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Abstract

Land use in urban agglomerations is the main source of carbon emissions, and reducing

them and improving land use efficiency are the keys to achieving sustainable development

goals (SDGs). To advance the literature on densely populated cities and highly commercial-

ized regions, this research evaluates the total-factor carbon emission efficiency index

(TCEI) of 27 cities in China’s Yangtze River Delta (YRD) urban agglomeration at different

stages from 2011 to 2020 using two-stage dynamic data envelopment analysis (DEA). The

study carries out regression analysis and a long-short-term memory model (LSTM) to

respectively filter out the factors and predict TCEI. The results indicate the following. (1) The

total efficiency of 27 cities has significantly improved from 2011 to 2020, and there are obvi-

ous spatial heterogeneity characteristics. (2) In terms of stages, most cities’ efficiency val-

ues in the initial stage (energy consumption) exceed those in the second stage (sustainable

land utilization). (3) In terms of influencing factors, urban green space’s ability to capture

carbon has a notably positive correlation with carbon emission efficiency. In contrast, the

substantial carbon emissions resulting from human respiration are a negative factor affect-

ing carbon emission efficiency. (4) Over the forthcoming six years, the efficiency value of

land use TCEI in the YRD urban cluster is forecasted to range between 0.65 and 0.75.

Those cities with the highest performance are projected to achieve an efficiency value of

0.9480. Lastly, this research investigates the interaction between actors and land resources

on TCEI, resulting in a beneficial understanding for the former to make strategic adjustments

during the urbanization process.

1 Introduction

Carbon emissions have become a major concern worldwide ever since the industrial revolu-

tion. Currently, carbon dioxide is the main greenhouse gas (GHG) produced by human
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activities. The Intergovernmental Panel on Climate Change (IPCC) has indicated that world-

wide temperatures could rise by as much as 1.5 Celsius as soon as 2030, and that the world will

likely face unavoidable multiple climate hazards in the next two decades. China’s carbon emis-

sions in 2007 exceeded those of the United States and other developed nations, making it the

world’s most carbon-intensive country. In 2010, its energy consumption reached the highest

level in the world. Research has suggested [1] that China’s carbon emissions in 2030 will

increase by 30% versus 2010.

With the aim of managing rising temperatures, China has undertaken numerous initiatives

in the area of carbon reduction. The country has set forth a strategy to reach peak carbon emis-

sions by 2030 and achieve carbon neutrality by 2060. The sustainable development agenda of

the United Nations forecasts by 2030 that the rate of global urbanization will hit approximately

60%. At the same time, urban areas contribute about 70% of carbon emissions, and this pro-

portion is expected to rise by about 6% in a decade. With China’s urbanization rate already at

66.16% in 2023, this rapid expansion into non-built-up land has become an inevitable trend.

Accelerated urbanization not only leads to greater carbon intensity and energy consumption,

but also poses a significant risk to both the ecological environment and human living

conditions.

Land use contributes significantly to GHG emissions. Indeed, the process of land use gen-

erates 23% of total global carbon emissions, while at the same time it absorbs carbon dioxide

equivalent to about 33% of worldwide carbon emissions from industrial production and fos-

sil fuel combustion. The YRD city cluster is the most economically efficient and urban

agglomerated city area in China, accounting for 20% of domestic economic output despite

occupying only 2.1% of its land area. The total permanent population of YRD in 2023 was

236.9 million people, reflecting the population agglomeration effect of this important region.

Considering the lack of case studies specifically aimed at densely populated cities and highly

commercialized areas and the need for empirical application of demonstrative methods, this

paper chooses YRD as a case to evaluate the path of energy conservation and emission

reduction of urban agglomerations with good economic endowment in developing countries

[2, 3].

This research takes YRD as the sample target to first measure and analyze its carbon emis-

sion efficiency through a two-stage dynamic DEA model so as to clarify the trend of TCEI

changes among cities in the city cluster. Moreover, it employs the Tobit model to pinpoint the

factors driving carbon emission efficiency in the YRD city cluster. Finally, an LSTM neural

network model is utilized to forecast changes in TCEI.

This paper’s innovations and major contributions cover four main points. First, unlike

studies that measured carbon emission efficiency through a single dimension of energy con-

sumption, this study takes land use in urban agglomerations as a new entry point, and fur-

ther optimize the urban carbon emission efficiency index system. Second, the dynamic two-

stage DEA model resolves the issue of subjective assignment of specific production functions

in the traditional DEA model and broadens the notion of TCEI measurement. Third, to

identify influencing factors, this study quantifies the direction and degree of influence of

industrial structure, urban population density, and urban environmental governance level

on TCEI, in order to help the government to identify pollution sources and to provide a basis

for exploring the sustainable use of land in urban agglomerations and achieving the dual-

carbon goal. Fourth, at the level of empirical methods, this study combines DEA with the

neural network model from the field of artificial intelligence (AI), thus expanding the model-

ing approaches taken for predicting carbon emission efficiency. It offers a certain degree of

generalizability.
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2 Literature review

2.1 Conceptual definition of carbon emissions from land use

First, since land is an important carbon sink and source in the ecosystem, assessing carbon

emission efficiency in land use is crucial for evaluating the effectiveness of the sustainable

development model. Other studies on land use carbon emission efficiency mainly have focused

on evaluating such efficiency under different types of land use and various multi-dimensional

indicators.

Second, carbon emission efficiency is commonly divided by most researchers into two cate-

gories: single-factor carbon emission efficiency and multi-factor carbon emission efficiency.

Single-factor carbon emission efficiency is measured by the GDP created per unit of carbon

emission [4], whereas total factor efficiency is usually associated with socio-economic indica-

tors, reflecting more precisely the comprehensive efficiency of carbon emissions compared to

a single-factor viewpoint [5–7]. Therefore, the current study treats carbon dioxide emission as

a non-desired output to measure TCEI in the land use process of YRD urban agglomeration.

2.2 Factors affecting carbon efficiency of land use

Identifying the influencing factors is an important prerequisite before predicting TCEI. The

literature underscores a variety of elements influencing carbon emission efficiency, which

include the structure of energy, industrial structure, and the socio-economic level. Most stud-

ies have adopted methods such as environmental Kuznets curve, LMDI model, geographic

detector, Tobit model, and so on.

Cointegration analysis was initially used by some scholars [8] to identify the factors affecting

carbon emissions in China’s textile industry. Some studies [9, 10] later proposed an extended

exponential decomposition method through the STIRPAT model. Other scholars [11] com-

bined the logarithmic mean divisional index (LMDI) method and two-stage DEA to measure

an economy’s environmental efficiency and found that population migration and mobility,

labor force scheme, and energy consumption intensity are important affecting factors of energy

consumption. Nevertheless, the development of economic models, like LMDI and STIRPAT,

frequently requires the application of an assortment of assumptions and is subject to limita-

tions. The characteristics of data volatility are not sufficiently explained by econometric models.

Tobin (1958) introduced the Tobit regression model, which is a type of limited dependent

variable regression technique. This model depicts the relationship between a non-negative

dependent variable (also referred to as a latent variable) and an independent variable in circum-

stances where data are either censored or truncated. However, a more in-depth exploration of

the macro-drivers of logistics efficiency can be achieved through the dynamic two-stage DEA

model, which combines DEA and Tobit regression. This model offers scientific references for

policy making aimed at enhancing land use efficiency and realizing sustainable development.

