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Prime editors are CRISPR-based genome engineering tools
with significant potential for rectifying patient mutations.
However, their usage requires experimental optimization of
the prime editing guide RNA (PegRNA) to achieve high editing
efficiency. This paper introduces the deep transformer-based
model for predicting prime editing efficiency (DTMP-Prime),
a tool specifically designed to predict PegRNA activity and
prime editing (PE) efficiency. DTMP-Prime facilitates the
design of appropriate PegRNA and ngRNA. A transformer-
based model was constructed to scrutinize a wide-ranging set
of PE data, enabling the extraction of effective features of
PegRNAs and target DNA sequences. The integration of these
features with the proposed encoding strategy and DNABERT-
based embedding has notably improved the predictive capabil-
ities of DTMP-Prime for off-target sites. Moreover, DTMP-
Prime is a promising tool for precisely predicting off-target
sites in CRISPR experiments. The integration of a multi-head
attention framework has additionally improved the precision
and generalizability of DTMP-Prime across various PE models
and cell lines. Evaluation results based on the Pearson and
Spearman correlation coefficient demonstrate that DTMP-
Prime outperforms other state-of-the-art models in predicting
the efficiency and outcomes of PE experiments.

INTRODUCTION
Prime editing (PE)1 is a cutting-edge gene editing technology that
represents a significant advancement over the CRISPR-Cas9 system.
This innovative tool allows for the precise modification of DNA by
facilitating a wide range of base transitions and transversions, as
well as enabling the targeted insertion of custom sequences (up to
44 nucleotides [nt]) and deletions (up to 80 nt).1

Multiple PE systems are available, including PE1, PE2, PE3, PE3b,
PEmax, and ePPE (engineered plant prime editor) editors.2 The
only difference between PE1 and PE2 is the Moloney murine leuke-
mia virus reverse transcriptase fused to the Cas9 enzyme. hyPE2 is
a more efficient variant of PE2, which adds the Rad51 DNA-binding
domain to PE2. The PE3 system uses nick gRNA (ngRNA), which in-
troduces the non-edited strand to increase the editing efficiency. PE3b
is a modification of PE3, in which a single guide RNA (sgRNA) is de-
signed to bind only the edited DNA sequence. To further improve the
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PE3b system, an ngRNA spacer is designed to match the edited se-
quences so that it only binds to the edited DNA sequences. Further-
more, protein optimization resulted in PEmax architecture, which
enhanced editing efficiency.2 The ePPE is based on PPE (plant prime
editor) but removes RT’s RNase H domain and incorporates a viral
nucleocapsid protein.

Despite its great potential, PE technology is still in its infancy and re-
quires the overcoming of several limitations to fully realize its capabil-
ities. A significant constraint of PE is its low editing efficiency.3 To
address this issue, multiple strategies have been devised to enhance
PE efficiency, including utilizing an engineered PE protein, refining
the design of the PE guide RNA, manipulating the mismatch repair
(MMR) pathway, and optimizing the delivery strategy.2

To improve PE efficiency, researchers have been conducting studies
on various aspects of the technique such as:

(1) Optimization of guide RNA design,4 using various strategies that
consider factors such as secondary structure, target accessibility,
and off-target effects.

(2) Engineering of PE components, especially developing variant
forms of the Cas9 enzyme and RT, to improve their activity
and efficiency in PE. These novel enzymes could have enhanced
processivity, fidelity, or DNA repair capabilities, leading to more
efficient and accurate PE outcomes.

(3) Identifying optimal repair templates, several types of repair tem-
plates, such as single-stranded oligonucleotides or linear dsDNA
fragments, are used in PE experiments; however, the impact of
repair template length and delivery methods needs more
research.

(4) Modulating DNA repair pathways5 to favor the desired editing
outcomes. Researchers are exploring several ways to modulate
DNA repair pathways, including manipulating factors involved
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in homology-directed repair, non-homologous end joining, or
base excision repair.6

(5) High-throughput screening approaches, to identify factors that
impact PE efficiency.2 This involves testing libraries of gRNAs,
repair templates, or other components to identify optimal combi-
nations for efficient PE. These screening approaches enable the
identification of key factors that can be further optimized to
enhance editing outcomes.2,7

Conducting real-world experiments can be time-consuming, expen-
sive, and resource-intensive. Researchers can findmistakes, risks, lim-
itations, or challenges in the process by guessing how PE will work
before they start a real experiment. This lets them improve the designs
of their experiments and lower the number of unintended mutations
or off-target effects.3

Recently, numerous algorithms and computational approaches such
as PrimeDesign,8 PegFinder,9 PnB Designer,10 and PINE-CONE11

have emerged for the purpose of evaluating the efficiency and speci-
ficity of PE in silico. These predictive tools play a crucial role in guid-
ing experimental design and aiding in the identification of factors that
can enhance editing efficiency, accuracy, and safety.11 Also, several
deep learning (DL)-based approaches including DeepPE,12 Easy-
Prime,13 PRIDICT,14 and PE-Designer15 have been introduced for
predicting PE activity.

Models such as DeepPE,12 Easy-Prime,13 and PRIDICT14 heavily
depend on manual feature engineering, which includes calculating
various predetermined PegRNA features such as GC count and min-
imum self-folding free energy. This approach may overlook crucial
information, leading to reduced accuracy and applicability. Further-
more, these models lack interpretability and are akin to black boxes.

To address these limitations, transformer-based models such as
OPED16,17 aim to automatically learn a comprehensive and interpret-
able representation of the target DNA and PegRNA pair.17 These ad-
vancements will contribute to the further development and wide-
spread application of this novel genome editing technique.18

There is a significant similarity between human language and DNA
sequences, particularly the noncoding regions, ranging from alpha-
bets and lexicons to grammar and phonetics. Recently, DL has been
employed in high-throughput biology methods,4 leading to profound
change in our comprehension of biology.19

Convolutional neural network (CNN) architectures have the poten-
tial to extract local signals, but they are limited in their ability to cap-
ture sequential information and semantic dependencies within long-
range contexts due to the constraints imposed by filter size. In
contrast, recurrent neural networks (RNNs), exemplified by LSTM
(long short-term memory) and GRU (gated recurrent unit), have
been employed to effectively extract sequential information and
long-term dependencies.20,21 However, the base RNN models suffer
from vanishing gradients and low-efficiency problems.22
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To achieve a more precise representation of DNA as a human lan-
guage, a computational approach should consider all contextual in-
formation on a global scale.21 Both CNN and RNN architectures
fail to satisfy these requirements. To overcome this limitation, we em-
ployed a specialized version of the bidirectional encoder representa-
tions from transformers (BERT)23 model known as DNABERT.
DNABERT20 leverages an attention-based architecture to compre-
hensively capture contextual information from the entire input
sequence and has demonstrated exceptional performance in extract-
ing potential relationships among various elements of a DNA
sequence without the need for human intervention.24

To build a computational model capable of accurately predicting the
outcomes of PE, it is imperative to first gain a thorough understand-
ing of the key features that influence experiment efficiency. Subse-
quently, the construction of a model that can predict the efficiency
and other relevant outcomes by analyzing these features and inputs.13

Some of these features pertinent to the design of an optimal PE com-
plex have been investigated by computational models.8,13,15 Li et al.13

have classified the effective features into five categories: spCas9 activ-
ity features, oligo features, target mutation features, position features,
and RNA folding features. Easy-Prime13 and DeepPE12 demonstrate
the importance of the spCas9 activity feature and PBS GC content as
more effective features.

