant 

variants> --clump-p1 5e-8 --clump-p2 5e-8 --clump-r2 0.1 --clump-kb 10000”23,63, resulting 

in 1,687 leading variants. The 1000 genome Phase 3 (European ancestry, n = 503) was used 

as reference panel for clumping because most (80%) individuals in meta-analysis GWAS 

were of European ancestry. To avoid calling multiple associations for very large signals, 

lead variants within 0.1cM of each other (derived from 1,000 Genomes phase 3 European 

samples, n = 503) were merged. The MHC region was treated as a single locus. Finally, we 

identified 878 independent loci (Supplementary Table 2). For each locus, the variant with the 
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minimum p value was chosen to find the closest coding gene based on distance from variant 

to gene transcription start site.

To identify novel loci, we first collected the leading SNPs reported by six published GWAS 

studies4,5,20,21,23,24. Independent loci by meta-analysis were defined as novel if they fulfilled 

all following criteria: 1) did not pass genome-wide cutoff p < 5×10−8 in any previous study, 

2) 500Kb away from any of previously reported sentinel variants tagging independent loci 

and 3) LD r2 < 0.001 with any of previously reported sentinel variants tagging independent 

loci (Extended Data Fig. 2a,b). Functional annotation for novel loci was performed using 

Genomic Regions Enrichment of Annotations Tool (GREAT v4.0.4)74, counting the variants 

validated by eGFRcys and/or BUN, literature search and single cell expression analysis 

(Extended Data Fig. 2c–g).

Cis-eQTL meta-analysis

To obtain a comprehensive cis-eQTL map, we performed a meta-analysis based on the eQTL 

summary statistics obtained from four non-overlapping studies8–11 (Supplementary Table 

3), and identified 10,430 eGenes and 1,222,250 significant SNP-gene pairs (Supplementary 

Table 4). Novel eGenes were determined if they were not included in any of eGene lists in 

six reference studies7–11,30 (See Supplementary Note).

Cis-meQTL association analysis

We conducted cis-meQTL (referred to as meQTL) association analysis using 443 samples 

with imputed genotyping data of 5,736,252 SNPs and methylation data of 701,503 CpGs 

(See Supplementary Note). Missing values in methylation data were imputed based on 

nearest neighbor averaging implemented by R package impute (v1.64.0). Beta values of 

each CpG were transformed by inverse-normal transformation (INT)75. For each SNP-CpG 

pair within a cis window of ±1Mb from the queried CpG site, the association between INT 

transformed methylation and genotype dosage was quantified using MatrixQTL (v2.1.0) R 

package76 using an additive linear model. This model was fitted with covariates including 

general variables (sample collection site, age, sex, top five genotype PCs, degree of bisulfite 

conversion, sample plate, and sentrix position) and 35 PEER factors77 (See Supplementary 

Note).

The significance of the top associated variants per CpG was estimated by adaptive 

permutation in FastQTL78 using the covariates above and the setting “--permute 1000”. 

Beta distribution-adjusted empirical p-values from FastQTL were used to calculate q-values 

using Storey’s q method79, and a false discovery rate (FDR) threshold of < 0.01 was 

applied to identify CpGs with a significant meQTL (referred as mCpG). Then, a genome-

wide nominal p threshold was defined as the empirical p of the CpG closest to the 0.01 

FDR threshold, was further used to calculate a nominal p threshold for each CpG based 

on the beta distribution model (from FastQTL) of the minimum p distribution obtained 

from the permutations for the CpG site. For each mCpG, the variants with a nominal p 
below the cutoff was defined as significant SNPs. Totally, we identified 139,313 mCpGs 

and 13,771,378 significant SNP-mCpG pairs (Supplementary Table 10,11). For validation, 

meQTL effect sizes were compared to a recently published (smaller) meQTL dataset (using 

Liu et al. Page 13

Nat Genet. Author manuscript; available in PMC 2024 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



195 kidney samples and total 374,826 CpGs) 30 (Supplementary Fig. 6). Further, kidney-

specific meQTLs were identified and analyzed by comparing meQTLs from whole blood 

(n = 473)33 and skeletal muscle samples (n = 265)19, using METASOFT (v2.0.1)80 (See 

Supplementary Note).

Cis-eQTM associations mapping and analysis

To identify associations between methylation of CpG sites and expression of genes within 

a ±1Mb window of the queried gene TSS, expression quantitative trait methylation (eQTM) 

analysis was performed using a linear regression model implemented in 414 human kidney 

samples using the MatrixeQTL R package76 (See Supplementary Note).

GWAS heritability mediated by methylation and expression

To estimate kidney disease heritability mediated by CpG methylation levels and gene 

expression levels, we applied mediated expression score regression (MESC)12 for 

individual-level genotypes, methylation, and expression data of 414 human kidney samples 

(78.0% are of European ancestry) with all three datasets. In this study, MESC was used to 

estimate methylation-mediated heritability (ℎ2
med m) for each of 34 GWAS traits (including 

six kidney function traits, Supplementary Table 14) by regressing GWAS summary statistics 

on kidney cis-meQTL effect summed across all CpGs. In brief, the meQTL effect sizes 

for each CpG was estimated using individual-level genotypes and methylation data, with 

covariates (general variables and PEER factors used in meQTL mapping above), and then 

multiplied by the element-wise squared LD matrix to obtain methylation scores. LD matrix 

was estimated using 503 European ancestry samples from the 1000 genome Phase 3, as most 

(78%) kidneys samples used in this analysis are of European ancestry. Methylation scores 

were further used to estimate methylation-mediated heritability ℎ2
med m based on GWAS 

summary statistics for each of 34 GWAS traits. The proportion of heritability mediated by 

methylation was defined as ℎ2
med m, where ℎ2

g is the GWAS trait heritability estimated by 

stratified LD-score regression. For all quantities, standard errors and P values were estimated 

by jack-knifing over blocks of SNPs. Similarly, expression scores were estimated based 

on individual-level genotypes and expression data, and then used to estimate expression-

mediated heritability (ℎ2
med e) and proportion of heritability mediated by kidney expression 

(ℎ2
med e /ℎ2

g)for each trait. To validate these findings, we performed heritability analysis in 

323 samples of European-ancestry, and different number of samples randomly selected from 

the 414 kidneys used above (See Supplementary Note).