For example, Liu [12] applied the Tobit econometric model to assess the influence on logistics

efficiency following implementation of the SBM-DEA method. This suggests that the integra-

tion of DEA and the Tobit model is reliable for depicting efficiency in the logistics industry.

However, most studies did not forecast the efficiency value after identifying the factors influenc-

ing TCEI. To address this gap in the literature, this study employs the identified affecting factors

as input variables in a forecasting model to evaluate their predictive bias and drivers.

2.3 Application of DEA methodology to land use efficiency assessment

First, when measuring the efficiency of land use carbon emissions, most studies have used sto-

chastic frontier analysis (SFA) and DEA [13, 14] for relative efficiency analysis. SFA often
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requires the establishment of an ideal f-value, and this excessively stringent assumption may

result in structural prejudice as a result of an incorrect manufacturing procedure setting [15,

16]. Conversely, DEA is widely employed in the field of carbon emission performance, because

it directly calculates data without the necessity of pre-estimating parameters [17]. The call for

urban development to reduce energy consumption and associated carbon emissions has

become more prevalent over the past decade as a result of the pressure to return to green and

sustainable development. Furthermore, the conventional DEA model is frequently less precise

than the two-stage DEA model with carry-over variables. As a result, many scholars have

included carbon emission indicators as undesirable outputs in efficiency assessments [18–20].

Reinhard [21] and Hailu [22] defined pollution variables as input factors and applied the

DEA model for ecological performance evaluation under the full-factor structure, but it has

some limitations due to the deviation between the model and the real manufacturing proce-

dure. Based on this, some studies [7] considered carbon emissions as undesirable outputs,

which makes the results of the model considering undesirable output variables more accurate

and reliable. However, since all the above models assumed that each DMU has the same pro-

duction boundary, which is obviously inconsistent with the actual situation, the conventional

DEA model cannot unfold the technological differences and growth patterns of each DMU in

the land use process [23–25]. Some studies noted [26] that network DEA models after adding

slack variables effectively analyze the efficiency of individual sectors and also uncover the cor-

relations between stages. Therefore, a weighted SBM dynamic network DEA model has been

proposed for calculating multi-stage efficiency values. The two-stage dynamic DEA model,

which this research refers to, considers the influence of undesirable outputs on the efficiency

value and also uses the interconnection among the DMU departments as the foundation for

efficiency measurement.

This research thus adopts the dynamic two-stage DEA modelling approach in carrying out

measurement of land use TCEI. It integrates the correlation of input and output variables in

the two stages of urban agglomeration’s land use TCEI and analyzes the independent effect

and connecting effect of S1 (energy consumption stage) and S2 (sustainable land use stage),

respectively. This makes it a more unique and segmented research approach.

In predicting future carbon emission efficiency, most studies have utilized methods such as

the STIRPAT model, Leap model, grey correlation model, system dynamics model, etc. Xu

et al. predicted that carbon emissions will peak in China between 2029–2035 through the

STIRPAT model [27]. Ding et al. proposed that without a carbon tax, China is expected to hit

its peak carbon in 2030 [28]. Nonetheless, leveraging the diverse carbon emission efficiency

correlation data is challenging due to conventional statistical modeling and prediction meth-

ods. Hence, AI algorithms can address data analysis and prediction issues in the energy and

environment sectors and have emerged as a new area of research interest [29].

Long Short-Term Memory (LSTM), which is also known as Long Short-Term Memory

structure, is a variant of traditional RNN and can efficiently predict the long- and short-term

dynamic trends of time series data. Ouyang [30] compared the LSTM model with four models,

including GARCH, and empirically found that LSTM has higher forecasting accuracy [31] and

captures the semantic correlation between long time series. Most research centers around

measuring carbon emission efficiency in urban land use processes and analyzing the factors

that drive it [32–35]. There are fewer studies combining the measurement of the efficiency

value with the neural network model, and an extended prediction of future efficiency values

for urban agglomerations is lacking. Based on this, Athanassopoulos and Curram [36] pro-

posed the idea of combining DEA with machine learning and used DEA for training set

screening and preprocessing and ANN tool for prediction of non-linear models in the field of

carbon emissions.
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In summary, there are some shortcomings that arise in other studies’ results. First, the

majority of them has focused on the accounting for TCEI of specific land use types, thereby

overlooking macro-level land use efficiency measurement. This also results in a decline in the

number of analyses concerning the driving factors of a region’s overall land use TCEI. Second,

many studies have ignored the effects of non-expected variables and carry-over variables in the

process of calculating TCEI value by DEA, which means that the calculation results do not

objectively reflect the dynamic characteristics of land use carbon emissions. Third, the

dynamic two-stage DEA model is able to assess the whole-factor carbon emission efficiency of

different land resource allocation levels at the level of urban agglomerations through a more

scientific manner. Ultimately, most studies have primarily concentrated on determining TCEI

of land use and lacked a comprehensive forecast of future efficiency values for urban conglom-

erations. Therefore, this paper presents the two-stage dynamic DEA-Tobit-LSTM model in the

realm of AI that can efficiently interpret the forecast results by contrasting the outcomes of

dynamic scenario simulation using the deep learning approach. This supplements the body of

literature related to the prediction of trends in land use carbon emissions.

3 Research method

3.1 Dynamic two-stage DEA approach

This study addresses issues arising from static analyses and regional disparities by segmenting

the approach into two stages: the first stage (S1) is energy consumption, and the second stage

(S2) is sustainable land use. Assume that there are n DMUs (j = 1,. . ., n), and the DMUs are 27

cities of YRD in this research. Each one has k partitions (k = 1,. . ., k) and n time periods

(T = 1,. . ., T), and the time series is 2011–2020 in this paper. Each DMU has an input and an

output in time period T and a carry-over (link) in the next time period T + 1 to the next time

period (j = 1,. . ., n). The inputs and outputs of each partition K by K (K, h)i denote the divi-

sions from k to h, and n and Lhk denote the set of divisions from k and h. We show the inputs

and outputs, links, and carry-over definitions as follows.

Inputs and outputs:

Xt
ijk 2 Rþði ¼ 1; . . . ;mk;⇄ j ¼ 1; . . . ; n;K ¼ 1 . . . ;K; t ¼ 1; . . . ;TÞ: refers to input i at time

period t for DMUj division k.

ytrjk 2 Rþðr ¼ 1; . . . ; rk;⇄ j ¼ 1; . . . ; n;K ¼ 1 . . . ;K; t ¼ 1; . . . ;TÞ: refers to output r in time

period t for DMUj division k.

Links:

Zt
jðkhÞt 2 Rþ j ¼ 1; . . . ; n; l ¼ 1; . . . ; Lhk; t ¼ 1; . . . ;Tð Þ: refers to the period t links from

DMUj (b) the process of time during which the scheme is to be implemented. The following is

a conclude of the period of the scheme of work h. Here, Lhk represents the number of k links

from one division to another, while h links refer to the quantity.

Zt
jðkhÞt 2 Rþ j ¼ 1; . . . ; n; l ¼ 1; . . . ; Lkh; t ¼ 1; . . . ;Tð Þ.

Carry-overs:

Zðt;tþ1Þ

jkl 2 Rþ j ¼ 1; . . . ; n; l ¼ 1; ::; Lk; k ¼ 1; . . . k; t ¼ 1; . . . ;T � 1Þð : refers to the carry-

over from time period (t) to period (t+1). This includes division h to division k, where Lk rep-

resents the number of carry-over items in division k. The quantity of input links for every divi-

sion k is represented by Linkink. Similarly, Link outk signifies the quantity of output links for

every division k. Each division k has a certain number of favorable carry-overs, represented by

n goodk. Conversely, the number of unfavorable carry-overs for each division is represented by

the quantity of output links for each division, denoted by n badk.
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What follows is the model that is non-oriented.