The main objective of this paper is to introduce a DNABERT-based
model, called DTMP-Prime, which is designed for the prediction of
PegRNA activity and PE efficiency. In our work, we have extended
the existing framework proposed in Easy-prime13 by introducing a
new category to the 5 feature categories. Our network is capable of
extracting and analyzing a wide range of effective features (43 in to-
tal) in both PE2 and PE3 systems. Using DeepSHap,25 we measured
the correlation between them and PE efficiency. DTMP-Prime
serves as a valuable tool for assisting in the selection of candidate
PegRNAs and facilitating the design of appropriate PegRNA
sequences.

The DTMP-Prime model, which is based on BERT22 and utilizes a bi-
directional transformer architecture with multi-head attention layers,
has been designed to incorporate multi-head attention in the embed-
ding layer. This approach allows us to achieve several key objectives:
(1) capturing features related to the identity and position of each
nucleotide and k-mer separately in PegRNA or DNA sequences. (2)
Understanding the relationship and correlation between each nucle-
otide and k-mer with other nucleotides and k-mers within the
PegRNA or DNA sequences. (3) Examining the relationship and cor-
relation between each nucleotide and k-mer with other nucleotides
and k-mers within both the PegRNA and DNA sequences.

The combination of these features with the new encoding strategy has
significantly enhanced the efficiency of DTMP-Prime in predicting
off-target sites. Furthermore, the utilization of multi-head attention
architecture has enabled us to improve the accuracy and generaliz-
ability of DTMP-Prime across diverse PE models and cell lines.
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Models such as DeepPE,12 in addition to using sequence-based fea-
tures and structural features such as melting temperature, use other
features such as 4 nt after RT-PBS or 4 nt before RTT. These features
are not included in DTMP-Prime. However, with the integration of a
novel encoding algorithm in DTMP-Prime, our model can effectively
extract relationships between all combinations of 6 nt at any position
within both the PegRNA and DNA sequences. This enhancement al-
lows for a more comprehensive analysis of sequence characteristics
and significantly improves the model’s capacity to predict PegRNA
activity and PE efficiency.

RESULTS
Our proposed DTMP-Prime model has three new ideas. It uses a spe-
cial type of network called a multi-head attention-based transformer
for selecting and analyzing features that influence PE efficiency and
predict PE efficiency according to these features; a newly developed
encoding algorithm designed for encoding PegRNA-DNA pairs;
and the integration of DNABERT20 as a PegRNA activity classifier.

To show the superiority and impact of the three aforementioned in-
novations, we conducted three sets of evaluations. These evaluations
involved analyzing the proposed model for predicting PE efficiency
and detecting effective features, followed by a comparison of the re-
sults with those from prior studies. In addition, we implemented
the encoding layer based on the proposed encoding algorithm and
one-hot encoding algorithm separately. A detailed comparison of
the outcomes generated by these two algorithms is presented in en-
coding algorithm below. Furthermore, we incorporated the deep layer
of DTMP-Prime, employing DNABERT, transformer + attention,
RNN, and other deep models separately. We then compared these
models with each other and with previous research findings in
DNABERT model.

Our performance comparison with other state-of-the-art models has
demonstrated that DTMP-Prime shows a better result in predicting
PegRNA activity and PE efficiency. Consequently, it is anticipated
to emerge as a valuable tool in the field of CRISPR and PE research.
Moreover, DTMP-Prime exhibited superior performance compared
with other off-target prediction models in CRISPR systems.

Our model integrates various features categorized into six groups to
predict editing efficiency and prioritize candidate PegRNA sequences.
Beside sequence and activity features recognized for their association
with PE efficiency, our model facilitates the exploration of latent fea-
tures, including RNA secondary structure, RNA folding, gene interac-
tion information, and PegRNA-DNA sequence interaction. This
comprehensive approach allows for a more thorough analysis and
prediction of PegRNA activity and PE efficiency.

With more than 170,000 data records of PE experiments conducted
across numerous research studies,4,8–10 we have developed an exten-
sive database that captures the specific characteristics of each
PegRNA and their efficiency. The dataset used to build and test our
model is provided in Tables S1 and S2, respectively. To characterize
features that influence PE efficiency, we investigated various
PegRNA sequences with up to 63 nt lengths in 5 genomic sites in hu-
man cell lines. We analyzed their activity and efficiency using trans-
former-based deep network and discovered that Cas activity,
sequence length, nucleotide composition, secondary structure, RNA
folding, MMR proficiency, and cell type all affect PE efficiency.
Combining all the above features into a multi-head attention-based
transformer model, we can predict the efficiency of new PE experi-
ments with high precision.

DTMP-Prime

In this section, we evaluate the performance of the DTMP-Prime
model in predicting PE efficiency. To overcome the problem of lack
of data and improve the accuracy of DTMP-Prime, we adopted pre-
training and fine-tuning strategies through transfer learning. This
approach initially establishes a general-purpose learning frommassive
amounts of unlabeled data and subsequently addresses various appli-
cations with task-specific data with minimal adjustments.

Initially, DTMP-Prime was pre-trained using data obtained from
ClinVar. The variant summary from ClinVar was accessed on
September 29, 2021, and we specifically focused on the Homo sapiens
genome assembly GRCh38/hg38.26 To ensure data integrity, we
filtered the variants by allele ID to eliminate duplicates and by clinical
significance to prioritize pathogenic variants. Subsequently, we cate-
gorized the variants into three groups based on their variant type: sin-
gle-nucleotide variants (SNVs), insertions, and deletions.

To facilitate the installation and correction of these pathogenic vari-
ants, we enumerated all candidate PegRNAs and sgRNAs for each
variant using specific criteria. These criteria included: (1) a maximum
distance of 50 nt from the editing site to the PegRNA nicking site, (2)
the presence of NGG PAM or NG PAM, (3) a minimum homology of
5 nt downstream of the edit, (4) a minimum PBS length of 8 nt and
maximum PBS length of 18 nt, (5) a minimum RTT length of 8 nt
and maximum RTT length of 68 nt, and (6) a minimum sgRNA-
nick-to-PegRNA-nick distance of 0 nt and maximum nick-to-nick
distance of 100 nt.

Our pre-train dataset consists of 77,738 records for correcting
ClinVar variants (containing 51,473 SNVs, 1,833 insertions, and
24,432 deletions) and 229,035,543 records for installing of ClinVar
variants (containing 152,685,709 SNVs, 4,399,142 insertions, and
71,950,692 deletions).

We design all candidate PegRNAs (229,035,543 PegRNAs to install
and 213,459,730 PegRNAs to correct these pathogenic variants)
and use them for pre-training DTMP-Prime. More details are pro-
vided in Table S3.