To perform a comprehensive comparison, MESC was applied to estimate heritability 

mediated by non-kidney tissue expression for 34 GWAS traits, using expression scores 

computed for 48 non-kidney GTEx v8 tissues by Yao et al.12. For each GWAS trait, the best 

non-kidney tissue resulting in the highest estimates of ℎ2
med e /ℎ2

g among non-kidney GTEx 

tissues was identified to compare with kidney eQTL. Further, we also estimated eGFRcrea 

heritability mediated by blood meQTLs by applying MESC on individual-level genotypes 

and whole blood methylation data (n = 473), with covariates (including age, batch effect, top 

10 PCs of genetic background, hypertension, and whole-blood cell subtype proportions, and 

20 PEER factors33).
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Single cell co-accessibility

To explore the regulatory function of distal open chromatin areas, we applied Cicero 

(version 1.0.15)41 to predict cis-regulatory interactions by examining the co-accessibility 

of snATAC peaks. We used function make_cicero_cds in Cicero package to aggregated 

cells based on 50 nearest neighbors and then calculated co-accessibility scores with a 

window size 500kb and distance constraint 250kb. Cicero connections between two peaks 

were determined by co-accessibility score > 0.2. To prioritize target genes of eGFRcrea 

GWAS variants, we extracted protein-coding genes within 1Mb from significant eGFRcrea 

variants and defined their promoters as regions ±2000bp from the transcription start sites 

of protein-coding transcripts (GENCODE v35lift37)81. For each eGFRcrea GWAS variant, 

potential target genes were identified by co-accessibility connections with one end covering 

variant and another end overlapping with gene promoters. Finally, target gene was defined 

for each variant as the gene with the highest co-accessibility score if multiple potential target 

genes were available for the same variant.

Bayesian colocalization analysis

We performed Bayesian colocalization analysis to identify the variants where the genotype 

effect on kidney function, methylation and gene expression were shared. Bayesian 

colocalization analysis was implemented using R package coloc (v5.1.0)82 and moloc 

(v0.1.0)83 to estimate posterior probability that a eGFR GWAS variant is associated with 

three traits (GWAS and meQTL and eQTL). Posterior probability > 0.8 was considered 

evidence of colocalization (See Supplementary Note).

Summary-data-based Mendelian Randomization

We performed summary-data-based mendelian randomization (SMR) analysis in three 

configurations, eGFRcrea GWAS and kidney meQTL, eGFRcrea GWAS and kidney 

eQTL, kidney meQTL and kidney eQTL, using package SMR (v1.03)43,73, and used 

heterogeneity in dependent instruments (HEIDI) to distinguish pleiotropy from linkage (See 

Supplementary Note).

Prioritization of disease genes for GWAS loci

To prioritize target genes for kidney function GWAS loci, we developed a priority scoring 

strategy by integrating evidence from eight different datasets: (1) significant SNP~gene 

associations by kidney eQTL (FDR < 0.05); (2) significant SNP~CpG~gene associations 

by kidney meQTL (FDR < 0.05) and eQTM (CpG level FDR <0.05); (3) SNP~gene 

pairs by coloc analysis between eGFRcrea GWAS and eQTL (H4 > 0.8); (4) SNP~gene 

pairs by moloc analysis among eGFRcrea GWAS, eQTL and meQTL (PPA.abc > 0.8); (5) 
significant SNP~gene pairs by mendelian randomization analysis between eGFRcrea GWAS 

and eQTL (PSMR < 1.38×10−4); (6) SNP~gene pairs passing HEIDI test between eGFRcrea 

GWAS and eQTL (PHEIDI > 0.01); (7) co-accessibility (Cicero connections) identified using 

57,229 snATAC-seq cells (co-accessibility score > 0.2); and (8) Enhancer-promoter contacts 

identified by Activity-by-Contact (ABC) Model which predicts enhancers regulating genes 

based on estimating enhancer activity and enhancer-promoter contact frequency from 

epigenomic datasets (ABC scores >= 0.015). Promoters were defined as ±2000bp from 
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the TSS of protein-coding transcripts from GENCODE v35lift3781 to annotate Cicero 

connections or ABC connections between gene promoters and eGFRcrea GWAS variants.

For each significant eGFRcrea GWAS variant, we extracted protein-coding genes within 

1Mb from the SNP as potential targets. For each SNP~gene pair, we defined a priority score 

by counting the number of datasets supporting the association. For each variant, the gene 

with highest priority score was assigned as its target gene. If multiple genes shared the 

highest priority score, the closest gene with most significant eQTL was assigned as target 

gene. For each independent locus, the top target gene was determined according to highest 

priority score from all variant gene pairs in the same locus. If multiple genes shared the 

highest priority score, the gene targeted by the variant with the most significant GWAS 

association was assigned as the top target gene for the locus. Newly prioritized loci were 

defined if they did not overlap with 309 independent signals (using gene PrioritiSation score 

≥ 1) prioritized in eGFRcrea GWAS by Stanzick et al.24 or 53 creatinine-associated exome 

rare variants identified in exome association studies by Backman et al.25 or Barton eta al.26.