(a) Goal function

Overall efficiency.

y
∗
0
¼ min

XT

t¼1
Wt

XK

k¼1
Wk 1 � 1

mkþlinkinkþinputk

Xmk

i¼1

St�iok
xtiok
þ
Xlinkink

ðkhÞl¼1

st
oðkhÞl in

zt
oðkhÞl in
þ
Xninputk

kl

s t;tþ1ð Þ

okl input

z t;tþ1ð Þ

okl input

� �� �� �

XT

t¼1
Wt

XK

k¼1
Wk 1þ 1

r1kþr2k

Xr1k

r¼1

stþrokgood
ytrokgood

þ
Xr2k

r¼1

st�rokbad
ytrokbad

� �� �� � ð1Þ

Subject to.

xt
ok ¼ Xt

kl
t
k þ st�ko 8k; 8tð Þ ð2Þ

ytokgood ¼ Yt
kgoodl

t
k � stþkogood 8k;8tð Þ ð3Þ

ytokbad ¼ Yt
kbadl

t
k þ st�kobad 8k;8tð Þ ð4Þ

eltk ¼ 1 8k;8tð Þ

l
t
k � 0; st�ko � 0; stþkogood � 0; st�kobad � 0; 8k;8tð Þ

ð5Þ

Zt
o khð Þin ¼ Zt

khð Þinl
t
k þ St

o khð Þin khð Þin ¼ 1; . . . ; linkinkð Þ ð6Þ

Xn

j¼1
z t; tþ1ð Þð Þ

jk1a
l
t
jk ¼

Xn

j¼1
z t; tþ1ð Þð Þ

jk1a
l
tþ1

jk 8k; 8kl; t ¼ 1; . . . ;T � 1ð ÞZ t; tþ1ð Þð Þ

okl input

¼

Xn

j¼1

z t; tþ1ð Þð Þ

jkl linput
l
t
jk þ s t; tþ1ð Þð Þ

oklinput
kl ¼ 1; . . . ; ngoodk; 8k;8t

!

s t; tþ1ð Þð Þ

oklgood
� 0; 8kl; 8tð Þ

ð7Þ

(b) Efficiencies of period and division

Efficiencies of period and division are as follows.

i. Period efficiency.

@∗
0
¼ min

XK

k¼1
Wk 1 � 1

mkþlinkink

Xmk

i¼1

St�iok
xtiok
þ
Xlinkink¼1

ðkhÞl¼1

st
oðkhÞl in

zt
oðkhÞl in

� �� �

XK

k¼1
Wk 1þ 1

r1kþr2kþngoodk

Xr1k

r¼1

stþrokgood
ytrokgood

þ
Xr2k

r¼1

st�rokbad
ytrokbad
þ
Xngoodk

kl

s t;tþ1ð Þ

oklgood

z t;tþ1ð Þ

oklgood

� �� � ð8Þ

ii. Division efficiency.

φ∗
0
¼ min

PT
t¼1

Wt 1 � 1

mkþlinkinkþninputk

Pmk
i¼1

St�iok
xtiok
þ
Plinkink
ðkhÞl¼1

st
oðkhÞl in

zt
oðkhÞl in
þ
Pinputk

kl

sðt;tþ1Þ

okl input

zðt;tþ1Þ

okl input

� �� �

PT
t¼1

Wt 1þ 1

r1kþr2k

Pr1k
r¼1

stþrokgood
ytrokgood

þ
Pr2k

r¼1

st�rokbad
ytrokbad

� �� � ð9Þ
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Division period efficiency.

r∗
0
¼ min

1 � 1

mkþlinkinkþninputk

Pmk
i¼1

St�iok
xtiok
þ
Plinkink
ðkhÞl¼1

st
oðkhÞl in

zt
oðkhÞl in

Pinputk
kl

sðt;tþ1Þ

oklinput input

zðt;tþ1Þ

okl input

 !

1þ 1

r1kþr2k

Pr1k
r¼1

stþrokgood
ytrokgood

þ
Pr2k

r¼1

st�rokbad
ytrokbad
þ

� � ð10Þ

(c) Input, desirable output, and undesirable output efficiencies

To address any potential biases in traditional efficiency indicators, this study uses the total-

factor energy efficiency index. This index includes eight crucial efficiency models: built-up

area, total energy consumption, industrial land area, residential land area, carbon emissions

from industrial land, carbon emissions from residential land use, urban environmental protec-

tion inputs, and urban green space carbon sink. Efficiencies are equal to 1 when the planned

inputs align with the actual inputs, indicating complete efficiency. However, when the planned

inputs are less than the actual inputs, efficiencies fall below 1, denoting overall inefficiency.

When the target desirable outputs match the actual desirable outputs, efficiencies are equal

to 1, signifying complete efficiency. Conversely, when the target desirable outputs exceed the

actual desirable outputs, efficiencies fall below 1, indicating overall inefficiency. The structure

and variables of the intertemporal efficiency scheme, as well as the dynamic model’s variables

within the measurement framework, are depicted in Fig 1.

3.2 Tobit regression model

This study utilizes green space area, population respiratory carbon emissions, domestic waste

removal, and general industrial solid waste emissions as explanatory variables. The efficiency

Fig 1. TCEI assessment framework.

https://doi.org/10.1371/journal.pone.0311441.g001
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of carbon emissions from land use is as a dependent variable within the equation:

y:i ¼ bo þ
XK

k¼1

bkxki þ εi ð11Þ

i ¼ 1; 2; � � � � ��; n; k ¼ 1; 2; � � � � ��;K; εi e Nð0; s2Þ
� �

(
yi ¼ yGt ðy

G
i > 0Þ

yi ¼ 0ðyGi � 0Þ

The dependent variable yi indicates the efficiency of carbon emissions from land use, xki is

the explanatory variable, β0 is the constant term, βk is the vector of regression parameters, and

εi is the residual term. The equation is characterized by the fact that the explanatory variable

xki is the actual observed value, while the explained variable yi can only be observed in

restricted form. When yGi > 0, = yi, yGi and yi are unrestricted observations; when yGi � 0, yi is

said to be a restricted observation.

3.3 LSTM prediction model

The LSTM model is a unique kind of RNN. LSTM is composed of several units that are in

charge of holding data. Every storage component manipulates and processes data through four

control mechanisms: forgetting gate, input gate, memory unit, and output gate. The important

framework of LSTM appears in Fig 2. Here, xt denotes the input of parameter information

used for model training, such as urban green space area, population respiration carbon emis-

sion, etc. ht and ht-1 denote the outputs of LSTM in current and previous iterations, respec-

tively. The forget gate determines the amount of information from the previous state that is

kept or forgotten in the current state in ht-1, where Ct and Ct-1 represent the states of the stor-

age unit and the results of model learning in the present and the last cycles, respectively. It

means that LSTM uses these states to learn from the sequence of data over time with the ability

to keep or forget information as needed. In the end, the output gate manages the release of

valid data and rectifies the mistakes over a number of iterations. Oblivion gate ft determines

how much information from the previous cell is retained by the current cell with the

Fig 2. Flowchart of LSTM neural network model operation.

https://doi.org/10.1371/journal.pone.0311441.g002
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expression.

ft ¼ s wf � ht� 1; bm½ � þ bf

� �
ð12Þ

Here, wf is the weight matrix, bf is the bias, and σ is an s-type function.