After pre-training the model, we fine-tuned over 72,261 PE experi-
ment records gathered from DeepPE,13 PRIDICT,12 DeepPrime,27

Easy-Prime,13 and PrimeDesign8 projects (Table S1). To prev-
ent overfitting, the model underwent validation through a 5-fold
Molecular Therapy: Nucleic Acids Vol. 35 December 2024 3
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Figure 1. Comparison between DTMP-Prime and state-of- art models predicting PE efficiency

(A) Scatterplot with correlation between measured PE efficiency in a real experiment and predicted PE efficiency by DTMP-Prime in an external dataset. (B–E) Comparison of

DTMP-Prime with other machine learning models including RNN + Attention, BiLSTM + Attention, GRU + Attention, support vector regression, multi-layer perceptron

K-nearest neighbors, DT, RF, AdaBoost, gradient-boosted DTs, over various critics: (B) Pearson correlation coefficient, (C) Spearman correlation coefficient, (D) mean

absolute error (MAE), and (E) root mean-squared error (RMSE). (F–I) Comparison between DTMP-Prime and other models predicting PE efficiency such as OPED and

PRIDICT over critics such as Pearson correlation coefficient, Spearman correlation coefficient, MAE, and RMSE, respectively. (J) Comparison between DTMP-Prime, Easy-

prime, and PrimeDesign based on PE efficiency of designed PegRNAs in five loci.
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cross-validation procedure. In essence, the complete dataset was
randomly partitioned into five equivalent segments. Each of these seg-
ments was sequentially excluded to create an external set for vali-
dating the model constructed using the remaining four segments.
This iterative process was reiterated five times, ensuring that every
sequence in the dataset was predicted.

We randomly selected 1,013 records of the DeepPE dataset to assess
the performance of DTMP-Prime (Table S2). As a widely used
method for evaluating model performance, we analyzed the correla-
tion between the measured PE efficiency in a real experiment and
4 Molecular Therapy: Nucleic Acids Vol. 35 December 2024
the predicted PE efficiency by DTMP-Prime in an external dataset.
The results, depicted in Figure 1A, indicate that DTMP-Prime
achieved an R value (Pearson correlation coefficient) of 0.8 and an
R value (Spearman correlation coefficient) of 0.77 on the selected
test dataset.

To showcase the effectiveness of DTMP-Prime, which leverages
deep transformer layers and a multi-head attention mechanism,
we initially compared its results with those of other machine
learning models such as RNN + Attention, BiLSTM + Attention,
GRU + Attention, support vector regression, multi-layer perceptron,



Table 1. Categories of features used to predict PE efficiency in different

tools

Categories Used in

Cas9 activity DeepPE, Easy-Prime, DTMP-Prime

Sequence features
DeepPE, PrimeDesign, PegFinder,
Easy-Prime, DTMP-Prime, etc.

RNA folding features Easy-Prime, DTMP-Prime

Mutation features
DeepPE, PrimeDesign, PegFinder,
Easy-Prime, DTMP-Prime, etc.

Position features
DeepPE, PrimeDesign, PegFinder,
Easy-Prime, DTMP-Prime, etc.

Structural feature DTMP-Prime
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K-nearest neighbors, decision tree (DT), random forest (RF),
AdaBoost, and gradient-boosted DTs. Figures 1B–1E present a com-
parison between DTMP-Prime and these models based on criteria
including Pearson and Spearman correlation coefficient, mean abso-
lute error and root mean-squared error. As mentioned before, for the
final test of DTMP-Prime, 1,013 records of the DeepPE project were
selected (Table S2). We compare DTMP-Prime with other models ac-
cording to achieved results on these 1,000 selected records. Also,
Figures 1F–1I present a comparison between DTMP-Prime and
DL-based models such as OPED, DeepPE, and PRIDICT based on
the above criteria.

In subsequent analyses, we evaluated the performance of DTMP-
Prime against state-of-the-art models, Easy-Prime13 and PrimeDe-
sign.27 To ensure a fair comparison, we employed the same loci
used in Li et al.’s study.13 DTMP-Prime was tested on five variants
associated with blood traits. We designed our own PegRNAs and
compared them with the same PegRNAs designed in Easy-Prime
and PrimeDesign. Detailed sequences for each model are provided
in Table S4. For loci rs3785098, rs9386791, and rs2251964,
DTMP-Prime generated PegRNAs with distinct RTT and PBS se-
quences. Conversely, for rs55935819 and rs760369, DTMP-Prime
produced identical sequences to Easy-Prime and PrimeDesign,
respectively. For each of these two cases, we have different
approaches.

In an effort to save time and cost, we utilized the reported observed
efficiencies for rs55935819 and rs760369 from Li et al. (Table S2 of
associated paper13). For rs3785098 and rs9386791, we supplemented
their comparison with the results of DTMP-Prime (designed PegRNA
and predicted efficiency). For the remaining loci (rs3785098,
rs9386791, and rs2251964), we provide comprehensive data,
including designed PegRNAs, predicted efficiencies, and observed
efficiencies.

Figure 1J illustrates the predicted and observed efficiencies of DTMP-
Prime, PrimeDesign, and Easy-Prime for rs3785098, rs9386791, and
rs2251964. Figure 1K compares the predicted efficiencies of DTMP-
Prime and Easy-Prime for rs55935819, where both models generated
identical PegRNAs. Figure 1L presents a similar comparison between
DTMP-Prime and PrimeDesign for rs3785098. As shown in
Figures 1J–1L, in all loci, DTMP-Prime achieved higher efficiency
than PrimeDesign and in three loci (rs760369, rs9386791, and
rs2251964) more than Easy-Prime.

It is worth mentioning that, to predict the PE efficiency, models used
different features. Table 1 provides valuable insights into the utiliza-
tion of various features in models such as DeepPE,12 Easy-prime,13

PrimeDesign,8 PegFinder,9 and DTMP-Prime.

Features analysis

One of the major focuses of this study is to derive the contribution
and importance of effective features in PE experiments and predict
the final outcome. Analyzing the importance of the various compo-
nents of the input sequences will allow new insights into PE effi-
ciency and preferences. In this study, we systematically characterize
how the length, composition, and secondary structure of PegRNA,
as well as its interaction with cell line and target site, affect PE
efficiency.

As stated, Li et al.’s research13 classified the effective features on PE
efficiency into 5 categories. In this project, we have introduced an
additional category. Based on our investigation, we have identified
43 features that are categorized into 6 categories that significantly
affect the efficiency of PE experiments. The feature categories include:
(1) sequence features, (2) positional features, (3) mutation features,
(4) structural features, (5) RNA folding features, and (6) Cas9 activity
features. Subsequently, we expound upon each category with greater
elaboration. Table 2 outlines the features of each category and an
abbreviation for each feature to be used as a reference in the rest of
the paper. These features are employed in our proposed solution to
rapidly design all candidate PegRNAs and other essential components
for a desired edit (step 2 in Figure 2), subsequently scoring, ranking,
and finally selecting the optimal PegRNA.

Category 1 encompasses various features of the DNA sequence both
before and after the desired edit, including the number and frequency
of G and C nucleotides in each of the PBS and RTT sequences, as well
as their overall count. In addition, it involves the length of PBS and
RTT sequences. In category 1, the chromosome number, type of
strand (+/�), and the beginning position of the edit are replaced.