Further, we focused on 328 GWAS loci with 559 target genes with a priority score at 

least 3. First, we inspected 110 loci with two or more target genes by counting the 

number of independent signals (fine-mapped in 1 million European ancestry individuals24) 

and co-expression gene pairs (FDR < 0.05 accounting for all correlation tests) for each 

locus. To explore the function of prioritized genes, we performed gene set enrichment for 

tissue specificity and GWAS catalog genes using GENE2FUNC of FUMA84 with protein 

coding genes as background gene-set. Functional enrichment analysis for these genes was 

performed using DAVID Bioinformatics Resources (v6.8)85. For enrichment to the cell type-

specific genes, we obtained their mouse orthologs and overlapped with cell type-specific 

expressed genes identified using mouse scRNA-seq56. The cell type enrichment significance 

was determined using a hypergeometric test.

Phenome-wide association study of SLC47A1

To explore the association of a burden of rare loss-of-function variants of SLC47A1 
with disease phenotypes, we performed rare predicted loss-of-function (pLOF)-based 

gene burden phenome-wide association (PheWAS) using whole exome sequencing data 

of 32,268 European ancestry individuals for the UK Biobank (UKBB)86. Rare predicted 

pLOF-based gene burden of SLC47A1 was defined as frameshift insertions/deletions, gain/

loss of stop codon, or disruption of canonical splice site dinucleotides87. Phenotypes for 

each individual were determined by mapping ICD-10 codes to Phecodes via Phecode 

Map 1.2b1 using the R package PheWAS (https://phewascatalog.org/phecodes_icd10)88. 

Individuals were determined as phenotypic cases for a certain disease phenotype if they 

had at least two encounters for the corresponding Phecode diagnosis, while phenotypic 

controls consisted of individuals who never had the Phecode as well as those under Phecode 

exclusion criteria. Control group for acute renal failure, for instance, excluded acute renal 

failure, renal failure, chronic renal failure and several other related diseases of kidney 

and ureters (Phecodes ranging from 580 to 590.99). To avoid uncertainties due to low 

case numbers, 136 phenotypes with at least 300 cases were included for the PheWAS 

analysis. Association between each disease phenotype and gene burden of SLC47A1 was 
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calculated using a logistic regression model adjusted for sex, age, and the first 10 principal 

components of genetic ancestry using the R package PheWAS88. As independent validation, 

we also performed PheWAS analysis for pLOF-based gene burden of SLC47A1 in 24,016 

individuals in the BioMe Biobank, and for a single missense variant (rs111653425) of 

SLC47A1 in the UKBB and BioMe datasets (See Supplementary Note).

Mouse studies

Slc47a1 knock out mice was generated by the Yan Shu lab at the University of Maryland 

Baltimore89. All experimental protocols were approved by the Institutional Animal Care and 

Use Committee (IACUC) of the School of Pharmacy, University of Maryland Baltimore. All 

procedures were carried out in accordance with NIH guidelines for animal experimentation 

(See Supplementary Note).
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Extended Data

Extended_Data_Fig 1. Meta-analysis of eGFRcrea GWAS and validation using eGFRcys and 
BUN GWAS.
a. Manhattan plots of meta-analysis eGFRcrea GWAS (N=1,508,659 individuals) and 

eGFRcrea GWAS datasets including CKDGen, UKBB, MVP, PAGE and SUMMIT. For 

each panel, the x-axis is chromosomal location of SNP. The y-axis strength of association 

-log10(p). The two-sided p value was obtained from GWAS studies.
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b. Scatter plot of effect size correlation between meta-analysis eGFRcrea GWAS (x-axis) 

and five source eGFRcrea GWAS data from CKDGen, UKBB, MVP, PAGE and SUMMIT 

(y-axis). The density of dots from low to high are shown from yellow to red. Correlation 

coefficient was calculated using Spearman's rho (R) statistic and two-sided p value was 

calculated using asymptotic t approximation.

c. Scatter plot of effect sizes between eGFRcrea GWAS (N=1,508,659 individuals) 

and eGFRcys GWAS (N=421,714 individuals). Significant eGFRcrea GWAS variants 

passing two-sided p < 5×10−8 in this study were used for the plot. Red dots represent 

validated variants showing nominally significant (two-sided GWAS p < 0.05) association 

with eGFRcys in the same effect direction. Correlation coefficient was calculated using 

Spearman's rho (R) statistic and two-sided p value was calculated using asymptotic t 
approximation.

d. Scatter plot of effect sizes between eGFRcrea GWAS (N=1,508,659 individuals) and 

BUN GWAS (N=852,678 individuals). Significant eGFRcrea GWAS variants passing two-

sided p < 5×10−8 in this study were used for plot. Blue dots represent validated variants 

showing nominally significant (two-sided GWAS p < 0.05) association with BUN in the 

opposite effect direction. Correlation coefficient was calculated using Spearman's rho (R) 
statistic and two-sided p value was calculated using asymptotic t approximation.

e. Venn plot of eGFRcrea GWAS significant variants validated by eGFRcys GWAS or BUN 

GWAS. Y-axis is strength of GWAS association -log10(p value based of z statistic).
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Extended_Data_Fig2. Identification and function annotation of independent eGFRcrea GWAS 
loci.
a. The strategy to identify independent loci and novel eGFRcrea GWAS loci.

b. Pie chart of the number of independent loci categorized into different groups by 

comparing previously reported sentinel variants tagging independent loci.

c. Pie chart of the number of novel independent loci validated by eGFRcys GWAS and/or 

BUN GWAS.
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d. Functional enrichment analysis of 126 novel independent loci annotated by GREAT. 

