Skip to main content
. 2024 Nov 26;11:1493403. doi: 10.3389/fvets.2024.1493403

Table 1.

Summary table for the hyper-tuning of parameters for Support Vector Machines (SVM’s).

Model Image size Kernel radial basis function Cost function Accuracy Precision Recall F1 score Time elapsed (Seconds)
SVM 32 RBF 4 97.17 97.54 97.17 97.19 0.017
SVM 64 RBF 2.5 97.74 97.77 97.74 97.70 0.021
SVM 128 RBF 2.5 97.74 97.77 97.74 97.70 0.019
SVM 256 RBF 2.5 97.74 97.77 97.74 97.70 0.018
SVM 512 RBF 2.5 97.74 97.77 97.74 97.70 0.019