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Summary 
Schizophrenia, a severe psychiatric, neurodevelopmental disorder 
affecting about 0.29-1 % of the global population, is 
characterized by hallucinations, delusions, cognitive impairments, 
disorganized thoughts and speech, leading to significant social 
withdrawal and emotional blunting. During the 1980s, 
considerations about diseases that result from complex 
interactions of genetic background and environmental factors 
started to appear. One of the critical times of vulnerability is the 
perinatal period. Concerning schizophrenia, obstetric 
complications that are associated with hypoxia of the fetus or 
neonate were identified as a risk. Also, maternal infections during 
pregnancy were linked to schizophrenia by epidemiological, 
serologic and genetic studies. Research efforts then led to the 
development of experimental models testing the impact of 
perinatal hypoxia or maternal immune activation on 
neurodevelopmental disorders. These perinatal factors are 
usually studied separately, but given that the models are now 
validated, it is feasible to investigate both factors together. 
Inclusion of additional factors, such as metabolic disturbances or 
chronic stress, may need to be considered also. Understanding 
the interplay of perinatal factors in schizophrenia's etiology is 
crucial for developing targeted prevention and therapeutic 
strategies. 
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Introductory remarks on Professor Jan 
Herget’s contribution to understanding 
developmental disorders 
 

In this Special issue of Physiological Research, 
we celebrate the legacy of Professor Jan Herget  
(1945-2019) of the Second Faculty of Medicine, Charles 
University in Prague, Czech Republic. Although this 
review focuses on perinatal factors in schizophrenia, it is 
pertinent to remember Jan’s unique contributions to 
uncovering the long-term effects of perinatal hypoxemia 
on responses to decreased oxygen in adulthood [1]. 

In the pioneering experiments, pregnant rats were 
placed into the hypoxic chambers and were kept there until 
their offspring were a week old. After placing the animals 
into the normoxic air, they recovered from hypoxia and 
had comparable pressure in pulmonary circulation as 
control mice unexposed to perinatal hypoxia. However, 
when these animals were re-exposed to acute hypoxia in 
adulthood, their responses were more severe than in 
animals born in normal air [1]. The perinatal exposure to 
hypoxia also blunted humoral immune responses in adult 
rats [2]. The mechanisms of these intriguing, lifelong-
lasting effects are not yet fully understood. [3] 
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Fig. 1. Multiple factors acting perinatally can increase a risk for neurodevelopmental conditions that may manifest during childhood and 
adulthood. The picture was made with using a Biorender template. 

 
 
Jan received the Robert F. Grower Prize from 

the American Thoracic Society for his research work. He 
was also an astounding teacher and mentor who 
profoundly impacted his students and research trainees. 
His vision that the course of a disease processes needs to 
be studied from a very early time in life took another 
dimension with models where perinatal hypoxia and 
maternal immune activation were identified as critical 
players in neurodevelopmental conditions. 

 
Perinatal exposures and risk for 
neurodevelopmental conditions 

 
Many perinatal factors influence the fetus during 

the perinatal period and affect the inherently complex and 
highly active brain tissue. For example, perinatal 
exposures that are related to increased risk  
of schizophrenia include conditions that cause 
hypoxemia, infections (especially influenza, rubella and 
toxoplasmosis) [4,5], maternal and offspring psycho-
social stress [6], genetic factors [7], advanced paternal 
age [8], nutritional deficiencies [9], urbanicity [10] and 
migration status [11]. 

Vice versa, if we look at one group factors, e.g., 
maternal immune activation (MIA) initiated by viruses, 
bacteria, fungi, autoimmune conditions,  they  can play  
a role in a variety of childhood- or adulthood-onset of 
disorders, as depicted in Figure 1.  They include autism 
[12-15], schizophrenia [4,15,168-170], bipolar disorder 
[16], depression [17-19], anxiety disorder [20], attention 
deficit-hyperreactivity disorder [21], obsessive-
compulsive disorder   [22], Tourette’s syndrome [23], 
epilepsy [24,25], multiple sclerosis [26], Parkinson’s 
disease and Alzheimer disease [27]. 

The precise mechanisms by which individual 
perinatal factors increase susceptibility to various 
neuropsychiatric conditions remain incompletely 
understood. The interplay of genetic predisposition, the 
timing of exposure, and the intensity of these factors 
collectively determine the outcomes. Elucidating these 
intricate details presents a formidable intellectual 
challenge. Resolving this complexity is crucial for 
identifying diagnostic biomarkers that enable clinicians to 
detect individuals at elevated risk for these conditions and 
to provide care strategies that may mitigate the likelihood 
of disease development.  
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In clinical psychiatry, diagnoses are based on 
symptoms and co-morbidities are a very common finding. 
In turn, making accurate diagnoses is arduous. Significant 
efforts are ongoing to define objective biomarkers that 
reflect distinct pathological processes, though they 
present by mixed behavioral symptoms. Understanding  
the pathophysiology is a prerequisite for diagnostic 
precision and enhancing effectiveness of treatment of 
schizophrenic patients [28]. 

We will focus here on hypoxia and perinatal 
immune activation as risk factors for schizophrenia. 
These two conditions have a high prevalence globally and 
often coincide, and the recent SARS-CoV-2 pandemic,  
or Severe Acute Respiratory Syndrome Coronavirus 2, 
very likely enhanced MIA in pregnant women during  
the pandemic.  

 
Introduction to schizophrenia 

 
In this selective review, we will focus on one of 

the neurodevelopmental disorders: schizophrenia, a 
severe psychiatric illness affecting about 0.29 % to 1 % 
of people worldwide. In the age group of 15-24 year-old 
individuals, it is the third most frequent mental disease, 
after anxiety and depression [29,30]. Patients experience 
symptoms such as hallucinations, delusions, cognitive 
impairment, disorganized speech and thought processes, 
which are categorized as “positive symptoms” of the 
disease. Their altered perception of reality often provokes 
severe anxiety and leaves them in profound loneliness. 
Patients have reduced expressions of emotions and 
typically withdraw from social contact. These symptoms 
are labeled as “negative symptoms”, and are more 
difficult to control by pharmacological treatment. Besides 
the impact of the disease on affected individuals, there is 
also a collateral toll on patient’s caregivers, families, 
friends, and colleagues [31-35]. In addition, the annual 
societal cost is high [36]. 

