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Abstract

Cone snails are venomous marine gastropods comprising more than 950 species widely

distributed across different habitats. Their conical shells are remarkably similar to those of

other invertebrates in terms of color, pattern, and size. For these reasons, assigning taxo-

nomic signatures to cone snail shells is a challenging task. In this report, we propose an

ensemble learning strategy based on the combination of Random Forest (RF) and XGBoost

(XGB) methods. We used 47,600 cone shell images of uniform size (224 x 224 pixels),

which were split into an 80:20 train-test ratio. Prior to performing subsequent operations,

these images were subjected to pre-processing and transformation. After applying a deep

learning approach (Visual Geometry Group with a 16-layer deep model architecture) for fea-

ture extraction, model specificity was further assessed by including multiple related and

unrelated seashell images. Both classifiers demonstrated comparable recognition ability on

random test samples. The evaluation results suggested that RF outperformed XGB due to

its high accuracy in recognizing Conus species, with an average precision of 95.78%. The

area under the receiver operating characteristic curve was 0.99, indicating the model’s opti-

mal performance. The learning and validation curves also demonstrated a robust fit, with the

training score reaching 1 and the validation score gradually increasing to 95 as more data

was provided. These values indicate a well-trained model that generalizes effectively to vali-

dation data without significant overfitting. The gradual improvement in the validation score

curve is crucial for ensuring model reliability and minimizing the risk of overfitting. Our find-

ings revealed an interactive visualization. The performance of our proposed model suggests

its potential for use with datasets of other mollusks, and optimal results may be achieved for

their categorization and taxonomical characterization.

Introduction

Conus Linnaeus is a large genus of gastropods that has been well-preserved in fossil records

since its first appearance about 55 million years ago in the Lower Eocene. Cone snails are

major predators in tropical reef communities [1, 2]. Their venom contains a diverse array of

small peptides (conotoxins) that target neuromuscular receptors and are extensively utilized in
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drug development [3–5]. Taxonomic classification of the highly similar cone shell patterns is

challenging due to variations in size, color, and geographical distribution. In particular, some

Conus species exhibit nearly identical morphological characteristics, making identification dif-

ficult and requiring researchers to spend more time on differential analysis. To address these

challenges, there is a pressing need to develop more sophisticated computational algorithms or

models to automate Conus species recognition and streamline taxonomic classification.

In recent years, due to technological advancements, artificial intelligence (AI) and machine

learning (ML) models have emerged as ideal solutions for image recognition [6]. ML algo-

rithms are routinely used to perform various tasks, including pulmonary embolism segmenta-

tion via computed tomographic (CT) angiography [7], polyp detection through virtual

colonoscopy or CT during colon cancer diagnosis [8], breast cancer detection through mam-

mography [9], brain tumor segmentation using magnetic resonance (MR) imaging [10], and

the detection of brain cognitive states through functional MR imaging for diagnosing neuro-

logical disorders [11, 12]. ML techniques, such as feature selection and classification, have

become crucial for the accurate and automatic diagnosis and prognosis of various brain dis-

eases [13, 14]. For instance, Ronneberger et al. utilized a Convolutional Neural Network

(CNN) and data augmentation techniques, achieving promising results by training on an

image dataset [15]. Ke et al. proposed a method to enhance the spatial distribution of hue, satu-

ration, and brightness in X-ray images (as image descriptors) to identify unhealthy lung tissues

using Artificial Neural Network-based heuristic algorithms [16]. Jaiswal et al. employed Mask-

Region-based CNN, a deep neural network approach, which utilizes both global and local fea-

tures for pulmonary image segmentation, combined with image augmentation, dropout, and

L2 regularization for pneumonia identification [17]. Wozniak and Połap simulated the X-ray

image inspection process to identify infected tissue locations [18].

Hu et al. used gene eigenvalues and MRI imaging, together with a genetic-weighted random

forest (RF) model, to identify key genetic and imaging biomarkers for diagnosis and personal-

ized treatment [19]. Jing et al. applied RF to optical sensors for foreign object debris detection,

crucial for aerospace safety [20]. Chen et al. optimized chemical exchange saturation transfer

MRI by analyzing frequency contributions using a permuted RF model [21]. Wang and Zhou

improved soil organic matter estimates by combining multitemporal Sentinel-2A imaging

with RF to benefit agricultural practices [22]. Matese et al. highlighted the role of unmanned

aerial vehicle-based hyperspectral imaging in advancing crop health monitoring and manage-

ment [23]. Barrett et al. emphasized the importance of predictive models in early Huntington’s

disease intervention [24]. Waldo-Benitez et al. demonstrated ML’s impact on enhancing glio-

blastoma diagnosis and treatment planning through MRI analysis [25]. Huang et al. showed

how stacked models improve wheat quality control using hyperspectral imaging [26]. Feng

et al. emphasized the need for accurate plume injection height measurements to improve

smoke exposure estimates during Australian wildfires [27]. Grandremy et al. provided insights

into zooplankton monitoring through advanced imaging in a 16-year Bay of Biscay study [28].

Nobrega et al. applied deep transfer learning to classify lung nodule malignancy [29]. Philips

and Abdulla proposed a method for detecting honey adulteration using hyperspectral imaging

and ML, enhancing classification models with a feature-smoothing technique [30]. Tao et al.

demonstrated the benefits of combining hyperspectral imaging and ML for municipal solid

waste characterization, significantly improving material identification and sorting efficiency

by capturing detailed spectral information [31].

ML strategies, together with advancements in AI, have been employed in the early detection

of diseases through the accurate interpretation of chest X-rays [32]. Similarly, the use of these

innovations is accelerating in other areas. A valuable addition of deep learning in image recog-

nition facilitates aircraft target recognition, enabling air defense systems to quickly determine
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the target category of an acquired aircraft image and automatically estimate countermeasures,

potentially saving significant reaction time and reducing combat risks [33]. In this study, we

propose an automated method for identifying Conus species using a cohesive ML algorithm

framework through feature-assisted training on imaging datasets. Additionally, by designing a

local database, this study may serve as a basis for cataloging cone snail species, including their

sequence information and family-wise distribution.

Materials and methods

Data collection

The image dataset of 119 Conus species was obtained from the ConoServer database [34]. Our

proposed methodology is illustrated in the flowchart (Fig 1).

Image preprocessing

Initially, each image file format (JPG, JPEG, or PNG) and size was checked for uniformity. The

Pillow library was used to resize the images to a standard size of 224 x 224 pixels. Next,

cvtColor was applied to find contours, and the images were converted to grayscale to

remove background noise. A Canny filter was used to compute edge strength, utilizing linear

filtering with a Gaussian kernel to smooth out noise [35]. The edges were then overlayed on

the original RGB images. All images were processed through these steps and stored in a local

folder.

We also applied some pre-processing to each highlighted image. First, using cv2.COLOR_
BGR2GRAY, we converted the image to grayscale. Gaussian blur was applied to remove noise

from each image, and the images were normalized for enhancement. We used the Canny and

Sobel functions [36] with a kernel size of 5 to detect edges in each image. The original images

of Conus ammiralis, Conus ebraeus, and Conus anabathrum, along with the binary and Canny

edge-detected images, are shown in Fig 2. These species exhibit specific patterns and shapes

(pointed or round). In Conus ammiralis, few patterns are separated by filled brown areas with

varying distances, while in the case of Conus ebraeus, the patterns are more pronounced, mak-

ing it easily distinguishable from other species. In contrast, Conus anabathrum contains a line

pattern at the pointed end.

