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SUMMARY
The development of state-of-the-art algorithms for computer visualization has led to a growing interest in
applying deep learning (DL) techniques to the field of medical imaging. DL-based algorithms have been
extensively utilized in various aspects of cardiovascular imaging, and one notable area of focus is single-
photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI), which is regarded
as the gold standard for non-invasive diagnosis of myocardial ischemia. However, due to the complex deci-
sion-making process of DL based on convolutional neural networks (CNNs), the explainability of DL results
has become a significant area of research, particularly in the field of medical imaging. To better harness the
potential of DL and to be well prepared for the ongoing DL revolution in nuclear imaging, this review aims to
summarize the recent applications of DL in MPI, with a specific emphasis on the methods in explainable DL
for the diagnosis and prognosis of MPI. Furthermore, the challenges and potential directions for future
research are also discussed.
INTRODUCTION

Ischemic heart disease (IHD) accounts for the largest proportion

of cardiovascular disease globally and has the highest age-stan-

dardized disability-adjusted life years at 2,275.9 per 100,000

people.1 Given the prevalence and impact of IHD, early diag-

nosis and effective management strategies are crucial for

improving patient outcomes and alleviating the burden on

healthcare economies.2 Single-photon emission computed

tomography (SPECT) myocardial perfusion imaging (MPI) is

considered the gold standard for non-invasive diagnosis of

myocardial ischemia, and it has shown potential for predicting

outcomes in patients with IHD.3 However, the semi-quantitative

limitations of MPI measurements and the presence of image ar-

tifacts, such as liver interference, have contributed to a decrease

in the diagnostic accuracy of MPI, particularly for detecting

balanced and subtle myocardial ischemia. Additionally, perfu-

sion positron emission tomography (PET) MPI is currently used

more for scientific research as it is limited by its high price and

short nuclide half-life.

Deep learning (DL) was initially introduced by Hinton et al.4 in

2006, showcasing its ability to automatically learn complex and

high-dimensional information through the utilization of multi-

layer non-linear convolutional neural networks (CNNs). This
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breakthrough opened up new avenues in the field of medical im-

aging and was initially applied in radiomics, where it showed

excellent performance especially in the detection of tumor

heterogeneity, and was later widely used in radiology, including

image reconstruction, accurate segmentation, and assisted

diagnosis.5 Currently, DL has shown a greater potential in

improving MPI diagnosis and prognosis.6 In order to help clini-

cians to better understand and apply the results of DL and to

be prepared for the ongoing DL revolution in cardiovascular im-

aging, this review summarizes and discusses the main clinical

applications of DL in MPI, including the diagnosis of myocardial

ischemia, prognosis prediction, and image attenuation correc-

tion (AC). Moreover, the challenges and potential directions of

DL for future MPI from a clinical perspective are discussed.

SEARCH STRATEGY

In conducting the systematic literature review, a three-step pro-

cess was employed, consisting of research question identifica-

tion, literature search, and review analysis. Initially, the research

question was established, and a review protocol was developed

that specified the database sources and search terms. In the

second step, the literature was collected and filtered in accor-

dance with the review protocol. Finally, the selected literature
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was analyzed to extract and synthesize the data necessary to

address the research question, and the results of the review

were documented.

Research questions
The primary aim of this review is to evaluate the diagnostic and

prognostic applications of DL in MPI for ischemic heart disease.

Additionally, the review explores the indicators involved and

their applications. This synthesis of current studies serves as a

foundation for further investigation into future challenges and po-

tential research directions. Consequently, we formulated the

following three research questions.

(1) What specific DL neural network or model was em-

ployed?

(2) Which MPI features and clinical variables were integrated

into the DL models?

(3) How can the results generated by DL be utilized to diag-

nose myocardial ischemia and predict prognosis in MPI?

In our review of the literature, we adopted a focused approach,

ensuring that each article addressed the aforementioned ques-

tions. We present a synthesis of the collected data to provide a

comprehensive overview of the findings.