The input gate is responsible for determining the percentage of current input data that will

be saved in the memory cell. This value is illustrated in Eq (13), in which the weight matrix wi

and bias bi are represented. Concurrently, Eq (14) enables the derivation of new state informa-

tion, with the weight matrix wc and bias bi again playing a role. Consequently, the current state

Ct of the learning outcome can be deduced from Eq (15).

it ¼ s wi � ht� 1; xt½ � þ bið Þ ð13Þ

Dt ¼ tanhðwc � ht� 1; xt½ � þ bcÞ ð14Þ

Ct ¼ ft � Ct� 1 þ it � Dt ð15Þ

The output gate Ot controls the state output from the memory cell, as shown in Eqs

(16)–(17), where the weight matrix w0 and bias b0 are present. LSTM, with its four control

gates and memory cells, is designed to read, refresh, and modify long-term information.

Ot ¼ s w0 � ht� 1; xt½ � þ b0ð Þ ð16Þ

ht ¼ Ot � tanhðctÞ ð17Þ

4 Empirical analyses

4.1 Data overview

This research selects 27 cities in the YRD Urban Agglomeration (2011–2020) as the study sam-

ple (Fig 3). YRD is not just a region with a robust foundation for urbanization in China, but

also a significant international gateway in the Asia-Pacific region. This makes it an ideal case

study for examining the carbon emissions resulting from land use.

Because using all the data from a specific region can make it challenging to accurately repre-

sent the true state of variables, this study employs per capita data for analysis to enhance its sci-

entific relevance and precision. The data are sourced from the China Statistical Yearbook

(2011–2020), China Urban Statistical Yearbook (2011–2020), and China Energy Statistical

Yearbook (2011–2020). DEA was first proposed by Charnes (1979), a famous American

researcher in operations research, to assess the relative effectiveness of DMUs. S1 Appendix

lists the inputs, links, and outputs of the dynamic two-stage DEA model. This study sets built-

up area, number of employees in industrial enterprises, number of real estate employees, total

energy consumption, and real estate development investment completed as inputs for S1

(energy consumption stage) variables. It uses industrial output value, real estate development

enterprises, commodity housing sales income, industrial land area, residential land area, car-

bon emissions from industrial land, carbon emissions from residential area, and other vari-

ables as outputs for S1. It then chooses comprehensive discharge index of three industrial

wastes and comprehensive discharge index of domestic waste as link variables for both stages

and at the same time identifies urban environmental protection inputs as the input variable for

S2 (land sustainable use stage). Comprehensive utilization rate of general industrial solid

waste, harmless treatment of municipal domestic waste, urban sewage treatment rate, and
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urban green space carbon sink are output variables of S2. Fig 4 presents the descriptive statis-

tics for each variable.

4.2 Descriptive statistics

At two different stages, this study chooses 8 representative variables, computes their maxi-

mum, minimum, mean, and standard deviation, and rounds off the outcomes to two decimal

places without altering the original meaning. See Figs 4 and 5 for details. (Fig 4a) illustrates

with the acceleration of urbanization that the statistics of built-up area show a steady increase

year by year, which is consistent with total energy consumption (Fig 4b). Industrial land area

(Fig 4c) and residential land area (Fig 4d) both exhibit a notable decline following 2015—a

trend that is strongly associated with the then-implemented policy aimed at curbing the exces-

sive development of real estate and industrial land. On the other hand, the average quantity of

carbon emissions from industrial land (Fig 4e) and residential land carbon emissions (Fig 4f)

have been changing more smoothly. This suggests that the carbon emission level of the associ-

ated industries remains relatively consistent year after year.

Unlike Stage 1, the urban environmental protection inputs (Fig 5a) in Phase 2 are more vol-

atile. On the one hand, their extreme value in 2011 is much higher than in other years. Con-

versely, substantial disparity exists between the extreme value and the comparably small and

median values. This suggests that investment in environmental protection varies greatly across

years and regions. In addition, the extreme value of urban green space carbon sink (Fig 5b)

decreases in fluctuation, but the mean and standard deviation are basically the same.

4.3 Empirical result analysis

4.3.1 Overall efficiency analysis. Fig 6 shows the overall efficiency scores of the above 27

cities for the two stages (2011–2020). The total efficiency values of the 27 cities average 0.6 dur-

ing the study period, and TCEI is significantly unbalanced among different regions.

Fig 3. Overview of the study area. Notes: The images are from an open data platform. USGS EROS (Earth Resources

Observatory and Science (EROS) Center) (public domain): http://eros.usgs.gov/#.

https://doi.org/10.1371/journal.pone.0311441.g003
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Specifically, Anhui has the largest TCEI, followed by Jiangsu. Zhejiang and Shanghai have the

lowest TCEI. In addition, TCEI of the YRD urban agglomeration generally indicates an

increasing trend within the study interval during this time period.

The study’s findings reveal two key pieces of information. First, the cities of Chizhou and

Wuhu in Anhui have higher TCEI values at 0.9516 and 0.9750, respectively. The bottom

ranked cities are Huzhou and Jinhua in Zhejiang at 0.4025 and 0.4081. Chizhou and Wuhu, as

two cities with low population density in Anhui, indicate a negative correlation between popu-

lation agglomeration and carbon emission efficiency. Due to their mountainous location and

Fig 4. Statistical analysis of input and output variables of Stage 1. (a) Built-up area; (b) Total energy consumption; (c) Industrial land area; (d) Residential land

area; (e) Carbon emissions from industrial land; (f) Carbon emissions from residential land use.

https://doi.org/10.1371/journal.pone.0311441.g004
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narrow urban built-up areas, Huzhou and Jinhua have neglected the construction of urban

green spaces, resulting in their own low carbon emission efficiency. Second, TCEI of most cit-

ies ranges from 0.5 to 0.8, with cities such as Nanjing and Hefei having relatively high TCEIs.

This suggests that they are more efficient in land conservation and intensive use.

Fig 6 presents that TCEI of the YRD city cluster generally shows an increasing trend within

the study interval. Specifically, the cities in Anhui and northern Jiangsu show a larger increase,

especially Anqing, which rises from 0.5308 at the beginning to 0.8872 later. It may be because

these latecomer cities, in the stage of new urbanization, timely changed their original extensive

land use patterns, abandoned the initial concept of promoting economic development with

heavy industry as the pillar industry, and carried out corresponding industrial transformation,

thus accelerating the construction of green spaces in new urban areas and thereby reducing

carbon emissions under the same energy consumption.

Some cities’ TCEI in the intermediate urbanization stage has improved in a fluctuating

state. The trend of change in their TCEI was relatively flat before 2015, while the efficiency has

gradually increased in the years thereafter. For example, the efficiency values of cities in Zhe-

jiang vary between 0.3–0.5, which suggests that there has not been any significant enhance-

ment in the overall land-use efficiency of these cities, implying ample room for improvement.

As for the more economically developed areas such as Shanghai, Hangzhou, and Nanjing,

their TCEI shows a clear downward trend. For example, Shanghai declined from an efficiency

value close to 1 at the beginning to 0.4565 later. This may be due to the rapid urban expansion

stage, where the government converted more and more urban green space into construction

land to promote economic development, thus greatly reducing the carbon sequestration capac-

ity of green space.