Image transformation

Image transformation was performed on each pre-processed image, with the total number set

to 400. We initialized the ImageDataGenerator [37] using various parameters, such as width

shift range, height shift range, zoom range, and shear range, all set to 0.2. Subsequently, we

modified the rotation range to 30 degrees, set the horizontal flip to ’True,’ and used ’nearest’

for the fill mode. Each transformed image was stored in a unique folder. For each transforma-

tion, we applied a random transformation with a size of 224 x 224 pixels. Image transformation

was cross-validated before further processing. In total, we obtained 47,600 transformed

images. The original Conus andremenezi and its transformed images are shown in Fig 3, along

with a detailed description of each image, highlighting distinct height, width, and pixel count.

Proposed methodology

The next step was to check the image quality, and all images below the standard were removed.

Noisy backgrounds were eliminated, and the cvtColor module was used to convert the

images to grayscale, followed by the application of a threshold to segment the background and

obtain the largest contour. A mask was applied to remove the background. Later, we combined
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all these images into a list and used a label encoder to encode each cone snail species label as a

numerical value.

Color moments and local binary patterning. Subsequently, color moments of different

orders were calculated for each channel, revealing color distribution and variation. The local

binary pattern (LBP) texture feature was computed for each grayscale image to extract texture

information. LBP works by measuring the intensity levels of neighboring and central pixels,

Fig 1. Flowchart scheme of the ML-based model. A) Image preprocessing. B) Image transformation. C) Image

quality analysis of preprocessed images. D) Background removal by obtaining the largest contour followed by masking.

E) Conversion of species labels into numerical values using a label encoder. F) Feature extraction using three different

steps: Fi) Color moments in different orders based on color distribution. Fii) Texture information using local binary

patterns. Fiii) Additional texture information using Haralick texture features. G) Deep feature extraction using

VGG16. H) Training data comprising 80% of the dataset. I) Testing data consisting of 20% of the entire dataset. J)

Optimization of hyperparameter tuning. K) Algorithm selection from all models. L) Random forest selection. M)

Model testing. N) Model validation using different methods.

https://doi.org/10.1371/journal.pone.0313329.g001
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forming a binary number [38]. The threshold is obtained by comparing the neighborhood

pixel gp with the center pixel gc. This operator yields a binary value of 1 if gp is larger than gc

and 0 otherwise. The final form of the LBP is represented in decimal value. The features

extracted by the LBP operator are displayed in a histogram. This operation can be expressed

as:

LBPPR ¼
Xp� 1

p¼0
s gp � gc
� �

2p; sðxÞ ¼
1; x � 0

0; x < 0

� �� �

ð1Þ

After the thresholding stage, a histogram was developed on the LBP values. With a neigh-

borhood of P = 24P = 24P = 24 and R = 3R = 3R = 3, a 256-bin histogram represents the image

features. The mathematical representation of the LBP histogram is denoted by [39]:

H kð Þ ¼
XI

i¼1

XJ

j¼1
f ðLBPPRði; jÞkÞ; k 2 ½0;K�;where f ðxÞ ¼

1; x ¼ y
0; otherwise

� �

ð2Þ

Fig 2. Image preprocessing. A) Original image of the Conus ammiralis shell, B) Highlighted enhanced image, C) Binary image, D) Canny

edge-highlighted image, E) Enhanced edge-highlighted image. F-J) Conus ebraeus with enhanced, highlighted, binary, edge detected and

respective enhanced images, respectively. K-O) Conus anabathrum with all respective images.

https://doi.org/10.1371/journal.pone.0313329.g002
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Haralick texture feature extraction. Next, we computed feature extraction through a

method proposed by Haralick, named as spatial gray-level dependence method (SGLDM).

These features are routinely used for diagnosis purposes and Alzheimer’s disease diagnosis by

MR images [40]. For quantifying the texture through SGLDM, 13 features were calculated in

each phase. These features were extracted from the co-occurrence matrix, which represents an

estimate of the second-order probability function C (i; j| x; y). This matrix represented the

occurrence rate of a pixel pair with gray levels i and j, given the distances between the pixels

were x and y in the x and y directions, respectively [41]. The elements of the matrix were calcu-

lated by:

C i; jjDxDy

� �
¼
No:of ðx; yÞfor which Iðx; yÞ ¼ i; Iðxþ Dx; yþ DxÞ ¼ j and bothðx; yÞandðx þ Dx; yþ DyÞare within the ROI

No:of ðx; yÞfor which bothðx; yÞandðxþ Dx; yþ DyÞare within the ROI
ð3Þ

The Haralick texture features were computed using the Haralick function, which included

texture information such as contrast, correlation, and entropy in the image. In the next step,

we concatenated these three features as trained features.

Fig 3. Image transformation. A) The original image of the Conus andremenezi shell and its dimension details are

indicated in pink color. B-E) Its four transformed images, with pixel sizes ranging from 3,859 to 4,462, have different

shell sizes (width × height). Each transformed image and its details are mentioned in their respective colors.

https://doi.org/10.1371/journal.pone.0313329.g003
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Visual Geometry Group with 16-layer deep model architecture. The Visual Geometry

Group with 16-layer deep model architecture (VGG16) [42] was used for extracting deep fea-

tures that were utilized in a pre-trained deep learning model. It included 16 layers, comprising

13 convolutional layers and 3 fully connected layers. VGG16 employed a small 3x3 kernel (fil-

ter) on all convolutional layers with a single stride. Max pooling layers always followed the

convolutional layers. The input for VGG16 was fixed at 224 x 224 three-channel images. In

VGG16, the three fully connected layers exhibited different depths. The first two layers con-

tained a similar channel size of 4096, while the last fully connected layer had a channel size of

1000, representing the number of class labels in the ImageNet dataset. The output layer was

the softmax layer, which is responsible for providing the probability of the input image [43].

We added deep features to the feature vector by horizontally stacking the deep and trained

features.

Random Forest. The RF classifier was used due to its ideal prediction capabilities, stabil-

ity, and high accuracy rate compared to a single decision tree. RF is a powerful ensemble and

supervised learning method, characterized by balanced bias, minimal hyperparameter input,

reduced variance, and minimized risk of overfitting in both classification and regression tasks.

