Skip to main content
. 2024 Nov 12;27(12):111374. doi: 10.1016/j.isci.2024.111374

Table 1.

Clinical applications of DL in MPI diagnosis

Authors Year Total N Site(s) DL Input variables Comparison Evaluation
Nathalia Spier et al. 2019 946 1 GCNNs rest and stress polar maps human observer agreement 83.1%
Mehdi Amini et al. 2023 395 1 classification rest and stress MPI radiomics features, clinical features no CAD vs. CAD, and low-risk/high-risk CAD AUC 0.61 vs. 0.79
Ting-Yi Su et al. 2023 694 1 3D-CNN resting-state images SSS, SDS, and SRS accuracy 87.08%
sensitivity 86.49%
specificity 87.41%
Ioannis D. Apostolopoulos et al. 2021 566 1 CNNs AC and NAC polar maps, clinical data medical expert accuracy 79.15%
sensitivity 89.17%
specificity 71.20%
Papandrianos et al.9 2022 842 1 RGB-CNN SA, HLA, and VLA images VGG-16 and DenseNet-121 model accuracy
88.54% and 86.11%
R Rahmani et al. 2019 923 1 ANN stress and rest polar plots, age, gender, and the number of risk factors result of angiography, obstructive CAD, and Gensini score accuracy
92.9% vs. 85.7% vs. 92.9%
Papandrianos et al.9 2022 314 1 RGB-CNN, VGG-16 stress and rest polar maps in AC and NAC format TPD accuracy
92.07% vs. 95.83%
Betancur et al.8 2018 1,638 9 Deep CNN raw and quantitative polar maps TPD AUC per patient 0.80 vs. 0.78
per vessel 0.76 vs. 0.73
Otaki et al.10 2022 3,578 5 CNNs stress myocardial perfusion, wall motion, and wall thickening maps; left ventricular volumes, age, and sex TPD and physician diagnosis AUC
0.84 vs. 0.78 vs. 0.71
Betancur et al.11 2019 1,160 4 Deep CNN upright and supine polar MPI maps combined TPD AUC
per patient 0.81 vs. 0.78
per vessel 0.77 vs. 0.73
Miller et al.12 2022 240 1 Deep CNN stress myocardial perfusion, wall motion, and wall thickening maps; left ventricular volumes, age, and sex physician interpretation without CAD-DL and TPD AUC
0.78 vs. 0.75 vs. 0.72
Kenichi Nakajima et al. 2017 1,001 12 ANN stress, rest, and difference features SSS, SDS, and SRS AUC
SSS 0.92 vs. 0.82
SDS 0.90vs 0.75
SRS 0.97vs 0.91
Liu et al.13 2021 37,243 1 Deep CNN stress-only circumferential count profile maps, gender, BMI, length, stress type, radio tracer, and the AC option quantitative defect size (DS) AUC 0.87 vs. 0.84
Berkaya et al.14 2020 192 1 DNNs SA, HLA, and VLA slices two expert readers accuracy 94%
sensitivity 88%
specificity 100%
Teuho et al.15 2024 138 1 Deep CNN PET-CT, CTA, and clinical data ICA AUC 0.85
Kusumoto et al.16 2024 5,443 1 3D-CNN SA, HLA, and VLA images; age and sex medical expert accuracy 88%