Fig 5. Statistical analysis of input and output variables of stage 2. (a) Urban environmental protection inputs; (b) Urban green space carbon sink.

https://doi.org/10.1371/journal.pone.0311441.g005

Fig 6. Changes in overall efficiency by city for representative years.

https://doi.org/10.1371/journal.pone.0311441.g006
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4.3.2 Stage efficiency analysis. 4.3.2.1 Energy consumption stage (S1). This study now

delves into the complexity of efficiency in these two stages. As Table 1 shows, Jiangsu demon-

strated commendable efficiency in the energy consumption stage from 2011 to 2020 with an

average value of 0.8352, which is impressive. This number rises, possibly due to excessive

restrictions imposed by the province on converting arable land into construction sites during

the urbanization process. The province has also been actively replacing traditional energy with

cleaner alternatives. The slow population growth caused by limited urban size has further pro-

moted the improvement of energy consumption efficiency in Jiangsu’s cities.

Zhejiang has the least efficient carbon emissions in terms of overall land usage, averaging

0.5695. The lack of significant fluctuation during the study period suggests that, when consid-

ering the carbon emission factor, the overall efficiency of land resource allocation in Zhejiang

is low. On the other hand, TCEI of land usage in Shanghai and Anhui is higher, averaging

0.7218 and 0.7614, respectively.

The changes shown in Table 1 illustrate from 2011 to 2013 that the carbon emission effi-

ciency of land use in Shanghai significantly decreased, and the fluctuations were relatively

small thereafter. This may be because Shanghai’s urban expansion became increasingly rapid

in the two years after 2011, and by 2013 its urbanization process had basically ended. Out of

the four regions, Jiangsu has the highest land-use carbon emission efficiency value, peaking at

0.9743 in 2018 and hitting a low of 0.6957 in 2012. The reason is that Jiangsu’s strict ecological

public welfare forests occupy and compensate for the balance of measures to ensure the carbon

sink function of green space. At the same time, the government carried out strict total con-

struction land use and intensity control after 2018, which slowed down the process of the origi-

nal natural land surface, such as arable land, flowing into construction land. The highest

efficiency value of land use TCEI in Anhui also appeared in 2018 at 0.9003, and the efficiency

value fell to 0.7014 in 2015 and thereafter to the lowest value of 0.6744 in 2011. This may be

due to the optimization and adjustment of the industrial structure of Anhui after 2018, replac-

ing the original manufacturing industry and heavy chemical industry with high value-added

secondary and tertiary industries. Finally, among the four regions, Zhejiang recorded the least

overall efficiency value and exhibited the most minimal change. Notably, its peak efficiency

was in 2018, achieving a value of 0.7324, while its lowest efficiency occurred in 2012 at a value

of 0.4611. This could be attributed to the recent slump in the real estate market, which resulted

in unutilized construction land.

4.3.2.2 Land sustainable use stage (S2). In the second stage (Fig 7), Anhui performed the

best in terms of efficiency in the sustainable land use stage from 2011 to 2020, maintaining a

stable average of 0.7127 and continuously improving every year. The reason is that due to a

certain gap in the total GDP of Anhui compared to Jiangsu, Zhejiang, and Shanghai, Anhui’s

carbon emissions level is lower than that of Jiangsu, Zhejiang, and Shanghai. The financial

investment related to environmental protection is similar among different cities, and the

reduction of energy consumption waste and garbage caused by population outflow has led

Anhui to invest more in urban green space construction.

Table 1. Changes in the efficiency of energy consumption stages by provinces in YRD, 2011–2020.

Province Mean 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Shanghai 0.7218 1.0000 0.6292 0.3297 0.5613 0.3835 1.0000 1.0000 0.9718 0.6642 0.6779

Anhui 0.7614 0.6744 0.7073 0.6683 0.6786 0.7014 0.8230 0.8740 0.9003 0.7754 0.8108

Jiangsu 0.8352 0.7072 0.6957 0.8201 0.7340 0.7533 0.8827 0.9593 0.9743 0.9093 0.9166

Zhejiang 0.5695 0.5176 0.4611 0.5599 0.4782 0.4480 0.6403 0.7187 0.7324 0.5719 0.5668

https://doi.org/10.1371/journal.pone.0311441.t001
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The average value of land sustainable use stage in Jiangsu is 0.4260. Throughout the entire

study period, the efficiency of sustainable land use in Jiangsu was the lowest, fluctuating

between 0.3 and 0.6. This can be attributed to the rapid development of urbanization and the

subsequent increase in energy consumption there. At the same time, the influx of a large num-

ber of people has forced environmental protection financial investment to tilt towards house-

hold waste management, thereby occupying the financial space for green space construction.

The sustainable land use efficiency of Shanghai and Zhejiang is ranked according to their pop-

ulation density with average values of 0.4392 and 0.5335, respectively.

From the changes in efficiency values during the research period (Fig 7), Anhui’s land use

carbon efficiency value is the highest among the four regions and has almost maintained an

increasing trend year by year. Among the four regions, Zhejiang ranks second in overall effi-

ciency value and has the most stable changes. This indicates that Anhui and Zhejiang have rel-

atively coordinated management of urban carbon emissions. These local governments have

effectively balanced the development goals of urbanization and ecological protection, timely

increased investment in urban ecological restoration, and thus enhanced the carbon sequestra-

tion role of urban land.

During the research period, the efficiency of sustainable land use in Shanghai has been

decreasing year by year, from reaching a peak efficiency value of 1 in 2011 to a minimum effi-

ciency value of 0.24 in 2020. Among these four regions, Jiangsu has the lowest average effi-

ciency value during this stage. The lowest value of sustainable land use efficiency in the

province was 0.2801 in 2014, while its peak value was 0.5847 in 2019. This trend closely relates

to the regional agglomeration characteristics of population and industry in Jiangsu. Especially

in some cities in northern Jiangsu that are still undergoing urbanization, the urban industrial

structure continues to be mainly dominated by high polluting heavy industry, and the transi-

tion to more environmentally friendly industries such as the tertiary industry will be a long

process.

4.3.3 Analysis of important input-output indicators. As depicted in Fig 8, there is a sig-

nificant variation in the efficiency performance of the primary input-output indicators from

2011 to 2020. Due to space limitations, the efficiency values of all input-output indicators are

not listed. However, this research does analyze the key indicators mentioned above in two

stages.

Regarding the trend of changes in the indicator of built-up area (Fig 8a), Shanghai has the

highest built-up area efficiency value of the three regions. It peaked at 1 in 2019, while the least

efficient year was 2013 when it reached 0.4959. Shanghai is the city with the largest built-up

area in eastern China. Its urbanization rate at the end of 2021 was as high as 89.3%, exceeding

the average level of developed countries and entering the late stage of urbanization develop-

ment. Therefore, the contribution of the built-up area indicator is larger in Shanghai. Anhui

Fig 7. Changes in the efficiency of land sustainable use stages by province in the Yangtze River Delta region,

2011–2020.

https://doi.org/10.1371/journal.pone.0311441.g007

PLOS ONE Ensemble intelligence prediction algorithms and land use scenarios to measure carbon emissions

PLOS ONE | https://doi.org/10.1371/journal.pone.0311441 December 9, 2024 14 / 26

https://doi.org/10.1371/journal.pone.0311441.g007
https://doi.org/10.1371/journal.pone.0311441


ranks second in performance. Although its built-up area efficiency value dropped after hitting

0.9277 in 2018, the province’s overall performance remains stable with potential for enhance-

ment. Conversely, Zhejiang recorded the lowest efficiency with yearly fluctuations. The peak

year was 2018 with an efficiency value of 0.7107, while the least efficient year was 2012 with a

value of 0.3879.