Category 2 comprises positional features, which refer to the relative
distances between the PegRNA nick site and the target mutation (Tar-
get_pos), distances between the PegRNA nick site and the ngRNA
nick site (ngRNA_pos or nick position), and distances between the
target mutation and the end of the RTT (Target_end_flank), or min-
imal homology downstream of the edit. The downstream homology
target (Target_end_flank) represents the number of nucleotides
following the target up to the RTT end position.13

Features such as the type of edit (including insertion, deletion, and
mutation) and the length of edit belong to category 3. The other
Molecular Therapy: Nucleic Acids Vol. 35 December 2024 5
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Table 2. Six categories and 43 effective features influencing the efficiency of PE experiments

Category (number of features) Features Abbreviation Effects on PE efficiency

Sequence features (16)

index of genomic position IGP –

strand (+/�) Strand –

index of edited position IEP –

target sequence chromosome ID Target_Cho_ID_Strands –

length of PBS PBS_Len strong impact with length (6–16 nt)

length of RTT RTT_Len strong impact with length (7–23 nt)

GC Content in PBS GC_Content_PBS increase

GC Content in RTT GC_Content_RTT increase

GC Content in PBS + RTT GC_Content_PBS_RTT increase

GC frequency in PBS GC_Freq_PBS increase

GC frequency in RTT GC_Freq_RTT increase

GC frequency in PBS + RTT GC_Freq_PBS_RTT increase

CC at position 18 of PBS+RTT CC_18_ PBS_RTT no significant effect

GA at position 40 of wide sequence GA_40 no significant effect

G at position 14 of RTT+PBS G_14_ PBS_RTT no significant effect

occurrence of consecutive T and A Poly_T decreases

Positional features (3)

number of nucleotides from target mutation to the
end of RTT sequence

Target_end_flank no significant effect

distance between target mutation and sgRNA nick
site

Target_pos no significant effect

distance between ngRNA nick site and sgRNA nick
site

ngRNA_pos no significant effect

Mutation features (3)

type (substitution, deletion, insertion)
Mutation_Sub, Mutation_Ins,
Mutation_Del

no significant effect

length of mutation Mutation_Len no significant effect

the number of mismatches Mismatch_Num no significant effect

Structural features (8)

melting temperature of PBS PBS_Melt_Temp direct correlation

melting temperature of RTT RTT_Melt_Temp direct correlation

melting temperature of PBS+RTT PBS_RTT_Melt_Temp direct correlation

reverse-transcribed cDNA and PAM-opposite
DNA strand

Tm_3 direct correlation

RT template region and reverse-transcribed cDNA Tm_4 direct correlation

minimum free energy of PegRNA MFE_PegRNA reverse correlation

minimum free energy of spacer MFE_ spacer reverse correlation

RNA-DNA hybridization energies RNA_DNA_HE significantly anti-correlated

RNA folding features (11)

the RNA folding disruption score for the first 10
positions in the RTT

RTT_Disrup_Score
significant reverse correlation
(first 5 positions of RTT)

PAM disruption feature PAM_Disrup_Feature increase

Cas9 activity features (2)
SpCas9 activity SpCas9_Activity increase

chromatin accessibility Chromatin_Accessibility increase

Molecular Therapy: Nucleic Acids
feature in this category is whether a target mutation disrupts the PAM
sequence or the protospacer of the ngRNA.

Category 4 includes features such as temperature of melting (TM)
and minimum free energy, which are related to the second structure
of PegRNA. We can never calculate the exact number of these fea-
6 Molecular Therapy: Nucleic Acids Vol. 35 December 2024
tures, but there are some useful tools and applications that estimate
these two features according to the second structure of PegRNA.
The secondary structure of the PegRNA consists of the sgRNA,
the scaffold, the RTT, and the PBS. Furthermore, we calculate the
energy of RNA-DNA hybridization by computing the difference
in length-normalized Gibbs free energy at a temperature of 37�C



Figure 2. The main steps of DTMP-Prime
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between a paired RNA-DNA oligomer and two unpaired
oligonucleotides.16

Category 5 refers to the features related to RNA folding. We calculate
the probability of different positions on the RTT sequence disrupting
the secondary structure of the RNA scaffold. For example, the C-base
at the first position in the RTT can pair with G81 in the RNA scaf-
fold,13,17 which affects the proper gRNA structure required for the
interaction between Cas9 and gRNA,28 leading to lower PE efficiency.

Category 6 consists of only two traits, namely Cas9 activity and chro-
matin accessibility.14 Cas9 activity pertains to the capacity of the Cas9
enzyme to cleave DNA strands.29,30 Cas9 exhibits varying cleavage ac-
tivity in different editing scenarios. Fortunately, the predictability of
Cas9 activity allows for the employment of helpful tools such as
DeepCpf31 and DeepSpCas9.32 As improved in DeepCpf1, the perfor-
mance of Cas9 activity prediction models obviously improved when
chromatin accessibility information was considered. So, we fine-
tune DeepSpCas9 using a data subset such as Endo_Cas9_1A and bi-
nary chromatin accessibility information, leading to the development
of a fine-tuned model predicting Cas9 activity based on both target
sequence information and chromatin accessibility.
The RNA-folding disruption score is defined as the maximal pairing
probability between a position in the RTT and the whole scaffold
sequence. A higher score indicates a stronger interaction between
the RTT and the RNA scaffold, which can potentially disrupt the
RNA secondary structure. To calculate RNA-folding disruption,
firstly, the second structure of RNA is estimated. Secondly, the bind-
ing score is estimated. As is known, the binding score is a good mea-
sure to estimate the degree of connection between PegRNA andDNA.

To estimate the binding score, DeepBind33 is deployed in our work.
The RNA_folding score is estimated by features of categories 2, 4,
and 5 from Table 2.

For estimating the sequence score, features from categories 1, 2, and 3
are used. As is known, features such as the number and frequency of
G and C nucleotides in the two PBS and RTT sequences, as well as
factors such as the presence or absence of specific nucleotides in
the defined position of PegRNA, affect PE efficiency.

Finally, for the off-target score, we try to predict and estimate the
number of off-target sites. For the assessment of off-targets genera-
ted by the mismatch, we use Cas-OFFinder.34 DTMP-Prime can
Molecular Therapy: Nucleic Acids Vol. 35 December 2024 7
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incorporate off-target scoring predictions29,35–37 into its ranking sys-
tem, and nominate PegRNAs for increasing editing efficiency.

As mentioned previously, the final score of PegRNAs is calculated
based on the four scores described above. All PegRNAs are sorted ac-
cording to their final score (step 4 in Figure 2). Then, the 10 PegRNAs
with the highest score are selected (step 5 in Figure 2) and aligned
with the whole DNA to find off-targets (step 6 in Figure 2). In the final
step, for aligned positions with less than three mismatches, we predict
the activity of PegRNA38 and associated PE efficiency by using a
multi-head attention-based deep transformer model (step 6 in Fig-
ure 2). It is worth mentioning that DTMP-Prime supports three types
of edits including insertion, deletion, and substitutions, but mutation
length is limited to 3 bp because we predict the activity of PegRNAs
and associated PE efficiencies with less than three mismatches in
step 6.

Further details regarding this model are provided in the materials and
methods.

The results of the analysis of the six categories of features are shown in
Table 2. The relative importance of each feature (Figures 3A and 3B)
and the overall importance of the six categories in PE2 or PE3 systems
are shown in Figure 3C.