These features make RF an invaluable tool for prediction, modeling, and data analysis across

various domains. The RF algorithm performs better with larger datasets and accelerates the

decision-making process through a higher number of trees [44]. RF is an extension of the Clas-

sification and Regression Tree (CART) method, employing bagging (bootstrap aggregation)

and voting to determine classification results. It consists of k classification trees, and its basic

idea is to convert multiple weak classifiers into one strong classifier. The number of generated

bootstrap samples determines the number of trees in the model. After the bootstrap method,

each tree (bootstrap sample) is formed using the following rules: If there are M input variables,

the number of m predictor variables at each node satisfies m�Mm. The variable m is chosen

randomly from M. The selection of the best predictor variable from m is determined by calcu-

lating the measure of purity (Gini or entropy). The Gini index Ggini (D) is used to decide the

optimal binary cut point for each feature. Ggini represents the uncertainty of the set D. In the

classification problem, suppose there are N classes; for a given set of samples D, the Ggini index

is:

Ggini Dð Þ ¼ 1 �
XN

n¼1

jCnj
D

� �2

ð4Þ

where Cn is the subset of samples in D that belong to the nth class [45]. If a sample set D is

divided into two parts, D1 and D2, according to the value of feature A,

D1 ¼ fðx; yÞ 2 DjAðxÞ ¼ ag;D2 ¼ D � D1 ð5Þ

The best split onm is used to separate the nodes. The amount ofm is kept constant during

the growth of forests. Each tree is formed to the maximum extent without pruning. The final

result of RF is the optimal result chosen by voting on all classification trees [45]. The best pre-

dictor variable provides more decision-making information. More tree formation and their

usage in the decision-making process yield more robust result [46].

Next, data was divided into training (80%) and testing or validation data (20%), about

38,080 and 9,520 images out of 47,600, respectively. As a result, we extracted XTrain, XValid,

YTrain, and YValid for further optimization of hyperparameters [47]. Enhancing the RF algo-

rithm’s ability is crucial for extracting high-quality features and optimizing parameter selec-

tion. This can significantly help reduce the model’s generalization error and improve the RF
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algorithm’s classification accuracy. We used 100 trees or estimators and a minimum sample

split of 2 for splitting the internal nodes.

The model was then trained and evaluated by fitting XTrain and YTrain and by predicting the

model by XValid.

XGBoost. Tree-based gradient boosting integrated model XGBoost (XGB) [48], is com-

posed of multiple classification regression trees (CART) that acquire the residual value through

the sum of target and predicted values based on the prior decision trees. Upon training of all

decision trees, they reach a consensus and finally compute the prediction result through the

accumulation of samples from the previous findings. Every new tree in the XGB model train-

ing phase is trained using the previously trained tree as a model, and once a decision tree has

been generated, it is stripped to avoid overfitting. The XGB model trains the obtained error to

minimize the overall error. The input from each tree is utilized to train the subsequent tree

again to progressively minimize the prediction error and gradually drive the model’s predicted

value closer to reality. The prediction model for XGB can be represented as:

yi ¼
XK

k¼1
fkðxiÞ; fk 2 F ð6Þ

Where xi and yi are training samples. x represents the eigenvector, y represents the sample

label, and fk(xi) represents the kth decision tree. The corresponding objective function is

defined as follows [49]:

ObjðOÞ ¼
Xn

i¼1
Lðyi; yi

0Þ þ
XK

k¼1
OðfkÞ ð7Þ

The objective function Obj(O) is divided into two parts: the regularization term, which

reduces the chances of a model demonstrating overfitting, and the loss function, which indi-

cates a specific objective to evaluate the accuracy of the model’s prediction. The function is as

follows:

O fð Þ ¼ gT þ
1

2
ljjojj

2
ð8Þ

Where γ is the leaf node coefficient, its goal is to optimize and modify the objective function

using XGBoost, similar to a pre-pruning operation (i.e., γT regulates the tree’s complexity; the

higher the value, the higher the objective function value, which subsequently suppresses the

model’s complexity). The leaf node weight percentage is regulated by the full L2 regularization

term, and λ, the coefficient of the squared mode of L2, prevents overfitting. The objective func-

tion is gradient boosting decision tree (GBDT) if the regularization term has a value of 0 [50].

This model lessens the chance of overfitting by including regularization elements in the

objective function. It utilizes both the first and second derivatives to enhance the accuracy of

the loss function and customize the loss. We used the ‘Extreme Gradient Boosting’ classifier of

the XGB library by specifying the evaluation metric to measure cross-entropy loss (which is a

multi-class logarithmic loss) and avoid any deprecation issues in the disabled labels.

Confusion matrix

The performance of the chosen strategy was determined by a confusion matrix, which showed

the number of correct and incorrect predictions made by the model as compared to the actual

data [51, 52]. The confusion matrix comprises four components: True Positive (TP), True

Negative (TN), False Positive (FP), and False Negative (FN). The following metrics evaluate

the performance of a classification model on a dataset:

Precision = TP / (TP + FP)
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Recall (Sensitivity) = TP / (TP + FN)

F1-score = 2 * (Precision * Recall) / (Precision + Recall)

Other analyses, including bar plots and histogram generation, were performed to check the

proportion and prediction results through the classification report of the desired RF model.

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) [53] is a perfor-

mance metric for binary classification problems. The AUC-ROC value ranges from 0 to 1,

where a higher value indicates better performance. A curve closer to the top-left corner repre-

sents a better model. It was plotted to estimate the true positive rate (sensitivity) against the

false positive rate (specificity) at various threshold settings.

Results

Cone snail shell image processing

Conus species exhibit diverse characteristics in terms of shell shape, size, color, and localization.

The differentiation characteristics, including mean intensity, intensity standard deviation, edge

pixel number, mean key point, vary significantly among Conus species (Table 1). In particular,

images obtained from different sources need to be processed for color variation, background

noise removal, pixel adjustment, and color intensity correction. To accurately process shell

images, we scaled the RGB (red, green, and blue) intensity in the image. The average predicted

RGB values were 70.23, 88.12, and 107.98 for R, G and B, respectively (S1 Fig). These values

were distinct for each image, which largely facilitated enhancing model efficiency.

The dataset of 47,600 images were split into 80% training and 20% testing data, resulting in

38,080 and 9,520 images. XTrain, XValid, YTrain, and YValid were extracted for hyperparameter

optimization [54]. Enhancing the RF algorithm is crucial for extracting high-quality features

and optimizing parameter selection. This may significantly help reduce the model’s generaliza-

tion error and improve the RF algorithm’s classification accuracy. The model was trained and

evaluated by fitting XTrain and YTrain and by predicting with XValid.

Model validation

Next, we added more data to check the predictions for each search image as validation data.

Among the 119 species, five species were wrongly predicted: Conus monile was predicted as

Conus kintoki, Conus monachus was predicted instead of Conus virgo, Conus tinianus as Conus
catus, Conus vitulinaus was predicted as Conus regularis and Conus flavidus was predicted as

Conus betulinus. All other species were accurately predicted by the trained RF model, achiev-

ing a high accuracy rate (S1 Table). For these species, structural similarity index ranged from

0.33 to 0.99, which measures similarity between test and reference images by calculating varia-

tions in contrast, brightness, and edge information [55].

We included images of some species other than cone snails, such asMiter shells, Olive shells,
Cypraea argus, Aulica imperialis, and Eloise Beach, along with Conus species Conus literatus,
Conus asiaticus, and Conus ebraeus for further validation of our model (Fig 4). Training results

revealed no irrelevant species due to feature differentiation. These shell images were ranked in

the range of 27,674, 27,413, 27,584, 26,522, and 26,549, while Conus shells exhibited 27,143

features. Overall, the proposed model in this report is 95% efficient in cone snail species recog-

nition through shell images.