Regarding the trend of changes in the indicator of total energy consumption (Fig 8b), the

overall efficiency of the four regions is above 0.6 every year, with Jiangsu having the highest

average value during the study period at 0.8149. Shanghai ranks second, reaching a peak of 1

for two consecutive years after 2017. There are five years in which the efficiency value exceeded

0.8. Anhui ranked third, with peak efficiency of total energy consumption occurring in 2018 at

Fig 8. Efficiency of important input-output indicators. (a) Built-up area; (b) Total energy consumption; (c) Industrial output value; (d) Carbon source of

construction land; (e) Urban environmental protection inputs; (f) Urban green space carbon sink.

https://doi.org/10.1371/journal.pone.0311441.g008
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0.8344. The lowest value appeared in 2019 at 0.6805 with little fluctuation over the study

period. Zhejiang performs slightly worse, with two years above 0.7 and a minimum value of

0.5180, and fluctuates between high and low values. Its development goal of promoting a

short-term economy will inevitably increase the consumption of traditional energy sources.

After 2017, the region represented by Jiangsu increased the development and construction of

presumably cleaner energy sources, such as hydropower, thereby accelerating the process of

cleaning up the energy supply, which in turn leads to lower carbon emissions. In order to

achieve the goal of carbon neutrality, the energy production structure of other cities in the

YRD cluster has gradually shifted from coal-based to diversified renewable energy sources.

Regarding the trend of changes in the indicator of industrial output value (Fig 8c), the

industrial output value of Shanghai experienced a significant decrease from 1 in 2011 to 0.3807

in 2020. This steep decline implies that its industrial output value is highly unstable, and there

is considerable scope for improvement in the future. The efficiency of industrial output value

in Anhui is consistently greater than 0.7 and fluctuates insignificantly during the study period.

The highest efficiency value is 0.8606 in 2020, and the lowest is 0.7550 in 2012. The highest effi-

ciency year in Jiangsu is 0.7179 in 2020, and the lowest is 0.4303 in 2014. The performance for

the remaining years remains stable, fluctuating between 0.45 and 0.68. The value of industrial

output value in Zhejiang shows a decreasing trend in fluctuation, with its highest value

decreasing from 0.7863 at the beginning to 0.6259 later on. Overall, there are relatively few

regions where industrial output value efficiency reaches a desirable value or shows an upward

trend. This indicates in most regions that carbon emission efficiency of industrial output is not

satisfactory, and there is much room for optimization.

Regarding the trend of changes in the indicator of carbon source of construction land (Fig

8d), the best-performing province for this indicator is Jiangsu, with the highest value occurring

in 2018 at 0.9872 and with six years of efficiency values above 0.9. The second best-performing

region is Anhui, with its maximum value appearing in 2020 at 0.8606, and the other years fluc-

tuating around 0.8 with a more stable trend of change. The next best performer is Shanghai,

with the indicator reaching its maximum value in 2011, 2016, and 2017. A worse performer is

Zhejiang, with its maximum value appearing in 2018 at 0.8662 and fluctuating within the

range of 0.69–0.85 in the other years. The swift expansion of construction land in the YRD

urban agglomeration has resulted in a quick surge in carbon sources. Consequently, the inten-

sity of carbon emissions from land use has escalated rapidly. Hence, as its economy grows rap-

idly, the YRD urban agglomeration must shoulder a greater share of emission reduction

responsibilities and stringently regulate the unchecked expansion of construction land.

Regarding the trend of changes in the indicator of urban environmental protection inputs

(Fig 8e), Jiangsu performs the best and reaches a maximum efficiency value of 0.9695 in 2018,

but also shows a decreasing trend from 0.9309 in 2019 to 0.8885 in 2020. Zhejiang is more sta-

ble, with efficiency values ranging from 0.5722 to 0.7252 and reaching the optimal efficiency in

2016. Shanghai has a large difference between different years. Its efficiency value reaches 1 in

2016 and 2017 and later drops to 0.3059 in 2020. This reflects the regional heterogeneity of

urban environmental protection investment intensity. It is because the rise in investments

towards urban environmental protection projects can enhance the conservation and intensifi-

cation of land within the YRD urban agglomeration. It can also counteract the unchecked

expansion of construction land and thereby boost overall efficiency of carbon emissions.

Regarding the trend of changes in the indicator of urban green space carbon sink, the effi-

ciency values of all regions perform well with an average value of 0.6837 or above (Fig 8f).

Among them, the best performance is in Anhui with the highest quantity of 0.8777 in 2011

and the lowest value of 0.7269 in the next year, after which it has been fluctuating steadily at

the level of 0.8 or below. This suggests that the regions have increased their investment in
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urban forest construction in recent years, and so the increase in green space has improved the

overall carbon sequestration in the region.

4.3.4 Analysis of factors affecting carbon emission efficiency. The efficiency of carbon

emissions in the land use process is intimately linked to a city’s industrial structure, urban pop-

ulation density, and level of urban environmental governance. Due to the dynamic two-stage

DEA model generating efficiency values between (0, 1), which are constrained dependent vari-

ables, the Tobit model is chosen to conduct a truncated regression analysis. This analysis

deeply explores the factors influencing TCEI and the degree of their impact. Four indicators

related to national production and daily life have been selected, based on relevant literature

[37–39].

The names and definitions of the influencing factors appear in Table 2. In the Tobit model,

these four influencing factors are referred to as technical non-efficiency factors. The carbon

emission efficiency influencing factor model is constructed by combining these with the Tobit

model.

According to the calculation results in the previous section, Eq (5) is solved via Stata2019

software, and the results are in Table 2. First, the results imply that each variable has a signifi-

cant effect on carbon emissions in the process of land use. Four variables—namely, green

space area, population respiratory carbon emission, domestic rubbish removal, and general

industrial solid waste emission—are significant at the 1% level. Second, the regression coeffi-

cients of the two variables of carbon emissions from human respiration and domestic rubbish

removal are significantly negative with t-values of -4.11 and -5.53, respectively, indicating that

these two drivers negatively correlate with TCEI of land use, and that the agglomeration effect

of the population brought about by the urbanization of the land increases the pressure of

urban carbon emissions. This also corresponds to the results of efficiency analysis. Finally,

urban green space area and general industrial solid waste emissions have a significantly posi-

tive impact on urban land TCEI enhancement. The t-values of these two variables stand at 4.80

and 6.19, respectively, suggesting that an increase in the area of green space significantly

enhances the carbon sequestration capacity of urban green spaces. This in turn aids in achiev-

ing the goal of reducing carbon emissions. The environmentally friendly treatment of indus-

trial solid waste is easier and reduces the degree of industrial carbon emissions. At the same

time, the growth of urban industrial solid waste also represents the growth of urban economic

level, thus comprehensively improving the carbon emission efficiency of urban land use from

two aspects.

4.3.5 Forecasts of TCEI for the YRD urban agglomeration over the next six years. The

LSTM neural network model is employed to forecast the four drivers of carbon emission effi-

ciency over a rolling window, ultimately deducing and estimating the carbon emission effi-

ciency values of the YRD city cluster for the period 2021–2026. To avoid some problems like

Table 2. Parameter estimation results of the impact factor model.