Search sources and terms
Three prominent scientific databases PubMed, Scopus, and

Google Scholar, as well as additional methods, were utilized

for data extraction. The search strategy incorporated medical

subject headings (MeSH) and text terms in the following cate-

gories: (1) ‘‘deep learning,’’ ‘‘deep network,’’ ‘‘artificial intelli-

gence,’’ ‘‘convolutional neural network,’’ and ‘‘artificial neural

network’’ related to research methodology; (2) ‘‘nuclear medi-

cine,’’ ‘‘SPECT,’’ and ‘‘myocardial perfusion imaging’’ pertaining

to the medical field; (3) ‘‘coronary artery disease,’’ ‘‘cardiovascu-

lar,’’ ‘‘myocardial,’’ ‘‘heart,’’ and ‘‘cardiac’’ concerning the dis-

eases studied. Original research literature examining the diag-

nostic and prognostic applications of DL in MPI was screened.

Search String in PubMed and Google Scholar: ((deep learning)

OR (deep network) OR (artificial intelligence) OR (convolutional

neural network) OR (artificial neural network)) AND ((SPECT)

OR (myocardial perfusion imaging) OR (nuclear medicine)) AND

((coronary artery disease) OR (cardiovascular) OR (myocardial)

OR (heart) OR (cardiac)).

Search String in Scopus: (TITLE-ABS-KEY ((‘‘deep learning’’)

OR (‘‘deep network’’) OR (‘‘artificial intelligence’’) OR (‘‘convolu-

tional neural network’’) OR (‘‘artificial neural network’’)) AND

TITLE-ABS-KEY ((‘‘SPECT nuclear medicine’’) OR (‘‘myocardial

perfusion imaging’’) OR (‘‘nuclear medicine’’)) AND TITLE-ABS-

KEY ((‘‘coronary artery disease’’) OR (‘‘myocardial’’) OR (‘‘cardio-

vascular’’) OR (‘‘cardiac’’) OR (‘‘heart’’))).

Eligibility criteria
This study focused on the application of DL for the diagnosis and

prognostic prediction of myocardial ischemia in MPI. Following

the completion of title checks, a set of inclusion and exclusion

criteria was applied to all sections of the abstract and full text

during the review process. Papers that met the following criteria
2 iScience 27, 111374, December 20, 2024
were deemed eligible for review: (1) published in peer-reviewed

journals, (2) utilizing DL as the primary research method, (3) em-

ploying myocardial perfusion images obtained from SPECT as

the primary research device, (4) aiming to enhance diagnostic

or prognostic efficacy in patients with IHD, (5) written in English,

and (6) published between 2017 and July 2024 to ensure the in-

clusion of the most recent data. Literature that failed to provide a

clear number of cases, as well as conference proceedings and

expert opinions, was excluded.

A secondary search was conducted bymanually reviewing the

literature sections of relevant studies, which were limited to

those with available full texts. For studies lacking full texts,

authors were contacted; however, if the authors did not respond

or were unable to provide the full texts, these studies were

excluded from consideration. Search queries were constructed

to incorporate the aforementioned terms in the titles of the

articles.

Literature collection
Literature searches were conducted by employing specific

search strings for each database, resulting in numerous publica-

tions responding to these queries. Search results for each

database were evaluated against established eligibility criteria.

During the initial screening, literature published prior to 2017

and duplicates were excluded. Each article was assessed based

on its title and abstract to determine eligibility for inclusion or

rejection, leading to a reduction in the number of documents to

179. The subsequent screening phase involved a thorough re-

view of the text and the availability of full-text content, ultimately

leading to the selection of 26 studies for inclusion in this literature

review. This systematic review was performed in accordance

with the guidelines established by PRISMA (Preferred Reporting

Items for Systematic Reviews and Meta-Analyses).7 The

QUADAS-2 tool is used to measure the risk of bias in the con-

ducted studies. The entire process is illustrated in Figures 1

and 2.

DL DIAGNOSTIC EVALUATION FOR MYOCARDIAL
ISCHEMIA

DL models can capture and learn intricate patterns within MPI

images, facilitating the identification of myocardial abnormal-

ities. Most models were trained with polar maps and compared

with total perfusion deficit (TPD), which is the degree of myocar-

dial ischemia as a percentage of left ventricular myocardium.8

Table 1 summarizes the application of DL in MPI diagnosis.

DL diagnostic models
The DL model with integrated polar maps is superior to conven-

tional TPD for the diagnosis of myocardial ischemia. Betancur

et al.17 trained DL models with stress-only raw and blackout po-

lar maps to predict the probability of obstructive stenosis from a

multi-center registry. And the clinically relevant variable gender11

was included in the model. The area under the curve (AUC) of the

DL outperformed TPD (per patient: 0.80 vs. 0.78; per vessel:

0.76 vs. 0.73, p < 0.01). Clinicians commonly combine upright

and supine images to improve the diagnostic accuracy of MPI.