Model performance assessment

Precision and recall analysis. The RF classification report indicated a significant propor-

tion of TP predictions as compared to XGB. Multiple species exhibiting precision score values
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Table 1. Statistical analysis of raw images of Conus species before preprocessing. Size (S), mean intensity (MI), intensity standard deviation (ISD), number of edge pix-

els (NEP), and mean key point size (MKS) are presented in different columns.

Specie name Size MI ISD NEP MKS

Conus abbreviatus 126 x 196 114.900551 85.24146037 2070 3.855107131

Conus achatinus 234 x 469 90.1004501 72.62897095 17287 3.738486035

Conus adamsonii 166 x 309 81.5929543 64.52867715 10219 3.394759074

Conus amadis 137 x 283 89.7953625 81.18837988 7880 3.242136133

Conus ammiralis 147 x 266 101.342642 90.00906917 7293 3.558139329

Conus anabathrum 113 x 236 102.825859 91.64173238 2811 5.372164498

Conus andremenezi 130 x 306 77.2646053 78.52747464 4856 4.783157641

Conus anemone 140 x 333 102.90532 87.34408651 6528 5.295740278

Conus araneosus 190 x 344 95.4301561 89.64749384 10002 4.042105765

Conus archon 173 x 325 78.0636372 76.09148881 6231 3.903034503

Conus arenatus 150 x 258 127.868966 88.99116882 5384 3.248078797

Conus aristophanes 125 x 209 115.918813 84.83766222 3292 3.536915887

Conus asiaticus 160 x 303 91.0680693 93.87201536 5579 3.533550901

Conus ateralbus 147 x 251 65.5442177 66.74975933 7071 3.789925593

Conus aulicus 127 x 305 95.9198916 75.00209789 6079 3.877136884

Conus aurisiacus 172 x 309 99.8640777 80.66912726 5803 3.930534717

Conus austini 167 x 318 82.4746545 77.49197812 4362 3.392523493

Conus australis 115 x 306 94.9256323 82.35290923 5929 3.427619775

Conus bandanus 646 x 1202 83.4092946 78.0616978 44765 7.77255379

Conus bayani 114 x 227 67.7127676 71.5729914 2925 4.299335957

Conus betulinus 224 x 335 101.927159 81.59713297 7407 3.679199442

Conus brunneus 154 x 191 66.2547766 62.9423698 6141 3.567691536

Conus bullatus 114 x 219 107.642193 67.27182937 5300 3.453630916

Conus californicus 462 x 846 80.9327341 69.53473463 15680 5.947179261

Conus capitaneus 169 x 252 80.4169954 65.4770939 7079 3.501728312

Conus caracteristicus 163 x 225 102.626667 82.49999629 5106 3.704006016

Conus catus 135 x 240 90.7333025 71.40495938 6002 3.917673782

Conus cervus 136 x 274 100.219381 76.16191665 6241 3.530832996

Conus chiangi 153 x 264 85.9632601 76.05567255 5952 3.216992084

Conus circumcisus 116 x 279 109.326319 72.72633786 5200 4.345783836

Conus consors 141 x 299 86.4395266 67.08034587 2973 6.904867876

Conus coronatus 83 x 133 97.6019567 81.97972403 2303 3.625967436

Conus dalli 157 x 267 93.0402681 77.21764877 8964 3.322457316

Conus delessertii 161 x 307 83.4159063 81.82363518 5977 5.091297852

Conus diadema 194 x 307 89.0702173 73.76674884 7057 4.010664793

Conus distans 89 x 160 105.306812 85.94422289 2571 4.76245108

Conus ebraeus 209 x 311 73.9946615 79.35979636 5273 5.99292686

Conus eburneus 222 x 349 92.4428612 88.25812038 8119 5.578738826

Conus emaciatus 251 x 405 81.1571197 60.17887854 4533 5.640602514

Conus episcopatus 150 x 320 91.8544583 80.46877076 9376 3.610899895

Conus ermineus 185 x 329 88.6190421 76.6154946 6962 4.545134057

Conus ferrugineus 210 x 416 83.9429831 70.89388376 7075 5.904191236

Conus figulinus 282 x 407 80.4968547 71.85676559 16639 3.399929217

Conus flavidus 170 x 295 97.7092921 74.24410961 4067 3.978458209

Conus floridulus 667 x 1131 87.5026585 80.04923969 14478 7.446896809

Conus frigidus 156 x 265 103.462821 72.74093208 4527 3.876202816

(Continued)
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Table 1. (Continued)