The pathogenic disturbances leading to 
schizophrenia syndrome result from interactions  
of multiple genetic and environmental factors [37] that 
start affecting brain circuitries during brain development 
[38], though the symptoms manifest in late adolescence 
to early adulthood. Most patients are affected between  
15-25 years of age, with males having an earlier onset 
than females. In about 20 % of patients, the onset of 
schizophrenia occurs after forty and before 60 years, and 
rarely also, the disorder begins in childhood or adults 
above 60 years of age [29]. The differences in age of 

onset may reflect distinct pathogenic pathways or 
accumulation of causative factors, as suggested by the 
multiple-hit hypothesis [39]. 

Diagnosis of schizophrenia is still based 
on clinical symptoms because no objective, validated 
biomarkers exist for clinical use. As a result, diagnosis  
is not based on mechanistic principles; existing 
treatments are non-curative, and 30 % of patients remain 
resistant to existing therapeutics [40]. A better 
understanding of pathogenesis will help us subtyping 
patients into groups according to distinct pathological 
processes in individual patients and treat patients with 
high precision, as it has already been developed for 
cancer patients [41]. To this end, we focus here on the 
early events that increase the chance of schizophrenia 
development. Extensive research suggests that 
schizophrenia is a neurodevelopmental disorder, with the 
pathological processes potentially commencing as early 
as the in-utero stage [42,43], and progressing to  
a neurodegenerative condition [44]. 

 
Pathophysiology of schizohrenia 

 
Reasons for poor understanding of schizophrenia 

include the high heterogeneity of patients,  
the inaccessibility of human brain tissue for  
biopsy sampling, and the involvement of animal  
models that do not fully capture the polygenic nature and 
multitude of environmental factors [45-48]. Our 
understanding of schizophrenia’s pathophysiology  
has been to a large degree based on postmortem brain 
studies, imaging studies, effects of pharmacotherapy and 
genetic studies. 

 
Morphological considerations  
Postmortem brain studies 

Studies on brain pathology in schizophrenia 
initially focused on post-mortem brain specimens of 
individuals with schizophrenia. One major challenge with 
postmortem studies is the variability in findings due to 
factors such as the stage of the disease, medication status, 
and comorbid conditions at the time of death. 
Additionally, postmortem changes and tissue preservation 
issues can complicate interpretations. Despite these 
challenges, a consistent pattern has been identified in 
patients with chronic schizophrenia. Macroscopic 
findings include an enlargement of lateral and third 
ventricles, reduced brain volume, reduced gray matter 
involving the cortex, especially the prefrontal cortex, as 
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well as changes in subcortical gray matter (decreased 
volumes of hippocampus and thalamus, and increased 
basal ganglia volume) [49,50]. 

At the microscopic level, the altered density of 
neuronal and glial cells was reported in the prefrontal 
cortex, as well as reduced size of pyramidal neurons, 
reduced number of parvalbumin interneurons, decreased 
dendritic spine density and reduced neuropil (regions in 
the gray matter with dense, interwoven network of axons, 
dendrites, and glial cells), which contribute to disruptions 
in synaptic connectivity and plasticity [51-56]. In  
the hippocampus, findings in brains of patients with 
schizophrenia included neuronal disarray, reduced 
numbers of neurons and interneurons and decreased gene 
and protein expression of somatostatin-positive and 
parvalbumin-positive interneurons [57]. In the thalamus, 
numbers of neurons and parvalbumin positive 
interneurons were reduced [58]. Basal ganglia in 
individuals with schizophrenia are characterized by 
changes in the density of neurons and cholinergic 
interneurons [59]. In the corpus callosum, reduced 
myelin, axon density, and gliosis were noted [60]. 

 
Brain imaging 

The macroscopic structural findings  
in schizophrenia were later confirmed in in vivo brain 
imaging studies [61]. Structural changes in the gray 
matter include reduced volume of frontal, prefrontal and 
temporal cortices with progressive loss over the course of 
the disease [62]. With regard to the white matter,  
a smaller total volume at a later stage of the disease [63]  
and hypoactive connectivity in major networks  
were reported [64].  

Brain imaging also enabled the study of patients 
at different stages of the disease.  Comparing individuals 
at prodromal state, first-episode of psychosis (FEP)  
or chronic schizophrenia revealed the progressive nature 
of brain pathology.  

Ultra-high risk (UHR) individuals at prodromal 
state are people with personal features (e.g., subthreshold 
psychotic symptoms or a history of self-limiting brief 
intermittent psychotic symptoms) or a family history (e.g. 
first degree relative with a psychotic disorder) that puts 
them into a risk of developing a full-blown psychotic 
disorder. UHR individuals show early signs of anatomical 
and neuropathological abnormalities, e.g., reduction in 
frontal, prefrontal, and temporal cortices, often subtler 
than in FEP, affecting cortical and subcortical gray matter 
[65]. In FEP, prefrontal hypoactivity and hippocampal 

and subcortical hyperreactivity were described [66].  
Gray matter changes are most robust within 
thalamocortical networks and brain activity is most 
altered in fronto-parietal circuitries [66]. In chronic 
schizophrenia, reduced gray matter involving the cortex 
(frontal, prefrontal, temporal), decreased volumes of 
hippocampus and thalamus, and increased basal ganglia 
volume were described [62].  