There is a complex relationship between the PegRNA sequence length
and efficiency. As shown in Figure 3D, the efficiency of the short
PegRNAs with 1–4 nt RTT sequences was 1.2- to 3.7-fold lower
than that for longer ones. One possible explanation is the proficiency
MMR. The MMR pathway recognizes and excises short mismatches
of less than 13 nt and could therefore remove short insertions before
the nicked strand is relegated6 across the target sites. Sequences be-
tween 15 and 21 nt are 1.3–1.6 times more efficient than 10–14 nt
ones. Sequences between 15 and 21 nt have the highest efficiency,
while longer sequences are activated less frequently, but still at mod-
erate efficiency even for sequences larger than 60 nt. This disparity is
potentially due to steric issues for reverse transcription and base pair-
ing of the unedited strand.6

Our investigation shows that the length of PBS (6–16 nt), and the
length of RT template (7–23 nt), had a strong impact on the editing
efficiency. We investigated different PBS or RT-template lengths
and calculated the off-target score. Overall, changing the RT template
length did not affect PE2 specificity. Indeed, fewer off-target sites were
associated with a relatively short PBS template (11–13 nt) than a long
RT template (14–17 nt). Figures 3E and 3F show the effect of the
lengths of the RT template and PBS on the efficiency of off-target ed-
iting in HEK293T cells. The dependence of the occurrence of off-
target edits on the lengths of the PBS or RT template was investigated
using PegRNAs with variable PBS lengths (10–17 bp) or RT lengths
(10–17 bp), respectively.

We examined secondary structures of varying strength, including
some sequences with perfect hairpins. Two hundred sequences of
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30 nt in length in the HEK3 locus in HEK293T cells were selected
randomly and PE efficiency was predicted. Their secondary struc-
ture free energy is quantified by the Vienna fold DG. It is important
to mention that more negative DG values indicate stronger second-
ary structures.39 As shown in Figure 3G, DG is correlated with PE
efficiency and the average Pearson’s is R = �0.42. It is considered
that the structure of both PegRNA 30 extension (comprising the
primer binding site and the reverse transcription template) and
the target site are important. Also, as noticed in Table 2, for all com-
binations of PBS length and RTT length, the PBS RNA-DNA hy-
bridization energy was significantly anti-correlated with predicted
PE efficiency. This dependency increases for PegRNAs with shorter
PBS length.

Selecting sequences with high GC, and especially cytosine content,
prone to forming strong secondary structures, enhances the effi-
ciency. Indeed, the stronger secondary structure of the PegRNA 30

extension led to higher edit efficiency. One potential explanation
for this observation is that structured PegRNAs are more protected
from digestion by 30-exonucleases.40 Also, we noticed that incorpo-
rating structured motifs at the 30 end of PegRNAs and preventing
degradation of the 30 extension12 improved PE efficiency by 3- to
4-fold. Alternatively, structured PegRNAs could ease the pairing of
the edited strand with the non-edited strand due to being sterically
smaller via folding onto themselves.

To make the secondary structure of PegRNA more stable, a non-C/G
pair can be changed to a C/G pair in the small hairpin and achieve
higher frequencies of targeted insertions and deletions. Also, the
incorporation of structured RNA motifs, such as an exoribonucle-
ase-resistant RNA motif, can enhance PegRNA stability and prevent
degradation.

The presence of TTTT sequence acts as a transcription terminator for
RNA polymerase III and strongly impairs PegRNA expression. The
final efficiency of these sequences is 5- to 11.6-fold lower compared
with sequences without TTTT. Similarly, stretches of AAAA have a
1.5- to 1.8-fold reduction in efficiency. Figure 3H shows the effect
of consecutive “T”/“A” in spacer sequence or PegRNA extension on
editing efficiency.

Since the PBS and RTT are important for the initial reverse tran-
scription process, the TM becomes a key factor for the stability of
DNA, RNA, and DNA/RNA double-stranded hybrid.40 We as-
sessed the efficiency of about 41,000 different sequences at
different temperatures and monitored the TM of PBS, TM of
target DNA region corresponding to RT template, TM of
reverse-transcribed cDNA and PAM-opposite, TM of RT template
region and reverse-transcribed cDNA, and DeltaTM (mentioned
in our database as TM1, TM2, TM3, TM4, TM3–TM2, respec-
tively). For edits with high-efficiency (more than 50%), we inves-
tigated the distribution diagram of different temperatures. As
shown in Figure 3I, more than 90% of high-efficiency edits
occurred at temperatures between 30� and 50�.



Figure 3. Analyze of effective features

(A and B) The relative importance based on mean absolute SHAP value (y axis) of effective features (x axis) in PE2 and PE3 systems, respectively. (C) The overall importance

based on mean absolute SHAP value (y axis) of the six feature categories in PE2 and PE3 systems. (D) Relationship between the PegRNA sequence length (x axis) and PE

efficiency (y axis). (E and F) The effect of the lengths of the RT template and PBS (x axis) on the efficiency of off-target prediction (y axis) in HEK293T cells, respectively. (G)

Correlation between PE efficiency and Gibbs free energy (DG). PE efficiency (y axis) of 200 sequences with 30 nt length in the HEK3 locus in HEK293T cells were predicted

and correlated with their DG (x axis). (H) The effect of the number of consecutive “T”/“A” in spacer sequence or PegRNA extension (x axis) on editing efficiency (y axis). (I)

Distribution diagram of high-efficiency edits in different temperatures (y axis). (J) Correlation between the RNA-folding disruption score and the PE efficiency (y axis) for each of

the first 16 positions in the RTT (x axis).
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As mentioned, for the characterization of the RNA-folding fea-
tures, we defined the RNA-folding disruption score as the maximal
pairing probability between a position in the RTT and the whole
scaffold sequence. A higher score indicates a stronger interaction
between the nucleotide and the RNA scaffold. Nucleotides with
high scores can potentially disrupt the RNA secondary structure.
Nucleotides at multiple positions in the RTT have variable impor-
tance in predicting PE efficiency. For instance, the appearance of
the C-base at the first position in the RTT dramatically decreases
the editing efficiency of PEs. One possible explanation for this ef-
fect is that the appearance of the C-base at the first position in the
RTT can pair with G81 in the RNA scaffold and disrupt the inter-
action between G81 and Y1356 in Cas9.13,41 In fact, pairing be-
tween the RTT and scaffold changes the correct gRNA structure
needed for Cas9 and gRNA to interact, which makes PE less effec-
tive. We calculated the correlation between the RNA-folding
disruption score and the PE efficiency for each of the first 16 po-
sitions in the RTT. As shown in Figure 3J, the first five positions
have a significant reverse correlation with PE efficiency, but the
overall significance is low for all positions. This correlation
Molecular Therapy: Nucleic Acids Vol. 35 December 2024 9
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declines from the sixth position and is no longer significant
beyond the tenth position.

Asmentioned, pairing between the RTT and scaffold could destabilize
the RNA secondary structure and decrease the activity of PEs.42,43

This correlation declines from the 6th to the 10th position and is
no longer significant beyond the 11th. As seen, the first five positions
are more important for overall PE efficiency. Indeed, the probability
of interaction of specific nucleotides with scaffold sequences decreases
as the distance of nucleotides from the start of RTT increases.