Variable Symbol Unit (of measure) Coefficient t P>|t|

Green area Z1 Square kilometer 0.702*** 4.80 0.000

Carbon emissions from human respiration Z2 tons -0.806*** -4.11 0.000

Domestic garbage removal volume Z3 tons -1.302*** -5.53 0.000

General industrial solid waste emissions Z4 tons 0.300*** 6.19 0.000

Note:

*** represents a significance level of 1%, while

** represents a significance level of 5%.

https://doi.org/10.1371/journal.pone.0311441.t002
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the size of the effect being not practical, an effect size test is conducted to determine the ratio-

nality of the sample size. Moreover, the statistical efficacy result is 0.804, which suggests that

our experimental and control data are reasonable. Fig 9 presents a statistical power graph

based on the calculation results.

The time series data, which include the four selected variables and TCEI, are standardized

to eliminate the difference in magnitude. The matrix, which is made up of the values from the

initial t cycles of the land use carbon emission efficiency sequence, is used as input feature data

for training in the LSTM neural network. The data value from the t+1th cycle is then the output

for error-correction comparison. Since the total number of observed cities is 27, the sample

capacity is small, and so we use a sliding time window to expand the sample set, forming seven

sets of samples for 2011–2014, 2012–2015, to 2017–2020. The size of the implied layer of the

constructed LSTM model is 1, the training step size is 1, the number of epochs is 400, the num-

ber of neurons is 270, and the optimizer selects Adam as shown in Table 3. This paper judges

the prediction effect of the LSTM model based on R2, MSE (Mean-square error), and MAE

(Mean absolute error). The extended sample repeats the aforementioned process to obtain the

predicted carbon emission efficiency values for the YRD city cluster for the period 2021–2026.

The forecast implies that the carbon emission efficiency of the YRD cities is expected to fluctu-

ate between 0.3 and 1.1 in the future.

After the LSTM model training is complete, the forward rolling window prediction method

is used. This means during out-of-sample prediction the one-step prediction values obtained

by using the in-sample data as feature data in the model are extended to the sample data for

further application. The fitting results of the four input variables are in Table 3, which shows

that the real and predicted values of the land use carbon emission efficiency of the training set

of the cities fit well, as Fig 10 shows. This suggests that the LSTM model possesses robust gen-

eralization (Fig 10a), making it more apt for data with fewer observations like carbon emission

intensity (Fig 10b). It can more effectively approximate any function with a certain level of

generalization ability (Fig 10c), thereby ensuring reliability of the prediction (Fig 10d).

Fig 9. Graph of statistical power and sample size test results.

https://doi.org/10.1371/journal.pone.0311441.g009

Table 3. Evaluation index data of the fitting effect of each input-output index.

Variable R2 adjusted_R2 MAE MSE

Green area 0.9763 0.9755 0.0115 0.0786

Carbon emissions from human respiration 0.9824 0.9818 0.0056 0.0548

Domestic garbage removal volume 0.9620 0.9607 0.0135 0.0765

General industrial solid waste emissions 0.9800 0.9792 0.0251 0.1239

Carbon emission efficiency 0.9752 0.9712 0.0139 0.0834

https://doi.org/10.1371/journal.pone.0311441.t003
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In terms of the prediction of TCEI in the YRD agglomeration, the calculation is derived by

using the in-sample data as feature data in the model and is extended to the sample data for

further use. The test set of the better LSTM model for the land use carbon emission efficiency

of the urban agglomeration of the YRD is R2 = 0.9752, MAE = 0.0139, and MSE = 0.0834. The

research further adopts the learning curve to determine whether there is overfitting phenome-

non in the prediction of efficiency value. As shown in Fig 11, the training set and verification

set both have lower loss errors. On the one hand, the training set loss gradually decreases and

flattens with the increase of training samples, indicating that adding more training samples

does not improve the performance of the model on training data. On the other hand, the learn-

ing curve of the training set has a high validation loss at the beginning, gradually decreases,

and tends to be flat with the increase of training samples. The results imply that the majority of

the indices fit well without any overfitting, demonstrating a certain degree of generalization

capability that prediction reliability. Additionally, the model’s high prediction accuracy con-

firms that the four input factors have a strong correlation with carbon emission efficiency.

The fitted curve of the projected carbon emission efficiency value for YRD is depicted in

Fig 12. The findings indicate that the city with the highest land use carbon emission efficiency

Fig 10. Plot of input variable fit. (a) Effect of fitting the green space area training set; (b) Effect of fitting the carbon emissions from human respiration training

set; (c) Effect of fitting the training set on domestic waste removal; (d) Effect of fitting the training set on general industrial solid waste emissions.

https://doi.org/10.1371/journal.pone.0311441.g010
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in YRD could achieve an efficiency value of 0.9480 in the forthcoming six years. Overall, the

forecasted efficiency values for the cities within the studied area are predominantly within the

0.65–0.75 range. Five cities have predicted values of 0.92 or higher, and these cities all have effi-

ciency values of 1 in the training set. Moreover, the lowest land use carbon emission efficiency

value is 0.3913, and the predicted efficiency value of the city is 0.06 higher than the real value

of the training set.

4.4 Discussion

Taking YRD as the study area, a two-stage dynamic DEA, Tapio, and LSTM model are used to

perform measurement and prediction of TCEI from the perspective of land use. The TCEI in

Fig 11. Graph of training set and test set learning curve.

https://doi.org/10.1371/journal.pone.0311441.g011

Fig 12. Projected carbon emission efficiency of the Yangtze River Delta urban agglomeration in the next six years.

https://doi.org/10.1371/journal.pone.0311441.g012
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each city of YRD during the study interval fluctuates, but it is generally at a high level. Never-

theless, it is still worthwhile to consider the heterogeneity of various stages and the underlying

causes.

In terms of the TCEI of land use calculation, total efficiency has obvious spatial and tempo-

ral heterogeneity. It is not unexpected that provincial capitals, metropolitan areas, and coastal

developed cities show higher TCEI. This is because as the provincial capitals of their respective

provinces, although these cities have a relatively high population size and built-up area, they

have already relocated heavy polluting industries and carried out a large amount of urban

green space construction in conjunction with the existing suburban green spaces within their

boundaries during the urban development process. Economically developed areas often have

strong talent accumulation and resource endowment advantages, thus promoting the innova-

tion of production technology and land use [40]. The cumulative effect of land resources and

technological innovations in cleaner production allows these cities to reduce carbon emissions

while maintaining productivity. Moreover, economically developed areas are better able to

respond to and implement energy conservation and emission reduction policies [41]. In par-

ticular, the TCEIs of some cities in Anhui and northern Jiangsu have experienced significant

increases, whereas the TCEIs of other cities have shown fluctuations. The carbon emission effi-

ciency of land use in cities in southern Jiangsu is moderately high. The reason is that these eco-

nomically developed areas often have a higher level of intensive land use. TCEI decreases in

Zhejiang and Shanghai more substantially, suggesting significant potential for improvement in

land use and resource allocation in these areas. Carbon emission performance varies across

regions and different urbanization stages, demonstrating significant spatial and cyclical

disparities.

In terms of stages, the efficiency values of most cities in the initial stage (energy consump-

tion) exceeds the second stage (sustainable land utilization). In the initial stage, Zhejiang has

the lowest total land use carbon emission efficiency among the four regions, but in the second

stage, it has the second highest total efficiency value with smaller fluctuations. This result indi-

cates that terrain factors may be the fundamental reason affecting energy consumption effi-

ciency in cities. Zhejiang, which has the highest proportion of mountainous areas, needs to

consume more energy in the process of urbanization, while Jiangsu, which is located in a plain

area, does the opposite. These improvements are a result of China’s long-term ecological pres-

ervation initiatives aimed at enhancing its cities’ green development [42, 43]. In addition,

among the six major input-output indicators, Jiangsu exhibits the best performance in terms

of the indicators relating to carbon source of construction land and urban environmental pro-

tection input. This indicates with the advancement of urbanization and the development of

industries in the province that the environmental problems in Jiangsu do not match the final

level of economic development [44].