 
Neurochemical considerations 

Understanding of biochemical disturbances in 
schizophrenia has been evolving since 1950s when it was 
discovered that chlorpromazine has neuroleptic effects 
during anesthesia (Laborit et al.), and later shown  
to improve symptoms of schizophrenia [67]. 
Chlorpromazine effects include dopamine receptor 
inhibition [68]. Studies of postmortem brain showed 
dysregulation of  dopamine synthesis, receptor expression 
or intracellular signaling in prefrontal and cingulate corte 
[69,70], hippocampus [69], thalamus [71] and basal 
ganglia [72,73]. Later it became clear that mono-amine 
theory of schizophrenia is over-simplified and pathophy-
siology involves also alterations in glutamatergic and 
GABAergic systems [74]. In addition, the effectiveness 
of several medications provided further clinical insight 
into the roles of neurotransmitters in the pathogenesis of 
schizophrenia, e.g., blockade of dopamine D2 receptors 
by a typical antipsychotic (e.g. haloperidol), serotonin  
5-hydroxytryptamine (5-HT)-2A receptor inhibition, and 
5-HT-21A receptor activation by atypical antipsychotics 
(e.g. risperidone) and partial glutamatergic agents, such 
as N-methyl D-aspartate (NMDA) receptor modulators 
[75,76]. Also, adjunctive treatment of schizophrenia has  
involved medications affecting GABAergic system, 
including benzodiazepines, though their use may  
need to be honed [77].   

 
Genetic factors 

Genome-wide association studies revealed over 
three hundred genes that represent risk factors for 
schizophrenia [78]. Twin and family studies showed that 
heritable risk for schizophrenia is about 67 %, which may 
be inflated due to common environmental conditions of 
the participants in the study, and thus environmental 
factors play significant role in development of the disease 
[79]. Concerning the perinatal factors discussed in this 
review, risk genes in pathways relevant to hypoxia 
[80,81] immune [82,83] and gut microbioma [84] 
responses are significantly enriched. 



2024  Perinatal Hypoxia and Immune System Activation in Schizophrenia Pathogenesis    S619  
 

 
 
Fig. 2. Maternal, fetal and neonatal causes of decreased oxygen content in the blood supplying offspring’s brain. The picture was made 
with using a Biorender template.  

 
 

The relation of perinatal hypoxia to 
schizophrenia 

 
Many conditions are associated with various 

degrees of maternal and fetal hypoxemia (Fig. 2). 
Perinatal hypoxia exerts extensive effects on the brain's 
histopathology, neurophysiology, and long-term health 
outcomes. The impact of hypoxemia on brain cells is 
modulated by the degree and duration of hypoxia. Mild 
hypoxia may induce reversible cellular changes, leading 
to adaptations and possibly alterations in transcription 
programs to cope with reduced ATP synthesis. In 
contrast, severe or prolonged hypoxia can result in 
irreversible damage and cell death. Additionally, the 
effects of hypoxia are influenced by the activity at  
a specific brain site and time, which is complex in healthy 
infants and in premature babies. 
 
Clinical findings relating perinatal hypoxia to 
schizophrenia  

The hypothesis that the development of 
psychotic conditions may be associated with brain 
hypoxia in the perinatal period was formulated in 1975 by 
a child psychiatrist, H. Allen Handford, based on the 

clinical history of patients seen in his practice, 
highlighting at that time that additional factors than 
genetics are at play [85]. 

Epidemiological studies then showed that 
hypoxia-associated obstetric complications significantly 
increase the risk for schizophrenia with early 
onset, before the age of 22 years (odds ratio, OR, 2.16) 
[86], and the degree of hypoxia-associated obstetric 
complications correlates with risk for developing 
schizophrenia [87]. After adjusting for other obstetric 
complications (e.g. maternal history of psychotic illness 
and social class), the association between signs of 
asphyxia at birth and schizophrenia reached odds ratio 
(OR) 4.4 [88]. 

Concerning the impact of perinatal hypoxia on 
the brain tissue of newborn, brain imaging studies 
revealed that the most susceptible areas include injuries 
within watershed areas, hippocampus, basal ganglia, 
thalamus, hippocampus and white matter. The impact 
depends on maturation stages of the brain [89]. Prefrontal 
cortex that is consistently linked to schizophrenia, is 
supplied by both anterior and middle cerebral arteries and 
includes the watershed area between them, making it 
sensitive to hypoxemia. Prefrontal cortex is also 
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connected to the subcortical nuclei, e.g. thalamus, 
hippocampus, striatum, and hypoxia-induced white 
matter injury may affect the connectivity. Also, post-
mortem brain analysis of the posterior hippocampus in 
patients with schizophrenia revealed a negative 
correlation between events associated with hypoxia and 
the numbers of pyramidal cells in CA4, a deep 
polymorphic layer of dentate gyrus [90]. 
Correspondingly, brain imaging studies in patients with 
psychotic disorder uncovered a decreased hippocampal 
volume in individuals with schizophrenia as compared to 
healthy controls, and those volumes were further 
decreased in patients with hypoxia events in their early 
life [91]. In summary, hypoxic insults, though highly 
variable in their strength and timing, appear to impact 
many areas shown to be affected also in schizophrenia.  

It was suggested that the level of susceptibility 
to hypoxia may depend on genetic background. To this 
end, Nicodemus et al. tested thirteen hypoxia-regulated 
genes related to neurovascular functions. Changes in 
single nucleotide polymorphisms (SNP) in four genes 
were identified: AKT1 (AKT serine/threonine kinase 1;  
three SNPs), BDNF (brain-derived neurotrophic factor; 
two SNPs), DNTBP1 (dystrobrevin-binding protein 1;  
one SNP) and GRM3 (S-adenosyl-L-methionine-
dependent methyltransferases superfamily protein;  
one SNP). These findings support the gene-environment 
interactions in schizophrenia [92]. Concerning functional 
responses to fetal hypoxia, a protein product of one of the 
factors – BDNF- was increased in cord blood in control 
subjects without schizophrenia, while in cases with 
schizophrenia, BDNF levels were decreased by hypoxia 
[93]. HMGA1 (High mobility group A protein 1a) was 
found to be a hypoxia-inducible RNA-binding trans-
acting factor for aberrant splicing of presenilin-2 pre-
mRNA. Morikawa et al. found increased HMGA1a 
mRNA and protein in patients with schizophrenia [94]. 
Recently it was also shown that hypoxia-inducible factor 
induces MIF expression (macrophage migration 
inhibitory factor, a neuroprotective cytokine at the cross-
road of inflammatory and stress responses) by binding to 
hypoxia-response element at the MIF promoter and that 
SNP at this site represents a risk factor for schizophrenia 
by reducing production of MIF in response to hypoxia 
[95]. Hypoxia also affects the extensively studied 
pathway of DISC1 (Disrupted in schizophrenia 1,  
a scaffold protein that interacts with many other proteins 
and is required for synaptogenesis, neurite outgrowth,  
and neuronal migration) by reducing the half-life of  

DISC1 protein [96].  
 