By examining the impact of all the effective features described in Ta-
ble 2 and comparing all the features and categories with each other
(see Figures 3A and 3B), we conclude that the spCas9 activity, RNA
folding, and PBS GC content are the top 3 most important features
in the PE2 system. This demonstrates the importance of spCas9 activ-
ity and second structure features more than pure sequence features in
the PE2 system. The PAM disruption feature, the target mutation po-
sition (Target_pos), and RNA folding are three important features in
the PE3 system. In contrast, the numbers of mutations are lower-
ranked features in both models, which demonstrates that mutation
type does not affect PE efficiency significantly. This issue confirms
that PE is a versatile tool for different kinds of genome editing.

As a comprehensive computational model, we aimed to capture all
effective features in DTMP-Prime. Some of these features are selected
in the hand-crafted feature selection layer but most of them are
analyzed through our powerful transformer-based deep layer. We
present the results of our comprehensive feature analysis in Table 2.
We believe this table will be a useful guide for developing other ma-
chine learning and DL-based models for optimal PegRNA design or
predicting the PegRNA’s activity and efficiency.

Encoding algorithm

This section provides the evaluation outcomes of the performance
analysis carried out on our encoding algorithm (see encoding layer
for more information). To achieve this objective, our model’s encod-
ing layer is constructed utilizing two distinct encoding schemes: one-
hot encoding and our novel encoding algorithm. The classic one-hot
method of encoding PegRNA and DNA sequence involves using two
vectors with a dimension of 4� L as input, where L is the length of the
PegRNA. In contrast, our new encoding strategy utilizes an 8� L vec-
tor as input.

To evaluate the performance of the two encoding methods, various
traditional deep architectures including CNN and RNN with diverse
topologies are tested. It is widely recognized that certain hyperpara-
meters, including the number of layers and parameters, significantly
influence the performance of the deep network models. Hence, it is
imperative to meticulously devise the model architecture to ensure
its suitability for our intended objective. In this section, one of our
main objectives was to evaluate the individual impacts of three key
factors: kernel sizes, the number of feature mappings per layer, and
the number of layers.
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Initially, we assessed the efficacy of the model at various kernel sizes.
We have determined and set the specific number of layers and feature
maps. The kernel size of 3� 3 showed better performance in compar-
ison with the other kernel sizes. Subsequently, we maintained con-
stant kernel sizes, and the optimal outcome was attained by employ-
ing two convolutional layers and one pooling layer. Rectified linear
units were selected as the activation function for each convolutional
layer, and average pooling was applied after the convolution layer.
The CNN classifier was trained using the base rate of learning
(0.005), momentum (0.9), and batch size of 2,000 examples, all of
which were conventional settings.

As mentioned before, the DTMP-Prime model is applicable for pre-
dicting off-target sites in CRISPR experiments. In addition, the likeli-
hood of an off-target site in PE experiments is significantly lower
compared with such sites in CRISPR experiments. Moreover, there
has been limited research conducted on the prediction of off-target
sites in the PE area.

As a common dataset based on Cas9 nuclease, and to ensure a fair
comparison with other models that are utilized for off-target predic-
tion, we used the CRISPOR dataset to train and test our model. We
employed leave-one-gRNA-out cross-validation on the CRISPOR da-
taset to evaluate the prediction performance of the two encoding
schemes. Also, it is worth mentioning that the CRISPOR database
contains valuable information pertaining to CRISPR experiments,
while our main dataset, derived from the ClinVar database, comprises
records specifically related to PE experiments.

Identifying a site as off- or on-target is a classification issue. Hence,
accuracy, F1 score, and precision were used for this evaluation. Due
to the imbalanced nature of the CRISPOR dataset, models can easily
achieve a high accuracy value. In addition, the precision, recall, and
F1 score measures are challenging to accurately represent the overall
performance, because the elevation method tends to label many
samples as negative. This results in lower values for precision, recall,
and F1 score metrics. The precision/recall area under the curve
(AUC) provides a more comprehensive representation of the overall
situation. Figure 4 compares two encoding methods using different
deep models based on metrics such as AUC values of (1) the true
positive rate against the false positive rate and (2) the precision/
recall curve.

As noted, that DTMP-Prime has the capability to predict off-target sites
in CRISPR editing systems. There are several tools for off-target predic-
tion in these systems38 such as CFD, CNN_std, AttnToMismatch_
CNN, and CRISPR-OFF.44,45 In the rest of this section, we wanted to
compare DTMP-Prime with other models commonly used for off-
target prediction in CRISPR experiments. We compared DTMP-
Prime with other off-target prediction models in Figure 5A.

As shown in Figure 5B, the PegRNA activity prediction performance
of our new encoding algorithm is significantly better than the classic
one-hot encoding scheme. In other words, our encoding algorithm



Figure 4. Comparison of true positive/false positive

rate and AUC score of the two encoding schemes

through different deep models

(A) The top 4 diagrams represent one-hot encoding re-

sults, and (B) the last four diagrams represent the pro-

posed encoding results.
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can express the information of sequence pairs more effectively, lead-
ing to better results.

Furthermore, we evaluated the performance of our proposed encod-
ing model in conjunction with the multi-head attention transformer
layer and other architectures such as the DL model based on the
gated recurrent unit and attention mechanism, support vector
regression, multi-layer perceptron, K-nearest neighbors, DT, and
RF. The results demonstrate that our proposed encoding model,
along with the DNABERT and CNN5 (refer to model with CNN ar-
chitecture consisting of three convolutional layers) architectures,
yields the most favorable outcomes. See more detail in Figures
1B–1I and 5B–5C.
Molecular The
DNABERT model

In this section, we evaluate the performance of
our fine-tuned DNABERT20 model for embed-
ding effective features of input sequence to pre-
dict PE efficiency; as for the deep layer in our
model, we adopted pre-training and fine-tuning
strategies in the embedding layer of DTMP-
Prime too.

DNABERT is a DNA sequence model trained
on sequences from the human reference gen-
ome Hg38. We used pre-trained DNABERT-6
(a pre-trained model with k-mer size = 6) in
the embedding layer and fine-tuned it with
43,149 records of the PE-associated dataset
(Table S5) to learn more about structure of
DNA and PegRNA sequences. For more infor-
mation see the DTMP-Prime repository on
GitHub.

To validate the effectiveness of our DNABERT-
based embedding layer, we compared it with
other embedding models such as DNABERT,
-DistilBERT, and a transformer model with
three encoders and decoder plus multi-head
attention layers. All these three models were
fine-tuned on the same data (extracted from
the DeepPE project12). Figures 5C and 5D
show the results of this comparison.

DISCUSSION
PE facilitates protein tagging, the correction of
pathogenic deletions, and many other exciting
applications. An ideal tool to enable these applications would inte-
grate the edits efficiently, accurately, and safely, avoiding unintended
outcomes or double-strand break stress, which has hampered Cas9-
based therapies. In response to this need, we introduce DTMP-
Prime, a DNABERT-based model, to predict PE efficiency with
high accuracy. DTMP-Prime assists in the design and ranks all candi-
date PegRNAs for a desired experiment and selects the optimal one to
do an efficient edit; thus, reducing off-target edits.