Specie name Size MI ISD NEP MKS

Conus fulmen 196 x 357 83.4306723 72.73174627 2611 6.047156509

Conus gauguini 89 x 163 103.28214 76.99108538 2067 4.176049745

Conus generalis 135 x 287 98.3426249 85.07910231 2625 4.553597675

Conus geographus 76 x 178 69.1569338 59.76345165 3261 4.091072835

Conus gladiator 168 x 249 82.6303548 72.62570646 5498 4.632142848

Conus gloriamaris 119 x 343 80.1448661 70.72475205 10025 3.040092381

Conus imperialis 82 x 156 73.2795497 77.08575888 3229 3.322255486

Conus inscriptus 161 x 330 102.096951 88.50804845 6676 4.308585652

Conus judaeus 186 x 311 80.9460291 91.12290436 5677 5.282902826

Conus kinoshitai 133 x 306 109.052312 87.59792953 4673 4.002651231

Conus kintoki 171 x 362 110.7324 82.19116586 3015 3.805836274

Conus leopardus 120 x 211 100.795616 79.70195154 5007 3.217252134

Conus limpusi 166 x 335 80.9515015 66.41763157 2640 5.178752613

Conus litteratus 91 x 156 128.705128 101.7086228 2609 2.857512904

Conus lividus 137 x 249 88.3807639 77.07639339 2551 4.272186609

Conus longurionis 116 x 351 79.9143089 72.36931846 5730 4.66598781

Conus loroisii 172 x 273 54.6943948 46.1643957 9412 3.114201716

Conus lynceus 174 x 386 106.663123 82.14609781 8848 5.149299075

Conus magnificus 116 x 261 111.673438 84.23736161 7044 3.127516587

Conus magus 279 x 582 102.056319 77.61301005 21916 5.131758487

Conus marmoreus 464 x 987 71.0377253 75.10760805 35820 8.258521537

Conus memiae 210 x 350 78.1916871 85.53722763 9499 5.492338902

Conus miles 136 x 207 74.5656081 76.81322467 5401 3.088816641

Conus miliaris 180 x 296 90.4191254 74.03838125 8054 3.592617067

Conus milneedwardsi 69 x 223 87.232274 80.6165129 2860 3.355763269

Conus monachus 226 x 424 118.874885 87.78246128 11436 4.074395915

Conus moncuri 195 x 342 83.8184885 75.0833367 7482 4.94113918

Conus monile 161 x 337 87.6115709 82.27396067 5175 4.915662615

Conus mus 84 x 150 95.6694444 76.5681594 3144 3.750667921

Conus mustelinus 149 x 272 92.0070322 77.31240476 5208 4.039098181

Conus natalis 157 x 318 74.0708449 67.42437807 10205 4.775390739

Conus nigropunctatus 127 x 216 92.907699 73.07321996 4902 4.230405607

Conus nux 194 x 332 77.2799186 71.9322076 4320 7.542459114

Conus obscurus 70 x 160 74.8146429 52.24022396 2667 3.338338166

Conus omaria 86 x 194 107.138576 65.92997092 4084 3.085670003

Conus parius 182 x 303 100.761923 82.87203435 1756 4.551220399

Conus pennaceus 104 x 174 78.9077697 86.20071699 2587 4.316248887

Conus pergrandis 136 x 344 76.2034456 77.06110854 5116 3.972704224

Conus pictus 182 x 340 77.9745637 73.67581946 7533 4.965593014

Conus planorbis 113 x 207 75.9901672 69.28186747 4616 3.446087527

Conus princeps 155 x 273 110.268746 91.49685066 5370 4.075615161

Conus profundineocaledonicus 155 x 333 87.7985857 74.28470619 1865 6.221098957

Conus purpurascens 554 x 932 64.4792845 59.42204983 57556 4.533820502

Conus quercinus 160 x 272 106.95347 78.62236341 1603 10.07662979

Conus radiatus 114 x 244 81.7528401 61.54902861 2578 3.766189418

Conus rattus 185 x 298 85.1469617 71.41448917 7632 4.262023336

Conus regius 146 x 261 89.9245263 76.46770287 7479 3.76844333

(Continued)
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close to 1 demonstrated accurate predictions through the RF model. These species were cate-

gorized into three groups for better representation in bar plots (Fig 5). Among the 119 Cone

snail species, group 1 contained 40 species, group 2 exhibited 39 species, and group 3 included

40 members.

In group 1, nine members (Conus andremenezi, archon, aurisiacus, austini, bandanus, cali-
fornicus, delessertii, diadema and episcopatus) exhibited RF precision scores of 0.98, 0.92, 0.87,

0.95, 0.98, 0.96, 0.89, 0.96, and 0.90, respectively. Group 2 comprised 15 members (ermineus,
figulinus, floridulus, frigidus, fulmen, geographus, inscriptus, judaeus, lividus,magus,memiae,
miles,miliaris,mustelinus and nux) demonstrating precision scores of 0.95, 0.99, 0.95, 0.93,

0.94, 0.93, 0.95, 0.96, 0.96, 0.92, 0.94, 0.96, 0.96, 0.96, 0.99 scores. In contrast, 10 species in

group 3, including obscurus, pergrandis, pictus, planorbis, purpurascens, sponsalis, striolatus,
sulcatus, varius, and ventricosus contained precision scores of 0.97, 0.91, 0.93, 0.95, 0.99, 0.94,

0.99, 0.96, 0.90, 0.95, respectively through the RF model. The minimum precision value (0.64)

was observed for Conus consors.
Notably, Conus anabathrum, araneosus, kintoki, and sanguinolentus exhibited better preci-

sion scores using XGB. Nevertheless, the high proportions of TP predictions among actual

positive instances underscored the effectiveness of the RF model. The presence of a high recall

value (a measure of model quantity) further bolstered the model’s accuracy, with 24 species

considered FN. Conus lividus exhibited a score of 0.8227. These 24 species were ammiralis,

Table 1. (Continued)

Specie name Size MI ISD NEP MKS

Conus regularis 134 x 285 86.8535219 78.17037418 5597 4.388107317

Conus rolani 151 x 300 106.889382 82.66212069 4221 4.337546096

Conus sanguinolentus 153 x 262 91.726987 73.29265179 2704 5.807804724

Conus sponsalis 304 x 381 85.6163835 83.54710968 7368 5.747592142

Conus spulicarius 216 x 346 86.9485389 74.4378499 9807 5.313243719

Conus spurius 166 x 270 106.758188 82.90364202 3524 5.422410713

Conus stercusmuscarum 113 x 236 111.163154 77.06938388 4015 3.110592977

Conus striatus 135 x 306 109.730864 80.91233496 6460 4.263692126

Conus striolatus 149 x 268 90.6919764 74.36637035 7842 4.19279689

Conus sulcatus 150 x 266 87.610802 73.93412992 7816 3.80518956

Conus sulturatus 109 x 175 123.898768 81.81499109 735 10.90305368

Conus terebra 102 x 237 104.010176 80.97356016 1960 4.921096532

Conus tessulatus 163 x 252 86.5140715 76.07680221 4052 5.229228191

Conus textile 114 x 228 88.8001693 75.83345613 6716 2.816846265

Conus tinianus 99 x 192 104.217119 77.25270464 2544 4.685287444

Conus tulipa 115 x 228 105.702021 65.36394178 6445 3.410149088

Conus varius 136 x 266 104.889761 82.3494734 3056 6.092001697

Conus ventricosus 158 x 277 93.4467395 81.42046926 9519 3.198309433

Conus vexillum 152 x 249 96.2798563 81.22803912 6762 4.179350178

Conus victoriae 86 x 183 66.5662727 67.5775656 3900 3.02614837

Conus villepinii 76 x 183 94.9417601 87.01109306 2081 4.106920018

Conus virgo 164 x 316 109.196955 84.3636481 1928 4.158706044

Conus vitulinus 146 x 282 93.9529049 78.04338245 4788 4.153326996

Conus ximenes 80 x 140 93.75125 81.05532005 2199 2.958279716

Conus zeylanicus 146 x 251 125.553376 92.91948417 6446 3.69964845

Conus zonatus 66 x 129 94.6779422 74.00836486 2014 3.002186416

https://doi.org/10.1371/journal.pone.0313329.t001
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anabathrum, australis, bandanus, californicus, coronatus, dalli, episcopatus, fulmen, gloria-
maris, imperialis, litteratus, loroisii, lynceus,marmoreus,miliaris,milneedwardsi, natalis,
obscurus, parius, rattus, striolatus, sulcatus, zeylanicus. Out of these, 7 species were members of

group 1, 11 were in group2, and 6 species were part of group 3. The recall scores for the XGB

model ranged from 0.80–0.98 (Fig 5). The harmonic mean of precision and recall, known as

the F1 score, ranged from 0.76 to 1 for the RF model. It balances precision and recall, serving

as a single metric for evaluating model performance. The number of actual occurrences of

each class in the dataset was captured by the support value. We focused on the RF model for

further validation and evaluation results.

F1 score and support analysis. The F1 score (harmonic mean) ranged from 0.76 to 1 for

the RF model, revealing a balanced performance between recall and precision. The class distri-

bution was analyzed by examining the support, reflecting actual class occurrences. The F1

score and support plots demonstrated model performance across several classes. The model

accurately predicted multiple classes with high F1 scores. Conus sanguinolentus was observed

in the range of 0.82 to 0.83, while other species fell within the ranges of 0.85–0.88, 0.88–0.91,

0.91–0.94, 0.94–0.97, and 0.97–0.99, with counts of 6, 9, 17, 34, and 43 species, respectively.

