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Fitting of enzyme kinetic data without prior knowledge of weights
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A method is described for fitting equations to enzyme kinetic data that requires minimal
assumptions about the error structure of the data. The dependence of the variances on
the velocities is not assumed, but is deduced from internal evidence in the data. The
effect of very bad observations ('outliers') is mitigated by decreasing the weight of
observations that give large deviations from the fitted equation. The method works well
in a wide range of circumstances when applied to the Michaelis-Menten equation, but it
is not limited to this equation. It can be applied to most of the equations in common use
for the analysis of steady-state enzyme kinetics. It has been implemented as a computer
program that can fit a wide variety of equations with two, three or four parameters and
two or three variables.

Under ideal conditions, the method of least
squares is the preferred method for fitting theoretical
equations to experimental data. It gives poor results,
however, if the observations are incorrectly weighted
or if the data contain 'outliers', i.e. very poor
observations at higher frequency than allowed for by
the normal distribution (Cornish-Bowden et al.,
1978; Atkins & Nimmo, 1980). In the case of the
Michaelis-Menten equation and other two-para-
meter equations, one can obtain more reliable
estimates in such circumstances by using a 'robust'
method of fitting, such as that based on the direct
linear plot (Cornish-Bowden & Eisenthal, 1978).
This does not provide a general solution to the
problem, however, as one is often concerned with
non-linear equations with three or more parameters,
such as the equations for inhibited reactions and
two-substrate reactions. It is not, unfortunately, a
practical proposition to generalize the direct linear
plot to these equations, because the computational
labour would increase extremely steeply with the
number of parameters.

In an effort to develop robust methods that could
be applied to many equations of biochemical
importance, we have studied the method of 'bi-
weight regression' (see Mosteller & Tukey, 1977) as
applied to the Michaelis-Menten equation. Provided
that independent information about the proper
weights is available, this approach performs some-
what better than the direct linear plot: it gives
excellent protection against outliers, and also com-
pares well with ordinary least squares in the absence
of outliers; unfortunately, however, it not only

performs poorly when used with an incorrect
weighting assumption, it simultaneously loses much
of its robustness against outliers (Cornish-Bowden,
1980). In principle, this difficulty can be overcome
by performing independent experiments to deter-
mine the correct weighting, as described, for exam-
ple, by Storer et al. (1975) and by Askel6f et al.
(1976). The necessary experiments are very tedious,
however, and are very rarely performed. It is instead
common practice to base weighting schemes on
hypotheses about how the error variances vary with
the true rates. Unfortunately, the hypotheses ad-
vocated, even in recent reviews (e.g. Cleland, 1979),
take no account of published investigations of actual
error behaviour in enzyme kinetics (Storer et aL.,
1975); Siano et al., 1975; Askelof et al., 1976;
Nimmo & Mabood, 1979), and are consequently
likely to be erroneous in a high proportion of
circumstances. Any general hypothesis is anyway
likely to be incorrect sometimes because of
variations in experimental conditions, techniques
and skills. We have therefore investigated whether it
is possible to obtain satisfactory weights from
internal evidence contained within small data sets.

Theory and methods

Error variance
To a first approximation, one can take the vari-

ance a2(v1) of a rate v,, measured in a consistent
way, either as a constant:

a2(V ) = a2 (1)
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or as proportional to vil
a2(v) 22a (v )-a2vi (2)

or as some combination of the two. For convenience,
we shall refer to the first case as 'simple errors' and
the second as 'relative errors'. We shall also consider
'complex errors', defined as resulting from the
presence of additive simple and relative components:

or2(Vi) = aO + G2V?222i

Kendall's (1970) r, a rank correlation coefficient. In
this method [see Cornish-Bowden et al. (1978) for a
related interpretation of the median estimates of the
Michaelis-Menten parameters in terms of Kendall's
(1970) T] one uses each pair of observations z3f, V^i
(apart from any pairs for which vz = V^3) to estimate
the a-ratio as follows:

(ao/a2)2 = ( ^32e2-_^2ee2)/(e2_e}2)
(3)

(5)

If the value of aO/a2 is known, one can use it to
define proper weights for vi, because the weight w1
assigned to vi should be inversely proportional to
a2(vI), i.e.:

(aola,)l + V2
wI = /)2 +

(aOla2)+ V^i
(4)

where vz is a constant (independent of vi), such as the
mean of all the vi values, and v6i is the best available
estimate of the true rate; initially we put vzi equal to
v1, the observed rate, but after the first iteration vi is
calculated from the best available parameter values.
The numerator of the expression for w, is not strictly
necessary, as it could be replaced by any constant
other than zero without altering the final fitted
parameters, but a numerator of the type shown is a
convenient 'normalizing' factor that ensures that the
calculated weights do not differ enormously from
unity. Note that it is not necessary to know or be
able to calculate the individual values of ao and a2,
but only their ratio, which we shall call the 'a-ratio'.
This has the dimensions of a rate, and can be
regarded approximately as the rate where the S.D. of
vi changes from being independent of vzi to being
proportional to vt [see Fig. 2 in Cornish-Bowden
(1980)].

and defines ao/a2 as the square root of the median of
all the (ao/a2)h values.
An alternative form of eqn. (5):

(aO/a2). = [( A21/ei)-(i^,/ej)]I[(1/e2)-_(1/ei)] (6)

illustrates that the a-ratio can be thought of as the
(median) slope of the stright line obtained by
plotting Ai2/e 2 against -1/e2. With simple errors,
lie2 is approximately constant, the denominator of
eqn. (6) fluctuates about zero, and the a-ratio is
+o. Conversely, in the presence of relative errors,
the numerator fluctuates about zero and with it the
a-ratio.
To work satisfactorily this approach to esti-

mating aO/a2 requires modification to cope with the
fact that many (a0/a2)o2 values turn out to be
negative when calculated from eqn. (5). This can
happen either because (e2-e]2) has the opposite sign
from (viv32), in which case (a /a2)t is interpreted
as +oo, or because [(e/vtV)2-(ej/s)2i has the same
sign as (V6f- £, in which case it is interpreted as 0.
The rationale for these interpretations is the suppo-
sition that a2(vI) is likely neither to decrease as v^
increases nor to increase more steeply than in
proportion to V.

Estimation ofthe a-ratio
If observations are very abundant, and especially

if there are many replicates, several ways of
estimating ao/a2 are possible, but we shall be
concerned with the common experimental circum-
stance in which there are no more than ten
observations. Is it then possible to obtain a valid
estimate of O0/a2 without prior knowledge? Pro-
vided that some initial parameter estimates exist, so
that preliminary V^i values can be calculated, we can
define squared residuals, el, as (v1- p1)2, and use
them as estimates proportional to a2(v1). These are,
however, grossly erratic estimates of the true
variances, and our initial efforts to treat this as a
linear-regression problem with e? as dependent
variable and V6 as independent variable led to
hopelessly inadequate results. We have had much
more promising results with a method that seeks to
find a value of a0/62 that defines weights, w,, such
that w1ell and v^ are uncorrelated, as measured by

Biweight regression
The essence of biweight regression (Mosteller &

Tukey, 1977) is that after the first iteration observa-
tions with large values of ef are assigned decreased
weight. In conjunction with the weighting scheme
discussed above, we define scaled deviations u, as
follows:

U, = wtel/cS (7)

where w, and e1= v1-V£ are defined as above, c is a
constant and S is a robust measure of the scale of
the deviations. Various ways of defining c and S
have been suggested; here we shall follow Mosteller
& Tukey (1977) in defining c =6 and S as the
median value of wtell. We now define new weights,
WI, as follows:

(8)
wl(lu12)2 if Iu1IJ<1
Wi=

0 if lull> I
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These modified weights are then used instead of w, in
the next iteration. Note that W- w1 if u11 is
moderate or small, but W<< wi (and ultimately
W1= 0) if Iu,1 is large.

Implementation
In the first step of fitting a set of data by the

methods outlined above, we obtain a preliminary
least-squares fit by a suitable regression method
using weights (w1) for the v, calculated from eqn. (4).
Unless there is prior information about the likely
value of a0/a2, we begin by putting ao/a2= v, the
mean value of vi. The preliminary kinetic para-
meters provided by this regression generate calcu-
lated rates, V,, which provide a median estimate of
ao/a2 and thence new weights, w1. These are then
inserted into eqns. (7) and (8) to give modified
weights WI, which are used as weights for vi in a new
regression. The improved parameter values generate
improved estimates of ao/a, w, and Wi, and the
iterative process is continued until the estimates are
consistent from one iteration to the next. This
usually requires no more than ten iterations.