Our transformer-basedmodel contains the analysis of all effective fea-
tures in PE efficiency. Some of these features are selected manually,
but most of them are analyzed through our powerful transformer-
based deep layer and new encoding algorithm. We believe that the
rapy: Nucleic Acids Vol. 35 December 2024 11
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Figure 5. Performance of DTMP-Prime

(A) Comparison of DTMP-Prime with other advanced off-target prediction models based on critics including accuracy, F1 score, and precision (y axis). (B) Comparison of the

PegRNA activity prediction performance (x axis) of DTMP-Prime utilizing two encoding mechanism, the proposed encoding and one-hot encoding. (C and D) Comparison of

DTMP-Prime utilizing three different deep models including DNABERT, DistilBERT and a transformer model with three encoders and decoders plus multi-head attention

layers over (C) MAE and RMSE criteria (y axis). (D) Pearson and Spearman correlation coefficient (y axis).
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results of our analysis will be a useful guide for developing other ma-
chine learning and DL-based models for optimal PegRNA design or
predicting the PegRNA’s activity or PE efficiency.

As proved, in addition to the described category of features, cell type,
repair pathways, epigenetic modification, and PE systems have a signif-
icant influence on PE efficiency. Fortunately, models trained specif-
ically on one target site still outperformed predictions on other sites.
Here, we just used data from four genomic sites in human cell lines
to train our model, but more cell type-specific features, such as chro-
matin openness and epigenetic modification, will be investigated in
the feature development. Another important feature not considered
in this study is the repair pathway. As noticed, the insertion efficiency
of short RTT sequences (<10 nt) was variable, with high rates inMMR-
deficient cell lines but not in MMR-proficient ones. Indeed, MMR an-
tagonizes PE. So, anothermajor effort in future development will be the
analysis of the effect of the repair pathway on PE efficiency. Hence, the
use of engineered PegRNAs will likely reduce the need for exhaustive
screening and substantially advance the application scope of PE.

We investigated the effective features of PegRNAs in PE2 or PE3 sys-
tems and built two separate models for each one. We expect that we
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will be able to add the implementation of PE4 and PE5 systems as
soon as more PE data become available.

In the next step, we will integrate extra biological features in our
model—associated with the prime editing mechanism in all PE sys-
tems and cell lines—and develop accurate models with precise and
resistant outcomes.

MATERIALS AND METHODS
In this section, we present DTMP-Prime, a novel multi-head atten-
tion-based deep transformer model for predicting PE efficiency and
PegRNA activity. DTMP-Prime enables the proper design of
PegRNA and ngRNA as urgent components for a desired PE experi-
ment. Using a multi-head attention-based transformer layer leads to
the capture of any relationship and correlation between each nucleo-
tide and k-mer with other nucleotides and k-mers within the PegRNA
and DNA sequences. The combination of a DNABERT-based20

embedding layer with the new encoding strategy has significantly
enhanced the efficiency of DTMP-Prime in predicting off-target sites.
Furthermore, the utilization of multi-head attention architecture has
enabled us to improve the accuracy and generalizability of DTMP-
Prime across diverse PE models and cell lines. In addition, the
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proposed feature selection mechanism, encoding algorithm, and
embedding mechanism are covered in this section.

Figure 2 illustrates the main process flow of DTMP-Prime. As shown
in Figure 2, firstly, all possible PegRNAs for a desired edit are de-
signed. Secondly, a PE component is formed, and scored according
to four scores that are calculated based on selected features and pre-
dicted outcomes. In the next steps, the PE components are ranked ac-
cording to their acquired efficiency score from the previous step and
the top-k (e.g., k = 10) PegRNAs are selected. Finally, the activity of
PegRNA score and final efficiency of desired edit are predicted.

The internal mechanism of PE experiments is currently not well un-
derstood or clearly defined. So, the feature selection process and
score calculation may be challenging. Therefore, we present an
innovative computational method to predict PE efficiency, utilizing
a DL-based model and multiple PE datasets to train and test the
model. DTMP-Prime takes the original and desired DNA sequences
as inputs and encodes them as a matrix from which all effective fea-
tures are extracted. After training the base model according to the
available data and the defined effective features, the DeepSHAP
(deep shapley additive explanations) tool25 is deployed to analyze
the impact of effective features on the PE efficiency. DeepSHAP ex-
plains the results of the developed DL-based models and helps re-
searchers understand and interpret the models. In this research,
DeepSHAP is utilized to determine the regions of the DNA sequence
that contribute to the activity prediction of PegRNAs. The calcula-
tion of feature importance is determined by taking the mean abso-
lute value of the DeepSHAP value. This proposed model not only
predicts PegRNA activity but also provides a systematic way for de-
velopers to assess the impact of different features on PE efficiency
and activity.

The following sub-sections address the encoding algorithm, the
DNABERT-based embedding mechanism, hand-crafted feature se-
lection layer, and, finally, the multi-head attention-based deep trans-
former prediction model, respectively.
The architecture of DTMP-Prime

The proposed model is composed of four main components: the en-
coding layer, the embedding layer, the hand-crafted feature layer, and
the neural networks as the deep layer. In the encoding layer, we pro-
pose a new encoding method based on PegRNA-DNA sequence pairs,
which represents sequence pair information effectively and helps
improve the model’s prediction performance. In addition, to better
utilize the sequential information of PegRNA and DNA sequence,
we added a new embedding layer to our model, which is based on
the DNABERT20 model. In the final component, we introduce a
new deep transformer layer that learns the effective features of base
pairs through transformers. The primary components of the pro-
posed model are shown in Figure 6A. In the following, we provide
a detailed description of each layer.
Encoding layer

Most computational models for gRNA or PegRNA design use a one-
hot encoding scheme to convert the input sequences of nucleotides
into numerical vectors of 1 or 0. For instance, adenine is converted
to (1,0,0,0), and so on. One-hot encoding increases dimensionality,
resulting in a slower and more complex training process. Moreover,
one-hot encoding takes more memory space while it adds no new in-
formation, since it only changes data representation. Also, most
models just encode PegRNA and use only sequence information of
PegRNAs. So, PegRNA-DNA pairing information was ignored. To
overcome these limitations, we propose a new encoding scheme based
on both PegRNA and DNA sequences. In this approach, we initially
encode the PegRNA and DNA sequences into a four-dimensional
one-hot vector matrix and then encode sequence pairs based on
our proposed set of rules. As known, our scheme supports all types
of bulges (bulges in both PegRNA and DNA) and mismatches, ad-
dressing the encoding of three distinct types of off-target sites, result-
ing in the capability of DTMP-Prime in handling three edit types
including insertion, deletion, and substitutions.

With PegRNA and DNA sequence lengths equal to 73, we design an
8� 73 matrix in which one column is devoted to each position in the
PegRNA/DNA sequence and the first four rows of it are related to the
four nucleotides adenine, thymine, cytosine, and guanine, respec-
tively. Eight rules are defined in our encoding scheme for filling out
the rows of this matrix as follows but, before using these rules, the en-
coding mechanism initializes all of the elements of this matrix to 0.
Rules 1 to 3 update the first four rows based on the existence of nu-
cleotides in each of the DNA and RNA sequences. Rule 4 encodes
the matching of the two sequences in one position. Rules 5 and 6
fill the next two rows, which encode the existence of a gap in any of
the two sequences. Finally, rules 7 and 8 fill the last two rows of the
matrix, with the former representing the mismatches between the
two sequences and the latter indicating the PAM sequence. The rules
are as follows:

(1) If the corresponding nucleotide at position x is the same for both
PegRNA and DNA sequences, we assign�1 to the corresponding
row for each nucleotide.