The positions of lead SNPs were inputted into GREAT (http://great.stanford.edu/public/

html/), and the two nearest genes within 1Mb were used for function enrichment in 

mouse phenotype catalogue. The two-sided uncorrected p-value was calculated by binomial 

test over inputted loci, and false discovery rate q-value was calculated for multiple test 

correction.

e. Literature-based gene function of the closest genes to the 126 novel kidney disease loci.

f. Expression of the mouse orthologues of 42 kidney disease genes (of the 126 newly 

identified GWAS genes) in adult mouse kidney samples (GSE107585). The mean expression 

was calculated for each cell types and z-scores were plotted.

g. LocusZoom view of three novel independent loci, MEP1A, ABCC2 and NFIA. Y-axis is 

strength of association -log10(two-sided p value from GWAS meta-analysis z-statistic).
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Extended_Data_Fig3. Meta-analysis of the kidney cis-eQTL data.
a. Manhattan plot of eQTL meta-analysis by integrating four eQTL datasets consisting of a 

total of 686 kidney samples. X-axis is chromosomal location of SNP, and y-axis is strength 

of association -log10 (two-sided p value based z-statistic from eQTL meta-analysis).

b. Manhattan plot of eQTLs by Sheng et al. (n=356 human kidney tubule samples). X-axis 

is chromosomal location of SNP, and y-axis is strength of association -log10 (two-sided p 
value from linear regression eQTL model).
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c. Manhattan plot of eQTLs by Ko et al. (n=91 human kidney cortex samples). X-axis is 

chromosomal location of SNP, and y-axis is strength of association -log10 (two-sided p 
value from linear regression eQTL model).

d. Manhattan plot of eQTLs by GTEx (v8) (n= 73 human kidney cortex samples). X-axis 

is chromosomal location of SNP, and y-axis is strength of association -log10 (two-sided p 
value from linear regression eQTL model).

e. Manhattan plot of eQTLs by NephQTL (n=166 human kidney tubule samples). X-axis 

is chromosomal location of SNP, and y-axis is strength of association -log10 (two-sided p 
value from linear regression eQTL model).

f. Scatter plots of effect size correlation between eQTL meta-analysis and each individual 

eQTL datasets. The common variant-gene pairs passing eQTL p < 0.00001 in any of the two 

datasets were used for each plot. The density of dots from low to high was represented by 

yellow to red. Correlation coefficient was calculated using Spearman's rho (R) statistic and 

two-sided p value was calculated using asymptotic t approximation.
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Extended_Data_Fig4. Functional annotation of kidney-specific meQTLs and mCpGs.
a. Tissue-specific and shared meQTLs across kidney, blood and skeletal muscle tissue. M 

value > 0.9 was used to define meQTL for each set.

b. Fraction of meQTL CpGs annotated by ChromHMM chromatin states in kidney, blood 

(CD3+) cell and skeletal muscle.

c. Transcription factor motif enrichment (HOMER) of tissue-specific mCpGs. The p value 

was calculated by binomial test.
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d. Enrichment of kidney specific meQTL CpGs to cell type-specific open chromatin regions 

determined by snATAC-seq in human kidney. X-axis is odds ratio and Y-axis is strength 

of enrichment -log10(two-sided chi-square test p). Size of the dot represents the number of 

kidney-specific meQTL CpG sites.

e. Enrichment of kidney specific meQTL SNPs to GWAS traits. X-axis is odds ratio and Y-

axis is strength of enrichment -log10(two-sided chi-square test p). Size of the dot represents 

the number of SNPs and colors represent the type of GWAS trait.
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Extended_Data_Fig5. Human kidney expression quantitative trait methylation (eQTM)
a. Schematic representation of the eQTM analysis.

b. eQTM discovery rate estimated by the number of identified CpG~Gene pairs using 

different number of PEER factors as covariates.

c. Volcano plot of eQTMs. The x-axis is the beta value and y-axis the strength of association 

(-log10(p)). Negative and positive eQTMs are colored in blue and red, respectively.

d. The fraction of identified meQTL CpGs by eQTM analysis. The red line is the global 

FDR, dark blue line CpG level FDR and light blue line is nominal significance threshold. 

The x-axis is the eQTM significance and the y-axis is the cumulative fraction of meQTL 

CpGs. Vertical line represents the significance cutoff 0.05.

e. Validation of the eQTMs in publicly available eQTM studies. Correlation coefficient was 

calculated using Spearman's rho (R) statistic and two-sided p value was calculated using 

asymptotic t approximation.

f. Scatter plot of CpG methylation (x-axis) and gene expression of PMD201 and CYP4F1 
(y-axis) in 414 kidney samples. Each dot represents one kidney sample. Correlation 

coefficient was calculated using Spearman's rho (R) statistic and two-sided p value was 

calculated using asymptotic t approximation.

g. IGV visualization of eQTM association at the PM20D1, CYP4F11 and TBX5 loci.

h. Number and fraction of negative and positive eQTM CpGs associated with the expression 

of nearest or distal genes. The nearest gene was defined based on the TSS (transcription start 

site) to eQTM CpG distance. The distal gene was defined if it was not the closest TSS to the 

eQTM CpG. Two-sided p value was calculated by chi-square test.

i. Relative fraction of negative and positive eQTM CpGs localized to regulatory regions in 

the kidney.

j. Profile plot of H3K4me3, H3K4me1, H3K27ac, and H3K27me3 histone modification 

across negative and positive eQTM CpGs and 5kb flanking regions.
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Extended_Data_Fig6. Estimated proportion of heritability mediated by kidney methylation and 
expression.

a. Estimation of heritability (ℎ2
med/ℎ2

g) mediated by kidney meQTL, kidney eQTL and the 

eQTL of best non-kidney GTEx tissue for three kidney function traits based three different 

biomarkers (eGFRcrea, eGFRcys and BUN). Here, best non-kidney GTEx tissue refers to 

the non-kidney tissue whose eQTL resulted in the highest estimates of ℎ2
med/ℎ2

g compared 

to all other non-kidney tissues. The x-axis represents different QTL groups and y-axis for 
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ℎ2
med/ℎ2

g estimated for three kidney function traits Data are presented as mean ± SD. P values 

were calculated by one-tailed paired t test.