Later, Betancur et al.13 used the same DL network to combine



Figure 1. Search strategy and eligibility criteria

iScience
Review

ll
OPEN ACCESS
upright and supine stress-only polar maps to predict obstructive

stenosis. A similar result was achieved, as the DL model-pre-

dicted obstructive disease outperformed combined TPD (AUC

per patient: 0.81 vs. 0.78; per vessel: 0.77 vs. 0.73, p < 0.001).

Besides polar maps being used for DL diagnostic models, the

cardiac axial images have also been used. MPI cardiac axial

images include short-axis (SA), horizontal long-axis (HLA), and

vertical long-axis (VLA). And the polar map is generated by the

projection of a multilayer SA images onto a two-dimensional

plane. Subsequently, Liu et al.18 trained the ResNet-34 network

with stress-only MPI cardiac axial images from a large sample

study enrolling 37,243 patients to identify myocardial ischemia.

In addition, 6 clinically relevant clinical characteristics (including

gender, body mass index, length, stress type, radiotracer and

AC) were incorporated into the model. The results showed that

the DL model identified myocardial perfusion abnormalities out-

performed TPD (AUC 0.87 vs. 0.84, p < 0.01). Furthermore, the

study referred that DL networks with cardiac axial maps per-

formed slightly better than that with polar maps, which may be

related to the semi-quantitative measures of the blackout

polar maps.

Traditionally, stress MPI images have been assumed to pro-

vide more valuable information about myocardial perfusion

compared to rest images. However, studies suggested that pa-

tients with normal stress MPI results can still exhibit myocardial

ischemia, which may be attributed to abnormalities in rest

myocardial blood perfusion.14 Simultaneous evaluation of both

images may improve the detection of myocardial ischemia. Ber-

kaya et al.19 trained both DL-based and knowledge-based clas-
sificationmodels with rest and stressMPI cardiac axial images to

identify myocardial ischemia. The results indicated that those

two models respectively achieved 94% and 93% diagnostic

accuracy, compared to two experts’ diagnosis. Later, Wang

et al.9 trained ResNet18 model with rest and stress MPI cardiac

axial images to identify myocardial ischemia. The results

presented the model diagnosis of myocardial perfusion abnor-

malities with AUC above 0.95. Recently, Papandrianos et al.16

trained RGB-CNN model with rest and stress MPI images to

identify myocardial perfusion ischemia and infarction. The

results suggested that the model diagnostic accuracy was

91.86% compared to the physician’s diagnosis.

Explainable DL diagnostic models
Since the decision-making process of DL networks is sophisti-

cated and obscure, DL is often considered a ‘‘black box’’ and

its explainability is crucial to broaden its clinical applications.

Otaki et al.10 trained a coronary artery disease (CAD)-DL model

to diagnose obstructive CAD using 3 polar maps, which included

stressmyocardial perfusion, motion, and thickeningmaps. Addi-

tionally, 3 clinically relevant variables (including LV volume, age,

and sex) were included in the model. The findings revealed that

CAD-DL diagnosis of myocardial ischemia outperformed both

TPD and physician diagnosis (AUC 0.83 vs. 0.78 vs. 0.71,

p < 0.001). Remarkably, the investigators generated a ‘‘CAD

attention map’’ based on gradient-weighted class activation

mapping (Grad-CAM), which can visualize the underlying princi-

ples of CAD-DL prediction. The principle of Grad-CAM involves

calculating the weights of each channel by performing global
iScience 27, 111374, December 20, 2024 3



Figure 2. The risk of bias of the conducted studies was measured using the QUADAS-2 tool

The risk of bias shown in the figure above indicates the number and percentage of studies with a high (red), medium (yellow), and low (green) risk of bias for each of

the four groups QUADAS-2 tool.
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Table 1. Clinical applications of DL in MPI diagnosis

Authors Year Total N Site(s) DL Input variables Comparison Evaluation

Nathalia Spier et al. 2019 946 1 GCNNs rest and stress polar maps human observer agreement 83.1%

Mehdi Amini et al. 2023 395 1 classification rest and stress MPI radiomics

features, clinical features

no CAD vs. CAD, and

low-risk/high-risk CAD

AUC 0.61 vs. 0.79

Ting-Yi Su et al. 2023 694 1 3D-CNN resting-state images SSS, SDS, and SRS accuracy 87.08%

sensitivity 86.49%

specificity 87.41%

Ioannis D.