(2) If the corresponding nucleotides at position x are different in two
sequences, we assign the number 1 to the corresponding rows of
both nucleotides.

(3) If there is a gap in one of the PegRNA and DNA sequences and
the other sequence contains a nucleotide in the same position, we
assign 1 to the corresponding row of that nucleotide (rows 1–4).

(4) If the corresponding nucleotide at position x is the same for both
PegRNA and DNA sequences, we assign 1 to rows 5 and 6.

(5) If the nucleotide at position x is only in the DNA sequence and a
gap has occurred in the PegRNA sequence, we assign 1 to the 5th
row.

(6) If the nucleotide at position x is only in the PegRNA sequence,
and a gap has occurred in the DNA sequence, we assign 1 to
the 6th row.
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Figure 6. Architecture of DTMP-Prime

(A) General architecture of DTMP-Prime. (B) Encoding of two sample DNA-PegRNA pairs using the proposed encoding approach into an 8� Lmatrix. (C) Embedding layer in

DTMP-Prime. (D) Deep layer in DTMP-Prime.
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(7) Row 7 of the matrix represents the mismatches between the two
sequences. If the nucleotide at position x is different in the
PegRNA and DNA sequences, indicating a mismatch, we assign
1 to the 7th row.

(8) If the nucleotide at position x is part of the PAM string (the last
three positions of the PegRNA sequence), we assign 1 to the 8th
row.

Figure 6B shows the results of applying our proposed encoding mech-
anism based on the above rules to two sample DNA and PegRNA
sequences.
Embedding layer

By creating a co-occurrence matrix of PegRNA and its corresponding
target DNA sequence, we employ an embedding layer to get the global
and statistical information of the input sequences. As mentioned, we
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added a new embedding layer to our model, which is based on DNA-
BERT.20 Similar to the use of BERT22,23 methods to transform alpha-
betic sequences into numerical compact vectors, we use DNABERT in
the embedding layer to transform PegRNA and DNA sequences into
compact vectors and extract the effective features of two sequences.
Because BERT takes advantage of using three different embedding
mechanisms called token, segment, and position embedding, the
use of this structure in DTMP-Prime helps us capture contextual
and positional information. Therefore, DTMP-Prime can extract
sequence, positional, and structural features to use them to predict
PE efficiency.

DNABERT is a pre-trained bidirectional encoder representation to
capture the global and transferrable understanding of genomic
DNA sequences. A pre-trained DNABERT model can be fine-tuned
for various sequence analysis tasks,23,24 such as key feature extraction.
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As mentioned previously, one of the main goals of our model is to
extract the important features that affect the efficiency of PE concern-
ing the PegRNA and DNA sequences.

DNABERT is a specialized version of the BERT algorithm that is used
for embedding nucleotide sequences. As discussed in Devlin et al.,22 the
BERT model is a deep neural network with 110 million parameters.
Although transfer learning from large-scale pre-trained models has
become prevalent in natural language processing (NLP), operating
these largemodels under constrained computational resources or infer-
ence budgets is challenging. In recent years, with the expansion of
BERT-based NLP applications,23 developers have tried to change its
structure and built simpler versions, including RoBERTa,46 Albert,47

and fastBERT.48 Similar solutions have also been proposed to solve
the complexity problem of DNABERT, and simpler models such
as DNABERT-DistilBERT49 have been developed. DNABERT-
DistilBERT is not usable for sequences longer than 512 nt. Considering
that the maximum length of our input sequences is 73 nt, we used the
DNABERT-DistilBERTmodel; as shown in Figures 5C and 5D, its per-
formance is the same as the original DNABERT.

Similar to breaking language texts into words, before applying the
DNABERT model to two sequences, we first convert our input se-
quences into 6-mer using a special tokenization algorithm called
DNATokenizer. Thus, for an M nt sequence, a k-mer sequence of
length M � k + 1 (M – 5) was obtained. Then, we used learned
word embeddings to convert each k-mer to a vector of dimension
dl. More details of this process are shown in Figure 6C.

To learn general high-level features, we used pre-trained DNABERT,
but six transformer encoders were employed to extract the features
outlined in Table 2 and two transformer decoders were specifically
designed to extract other hidden features of PegRNA and target
sequence, respectively. Multi-head attention in the transformer was
calculated as follows:

multi � head ðQ;K;VÞ = Concat ðhead1; head1;.; headh ÞWO

(Equation 1)
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while the letter h represents the number of parallel attention heads, and
Q, K, and V matrices symbolize the repositories of queries, keys, and
values associated with the input. ThematrixW represents the pertinent
parameter matrix. The superscript O indicates the output, and T indi-
cates matrix transposition. The variables dk refer to the dimensions of
keys. Layer normalization in the transformer was applied as:

y =
x � E½x�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½x�+εp � g+b (Equation 3)
where g and b are learnable parameters and ε is a very small constant.
The variable x represents the input of the layer normalization, while E
[x] denotes the expected value or mean of the variable x.

After giving PegRNA and desired DNA as input and preprocessing
them, we apply Distillation-DNABERT to transfer sequences to
numerical vectors. Distillation-DNABERT is available at https://
github.com/joanaapa/Distillation-DNABERT-Promoter.

As shown in Figure 6C, Distillation-DNABERT takes as input a set of
sequences represented as k-mer tokens. Each sequence is represented
as amatrixM, in which each token is embedded as a numerical vector.
Formally, DNABERT captures contextual information by performing
the multi-head self-attention mechanism on matrix M, which is sub-
sequently used as input to the deep layer.

Hand-crafted feature selection layer

As one of the main goals of our model, we aim to extract all the
important features that affect the efficiency of PE concerning the
PegRNA and DNA sequences. According to the details described
in effective feature analysis, to calculate the final score of
PegRNAs, four scores, including (1) SpCas9_activity_score, (2)
RNA_folding score, (3) sequence score, and finally (4) off-target
score, are needed based on the features described in Table 2.
Although we used DNABERT-DistilBERT40 and fine-tuned it to
automatically key feature extraction, some features needed to be
selected and calculated manually. To calculate certain features
such as spCas9 activity, minimum free energy, and binding degree,
we used available computational models or executed defined pro-
cesses or formulas. Also, some pre-processing needs to be done
on sequences to extract complex features. All these processes are
performed in this layer.

Deep layer

As shown in Figure 6D, at the core of the deep layer, we employed
multi-head attention-based transformers as a deep network to predict
PE efficiency. The main faction of multi-head attention-based trans-
formers in this layer is to predict PE efficiency. Also, using off-target
score, DTMP-Prime can perform a binary classification of PegRNA
activity. Indeed, the output of the last hidden states will be used for
activity classification.

Similar to the original DNABERT model, DTMP-Prime consists of
12 transformer layers. The complete architecture of our model is
shown in Figure 6D. As shown in Figure 6A, the deep layer takes
the output of the hand-crafted feature selection, encoding, and
embedding layers as input to determine a sequence activity. To
unify all information and consolidate them in one frame, we formed
a data frame consisting of three parts: (1) the 43 features (as
described in Table 2), (2) the matrix resulting from the encoding
of the DNA and PegRNA, and (3) the matrix resulting from the
embedded wide DNA and desired DNA. After forming this data
frame, the deep layer takes that as input. The input is then fed to
12 transformer blocks.
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