b-c. Estimation of eGFRcrea GWAS heritability (ℎ2
med/ℎ2

g) mediated by methylation and 

expression for different number of human kidneys using multi-ancestry datasets (b) and 

European-ancestry datasets(c). The x-axis represents sample sizes used for the meQTL and 

eQTL, and y-axis for ℎ2
med/ℎ2

g estimated for eGFRcrea GWAS.

d. Estimation of eGFRcrea and eGFRcys GWAS heritability mediated by meQTL and eQTL 

from different tissues. The x-axis represents h2
med/h2

g, while the y-axis represents eQTL or 

meQTL data obtained from different tissues. meQTL data is shown in red and eQTL in blue.

e. Estimation of heritability mediated by kidney eQTL and non-kidney eQTL for six kidney 

function traits and 28 independent non-kidney GWAS traits. The x-axis represents h2
med/h2

g, 

while the y-axis represents different GWAS traits. For each trait, kidney eQTL data is shown 

in blue and best non-kidney GTEx tissue in gray. Here, best non-kidney GTEx tissue refers 

to the non-kidney tissue whose eQTL resulted in the highest estimates of ℎ2
med/ℎ2

g compared 

to all other non-kidney tissues.

(b-e) For each bar plot, the centre of error bar represents the value of ℎ2
med/ℎ2

g, and error bar 

represent jackknife standard error estimated for ℎ2
med/ℎ2

g.
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Extended_Data_Fig7. Enrichment of GWAS trait heritability mediated by enhancer methylation 
in 128 tissues/cell types.
a. GWAS heritability mediated by kidney methylation categorized as enhancers in 128 

tissues/cell types. The x-axis shows the GWAS traits, while the y-axis shows tissue 

enhancers in kidney and 127 other tissue samples from the Roadmap project ChromHMM 

data. Gray, non-significant, while white to red indicates significant enrichment (nominal 

two-sided p < 0.05 calculated by MESC). Asterisk indicates ℎ2
med enrichment passing FDR q 

< 0.05 (accounting for 4,352 tests for 128 enhancer CpG sets and 34 GWAS traits).
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b. GWAS heritability mediated by blood methylation categorized as enhancers in 128 

tissues/cell types. The x-axis shows the GWAS traits, while the y-axis shows tissue 

enhancers in kidney and 127 other tissue samples from the Roadmap project ChromHMM 

data. Gray, non-significant, while white to red indicates significant enrichment (nominal 

two-sided p < 0.05 calculated by MESC). Asterisk indicates ℎ2
med enrichment passing FDR q 

< 0.05 (accounting for 4,352 tests for 128 enhancer CpG sets and 34 GWAS traits).
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Extended_Data_Fig8. Gene prioritization for eGFRcrea GWAS variants and functional 
annotation
a. Schematic representation of gene prioritization strategy based on eight prioritization 

datasets and methods.

b. Number of eGFRcrea GWAS variants prioritized using different priority score threshold.

c. eGFRcrea GWAS independent loci prioritized by this study (priority score ≥ 1) and 

previous studies. The number represents the number of independent loci overlapping 

with independent signals prioritized (GPS score ≥ 1) by Stanzick et al. and/or creatinine-

associated exome rare variants by Backman et al. or Barton et al.

d. Features of the top variants prioritized for the 328 loci with priority score ≥ 3. Each 

row shows the top variant for each locus. Loci were ordered from top to bottom based 

on priority scores from 8 to 3. Loci with the same priority score were ordered by GWAS 

significance from strongest (dark blue) to lowest (light blue). Each column represents a 

feature overlapped with the variant. For each feature, the fraction of overlapping variants 

is shown in the upper panel. 22 top prioritized genes supported by all eight datasets and 

methods were listed.

e. Tissue specificity of 566 prioritized genes (priority score ≥ 3) in 54 tissue types (GTEx 

v8) using GENE2FUNC of FUMA. The x-axis is the 54 tissue types ordered according 

to significance of enrichment in up-regulated differentially expressed gene sets. Y-axis 

represents enrichment significance -log10(p value calculated by hypergeometric test). Tissue 

with Bonferroni p value < 0.05 is shown in red.

f. Heatmap of the expression of 417 mouse orthologues of prioritized genes in adult mouse 

kidney single cell dataset. The mean expression was calculated for each cell types and 

z-scores were plotted. Right panel shows 87 genes with the highest level of expression in 

proximal tubule cells.
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Extended_Data_Fig9. PheWAS analysis of rs111653425 SLC47A1 variants in UKBB and BioMe 
Biobanks
a. Single variant (rs111653425) PheWAS analysis of SLC47A1 in UKBB dataset. The 

x-axis is the strength of association -log10(p value calculated by linear regression PheWAS 

model). Blue line is p = 0.05 and red line is Bonferroni adjusted p = 0.05. The y-axis is the 

analyzed phenotype.

b. SLC47A1 pLOF burden pheWAS analysis in BioMe dataset. The x-axis is the strength of 

association -log10(p value calculated by linear regression PheWAS model). Blue line is p = 

0.05 and red line is Bonferroni adjusted p = 0.05. The y-axis is the analyzed phenotype.

c. Single variant (rs111653425) pheWAS analysis of SLC47A1 in BioMe dataset. The x-axis 

is the strength of association -log10(p value calculated by linear regression PheWAS model). 