Apostolopoulos et al.

2021 566 1 CNNs AC and NAC polar maps,

clinical data

medical expert accuracy 79.15%

sensitivity 89.17%

specificity 71.20%

Papandrianos et al.9 2022 842 1 RGB-CNN SA, HLA, and VLA images VGG-16 and DenseNet-

121 model

accuracy

88.54% and 86.11%

R Rahmani et al. 2019 923 1 ANN stress and rest polar plots,

age, gender, and the

number of risk factors

result of angiography,

obstructive CAD, and

Gensini score

accuracy

92.9% vs. 85.7%

vs. 92.9%

Papandrianos et al.9 2022 314 1 RGB-CNN,

VGG-16

stress and rest polar

maps in AC and NAC

format

TPD accuracy

92.07% vs. 95.83%

Betancur et al.8 2018 1,638 9 Deep CNN raw and quantitative

polar maps

TPD AUC per patient 0.80 vs. 0.78

per vessel 0.76 vs. 0.73

Otaki et al.10 2022 3,578 5 CNNs stress myocardial perfusion,

wall motion, and wall thickening

maps; left ventricular volumes,

age, and sex

TPD and physician

diagnosis

AUC

0.84 vs. 0.78 vs. 0.71

Betancur et al.11 2019 1,160 4 Deep CNN upright and supine polar

MPI maps

combined TPD AUC

per patient 0.81 vs. 0.78

per vessel 0.77 vs. 0.73

Miller et al.12 2022 240 1 Deep CNN stress myocardial perfusion, wall motion,

and wall thickening

maps; left ventricular volumes,

age, and sex

physician interpretation

without CAD-DL and TPD

AUC

0.78 vs. 0.75 vs. 0.72

Kenichi Nakajima

et al.

2017 1,001 12 ANN stress, rest, and difference

features

SSS, SDS, and SRS AUC

SSS 0.92 vs. 0.82

SDS 0.90vs 0.75

SRS 0.97vs 0.91

Liu et al.13 2021 37,243 1 Deep CNN stress-only circumferential

count profile maps, gender,

BMI, length, stress type, radio

tracer, and the AC option

quantitative defect size (DS) AUC 0.87 vs. 0.84

Berkaya et al.14 2020 192 1 DNNs SA, HLA, and VLA slices two expert readers accuracy 94%

sensitivity 88%

specificity 100%

Teuho et al.15 2024 138 1 Deep CNN PET-CT, CTA, and clinical data ICA AUC 0.85

Kusumoto et al.16 2024 5,443 1 3D-CNN SA, HLA, and VLA images;

age and sex

medical expert accuracy 88%
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Figure 3. Otaki et al. trained a CAD-DL model: the raw myocardial perfusion, wall motion, and thickening images are input to the deep

learning model ‘‘CAD-DL’’
Remarkably, the investigators generated a ‘‘CAD probability map’’ based on gradient-weighted class activation mapping (Grad-CAM). For example, the CAD

probability map in the figure indicates a high likelihood of CAD, particularly in the inferior and proximal lateral walls, which contribute to the prediction. This finding

suggests a significant probability of obstruction in the right coronary artery, potentially with a gyratory branch.
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average pooling on the gradients of the final convolutional layer.

These weights are then used to weight the feature maps, result-

ing in the generation of a class activation map. This technique

effectively visualizes which parts of the deep network contribute

most significantly to the prediction results, thereby enhancing

the explainability and visual clarity of the decision-making

process within neural networks. The information in the CAD

attention map is used to identify the corresponding segments

and classify the probability of obstructive CAD, which is dis-

played as a ‘‘CAD probability map.’’ By visualizing the regions

and probability of obstructive CAD, explainable DL assists the

physician in assessing the relationship between the CAD-DL out-

comes and the images. The researchers used attention maps to

accentuate the left ventricular region, which aided the physi-

cian’s prediction. The entire process is illustrated in Figure 3.