Experimental studies in animal models  
Experimental models of schizophrenia induced 

by perinatal hypoxia typically involve oxygen deprivation 
during critical developmental periods. For example,  
a rodent brain at postnatal days 7-8 corresponds to the 
late gestational period in humans. It represents a critical 
period for dendritic outgrowth, formation of synapses, 
and maturation of neuronal tissue [97], neuronal networks 
with alterations in the glutamatergic receptors (switch 
subunits of NMDA receptors from GluN2B to GluN2A 
subtypes) [98] and transformation of GABAergic system 
from excitatory to inhibitory effects [97]. All the 
parameters studied during developmental stage can now 
be linked using 3D eMouse atlas [99] that builds on 
morphological staging developed by Karl Theiler [100]. 

The immature brain in this sensitive age is quite 
vulnerable and depends on the timing and duration  
of hypoxic insult as it affects dynamic functions, such as 
neuronal proliferation, migration, and maturation. The 
models mimic obstetric complications, e.g., C-section, 
perinatal/postnatal hypoxia, or placental insufficiency 
[101]. Experimental hypoxia includes several protocols 
that employ acute or chronic oxygen reduction at sea 
level barometric pressure or hypobaric conditions where 
the percentage of oxygen remains the same, but decreased 
barometric pressure leads to less oxygen delivered to the 
lungs' alveolo-capillary membrane. 

In relation to schizophrenia, neuregulin-1  
(a key factor seen elevated in patients with schizophrenia) 
was 32 % higher in the frontal cortex of adult rats 
exposed to 7-day neonatal hypoxemia [102]. In a recent 
study, perinatal hypoxia was shown to dysregulate 
spontaneous activity patterns critical for forming 
functional templates for generating cortical architecture 
and guidance for establishing thalamocortical and 
intracortical circuits. These circuits are affected in 
patients with schizophrenia [103].  
 
Hypoxia-induced behavioral changes resembling 
schizophrenia 

C-section results in greater amphetamine-
induced locomotion in adult rats, both in animals born in 
normoxia or hypoxia as compared to vaginal delivery. 
Amphetamine increases dopamine levels, and increased 
locomotion in response to amphetamines indicates 
heightened sensitivity to dopamine, which models the 
dopamine dysregulation seen in schizophrenia. The rats 
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also spent more time sniffing than grooming, and hypoxia 
during C-section was linked to prolonged rearing in adult 
rats [104]. In animal models, spending more time sniffing 
the environment and less time grooming can be indicative 
of increased anxiety or hyperactivity, both of which are 
observed in individuals with schizophrenia. Prolonged 
rearing indicates increased exploratory behavior and 
hyperactivity. In schizophrenia models, this behavior can 
reflect the hyperdopaminergic state associated with 
positive symptoms of schizophrenia, such as agitation 
and hyperactivity. 

Adult guinea pigs had also increased 
amphetamine-induced locomotion and disrupted pre-
pulse inhibition (PPI) of acoustic startle, but hypoxia 
during C-section reduced amphetamine-induced 
locomotion [105]. PPI is a neurological phenomenon 
used to measure sensory gating, the brain's ability to filter 
out unnecessary information. The test consists of the 
startle reflex, a rapid, involuntary response to a sudden 
loud noise or other sensory solid stimulus. When a weak 
pre-stimulus (pre-pulse) is presented shortly before  
a strong startling stimulus, PPI occurs, and the startle 
response to the subsequent more substantial stimulus is  
reduced. Disrupted PPI in animals indicates impaired 
sensory gating, a key feature of schizophrenia. In  
another study, postnatal hypoxia induced by bilateral, 
continuous occlusion of the common carotid artery in  
12-day-old male rats resulted in schizophrenia-like 
behavior, including locomotor activity in pubertal rats 
(postnatal day 35) and impaired PPI in post-pubertal 
males (postnatal day 50) [106]. 

 
Hypoxia-induced impact on neurotransmitters and/or 
their receptors related to schizophrenia. 
All three central neurotransmitter systems are affected by 
hypoxia:  

1) Dopamine. Animal models of C-section 
hypoxia resulted in altered levels of dopamine  
or dopamine receptors, the key neurotransmitter 
associated with schizophrenia. Decreased levels of 
dopamine were found in the prefrontal cortex [107,108], 
while dopamine release was increased in the nucleus 
accumbens [108] and amygdala [109]; 

2) Glutamatergic system. NMDA receptor 
binding decreased, and transcription of NR1 subunit 
increased in frontal and temporal regions, nucleus 
accumbens, and hippocampus. NR2A subunit expression 
was downregulated in hippocampal sub-regions. On day 
120 postnatally, gene expression of NR1 was still 

increased in hippocampal, frontal, and temporal sub-
regions, as well as nucleus accumbens - a pre-pulse 
inhibition deficit points to schizophrenia-like behavior in 
4-month-old rats. Compensatory upregulation of NR1 
expression may occur due to NMDA receptor 
hypofunction. A subset of glutamate receptors, kainite 
receptors, increased after exposure to hypoxia [104]. 
Neuregulin -1, a protein that interacts with glutamate 
receptors, was elevated after hypoxia in 7-day rats [102];  

3) GABA in the hippocampus increased in 7-day 
old rats after 1hr ligation of the left carotid artery and 
exposure to air where the content of oxygen was reduced 
from 21 to 8 % [110]. 