According to the forecast results of TCEI, there is a trend of further optimization and

growth of TCEI in the next six years, which indicates that the Yangtze River Delta urban

agglomeration in recent years has controlled the expansion of urban built-up areas and pro-

moted the mixed-use development of central urban areas. This has significantly helped

improve carbon emission efficiency. In other words, an intensive land use planning model has

a positive impact on optimizing land use structure and the carbon emission reduction effect

[45]. This highlights the increasingly significant squeezing phenomenon of urban green space

caused by net population inflow after the expansion of urban built-up area in economically

developed cities, such as Shanghai, and their land sustainable use efficiency has become the

worst in the entire Yangtze River Delta region. The identification results of influence factors

indicate that green space carbon sequestration capacity and population agglomeration effect

are the core driving factors of urban land carbon emissions. Based on this, each region should
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seek suitable land use methods according to its own characteristics so that its carbon emissions

can reach an appropriate level.

From a research perspective, this study takes the comprehensive carbon emission efficiency

of land use and focuses on assessing TCEI at different stages under the macro-level perspective.

Land serves as an important carrier for urban economic development, while different types of

land assume different functions in regional economic expansion [46, 47]. In addition, 27 cities

in YRD are taken as case studies for this paper. There are many other studies focusing on car-

bon emissions throughout Asia as well as worldwide [48, 49]. Therefore, future research could

include other developing countries’ provinces or regions for analysis to show clearer character-

istics and to help guide planning, management, and decision-making.

5 Conclusions and suggestions

5.1 Conclusions

This research employs a dynamic two-stage DEA model to build a TCEI assessment frame-

work. Subsequently, the study determines TCEI in the land use process of YRD from 2011 to

2020 and further predicts their dynamic evolution. The findings suggest the following.

1. This study takes land use in the urban carbon emission efficiency index system as a new

entry point. Looking at the total efficiency values, the average for the 27 cities during the

study period is around 0.6, showing notable differences between groups. Specifically, Anhui

has the highest carbon emission efficiency, followed by Jiangsu. Zhejiang and Shanghai

have the lowest levels. During the study period, TCEI of the YRD city group generally

shows an increasing trend within the study interval. This fills the first distribution identified

in the 1 Introduction chapter.

2. In terms of phases, during the study period the efficiency value of the first phase for Shang-

hai maintained a high level of around 0.7. However, the second phase shows a significant

fluctuation in land-use carbon emission efficiency, with a difference exceeding 0.75

between the highest and lowest efficiency values. It suggests that this type of highly devel-

oped economic region should take advantage of its own strengths to promote innovative

research and develop energy technologies and emission reduction technologies. This

phased DEA method overcomes the defects that the traditional DEA model cannot reflect,

has higher accuracy and flexibility, and indicates the second distribution identified in the 1

Introduction section.

3. In terms of sub-indicators, the contribution of Shanghai to the built-up area indicator is

larger. It shows that Shanghai mainly improves the level of urban development by increas-

ing the area of built-up land. As a result, it is crucial to optimize the industrial structure and

land resource allocation and to increase the environmental protection input in areas with

inefficient land use and carbon emission. These findings make up for the shortcomings of

other DEA models found in the 2 Literature review.

4. The results of driver identification of green space area and general industrial solid waste

emissions on the efficiency of land use carbon emissions are all dominated by positive

effect. Conversely, the population respiratory carbon emissions and the amount of domestic

waste removal are dominated by negative effects. This illustrates the third distribution iden-

tified in the 1 Introduction section.

5. From the prediction results, this study selects the LSTM model and predicts that the land

use TCEI of YRD will fluctuate in the range of 0.3–1.1 in the next six years. To some extent,

it is better than the calculated results of the efficiency values of the two stages. Most of the
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sample’s predicted values fluctuate slightly higher than the efficiency value. This study will

conduct future prediction research on the basis of carbon emission efficiency, reflecting

another contribution to the fourth aspect.

5.2 Limitations

The panel data of YRD from 2011 to 2020 are employed to analyze LUEE and the driving fac-

tors in this study. The most recent year is currently unavailable due to the time gap in obtain-

ing statistical data. Thus, future research may endeavor to establish a more comprehensive

TCEI indicator system and increase the sample size by incorporating indicators that reflect the

quality of life of residents and industrial upgrading factors in order to investigate additional

factors that influence environmental efficiency in the context of urbanization.

Moving forward, it is important to investigate the effects of various land types on urban car-

bon emission efficiency using a macro-micro integrated approach. This should enhance our

understanding of the role and influence mechanism of land use efficiency and the entire eco-

system [50]. The goal is to strengthen the symbiotic relationship between the healthy operation

of ecosystems and the superior growth of the macro-economy.

5.3 Suggestions

Each region in YRD displays considerable variation in carbon emission efficiency, and there

is a notable disparity in the land-use carbon emission performance of each city between the

two phases. For this reason, cities with lower carbon emission efficiency should introduce

advanced emission reduction and energy-saving technologies and management methods,

focus on the green economy industrial belt with a high growth rate, and reduce regional effi-

ciency differences. If YRD wants to keep the trend of decreasing carbon emissions and

increasing TECI in the process of land use, then it must control the development and con-

struction of construction land. In addition, the main way to reduce carbon emissions from

carbon sources is to reduce industrial land and land area of high-energy enterprises, which

requires YRD to concentrate on planning industrial parks and large buildings so as to further

achieve its carbon emission reduction target [51, 52]. Therefore, the key to significantly

improving the efficiency of sustainable land use in the region lies in concentrating the use of

land according to the characteristics of industrial development to avoid urban land waste,

while paying attention to the progress of low-carbon technology in industries and the con-

struction of urban green spaces.

The contribution of regions to different indicators varies greatly depending on regional pol-

icies and development priorities. Local authorities should enforce pertinent laws and regula-

tions, integrate green land use into government strategies, and introduce tax incentives for

cleaner production along with carbon emissions trading schemes. Concurrently, the applica-

tion of green technologies should be expedited, and waste recycling and reuse technologies

should be employed to address issues of high energy consumption and pollution, thereby

achieving sustainable development.

Local governments can narrow regional differences by formulating differentiated land-use

policies and emission reduction pathways. At the same time, taking into account the spillover

effect between different regions, policymakers can strategically formulate macro-level policies

to control the floating range of TCEI according to the stage of development of urbanization.

Doing so can achieve new urbanization, energy conservation, and emission reduction develop-

ment objectives.
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Considering the significantly positive influence of urban green spaces on carbon emission

efficiency and the large negative effect of population respiration on carbon emissions, it should

be a priority for each city’s emission reduction strategy to uphold the function of carbon sinks

[53]. By optimizing land use structures and enhancing the carbon capture capabilities of urban

green spaces, governments and authorities can foster high-quality socio-economic develop-

ment [54]. In addition, highly developed economic regions should combine local economic

and social development and resource endowments to scientifically and reasonably set orderly

peak targets, strictly control new carbon source land use, and make use of the carbon reduc-

tion function of potential carbon sink land use like green space [55]. They should aim to

reduce the peak and concentration of carbon emissions by enhancing the degree of intensive

and economical land use, resulting in a decrease in a region’s total carbon emissions.
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