This general approach can be applied not only to
the Michaelis-Menten equation, but also to any
equation that can be expressed in linear form. Most
of the equations commonly used in steady-state
enzyme kinetics are of this kind, e.g. the simpler
equations for inhibited reactions and two-substrate
reactions. We have therefore implemented the pro-
cedure as a computer program in FORTRAN that
can be applied to any linearizable equation that
contains no more than three observed variables (e.g.
a rate and one or two concentrations) and no more
than four parameters. This program is available from
one of us (A. C.-B) on request. It can also be used as
a conventional least-squares program, because the

biweight feature can be suppressed if desired. The
value of aO/a2 can be adjusted by the program as
suggested above, or it can be specified by the user if
prior information about its value exists. Further-
more, it allows complex errors to be defined as
advocated by Askel6f et al. (1976) a different
approach from that embodied in eqn. (3).

Results and discussion

Table 1 shows a small, but typical, proportion of
the results obtained in Monte Carlo trials of the
method described above as applied to the Michaelis-
Menten equation with data simulated under various
conditions. Although Table 1 shows results for Km
only, other parameters, such as V, V/Ki, 1/V and
Km/V, were also studied, and they behaved similarly.
In general, Km is a convenient parameter to consider
for this purpose because it is the least precisely
defined and is sensitive to the quality of the data over
the whole range, in contrast, for example, with V,
which is defined mainly by the larger v1 values.
As expected, conventional least squares gives

satisfactory results only when correctly weighted
and in the absence of outliers. The biweight method
with fixed a-ratio gives good results with and
without outliers if the a-ratio is fixed at the correct
value, but poor results if it is fixed at an incorrect
value. Conversely, least squares with adjustable
a-ratio gives good protection against the effects of
ignorance of the correct value, but does not protect
against outliers. Only by combining the biweight
method with the capacity to adjust the a-ratio can
one obtain satisfactory results in all circumstances.
The combined calculation gives a similar per-
formance to median estimation on the basis of the
direct linear plot. As it is much more tedious to

Table 1. Comparison ofmethodsforfitting the Michaelis-Menten equation
The Table shows the mean square deviations of Km given by six methods in simulated experiments in which the true
value of K. was 10.0 and there were ten observations at substrate concentrations evenly spaced from 0.2Km to 2Km.
In experiments with 'relative errors', each rate had the same coefficient of variation of 5%; in experiments with
'simple errors', each rate had the same S.D. of 0.025 V. In experiments with 'no outliers', the errors were normally
distributed with mean zero; in experiments 'with outliers', they were drawn with probability 80% from one normal
distribution or with 20% probability from a second with a 4-fold larger S.D., in both cases with zero mean. There
were 1000 experiments for each type of error. The numbers shown in parentheses after the mean square deviations
in the Table are efficiencies of the methods in comparison with the best method for each type of error. In all cases
the mean deviation (bias) was of the order of 0.1; it was thus trivial in comparison with the random error, and
the mean square deviations are effectively variances.

Type of error

Relative errors, no outliers
Relative errors, with outliers
Simple errors, no outliers
Simple errors, with outliers
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Simple
least squares
(a2= 0)

1.84 (55%)
1.77 (38%)
2.36 (100%)
2.42 (68%)

Relative
least squares
(aO= 0)

1.02 (100%)
1.01 (66%)
4.69 (50%)
4.32 (38%)

Least squares
GO/0a2

adjustable
1.31 (78%)
1.16 (58%)
2.45 (96%)
2.20 (75%)

Relative
biweight
(aO = 0)

1.04 (98%)
0.76 (88%)
3.93 (60%)
2.64 (62%)

Biweight

adjustable
1.32 (77%)
0.73 (92%)
2.95 (80%)
1.64 (100%)

Median
1.21 (84%)
0.67 (100%)
3.01 (78%)
1.71 (96%)
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compute, it would offer no advantage over the direct
linear plot if the Michaelis-Menten equation were
the only model that needed to be considered. Unlike
the direct linear plot, however, it can be applied with
little extra effort to three- and four-parameter models
and offers, for the first time, robust approach to the
fitting of such models.

This work was supported by grant no. 1851 from the
North Atlantic Treaty Organization and grant no. MA-
3163 from the Medical Research Council of Canada.
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