In summary, perinatal hypoxia has been linked 
to many neuropsychiatric conditions. Concerning schizo-
phrenia, the link was established by epidemiological and 
genetic studies, in vitro experiments on human cells, and 
in vivo experimental studies in several animal species.  

 
Perinatal immune system activation and the 
brain 

Perinatal infections encompass a range  
of infectious diseases transmitted from mother to fetus in-
utero or during birth or occur shortly after delivery. Any 
infectious microorganisms, including bacteria, viruses, 
fungi, or parasites, can cause these infections. Immune 
responses to invading microorganisms are associated  
with local and systemic activation of immune cells  
and the production of soluble molecules, including 
interleukins, cytokines, complement peptides, and 
antibodies. The presence of these molecules alters the 
brain development. 

 
Clinical studies in patients with schizophrenia 
Epidemiological evidence.  

The link between perinatal infection and 
schizophrenia started to be considered more than three 
decades ago. In a Finish birth cohort study, Mednick  
et al. showed that mothers in the second trimester of their 
pregnancy during the 1957 influenza endemic had 
children who were much more likely to be admitted by  
26 years in an inpatient facility with the diagnosis of 
schizophrenia [5]. Subsequent birth cohort study 
employed an improved design by involving pregnant 
women whose respiratory infection was recorded by  
a physician and whose offspring had continued follow-up 
with a diagnosis of schizophrenia established by face-to-
face interview [111]. Second-trimester infection 
represented an increased risk for schizophrenia with  
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a relative rate of 2.13 [111]. Going beyond the in-utero 
period, a two-fold risk for schizophrenia was found in 
adults who experienced childhood infections, especially 
influenza, as a meta-analysis revealed. These findings 
highlight that the critical developmental period continues 
in the postnatal period  [112]. A recent population-based 
nationwide cohort study addressed the hazard ratio for 
neuropsychiatric conditions in children of mothers with 
autoimmune diseases. The hazard risk with regards to 
schizophrenia was 1.35, demonstrating increased risk in 
offspring of women with conditions such as autoimmune 
diabetes or rheumatoid arthritis [113].  

 
Serologic findings 

Other efforts focused on finding infectious 
microorganisms responsible for these observations. In  
a nested case-control study, blood samples of mothers of 
children who turned out to be schizophrenic patients in 
adulthood were measured. The samples were collected at 
the end of their pregnancy and were found to have 
elevated total immunoglobulin (Ig)G and IgM and 
elevated IgG specific against herpes virus type 2 
glycoprotein gG2 [114]. In another nested case-control 
study, archived blood samples of mothers pregnant 
between 1959 and 1966 were tested, and offspring were 
followed for psychiatric disorders for 30-38 years. 
Influenza infection during the first trimester increased the 
risk for schizophrenia 7-fold and 3-fold after broadening 
gestational periods to early to mid-pregnancy [115].  

The studies on viral pathogens also expanded to 
protozoan parasites, toxoplasmosis gondii, and bacterial 
infections. Xiao et al. developed new antibodies for 
enzyme-linked immunosorbent assay to distinguish three 
distinct clonal lineages of toxoplasma and then tested the 
sera of pregnant mothers whose children developed 
schizophrenia and schizoaffective disorder with sera  
of mothers of unaffected children. Serological positivity 
for Toxoplasma type I, Ukrainian infection, increased risk 
for the development of psychoses with an odds ratio of 
1.94. For affective psychoses, the odds ratio was 5.24 
[116]. Bacterial infections during pregnancy also 
represent a significant risk for the development of 
schizophrenia (adjusted odds ratio 1.8, primarily when 
the infection affects multiple systems, which raises the 
adjusted odds ratio to 2.9 [117].  
 
Neuroanatomic considerations 

In patients with schizophrenia, postmortem 
analyses and brain imaging studies done by the early 

1990s established that pathology occurs within fronto-
striatal-temporal regions [118]. As further details were  
learned, more details were identified, and the frontal 
cortex, hippocampus ([119], cerebellar vermis [120], 
substantia nigra [121] were added to the neuroanatomical 
areas related to schizophrenia. A recent review of meta-
analyses concluded that schizophrenia is characterized by 
lower grey matter volumes and cortical thickness, 
accelerated grey matter loss over time, abnormal 
gyrification patterns, and lower regional SV2A levels 
(Synaptic Vesicle Glycoprotein 2A is a protein that plays 
a crucial role in the regulation of neurotransmitter release 
at synapses) and metabolic markers in comparison to 
controls (effect sizes from ~ -0.11 to -1.0), and that 
critical regions affected include frontal, anterior cingulate 
and temporal cortices and the hippocampi [42].  

Concerning the association between immune 
system activation and schizophrenia, metanalysis 
revealed a significant increase in the density of microglia, 
especially in the temporal cortex, while densities of 
macroglia (astrocytes and oligodendrocytes) did not 
differ significantly. On the molecular level, increased 
expression of proinflammatory genes on transcript and 
protein levels was seen in schizophrenia, while anti-
inflammatory gene expression levels did not differ 
between schizophrenia and controls [122]. 

Complex developmental trajectories were 
detected in the brains of patients with autism and 
schizophrenia spectrum disorders, which are distinct 
disorders where autism starts in early childhood and 
schizophrenia in young adulthood. However, patients 
with autism are three times more likely to develop 
schizophrenia later in their life [123]. This association 
may result from interactions between genetically-defined 
abnormalities and many environmental factors to which 
each individual is likely exposed at different times. For  
a better understanding of the mechanisms of this complex 
phenomenon, animal models of maternal immune 
activation (MIA) were developed. 