Fig 4. Prediction results of species other than Conus species. A-C) Conus species that are accurately recognized by

our model as Conus litteratus, Conus asiaticus, and Conus ebraeus, respectively. D-H) Feature differentiation led to no

species recognition in cases of Aulica imperalis, Cypraea argus, Eloise beach,Miter shells, andOlive shells.

https://doi.org/10.1371/journal.pone.0313329.g004
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Eight species exhibited maximum scores, including Conus bandanus, californicus, episcopatus,
and fulmen from group 1 (Fig 6A), whilemiliaris, obscurus, striolatus, and sulcatus belonged to

group 2 (Fig 6B). Some classes with low F1 scores were also observed, such as Conus consors

Fig 5. Bar plot for precision and recall values for 119 Cone snail species are categorized into three groups. Bar plot illustrating

precision and recall values for 119 Cone snail species categorized into three groups. A) Group 1 contains 40 species. B) Group 2 exhibits

39 species, while C) Group 3 comprises 40 members. In all plots, species names are presented on the X-axis, while the corresponding

precision and recall rates obtained through RF and XGB models are indicated on the Y-axis. The dark blue and orange bars represent the

respective values of precision and recall for each species by XGB, while the green and blue bars represent precision and recall values

obtained by the RF model.

https://doi.org/10.1371/journal.pone.0313329.g005
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with a score of 0.76, indicating slightly poor prediction. Overall, these findings provided evi-

dence that the model operated effectively with significant F1 score values.

To comprehend class distribution, a support analysis was performed. The histogram indi-

cated varying class numbers in terms of their distribution. Conus sulcatus exhibited a score in

Fig 6. F1 score analysis. The line graphs indicate the performance scores for each class in the dataset. A) Group 1 contains

59 species (X-axis) against performance scores (Y-axis). B) Group 2 comprises 60 species (X-axis) with their respective F1

scores (Y-axis). The blue color indicates the F1-score values, showcasing the model’s accurate predictions for multiple

classes with high F1 scores.

https://doi.org/10.1371/journal.pone.0313329.g006
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the range of 37 to 43. One, four, and seventeen species were noticed in the ranges of 55.3–61.4,

61.4–67.5, and 67.5–73.6, respectively. The number of species significantly increased to 72 for

the range of 73.6–85.8. Finally, 13 and 11 species were observed with the highest range values

of 85.8–91.9 and 91.9–98, respectively (Fig 7). Classes with high support values were well rep-

resented in the dataset, whereas those with low values were less common.

Confusion matrix

A confusion matrix revealed the instances where the RF model accurately predicted a positive

class. The FPR is represented by a negative value. Confusion matrix analysis revealed 24 species

with TPR values of 1, indicating accurate predictions. These species included Conus ammiralis,
anabathrum, australis, bandanus, californicus, coronatus, dalli, episcopatus, fulmen, gloriamaris,
imperialis, litteratus, loroisii, lynceus,marmoreus,miliaris,milneedwardsi, natalis, obscurus, parius,
rattus, striolatus, sulcatus, and zeylanicus. The lowest TPR values were 0.8227 and 0.8292 for Conus
tessulatus and Conus lividus, respectively. For FNR, values should be close to zero, indicating

instances where the model incorrectly predicts a negative class as positive, while TNR denotes the

correct prediction of the negative class. FNR values for all 24 species were zero. In contrast, Conus
lividus and Conus tessulatus exhibited the highest FNR values of 0.177 and 0.171, respectively.

A deeper insight into the model’s performance was obtained using a heatmap. Fig 8 represents

the macro average, average, and weighted average of recall, precision, and F1 scores based on the

values obtained from the model. Due to the narrow range (0.955–0.958), color differences were

minimal. Darker hues (purple) indicated somewhat lower values (0.955) for accuracy in F1 score,

recall, precision, and weighted average of recall. In contrast, lighter hues indicated slightly higher

values. These findings suggest that all metrics and classes contributed to consistent model perfor-

mance. The highest weighted precision average was 0.958, indicating improved performance.

Model performance evaluation

To evaluate model performance, both training and validation scores were plotted (Fig 9A and

9B). The validation curve showed a high training score across the range of hyperparameters,

suggesting that the model fit the training data very well. The validation score curve indicated

Fig 7. Support value histogram plot. It indicates the variation in species distribution patterns against score ranges obtained through the model

classification report.

https://doi.org/10.1371/journal.pone.0313329.g007
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that the model generalized well to unseen data for these hyperparameter values. Both training

and validation scores were high and closely aligned, reflecting a good balance between bias

and variance. This indicates that the model is well-performing and appropriately tuned, with

strong generalization capabilities (Fig 9A).

In the learning curve, a training score close to 1 (or 100%) revealed that the model learned

and fitted the training data effectively. The validation score stabilized at approximately 95%,

indicating good generalization performance for new data. The small gap between training and

validation scores suggests that the model’s complexity is appropriate for the given data, achiev-

ing a favorable balance between variance and bias (Fig 9B). The model is neither significantly

overfitted, as it performs well on both training and validation datasets, nor underfitted (as

both training and validation scores are low), making it a “Good Fit” model.

Next, we plotted a Precision-Recall (PR) curve, which shows precision against recall for dif-

ferent thresholds. A curve closer to the top-right corner indicates better model performance.

The area under the PR curve serves as a single metric to assess overall performance (Fig 9C).

Thus, the current model demonstrates favorable precision and recall values, indicating its

accurate prediction ability.

Discussion

Identifying Conus species presents significant challenges due to the similarities in shell patterns

among various mollusks. The classification of cone snail taxonomic features requires

Fig 8. Heatmap of different categories against the precision, recall, and F1-score. Categories include accuracy,

macro-average, and weighted average. The color variations from darker to lighter indicate differences in their values.

https://doi.org/10.1371/journal.pone.0313329.g008
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considerable effort because of variations in size, distinct color patterns, and geographical dis-

tributions. Here, we propose an automated strategy to identify cone snail species using a cohe-

sive machine learning (ML) algorithm framework based on feature-assisted training of the

Conus shell imaging dataset. Our proposed ML model achieved an accuracy of 95% with an

80:20 train-test data ratio, utilizing 38,080 and 9,520 cone snail shell images, respectively.

To ensure clear feature delineation and consistency, we implemented a preprocessing

scheme that included grayscale conversion [56], binary image generation [57], image quality

enhancement, and Canny edge detection [35, 58]. Edge detection is a crucial preprocessing

step that enhances the visibility of key features for accurate identification [59]. This process

refines image comparison and improves feature visibility by employing methods used in

image recognition. Here, edge detection supports object segmentation and RF-based recogni-

tion, thereby strengthening overall performance [60]. Further preprocessing steps included

Fig 9. Model performance analysis. A) The validation curve plots hyperparameter values (X-axis) against model performance

metrics (accuracy score on the Y-axis). The training score (red) and validation score (green) curves represent performance on the

training and validation datasets as a function of the hyperparameter values. B) The learning curve illustrates training examples versus

accuracy, with the X-axis showing training examples and the Y-axis representing accuracy. A small gap between training and

validation scores indicates that the model’s complexity is appropriate for the data, avoiding overfitting and ensuring good

performance on both sets. C) The precision-recall curve plots precision (Y-axis) against recall (X-axis) for various thresholds. Curves

that localize closer to the top-right corner indicate better model performance.

https://doi.org/10.1371/journal.pone.0313329.g009
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background removal [61], quality checks, image transformation [62, 63], and feature extrac-

tion using Haralick features [41], deep features [42], color moments, and local binary patterns

[39], which collectively enhanced the training dataset’s quality.