DL has high independent diagnostic accuracy for obstructive

CAD, but its impact on physician diagnosis is unclear. Miller
6 iScience 27, 111374, December 20, 2024
et al.12 assessed whether obtaining explainable DL outcomes

improved physician diagnosis based on the previous CAD-DL

model. And it suggested that physicians with CAD-DL had a

higher diagnostic accuracy compared to both physicians

without CAD-DL and stress TPD (AUC 0.78 vs. 0.75 vs. 0.72,

p < 0.001). This suggests that DL has the potential to aid clini-

cians in their decision-making process. Furthermore, since the

CAD-DL training cohort is at high risk of myocardial infarction

(MI), disease probability may be overestimated owing to selec-

tion bias. Consequently, Miller et al.20 evaluated different popu-

lations to train DL models to improve the accurate estimation of

disease probability. The researchers approached amore real-life

probability of disease by adding patients with a low likelihood of

CAD (LLK) to the training cohort of the CAD-DL model. The find-

ings indicated that the diagnostic performance of the model with

LLK patients outperformed TPD (AUC 0.93 vs. 0.90, p < 0.01),

especially in female patients.



Table 2. Clinical applications of DL in MPI prognosis

Authors Year Total N Site(s) AI method Input variables Predicted outcome Comparison Evaluation

Singh et al.24 2023 20,401 5 HARD-

MACE-DL

perfusion, motion,

thickening, phase

amplitude, and

phase angle polar

maps; age, sex,

and cardiac

volumes

all-cause mortality

or non-fatal MI

logistic regression,

stress TPD, and

ischemic TPD

AUC

0.73 vs. 0.70 vs.

0.65 vs. 0.63

Pieszko et al.25 2023 20,418 5 DL 5 SPECT polar

maps and 15

clinical features

all-cause death, ACS,

revascularization

MACEs AUC 0.76 vs. 0.78
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In the inevitable future of multimodal image analysis, espe-

cially for cardiac imaging, the integration of anatomical and func-

tional cardiac imaging will be beneficial for future clinician

research. Recently, Teuho et al.15 applied the DL technique, inte-

grating 15O–H2O perfusion PET computed tomography (PET/CT)

and coronary CT angiography (CTA) imaging, as well as clinical

variables to detect myocardial ischemia. In addition, the DL

model was applied to Grad-CAM and Shapley additive explana-

tions (SHAP), which highlight the variables that contribute most

to prediction, providing a basis for subjective application of

results by clinicians. Overall, this study provides further evidence

that multimodal AI can increase confidence in myocardial

perfusion image analysis. It is worth noting that as multimodal

AI approaches become more complex and integrate wider ar-

rays of data, DL models will need to utilize sophisticated

methods to measure the accuracy of the inputs and consider

the time it takes to merge the inputs.

In practical clinical diagnosis of IHD, the characterization and

localization of myocardial ischemia are crucial. The location of

myocardial ischemia identified through MPI corresponds to the

stenosis in the relevant coronary artery branch. To enhance clini-

cians’ efficiency in utilizing this information, it is essential that the

localization of myocardial ischemia is explainable, especially

considering the black-box nature of DL models. Grad-CAM ad-

dresses this challenge by visualizing which parts of the DL model

contribute to the prediction results. Furthermore, given the

heterogeneity among patients, it is vital for clinical practice to

incorporate demographic and medical history features—such as

gender, age, and family history of coronary heart disease—into

the diagnostic process. This integration enables a more nuanced

understanding of how each feature influences model predictions,

which can be assessed using SHAP values for each variable. By

combining Grad-CAM with SHAP values, clinicians can perform

individualized diagnoses of myocardial ischemia. This approach

allows for a comprehensive analysis that integrates both the local-

ization of myocardial ischemia and relevant clinical features, ulti-

mately improving diagnostic accuracy.

EXPLAINABLE DL PROGNOSTIC MODELS

In clinical practice, cardiovascular risk stratification is typically

conducted using visual assessment and quantitative analysis

ofMPI. However, it is important to recognize that relying on these

two assessmentsmay overlook other clinical risk factors.21,22 DL
has the potential to revolutionize the prognosis of MPI by

integrating MPI images with prognostic variables to provide ac-

curate probabilities of adverse cardiovascular events.23 This

innovative approach is expected to assist physicians in strati-

fying the management and delivering precise treatment to pa-

tients with IHD, ultimately reducing the incidence of adverse

prognoses. Table 2 lists the applications of DL in MPI prognosis.