Blue line is p = 0.05 and red line is Bonferroni adjusted p = 0.05. The y-axis is the analyzed 

phenotype.
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Extended_Data_Fig10. Slc47a1 loss confers kidney disease risk in mice
a. The relative expression of fibrosis markers; Collagen3 (Col3a1), Collagen4 (Col4a1), 

Fibronectin (Fn1), and Connective tissue growth factor (Ctgf) in kidney of control or 

cisplatin treated Slc47a1+/+and Slc47a1−/− mice. Data are presented as mean ± SD. P 

values were calculated by one-way ANOVA with post hoc Tukey test. n.s., not significant. 

n=4 biologically independent Slc47a1+/+ cisplatin mice examined over n=3 independent 

Slc47a1+/+ control; n=5 biologically independent Slc47a1−/− cisplatin mice examined over 

n=4 independent Slc47a1+/+ cisplatin mice).

b. Relative expression of markers of inflammation; Adhesion G protein-coupled receptor 

E1 (Adgre1), Tumor necrosis factor ligand (Tnfsf12), Interleukin 1beta (Il1b) in kidneys 

of control or cisplatin treated Slc47a1+/+and Slc47a1−/− mice. Data are presented as mean 

± SD. P values were calculated by one-way ANOVA with post hoc Tukey test. n.s., not 

significant. n=4 biologically independent Slc47a1+/+ cisplatin mice examined over n=3 

independent Slc47a1+/+ control; n=5 biologically independent Slc47a1−/− cisplatin mice 

examined over n=4 independent Slc47a1+/+ cisplatin mice).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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GWAS/; https://susztaklab.com/Kidney_meQTL/; https://susztaklab.com/Kidney_eQTL/) 

and figshare (https://doi.org/10.6084/m9.figshare.1518349590). The GWAS summary 

statistics are also available at the GWAS Catalog (Accession GCST90100220). The 

RNA-seq and human kidney snTAC-seq data have been deposited with the Gene 

Expression Omnibus under accession numbers (GSE115098, GSE173343, GSE172008 

and GSE200547) and the Common Metabolic Diseases Genome Atlas (https://cmdga.org/

search/?type=Experiment&searchTerm=FNIH0000000). Integrative Genomics Viewer 

visualization of human kidney snATAC-seq is publicly available at https://susztaklab.com/

Human_snATAC/. The summary statistics of five eGFRcrea GWAS datasets used for 

GWAS meta-analysis were obtained from consortium websites (Download links provided 

in Supplementary Table 1). No consent was obtained to share individual-level genotype 

data for kidney samples. There is no mechanism to obtain consent since kidney tissue was 

collected as medical discard and the samples were permanently de-identified. Summary 

statistic for GWAS heritability analysis were obtained from the Alkes Price lab (https://

alkesgroup.broadinstitute.org/LDSCORE/independent_sumstats/)37. Mouse kidney snATAC-

seq data were obtained from GEO (GSE157079)60 and Mouse kidney scRNA-seq data were 

obtained from GEO (GSE107585)56. Drug-Gene interactions were identified using the Drug 

Gene Interaction Database (DGIdb v4.2.0, https://www.dgidb.org/)45.
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Fig. 1. Graphical summary of new datasets created, and analyses performed in this study.
a. Overview of the different genome-wide association and quantitative trait (GWAS, meQTL 

and eQTL) datasets generated and used in this study. Cohort abbreviations and details found 

in Supplementary Table 1.

b. Schematic representation of our methods and datasets for prioritization and function 

analysis of kidney disease genes by integrating genetic, human kidney epigenetic, 

transcriptomics, and human kidney single-nuclear open chromatin information.
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Fig. 2. eGFRcrea GWAS of 1.5 million individuals and kidney eQTL for 686 samples.
a. Manhattan plot of eGFRcrea GWAS of 1,508,659 individuals. X-axis is chromosomal 

location of SNP. Y-axis is strength of association -log10(p value, GWAS meta-analysis) 

(the scale is capped at 150). Lead SNPs for 878 independent loci are highlighted. Cyan 

represents loci overlapping or nearby (within 500kb or LD R2 > 0.001) previously reported 

sentinel variants, and red represents novel loci. Prioritized genes (score at least 3, in purple 

color) or closest genes (in black color) for the 126 novel loci are shown.
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b. Scatter plot of minor allele frequency and effect size (absolute) of lead variants from 878 

eGFRcrea GWAS loci. Cyan represents loci overlapping or nearby (within 500kb or LD R2 

> 0.001) previously reported sentinel variants, and red represents novel loci.

c. Human kidney eQTL Manhattan plot (n= 686 kidney samples). X-axis is chromosomal 

location of SNP. Y-axis is strength of eQTL association -log10(p value eQTL meta-analysis).

d. Enrichment of kidney specific eQTL SNPs to GWAS traits. X-axis is odds ratio and Y-

axis is strength of enrichment -log10(two-sided chi-square test p). Size of the dot represents 

the number of SNPs and colors represent the type of GWAS trait.
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Fig. 3. Robust identification of human kidney meQTL
a. Samples and analytical workflow for the meQTL analyses.

b. Manhattan plot of human kidney meQTL data (n=443). X-axis is chromosomal location. 