In this study, we utilized a conventional Local Binary Pattern (LBP) approach combined

with additional features, significantly improving the recognition rate compared to LBP vari-

ants such as LBP Variance (LBPV) and Center Symmetric LBP (CS-LBP). The integration of

these additional features addressed the limitations of conventional LBP and its derivatives.

Faudzi and Yahya evaluated four LBP derivatives—conventional LBP, LBP Variance (LBPV),

Center Symmetric LBP (CS-LBP), and Completed-LBP (CLBP)—under varying environmen-

tal conditions [39]. Their findings suggested that LBPV had a higher recognition rate, while

CS-LBP excelled under contrast changes, highlighting that applying conventional LBP with

additional features can yield better results.

Next, we employed a genetic algorithm for feature selection. Soltanian-Zadeh et al. utilized

a comprehensive methodology to extract features from mammographic images using four dis-

tinct methods: shape features, Haralick features, wavelet features, and multi-wavelet features

[41]. Our approach mirrored this strategy by leveraging a deep learning model (VGG16) for

feature extraction, enabling automated learning of complex shell patterns [64]. Deep learning,

particularly through convolutional neural networks like VGG16, facilitates hierarchical feature

extraction from image objects [65–67]. For cone snail shell images, which exhibit subtle mor-

phological differences [68], deep learning effectively captures fine details such as shell patterns

and color gradients. Jaderberg et al. reported that deep learning techniques significantly

enhance recognition accuracy for complex image targets [69]. In this study, we integrated Har-

alick features with additional features derived from the deep learning model, resulting in a

robust and informative feature set that improved accuracy.

The model’s efficiency was cross-validated by including data from unrelated species, ensur-

ing that features from other species differed significantly from those of Conus. The species

support histogram (to assess the distribution of different species number ranges) demonstrated

multiple species with high support values, positively contributing to model efficiency. Addi-

tionally, we generated a heatmap to depict the macro average, accuracy, weighted average for

recall, precision, and F1 score, revealing the highest weighted precision average of 0.958, indi-

cating improved performance. We observed minimal fluctuations in F1-score values across

different species, with a value of 0.76 for Conus consors. The Structural Similarity Index Metric

(SSIM) results ranged from 0.33 to 0.99, indicating varying levels of structural similarity

among individual images. As reported by Zhou et al., SSIM can effectively assess structural

similarity and serves as a reliable evaluation tool for image quality assessment [70]. These find-

ings suggest that our proposed model recognized multiple species as positive instances, making

it more reliable and scalable than manual feature extraction, particularly for handling large

datasets (Fig 10).

Among various classification models, the RF model demonstrated reliable results [44, 71],

validating Conus species recognition. The RF approach incorporates random feature selection

and serves as an effective tool for high-dimensional complex datasets, ensuring robust classifi-

cation results [72, 73]. The effectiveness of the RF approach has been proven in various appli-

cations, including pattern recognition and species identification [74]. The novelty of our

approach lies in integrating deep learning-based feature extraction with a supervised learning

RF model. Deep learning captures nuanced details through the image dataset [75], while super-

vised learning optimizes classification accuracy [76], creating a robust and automated system

capable of efficiently handling species recognition tasks.

A thorough analysis of learning and validation curves can inform model selection and

parameter tuning. Goriya et al. focused on applying fine-tuned ResNet and DenseNet models
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for classifying choroidal neovascularization (CNV) from optical coherence tomography

(OCT) images, demonstrating promising results with high accuracy and validation scores [77].

In our study, the DenseNet model achieved a validation accuracy of approximately 0.95, with

both training and validation curves exhibiting similar trends. Specifically, our training accu-

racy reached 99%, while the validation accuracy gradually increased to 95% (Table 2). These

values indicate a well-trained model that generalizes effectively to validation data without sig-

nificant overfitting. This observation suggests that our model, similar to DenseNet, effectively

captures the underlying patterns of cone snail shell images through accurate classification. The

gradual improvement of the validation score curve is crucial for ensuring model reliability and

minimizing the risk of overfitting [77]. The training accuracy of our proposed model resem-

bles the learning curve reported for the RF model by Afuwape et al., which exhibited similar

performance metrics [78]. Such similarities in learning curves reinforce the robustness of the

RF algorithm in handling classification tasks.

Conclusion

Overall, machine learning approaches, particularly the Random Forest model, are instrumen-

tal in the categorization of cone snail species and in distinguishing them from other marine

Fig 10. The overall model metric analysis. The blue bars represent the average accuracy rates of the model, displaying

metrics such as recall, precision, F1 score, and ROC AUC value.

https://doi.org/10.1371/journal.pone.0313329.g010

Table 2. The statistical report for RF model evaluation.

Precision Recall F1-Score Support TPR FPR FNR TNR

mean 0.9583 0.9560 0.9560 79.6386 0.9560 0.0439 0.00011 0.9998

std 0.0572 0.0411 0.0405 8.5645 0.0410 0.0411 0.00015 0.00015

min 0.6346 0.8228 0.7674 37 0.8227 0 0 0.9991

25% 0.9426 0.9289 0.9341 74 0.9289 0.0117 0 0.9998

50% 0.9762 0.9714 0.9664 80 0.9714 0.0285 0.00007 0.9999

75% 1 0.9882 0.9864 84.5 0.9882 0.0710 0.00017 1

max 1 1 1 98 1 0.1772 0.00088 1

https://doi.org/10.1371/journal.pone.0313329.t002
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invertebrates. The proposed RF model, tested on diverse datasets encompassing both cone

snail and other mollusk shells, demonstrates its capability in effective pattern matching and

decision-based ranking. This model could also be adapted to detect and classify various other

mollusk species, showcasing its versatility and potential for broader applications in marine

biology.

Supporting information

S1 Fig. Species distribution on the basis of RGB intensities. Average predicted values were
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56. Güneş A., Kalkan H., and Durmuş E., “Optimizing the color-to-grayscale conversion for image classifi-

cation,” Signal, Image Video Process., 2016, https://doi.org/10.1007/s11760-015-0828-7

57. Shapiro L. and Stockman G., “Binary Image Analysis,” Comput. Vis., 2000.

58. Sundani D., Widiyanto S., Karyanti Y., and Wardani D. T., “Identification of image edge using quantum

canny edge detection algorithm,” J. ICT Res. Appl., 2019, https://doi.org/10.5614/itbj.ict.res.appl.2019.

13.2.4

59. Jing J., Liu S., Wang G., Zhang W., and Sun C., “Recent advances on image edge detection: A compre-

hensive review,” Neurocomputing, 2022, https://doi.org/10.1016/j.neucom.2022.06.083

60. Azeem A., Sharif M., Raza M., and Murtaza M., “A survey: Face recognition techniques under partial

occlusion,” Int. Arab J. Inf. Technol., 2014.

61. Zhang Y., Liu B., and Liang R., “Two-step phase-shifting algorithms with background removal and no

background removal,” Optics and Lasers in Engineering. 2023. https://doi.org/10.1016/j.optlaseng.