MPI has been proven to have prognostic value in predicting

major adverse cardiovascular events (MACEs), but making ac-

curate and individualized predictions is challenging. Singh

et al.24 trained an interpretable DL model (HARD-MACES-DL)

to predict death and non-fatal MI using 5 polar maps, which

include stress myocardial perfusion, motion, thickening, as well

as phase amplitude and angle. Gender, age, and heart volume

were also incorporated in themodel. The predictive performance

of the model outperformed stress TPD and ischemic TPD (AUC

0.73 vs. 0.65 vs. 0.63, p < 0.01). The researchers used attention

maps to accentuate the left ventricular region, which aided the

physician’s prediction. To quantify the weight of the input polar

maps, SHAP values assign predicted significance values to

each feature. SHAP is a model interpretation method grounded

in game theory. It assigns an explanatory score to each feature

by quantifying its contribution to themodel’s predicted outcome.

This approach not only aids in understanding the rationale

behind the model’s predictions but also offers an intuitive expla-

nation of the predicted results. These methods promote explain-

able outcomes, identifying important regions of imaging and the

significance of features to be more fully assessed by physicians.

The entire process is illustrated in Figure 4.

DL can make accurate predictions individually; however, it is

more challenging to personalize predictions for specific event

types with temporal dependencies. Recently, Pieszko et al.25

trained a DL model to predict the time-specific risk of all-cause

mortality, acute coronary syndrome (ACS), and revasculariza-

tion. It incorporated the same 5 polar maps and additional 15

clinical features from 20,418 patients. The findings indicated

the best model for predicting ACS and all-cause with AUC values

of 0.76 and 0.78 (p < 0.001), respectively. What’s more, the

waterfall charts generated from the SHAP values were used to

visually explain the clinical variables that individualize the risk

of specific events over time. It may enable physicians to achieve

precision medicine through personalized treatment and preven-

tive measures, which helps physicians and patients make deci-

sions together.
iScience 27, 111374, December 20, 2024 7



Figure 4. Pieszko et al. trained a DLmodel: deep learning enabled time-to-event outcome prediction after cardiac imaging – Study overview

In this case, (C) illustrates the application of SHAP diagrams. The performance of the model (left) was analyzed using the cumulative dynamic cAUC. (A), (B), and

(C) in the upper left corner of the image represent the serial numbers of the figure. Red lines represent time-to-event models, while blue lines indicate perfusion

abnormalities. The interpretation of predictions is visualized as a waterfall plot, with blue arrows denoting features that reduce risk and red arrows indicating

features that increase risk (right). Abbreviations used in this context include ACS, AUC, TPD, PCI (percutaneous coronary intervention), and CI (confidence

interval).
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Factors influencing prognosis, along with the effects of adjust-

ing for various variables, have gained significant attention in clin-

ical practice when analyzing outcomes for patients with IHD.

Waterfall plots, generated from SHAP values, effectively illus-

trate how specific characteristics may increase or decrease

the risk of particular events for individual patients. Furthermore,

the Individual Conditional Expectation approach enables the ex-

amination of the specific impact of variable characteristics on
8 iScience 27, 111374, December 20, 2024
model predictions, allowing clinicians to observe how changes

in individual observations affect predicted values. This insight

provides a valuable foundation for understanding DL results

and facilitating appropriate interventions regarding patients’

risk factors. Finally, time-to-event modeling can be employed

to proactively reduce the likelihood of adverse events by assess-

ing the probability of specific occurrences over time on an indi-

vidual level.
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OTHER APPLICATIONS

Improving the quality of MPI images is crucial for enhancing

diagnostic efficacy. One of the primary challenges in MPI image

quality is soft tissue attenuation, which often results from

anatomical structures such as the diaphragm, breast tissue, or

obesity.26,27 These factors can introduce artifacts and distor-

tions that may impede accurate interpretation of the images.

To address this issue, tissue AC techniques have been devel-

oped to improve the diagnostic accuracy of MPI, and one com-

mon AC method is the use of integrated computed tomography

(CT) scans. But most cardiac devices do not have integrated CT.

Shi et al.28 developed a deep CNN for AC. DL-based AC images

corresponded with CT-based AC images in terms of qualitative

and quantitative results. Yang et al.29 utilized DL for directly per-

forming AC. DL-AC significantly reduces attenuation artifacts

compared to CT-AC. Later, Chen et al.30 further investigated

both indirect and direct AC method. The indirect method gener-

ates attenuation maps (m-maps) from emission images, while the

direct method predicts AC images directly from non-attenuation

corrected (NAC) images without m-maps. The results suggested

that the indirect method showed superior AC performance than

the direct method. More recently, Shanbhag et al.31 illustrated

that the DL-AC TPD and CT-AC TPD had high concordance in

IHD diagnosis (AUC 0.79 vs. 0.81). It is notable that the DL-AC

effect was not consistent between participants, thus further

studies are necessary to improve the stability of the model.