 
Experimental studies in MIA model  

Robert Sidwell's group established foundations 
for the MIA by involving C57/BL6 pregnant mice 
infected with human influenza virus on gestational day 9 
and assessing offspring on day 0 after the birth and  
at 14 weeks. They were the first to report short- and long-
lasting impacts both on adult offspring's behavior and 
brain neuropathology, including macrocephaly and 
pyramidal cell atrophy [124]. Paul Patterson and his team 
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then employed the synthetic double-stranded RNA 
polyinosinic-polycytidylic acid (Poly (I:C)) instead of the 
influenza virus and demonstrated a similar impact on 
brain structures and functions [125]. The deficits in  
pre-pulse inhibition in the acoustic startle response linked 
the model to autism and schizophrenia spectrum  
disorders [126]. Using synthetic mimetics of the  
influenza virus significantly simplified the methodology 
of this model and facilitated subsequent studies that  
involved different Toll-Like Receptor (TLR) ligands  
administered to pregnant dams at different stages  
of pregnancy [127]. 

Paul Patterson's group was pivotal in developing 
the model's neuropathology and identifying behavioral 
abnormalities (e.g., deficits in social interaction, 
increased anxiety, and cognitive impairments), which 
helped to draw parallels between the animal model 
findings and symptoms of patients with autism and 
schizophrenia [15,128]. They also established essential 
roles of cytokines, particularly interleukin (IL)-6, in 
mediating the effects of MIA on neurological 
abnormalities in exposed offspring [126]. Another critical 
cytokine, IL-17, is required for elicitation of abnormal 
cortical and altered behavior in offspring, as discovered 
by Gloria Choi [13]. Her group further refined the MIA 
model by establishing neuronal circuitry that is affected 
by IL-17 [129,130]. 

Urs Meyer's group demonstrated the relevance 
of the model to schizophrenia and the multi-hit 
hypothesis. In their experiments, MIA-exposed animals 
received stressful stimuli in the peripubertal period, 
which resulted in synergistic effects on brain pathology 
and behavior in adulthood. The MIA exposure 
significantly increased the vulnerability of the pubescent 
offspring [131]. Given that the onset of schizophrenia 
occurs in young adults, this model involving  
a combination of perinatal and peripubertal challenges 
likely reflects real-world scenarios. 

In summary both preclinical and clinical studies 
have linked inflammation and maternal immune 
activation to pathogenesis of schizophrenia. The critical 
questions that need to be resolved are when the 
inflammatory processes within the brain are beneficial 
and when they are detrimental, and how can the injurious 
events be therapeutically inhibited without impacting the 
whole immune system and rendering treated individuals 
more susceptible to infections.  

The complexity of interactions in the MIA 
model is evident from this outline. However, another 

layer of complexity was added when Sarkis Maznamian's  
group reported that MIA alters the gut  
microbiome, significantly affecting exposed offspring's 
neurodevelopment [132]. 

 
Gut microbiome and the brain 

 
The gut microbiota comprises over 100 trillion 

bacteria, viruses, and fungi, which form an essential 
physiological system. The interactions between the large 
mass of microorganisms and the gastrointestinal wall are 
highly regulated by the gut-associated lymphoid tissue, 
which represents the immune tolerance's cardinal site. 
The gut microbiota interacts with other organs through  
a multidirectional communication network, via which it 
also influences brain development and functions [133]. 

The microbiota communicates with the brain via 
nerves and in an endocrine fashion. Regarding nerves, 
autonomic parasympathetic, vagal, and splanchnic plexus 
fibers are directly wired to the central nervous system. 
The endocrine role of gut microbiota is reflected in the 
release of many substances that then travel through 
interstitial fluid or blood to local or distant targets [134]. 

The most relevant molecules produced  
or metabolized by the microbiota are short-chain fatty 
acids (produced by bacteria), bile acids (from the liver 
and metabolized by the microbiota), and tryptophan  
(an essential amino acid originating mainly in a diet and 
then metabolized by the microbiota) [135]. 

The microbiota can transform tryptophan into 
indole and other aryl hydrocarbon receptor ligands, 
critical for maintaining epithelial cell renewal and  
integrity and controlling intraepithelial leukocyte 
interactions [135]. Tryptophan is also metabolized by  
indoleamine-2,3-deoxygenase in epithelial and immune 
cells to kynurenine and downstream products, which 
regulate inflammation, adaptive immune responses, and 
neurotransmission [135]. Another critical role  
of tryptophan is being a precursor for serotonin.  
It is produced by two enzymes, tryptophan-hydroxylase 1 
and 2, located in the gut and brain. About 95 % of 
serotonin is found in the gut, produced by 
enterochromaffin cells [136]. Serotonin acts as a hormone 
and neurotransmitter in the peripheral and central nervous 
systems. In the gut, serotonin influences intestinal 
peristalsis and motility, secretion from gastrointestinal 
glands, and vasodilation. Serotonin is also a part of the 
content of platelet and mast cell granules and contributes 
significantly to inflammatory responses.  
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Clinical studies on microbiota in schizophrenia 

Zheng and his team established the relationship 
between gut microflora and schizophrenia. They showed 
that schizophrenia patients exhibited reduced diversity in 
bacterial species, and revealed a correlation between 
discriminative microbial markers and the severity of 
schizophrenia symptoms [137]. A positive correlation 
was found for Lachnospiraceae OTU (Operational 
taxonomic unit) 477, Lachnospiraceae OTU629, 
Ruminococcaceae, Bacteroidaceae OTU 172, and 
streptococcaceae OTU834, and negative correlation was 
reported for veillonellaceae OTU191 and Rumino-
coccaceae OTU725 [137]. The authors then went beyond 
establishing the clinically obtainable correlative 
relationships and addressed the pathogenic role of gut 
microflora in a translational experiment where fecal 
microbiota from schizophrenic patients versus healthy 
controls were transplanted into experimental mice. 
Animal behavior in group recipients of the stool from 
schizophrenic patients corresponded to behavior 
considered characteristic in experimental models of 
schizophrenia. These changes were accompanied by 
biochemical alterations in the cortex and hippocampus, 
which are consistently reported to be affected  
in schizophrenia [137]. 

In another study, Li et al. show that microbiota 
in patients with schizophrenia is related to structural 
changes in their brains. Structural magnetic resonance 
imaging revealed a reduction in gray matter volume and 
regional homogeneity in several brain regions in patients.  
Alpha diversity of the gut microbiota in patients showed  
a strong linear relationship with the values of both  
MRI parameters. These results further strengthened  
the argument that gut microbiome may play a role in the 
neuropathogenesis of schizophrenia [138]. 