Y-axis strength of association -log10(two-sided p). The two-sided p value was calculated by 

linear regression meQTL model. Only meQTLs with p < 0.01 are shown in the Manhattan 

plot.

c. The strength of association (-log10(two-sided p), y-axis) of the best mSNPs (the lead 

meQTL for each mCpG) decreases with the increasing distance (x-axis) from the CpG sites.

d. Overlap of meQTL CpGs between kidney, blood, and skeletal muscle.
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e. Enrichment of tissue-specific meQTL CpGs in tissue enhancers. X-axis tissue enhancer, 

y-axis tissue meQTLs. The color shows the enrichment odds ratio from low (blue) to high 

(red), while the p-value (two-sided chi-square test) is listed in the box.
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Fig. 4. Methylation variation explains a larger fraction of GWAS heritability than gene 
expression variation
a. Schematic representation for estimation of heritability mediated by DNA methylation and 

gene expression using mediated expression score regression (MESC) analysis.

b. Estimated proportion of heritability (ℎ2
med/ℎ2

g) mediated by DNA methylation and gene 

expression in 414 kidneys across 34 GWAS traits. The y-axis represents ℎ2
med/ℎ2

g mediated 

by methylation, while the x-axis ℎ2
med/ℎ2

g mediated by expression. The color represents the 

type of the GWAS trait, error bars represent jackknife standard errors estimated for ℎ2
med/ℎ2

g

mediated by methylation and expression, respectively.

c. Estimated proportion of heritability (ℎ2
med/ℎ2

g) by multi-ancestry and European (only) 

ancestry datasets for kidney function GWAS traits (eGFRcrea, eGFRcys and BUN). The 
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x-axis represents ℎ2
med/ℎ2

g. For each bar plot, the center of error bar represents the value of 

ℎ2
med/ℎ2

g, and error bar represent jackknife standard error.

d. Estimated proportion of heritability mediated by meQTLs and eQTLs from kidney and 

other tissue for eGFRcrea GWAS (n = 421,531 UKBB individuals). The x-axis represents 

ℎ2
med/ℎ2

g, while the y-axis represents eQTL or meQTL data obtained from different tissues. 

meQTL data are shown in red and eQTL in blue. For each bar plot, the center of error 

bar represents the value of ℎ2
med/ℎ2

g, and error bar represents jackknife standard error. See 

estimates of ℎ2
med/ℎ2

g for other QTLs in Extended Data Fig. 6d.

e. Enrichment of kidney methylation-mediated heritability for kidney function GWAS traits 

(x-axis) in different ChromHMM regulatory elements (y-axis). White to red indicates ℎ2
med

enrichment (nominal two-sided p < 0.05 calculated by MESC). Asterisk indicates ℎ2
med

enrichment passing FDR q < 0.05 (accounting for 374 tests for 11 chromatin state CpG sets 

and 34 GWAS traits, Supplementary Fig. 7). TSS, transcription start site.

f. Enrichment of kidney methylation-mediated heritability (x-axis) for eGFRcrea GWAS (n 

= 421,531 UKBB individuals) in enhancers of different tissues (y-axis). For each bar plot, 

the center of error bar represents the enrichment score, and error bar represents jackknife 

standard error. Asterisk indicates ℎ2
med enrichment passing FDR q < 0.05 (accounting for 

4,352 tests for 128 enhancer CpG sets and 34 GWAS traits, Extended Data Fig. 7a).
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Fig. 5. Single cell chromatin accessibility map enables target cell type and gene prioritization for 
GWAS variants
a. Single cell resolution accessibility maps for 57,229 human kidney cells by snATAC-seq. 

The x-axis and y-axis represent t-SNE dimension 1 and 2, respectively. Each dot represents 

a cell and color represents cell type such as PT-S1–3: proximal tubule S1–3 segment, LOH: 

loop of Henle, DCT: distal convoluted tubule, PC: principal cell of collecting duct, IC: 

intercalated cell of collecting duct, Endo: endothelial cells, Podo: Podocyte, Immune cell, 

Lymph cells, and Stroma cell.
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b. Enrichment of kidney methylation-mediated heritability for kidney function GWAS traits 

(x-axis) in kidney cell type-specific accessible regions (y-axis). White to red indicates ℎ2
med

enrichment (nominal p < 0.05 calculated by MESC). Asterisk indicates ℎ2
med enrichment 

passing FDR q < 0.05 (accounting for 408 tests for 12 cell type CpG sets and 34 GWAS 

traits, Supplementary Fig. 8a).

c. Single cell GWAS trait enrichment in human kidney cells by gchromVAR. X-axis shows 

fine-mapped GWAS traits, and y-axis cell types. The single cell GWAS enrichment z-score 

mean value of all cells in each cell type is represented by blue (low) to red (high). See 

estimates for all 63 GWAS traits in Supplementary Fig. 8b.

d. Enrichment of eGFRcrea GWAS variants in kidney cell type-specific accessible regions. 

X-axis is odds ratio, and y-axis is strength of enrichment -log10(p value of two-sided 

chi-square test). Dot size represents the number of variants overlapping with differentially 

accessible regions in given cell type.

e. GWAS variant target genes prioritized by Cicero co-accessibility. Upper panel is 

schematic representation of target gene prioritization using Cicero connections. Lower panel 

indicates 1,024 target genes (x-axis) ordered by number of prioritized variants (y-axis).

f. Upper panel. LocusZoom plot of eGFRcrea GWAS associations (n = 1,508,659 

individuals) at the UMOD locus. Y-axis is strength of association -log10(p value calculated 

using z statistic from GWAS meta-analysis). The top variant (rs12917707) tagging the 

independent signal closest to UMOD was selected as the index variant to calculate LD (r2) 

with other variants, represented from low (blue) to high (red). Lower panel includes meQTL, 

eQTL, eGFRcrea GWAS variants, Cicero connections, snATAC-seq chromatin accessibility, 

histone modifications by ChIP-seq, and chromatin states.
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Fig. 6. Integrative analysis of epigenetic and gene expression data improves kidney disease target 
gene prioritization
a. Number of eGFRcrea GWAS independent loci showing colocalization across eGFRcrea 

GWAS, meQTL and eQTL. The x-axis showed different combination of colocalization types 

and the y-axis is number of loci with given colocalization types.

b. Venn diagram showing number of mCpGs and eGenes with different colocalization types 

across eGFRcrea GWAS, meQTL and eQTL.
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c. Manhattan plot highlighting 330 genes with evidence of multiple traits colocalization. The 

x-axis is chromosomal location of the SNP. The y-axis is strength of association -log10(p 
value calculated using z statistic from GWAS meta-analysis) (the scale is capped at 300). 