CHALLENGESANDFUTUREDIRECTIONS FORDL INMPI

Challenges
The accuracy and generalizability of DL models pose challenges

to the broader clinical applications of DL in MPI. These chal-

lenges arise from several factors, including differences in MPI

equipment and acquisition processes across organizations and

variations in image quality due to differences in visual and

manual interpretation during post-processing quality control.

Another challenge lies in the selection of the training population

for DL models, which often consists of individuals at high risk of

IHD. This biased selection may result in an overestimation of dis-

ease prevalence and may not accurately represent the broader

population. Furthermore, one of the challenges in the application

of DLmodels is the variability in diagnostic criteria and the selec-

tion of adverse cardiovascular prognostic outcomes. The ability

to effectively apply DL models to specific clinical situations can

be quite challenging. In the future, the development and valida-

tion of DL models for diagnostic and prognostic prediction of

MPIwould greatly benefit from large-scale, multicenter datasets.

These datasets would enable a comprehensive assessment of

the validity and stability of DLmodels in different clinical settings.

The generalizability of DL models can be enhanced by collect-

ing a broader range of data through multicenter clinical studies.

Additionally, new domain adaptation techniques, such as trans-

fer learning, enable models to adjust effectively to data from

different environments. Secondly, the explainability of DL

models is critical for clinicians to understand the underlying ratio-

nale behind themodel’s decisions. This can be achieved through

explainable tools like SHAP and LIME, as well as by establishing
a transparent model-building process that combines rule-

based models with more complex algorithms, making the

prediction results easier to comprehend. Regarding clinical inte-

gration, the adoption of DL technology can be expedited by

training healthcare professionals in AI-related topics, equipping

them with the necessary skills to effectively utilize these innova-

tive tools.

Future directions
With the rapid development of high-information imaging technol-

ogy, DL-based multi-omics big data have opened up new

possibilities for precise analysis. This presents a significant op-

portunity for transitioning the modern paradigm of precision

medicine. In the future, DL technology may jointly analyze MPI

images with serological markers and metabolomics markers,

enabling the prediction of micro-metabolism from macro-im-

ages in cardiovascular diseases. Moreover, it may also combine

with bioinformatics databases; it becomes possible to analyze

newbiomarkers and identify different subtypes of cardiovascular

diseases. This connection between basic research and clinical

applications in nuclear cardiology allows for a more comprehen-

sive understanding of cardiovascular diseases and their underly-

ing mechanisms. It can also combine with bioinformatics data-

bases to analyze new biomarkers and cardiovascular disease

subtypes, connecting basic research and clinical applications

in nuclear cardiology. By identifying patients at high risk for

CAD at the genetic and metabolic level, we may achieve primary

prevention and provide appropriate interventions to reduce the

incidence of CAD at its source. Additionally, implementing risk

stratification for patients with CAD can facilitate precision

medicine by analyzing how patients’ responses to mitigating

risk factors, such as smoking cessation, and enhancing positive

factors, such as increased physical activity, can lower the likeli-

hood of adverse cardiac events. This approach aims to improve

patient motivation and allows for real-time adjustments to treat-

ment strategies, ultimately enhancing the quality of life for pa-

tients with CAD. Achieving a precise diagnosis and prognostic

management of cardiovascular diseases can assist physicians

in providing appropriate interventions to reduce the incidence

of adverse cardiovascular events.

CONCLUSION

In conclusion, the application of DL in MPI has demonstrated

significant potential in enhancing the efficiency and quality of

diagnosis and prognosis, and it mainly includes (1) improving

the diagnostic efficacy of myocardial ischemia, (2) providing

accurate prognostic predictions for patients with IHD, and

(3) increasing image quality such as image AC. With the

assistance of DL technology, clinicians can achieve significant

economic and health benefits through early diagnosis of

CAD, as well as during prognostic assessment, adjustment

of treatment strategies, and enhancement of patient out-

comes. Physicians should proactively adapt to these changes

and approach the results of DL with a cautious attitude and a

commitment to continuous learning. They should aim to maxi-

mize the benefits of DL technology in improving patient diag-

nosis and prognosis.
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