 
Evidence for clinical MIA affecting brain development 
via the impact on microbiota 

Whether maternal infection during pregnancy 
affects the child's brain development at least partially via 
gut microbiota has not been documented. However, 
fragmented clinical evidence suggests that such  
a pathway exists. First, even a minor infection affects the 
composition of gut microbiota, as shown by  
a longitudinal study on patients with mild, asymptomatic 
SARS-CoV-2 infection. Their stool was collected during 
the infection, and then after they turned seronegative for 
the SARS-CoV-2 virus. The microbiota showed more 
microbial evenness during infection, and Bacteroidetes 

species were depleted. When seronegativity for the 
SARS-CoV-2 virus was reached, the microbiota was 
comparable with healthy controls [139]. Second, maternal 
microbiota changes affect an infant's microbiota 
composition [140]. Third, antibiotics taken during 
pregnancy alter maternal microbiota and are associated 
with the development of metabolic and allergic disorders 
later in childhood, including obesity and asthma [141]. In 
the context of existing information, maternal microbiota 
alterations likely affect human offspring's brain 
development. 

 
Experimental studies on the impact of MIA on gut 
microbiome  

Mazmanian's team reported first that  
MIA-impacted gut flora influences the severity of 
behavioral and neuropathological phenotypes in offspring 
by breaking the immune tolerance in the gut and 
activating the microbiota-gut-brain axis [132]. Oral 
administration of common commensals, Bacteroides 
fragilis, corrected gut permeability and microbial 
composition, improving communicative, stereotypic, 
anxiety-like, and sensorimotor behaviors [132].  

A meta-analysis was performed to assess MIA's 
effect on microbiota and neurodevelopmental conditions 
in rodents. Combining the results of thirteen studies 
revealed that maternal microbiome disturbances affect the 
brain, as reflected by a decrease in offspring's sociability 
and an increase in stereotypic behaviors [142],  
which supports the validity of the concept. 

Since indigenous spore-forming bacteria from 
the mouse and human microbiota promote serotonin 
biosynthesis from colonic enterochromaffin cells [143], 
MIA's impact on the serotonin pathway was tested by 
MacDowell et al. [144]. MIA reduced serotonin content 
in brain tissue and promoted changes in the expression of 
serotonin transporter, 5-HT2A, and 5-HT2C receptors. 
Long-term paliperidone treatment (a dopamine D2 and 
serotonin 5HT receptor antagonist) counteracted the 
MIA-induced changes [144]. These findings provide 
insight into mechanisms by which MIA's impact on the 
microbiota can affect the brain. 

 Microbiota can be altered by antibiotic usage. 
Except for a few, antibiotics have been considered safe 
for pregnant women. As we learn more about antibiotics' 
effects on microbiota, their safety may need to be re-
assessed, and the benefit ratio may need to be considered 
individually. One of the safest antibiotics is penicillin. 
Administration at a low dose during the third trimester of 
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mouse pregnancy resulted in behavior changes of adult 
offspring [145-147]. The behavioral changes were sex-
dependent. Female adult mice showed decreased anxiety 
patterns, while they had abnormal social behavior. The 
immune system was affected, as evidenced by a decrease 
in splenic FOXP3+ regulatory T cells, major players in 
preventing the development of autoimmunity [145].  

In similar experimental conditions, Lebovitz  
et al. reported decreased expression of Cx3cr1  
(a chemokine receptor for neuron-derived fractalkine) in 
the microglia of the prefrontal cortex [148]. In another 
report, dysbiosis-induced microglial expression of 
CxC3cr1 was restored by treating mice with oral 
Lactobacillus species [146]. 

 
 

 
 
Fig. 3. Various factors that affect maternal and offspring microbiota, which may alter neurodevelopment in the child through gut-
microbiota-brain axis. The picture was made with using a Biorender template.  
 

 
Other causes of perinatal alterations of maternal or 
infant's microbiota 

Both maternal and infant microbiota play crucial 
roles in shaping an infant's brain development, but their 
influences are intertwined and impact the infant  
at different stages. Maternal gut microbiota influences the 
immune environment and metabolic state during 
pregnancy, which can impact fetal brain development. 
During vaginal delivery, infants acquire microbiota from 
the mother's vaginal and intestinal flora, which  
is beneficial for early immune system development. After 
birth, the infant's microbiota continues to develop and is 
influenced by factors such as breastfeeding and 
environmental exposures. Breast milk contains beneficial 
bacteria and prebiotics that help shape the infant's gut 
microbiota. Figure 3 depicts conditions that can influence 
maternal or offspring microbiota. 
 
MIA by SARS-CoV-2 

 
World Health Organization declared global 

SARS-CoV-2 pandemic in March 2020 and announced its 

end in May 2023. Statistics vary about the number of 
women who were pregnant during the COVID-19 
pandemic. It is, however, clear that SARS-CoV-2 infection 
worsened pregnancy outcomes. For example, a recent 
study reported outcomes of INTERCOVID study 
infections of the omicron variant of SARS-CoV-2 in 
pregnant women and their babies. Maternal, Neonatal, and 
Perinatal Morbidity and Mortality indices (MMI) relative 
risk were 1.16, 1.23, and 1.21, respectively. In unvacci-
nated women, Maternal MMI was 1.36; in women with 
severe COVID-19 symptoms, 2.51; and in unvaccinated 
women with severe COVID-19 symptoms, 2.88 [149]. 

Vertical transmission of the virus is believed to 
occur only rarely [150] and the human placenta has been 
considered a sound barrier that protects the fetus efficiently 
[151]. However, in a recent experimental study using mice 
that express human angiotensin-converting enzyme 2 that 
allows intracellular entry of SARS-CoV-2, the virus is 
found in the brain within 48 hours after the infection, 
indicating direct exposure of brain cells to the virus. All 
cell types within the brain (endothelium, neurons, glia, and 
astrocytes) can be infected [152]. Even if direct exposure 
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to human fetuses continues to be refuted, the placenta of 
infected women (including mild cases of SARS-CoV-2 
infection) was reported to have vascular abnormalities 
(consistent with malperfusion) and villitis [153,154]. 