The color indicates different type of colocalizations; green: GWAS and methylation; purple: 

methylation and expression; blue: GWAS and expression; red: GWAS, methylation and 

expression.

d. Number of colocalization mCpGs and eGenes passing SMR and/or HEIDI tests in 

Mendelian randomization analysis across eGFRcrea GWAS, meQTL and eQTL.

e. Number of eGFRcrea GWAS independent loci prioritized based on different priority 

scores. The y-axis is number of independent loci including at least one prioritized gene with 

equal or higher priority score (number of supporting evidence) given on the x-axis. The list 

shows genes with priority score of 8.

f. Number of genes prioritized for eGFRcrea GWAS loci by priority score ≥ 3.

g. Fraction of variants targeting closest gene or distal gene (priority score ≥ 3). For each 

variant, its target gene is defined as the closest gene if the target gene’s transcript start site is 

the closest one to the variant.

h. Mouse kidney cell type expression enrichment of prioritized genes (priority score ≥ 3). 

The x-axis represented the odds ratio and the y-axis represented enrichment significance 

(-log10 of hypergeometric test p) for the prioritized genes and cell type-specific gene 

overlap.
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Fig. 7. Identification of SLC47A1 as a kidney disease risk gene
a. LocusZoom plots of GWAS (genotype and eGFRcrea association, n = 1,508,659), kidney 

CpG cg15971010 meQTL (genotype and cg15971010 methylation association, n = 443) and 

kidney SLC47A1 eQTLs (genotype and SLC47A1 expression association, n = 686). The 

y axis shows -log10(p) of association tests from GWAS, meQTL and eQTL. Highlighted 

variants are rs2252281 with top priority score and rs111653425 (a rare coding variant with 

MAF 1.1%) with top GWAS association.

b. Genotype (rs2252281, x-axis) and normalized CpG methylation (cg15971010, y-axis) 

association in human kidneys (n=443). Each dot represents a sample. Center lines show the 

medians; box limits indicate the 25th and 75th percentiles; whiskers extend to the 5th and 

95th percentiles. p value was calculated by linear regression meQTL model.

c. Genotype (rs2252281 x-axis) and normalized gene expression (SLC47A1, y-axis) 

association in human kidney tubule samples (n=356). Each dot represents a sample. Center 

lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend to 

the 5th and 95th percentiles. p value was calculated by eQTL meta-analysis in 686 samples.

d. Manhattan plot of phenome-wide association study of predicted loss-of-function (pLOF) 

variants in SLC47A1 in UKBB. The x-axis represents phenotypes ordered by p-value within 

each disease group and the y-axis the strength of association -log10(p) value calculated by 

linear regression PheWAS model. Blue line is p = 0.05 and red line is Bonferroni adjusted p 
= 0.05.

Liu et al. Page 50

Nat Genet. Author manuscript; available in PMC 2024 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. Slc47a1 loss confers kidney disease risk in mice
a. Experimental scheme of the cisplatin-induced kidney injury model in wild type 

(Slc47a1+/+) and Slc47a1 knockout (Slc47a1−/−) mice.

b. The relative expression of Slc47a1 (y-axis) in kidneys of Slc47a1+/+and Slc47a1−/− mice 

treated with cisplatin (Cis) or sham (CTR).

c. Serum creatinine levels (y-axis) in control or cisplatin treated Slc47a1+/+and Slc47a1−/− 

mice.

d. Serum BUN levels (y-axis) in control or cisplatin treated Slc47a1+/+and Slc47a1−/− mice.
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e. Representative image (left panel) and quantification (right panel) of Hematoxylin and 

eosin (H&E) stained kidney sections of control or cisplatin treated Slc47a1+/+and Slc47a1−/− 

mice. Scale bars: 20μm.

f. The relative expression of injury markers Lipocalin 2 (Ngal) and kidney injury molecule 1 

(Kim1) (y-axis) in kidneys of control or cisplatin treated Slc47a1+/+and Slc47a1−/− mice.

g. Representative image (left panel) and quantification (right panel) of Sirius red stained 

kidney sections of control or cisplatin treated Slc47a1+/+and Slc47a1−/− mice. Scale bar: 

20μm.

h. The relative expression of fibrosis markers; Collagen 1 (Col1a1) and Vimentin (Vim) in 

kidneys of control or cisplatin treated Slc47a1+/+and Slc47a1−/− mice.

i. Representative western blot image (top panel) and quantification (bottom panel) 

of Receptor interacting serine/threonine kinase 3 (RIPK3), NLR family pyrin domain 

containing 3 (NLRP3), Actin alpha 2 (aSMA) in kidney of control or cisplatin treated 

Slc47a1+/+and Slc47a1−/− mice. GAPDH was used as a control.

j. Relative expression of markers of inflammation; Chemokine ligand 2 (Ccl2) and Tumor 

necrosis factor (Tnfa) in kidneys of control or cisplatin treated Slc47a1+/+and Slc47a1−/− 

mice.

k. Relative expression of cell death and inflammation marker genes; Receptor interacting 

serine/threonine kinase 1 (Ripk1), Ripk3 and Mixed lineage kinase domain like 

pseudokinase (Mlkl) in kidney from Slc47a1+/+and Slc47a1−/− mice treated with or without 

repeated cisplatin.

P values were calculated by one-way ANOVA with post hoc Tukey test (b-k, n=4 

biologically independent Slc47a1+/+ cisplatin mice examined over n=3 independent 

Slc47a1+/+ control; n=5 biologically independent Slc47a1−/− cisplatin mice examined over 

n=4 independent Slc47a1+/+ cisplatin mice). n.s., not significant. Quantitative data are 

presented as mean ± SD.
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