2022.107327

62. Chen Y., Zhao Y., Jia W., Cao L., and Liu X., “Adversarial-learning-based image-to-image transforma-

tion: A survey,” Neurocomputing, 2020, https://doi.org/10.1016/j.neucom.2020.06.067

63. Wang C., Xu C., Wang C., and Tao D., “Perceptual Adversarial Networks for Image-to-Image Transfor-

mation,” IEEE Trans. Image Process., 2018, https://doi.org/10.1109/TIP.2018.2836316 PMID:

29993743

64. Govindankutty Menon A. et al., “A deep-learning automated image recognition method for measuring

pore patterns in closely related bolivinids and calibration for quantitative nitrate paleo-reconstructions,”

Sci. Rep., 2023, https://doi.org/10.1038/s41598-023-46605-y PMID: 37949926

65. Bakasa W. and Viriri S., “VGG16 Feature Extractor with Extreme Gradient Boost Classifier for Pancreas

Cancer Prediction,” J. Imaging, 2023, https://doi.org/10.3390/jimaging9070138 PMID: 37504815

66. Qi C., Zuo Y., Chen Z., and Chen K., “VGG16,” Nongye Jixie Xuebao/Transactions Chinese Soc. Agric.

Mach., 2021.

67. Asriny D. M. and Jayadi R., “Transfer Learning VGG16 for Classification Orange Fruit Images,” J. Syst.

Manag. Sci., 2023, https://doi.org/10.33168/JSMS.2023.0112

68. Gefaell J., Galindo J., and Rolán-Alvarez E., “Shell color polymorphism in marine gastropods,” Evolu-

tionary Applications. 2023. https://doi.org/10.1111/eva.13416 PMID: 36793692

69. Jaderberg M., Vedaldi A., and Zisserman A., “Deep features for text spotting,” in Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-

matics), 2014. https://doi.org/10.1007/978-3-319-10593-2_34

70. Wang Z., Bovik A. C., Sheikh H. R., and Simoncelli E. P., “Image quality assessment: From error visibil-

ity to structural similarity,” IEEE Trans. Image Process., 2004, https://doi.org/10.1109/tip.2003.819861

PMID: 15376593

PLOS ONE Conus species recognition through supervised and deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0313329 December 9, 2024 24 / 25

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.compbiomed.2021.105003
http://www.ncbi.nlm.nih.gov/pubmed/34782110
https://doi.org/10.3390/electronics11182932
https://doi.org/10.3390/electronics11182932
https://doi.org/10.18517/ijaseit.10.5.13000
https://doi.org/10.1088/1742-6596/1229/1/012055
https://doi.org/10.1016/S2589-7500%2822%2900188-1
http://www.ncbi.nlm.nih.gov/pubmed/36270955
https://doi.org/10.1002/widm.1484
https://doi.org/10.1002/widm.1484
https://doi.org/10.1016/j.eswa.2021.116087
https://doi.org/10.1016/j.eswa.2021.116087
https://doi.org/10.1007/s11760-015-0828-7
https://doi.org/10.5614/itbj.ict.res.appl.2019.13.2.4
https://doi.org/10.5614/itbj.ict.res.appl.2019.13.2.4
https://doi.org/10.1016/j.neucom.2022.06.083
https://doi.org/10.1016/j.optlaseng.2022.107327
https://doi.org/10.1016/j.optlaseng.2022.107327
https://doi.org/10.1016/j.neucom.2020.06.067
https://doi.org/10.1109/TIP.2018.2836316
http://www.ncbi.nlm.nih.gov/pubmed/29993743
https://doi.org/10.1038/s41598-023-46605-y
http://www.ncbi.nlm.nih.gov/pubmed/37949926
https://doi.org/10.3390/jimaging9070138
http://www.ncbi.nlm.nih.gov/pubmed/37504815
https://doi.org/10.33168/JSMS.2023.0112
https://doi.org/10.1111/eva.13416
http://www.ncbi.nlm.nih.gov/pubmed/36793692
https://doi.org/10.1007/978-3-319-10593-2%5F34
https://doi.org/10.1109/tip.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
https://doi.org/10.1371/journal.pone.0313329


71. Hussain M. A. et al., “Classification of healthy and diseased retina using SD-OCT imaging and Random

Forest algorithm,” PLoS One, 2018, https://doi.org/10.1371/journal.pone.0198281 PMID: 29864167

72. Tan K., Wang H., Chen L., Du Q., Du P., and Pan C., “Estimation of the spatial distribution of heavy

metal in agricultural soils using airborne hyperspectral imaging and random forest,” J. Hazard. Mater.,

2020, https://doi.org/10.1016/j.jhazmat.2019.120987 PMID: 31454609

73. Santos Pereira L. F., Barbon S., Valous N. A., and Barbin D. F., “Predicting the ripening of papaya fruit

with digital imaging and random forests,” Comput. Electron. Agric., 2018, https://doi.org/10.1016/j.

compag.2017.12.029

74. Peng X. et al., “Random Forest Based Optimal Feature Selection for Partial Discharge Pattern Recogni-

tion in HV Cables,” IEEE Trans. Power Deliv., 2019, https://doi.org/10.1109/TPWRD.2019.2918316

75. Strack R., “Deep learning in imaging,” Nature Methods. 2019. https://doi.org/10.1038/s41592-018-

0267-9 PMID: 30573839

76. Aljuaid A. and Anwar M., “Survey of Supervised Learning for Medical Image Processing,” SN Comput.

Sci., 2022, https://doi.org/10.1007/s42979-022-01166-1 PMID: 35602289

77. Goriya M., Amrutiya Z., Ghadiya A., Vasa J., and Patel B., “Classification of Choroidal Neovasculariza-

tion (CNV) from Optical Coherence Tomography (OCT) Images Using Efficient Fine-Tuned ResNet and

DenseNet Deep Learning Models,” in Lecture Notes in Networks and Systems, 2023. https://doi.org/10.

1007/978-981-99-3758-5_42

78. Afuwape A. A., Xu Y., Anajemba J. H., and Srivastava G., “Performance evaluation of secured network

traffic classification using a machine learning approach,” Comput. Stand. Interfaces, 2021, https://doi.

org/10.1016/j.csi.2021.103545

PLOS ONE Conus species recognition through supervised and deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0313329 December 9, 2024 25 / 25

https://doi.org/10.1371/journal.pone.0198281
http://www.ncbi.nlm.nih.gov/pubmed/29864167
https://doi.org/10.1016/j.jhazmat.2019.120987
http://www.ncbi.nlm.nih.gov/pubmed/31454609
https://doi.org/10.1016/j.compag.2017.12.029
https://doi.org/10.1016/j.compag.2017.12.029
https://doi.org/10.1109/TPWRD.2019.2918316
https://doi.org/10.1038/s41592-018-0267-9
https://doi.org/10.1038/s41592-018-0267-9
http://www.ncbi.nlm.nih.gov/pubmed/30573839
https://doi.org/10.1007/s42979-022-01166-1
http://www.ncbi.nlm.nih.gov/pubmed/35602289
https://doi.org/10.1007/978-981-99-3758-5%5F42
https://doi.org/10.1007/978-981-99-3758-5%5F42
https://doi.org/10.1016/j.csi.2021.103545
https://doi.org/10.1016/j.csi.2021.103545
https://doi.org/10.1371/journal.pone.0313329