SARS-CoV-2 enters cells primarily via binding to 
Angiotensin Converting Enzyme-2 and Transmembrane 
Serine Protease 2. The virus also interacts with the host 
immune system through multiple TLRs, mainly TLR2, 
TLR4, TLR7, and TLR8, which were all shown before to 
play a role in MIA [23]. These interactions activate innate 
immune responses, including producing pro-inflammatory 
cytokines critical for controlling viral infection and 
contributing to MIA. 

The abnormal fetus oxygenation, local 
inflammation, and the impact of SARS-CoV-2  
on microbiota are all conditions, in which the neural 
development of the fetus may be affected. These 
mechanisms may be behind the findings in a recent 
retrospective study that examined one-year-old children 
exposed to SARS-CoV-2 in utero (confirmed by 
polymerase chain reaction test). The study revealed that 
exposure is associated with a higher rate of neurode-
velopmental diagnoses, with an OR of 1.86. When the 
SARS-CoV-2 occurred in the third trimester, the OR was 
higher - 2.34 [155]. Another retrospective cohort 
examined electronic health records and uncovered that 
males but not females born to SARS-CoV-2 infected 
mothers were more likely to receive a neurode-
velopmental diagnosis in the first 12 months after 
delivery [156]. 

While these findings will need additional 
validations, the existing data already warrant more 
experimental studies that can help explain 
histopathological mechanisms involved in the increased 
vulnerabilities to neurodevelopmental conditions and 
identify diagnostic markers applicable clinically. 
Meanwhile, professionals taking care of children exposed 
to SARS-CoV-2 in utero may closely monitor their 
development and support formulation of clinical practices 
where children with vulnerabilities receive more support, 
as it is the case with individuals at high risk for 
development of autism or schizophrenia where measures, 
such as diet, exercise [157,158] showed some positive 
outcomes.  

 
Interactions between MIA and perinatal 
hypoxia 

 
The impacts of perinatal hypoxia and MIA on 

the brain overlap in several key areas. Both conditions 
can lead to similar neurodevelopmental disruptions and 
are associated with increased risk for neuropsychiatric 
disorders, including schizophrenia. They both induce 
neuroinflammation, which involves microglia activation 
and release of pro-inflammatory cytokines in the 
developing brain [45,159]. Both conditions can lead to 
increased production of oxygen radical species and 
subsequent oxidative stress, which can cause cellular 
injury and impair neurodevelopmental processes, 
including synaptogenesis and myelinization [160,161]. 
Both perinatal hypoxia and MIA can cause epigenetic 
changes, such as DNA methylation and histone 
modification, which impact transcriptional programs 
involved in various developmental functions and adaptive 
responses [162-164] and may be dependent on severity of 
the stimulus [165]. Finally, both perinatal hypoxia and 
MIA alter the dopaminergic system, which is a crucial 
feature of schizophrenia [166]. To better understand 
pathways shared between perinatal hypoxia and MIA,  
we will need to await experimental evidence where MIA, 
due to the activation of different TLRs, is tested together 
with different degrees of perinatal hypoxia (including 
mild hypoxia). Such efforts can help develop biomarkers 
for new diagnostic panels, targeted interventions, and 
preventive strategies for at-risk populations. 

 
Conclusions 

 
This review underscores the roles of perinatal 

hypoxia, immune system activation, and microbiota in 
neurodevelopmental conditions, to which also belongs 
schizophrenia. Clinical and experimental studies 
demonstrate that these perinatal factors are associated 
with long-term changes in brain structure and function,  
as reflected in behavioral and neurotransmitter  
alterations observed also in schizophrenia. Sophisticated 
experimental models have been developed during the last 
two decades to address perinatal hypoxia and MIA but 
their cumulative effects are rarely studied together.  

In light of the SARS-CoV-2 pandemic, these 
considerations may be needed for children exposed to 
SARS-CoV-2 in utero, particularly in situations where 
additional factors contributed to increased risk  
for asymptomatic brain tissue injury, including obstetric 
complications causing various degree of hypoxia, 
additional infection, maternal immune activation  
or psycho-social stress. 
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Limitations 
 
One of the significant limitations of translational 

research on schizophrenia is the heterogeneity of the 
disease and the existence of subsets of patients that we 
are not yet able to distinguish objectively. Most existing 
studies approach schizophrenia as one condition that 
significantly limits the interpretation of data.  
The heterogeneity of schizophrenia stems from complex 
genetic backgrounds that make the susceptibility  
to environmental factors quite variable. In addition to the 
heterogeneous nature of schizophrenia, also ethical 
limitations exist that prevent access to the affected brain 
tissue. 
 
Future directions 

 
To enhance our understanding of schizophrenia 

development, using advanced animal models and testing 
more than one perinatal factor per experiment will be 
critical. The experimental studies linked to longitudinal 
clinical studies involving sufficient subjects and assessing 
patients multimodally will promote the translational value 
of such work. These efforts should identify objective 
biomarkers for subsets of patients and hopefully reveal 
objective biomarkers altered by perinatal factors that are 
sensitive enough to reveal even pathological processes 
not immediately evident clinically (e.g., sensory, motor  
or cognitive deficits) and that are possible to use in 
longitudinal monitoring during individual’s development 
as they encounter further hits during their lives. That such 
goals are feasible is demonstrated by recent advances in 
other psychiatric conditions, namely Alzheimer disease, 
where a biomarker detectable in the blood was identified  
[167]. A better understanding of molecular mechanisms 

can lead to more effective individualized treatment.  
In addition, the focus of the research should not only be 
on the treatment of pathological status but on preventive 
measures that can limit the prevalence of 
neurodevelopmental conditions, including schizophrenia. 
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