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by high-performance serum lipidome fingerprints
Ze-Rong Cai1,6, Wen Wang 2,3,6, Di Chen2,6, Hao-Jie Chen 1,6, Yan Hu 1,6, Xiao-Jing Luo1,

Yi-Ting Wang4, Yi-Qian Pan1, Hai-Yu Mo1, Shu-Yu Luo1, Kun Liao1, Zhao-Lei Zeng 1, Shan-Shan Li5,

Xin-Yuan Guan5, Xin-Juan Fan4, Hai-long Piao 2✉, Rui-Hua Xu 1,5✉ & Huai-Qiang Ju 1,5✉

Abstract

Early detection is warranted to improve prognosis of gastric cancer
(GC) but remains challenging. Liquid biopsy combined with
machine learning will provide new insights into diagnostic strate-
gies of GC. Lipid metabolism reprogramming plays a crucial role in
the initiation and development of tumors. Here, we integrated the
lipidomics data of three cohorts (n= 944) to develop the lipid
metabolic landscape of GC. We further constructed the serum lipid
metabolic signature (SLMS) by machine learning, which showed
great performance in distinguishing GC patients from healthy
donors. Notably, the SLMS also held high efficacy in the diagnosis
of early-stage GC. Besides, by performing unsupervised consensus
clustering analysis on the lipid metabolic matrix of patients with
GC, we generated the gastric cancer prognostic subtypes (GCPSs)
with significantly different overall survival. Furthermore, the lipid
metabolic disturbance in GC tissues was demonstrated by multi-
omics analysis, which showed partially consistent with that in GC
serums. Collectively, this study revealed an innovative strategy of
liquid biopsy for the diagnosis of GC on the basis of the serum lipid
metabolic fingerprints.
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Introduction

Gastric cancer is the fifth most common malignant tumor and the
fourth-leading cause of cancer-associated mortality worldwide
(Sung et al, 2021). The 5-year survival rate can exceed 90% for
early-stage GC patients undergoing radical surgery, compared with
advanced GC patients with chemotherapy and immunotherapy

whose median survival was less than 15 months (Janjigian et al,
2021). Thus, the early detection and diagnosis of GC is of
paramount significance for improving the prognosis of patients.
However, traditional techniques such as serum-based biomarkers,
radiological technology and tissue biopsies based on endoscopy
have proven to be challenging (Elmore et al, 2021). For instance,
previously reported biomarkers lack superior sensitivities and
specificities while microscopic lesions are often missed with
imaging results (Elsherif et al, 2020; Liu et al, 2020). Furthermore,
as the current gold standard, gastroscopy combined with histo-
pathological findings is expensive, invasive, risky and relies on the
experience of endoscopists, which makes it unsuitable for the large-
scale screening (Thrift and El-Serag, 2020). Overall, these
phenomena emphasize the necessity of developing promising tools
for the early detection of GC.

Liquid biopsy is an alternative tool for the minimally invasive
detection of circulating tumor cells, circulating tumor DNA
(ctDNA) and extracellular vesicles by body fluids (Bradley and
Barclay, 2021). Previous studies, including ours, have indicated that
liquid biopsy offers more opportunities for the diagnosis and
prognosis monitoring of cancers (Guo et al, 2023; Ju et al, 2019;
Luo et al, 2020). Importantly, liquid biopsy allows repeated
sampling and is less influenced by cell heterogeneity compared to
assessing specimens of tumor samples, which means highly
valuable for liquid biopsy-based biomarker discovery. Despite
several traditional blood-based biomarkers, including carcinoem-
bryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), and
carbohydrate antigen 72-4 (CA72-4), have been widely applied in
suggesting the presence of gastrointestinal tumors (Xu et al, 2023),
they were inappropriate for the early screening of GC owing
to their low sensitivities (Sekiguchi and Matsuda, 2020).
Therefore, novel biomarkers from body fluids have sprung
up, including ctDNA, extracellular vesicle-derived lncRNA
GClnc1, and a serum 12-microRNA assay (Guo et al, 2023;
Maron et al, 2019; So et al, 2021).

Aggressive tumor growth is characterized by significant meta-
bolic reprogramming that provides opportunities for cancer
diagnosis and therapeutics (Li et al, 2023a). Since lipids are the
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main components of biofilms, energy donors, and signal transdu-
cers of cells (Keckesova et al, 2017), lipid metabolism plays a crucial
role in the initiation and development of tumors (Minami et al,
2023). Furthermore, compared with nucleic acids and proteins,
lipid metabolites can directly reflect the phenotype of cancers and
provide real-time feedback of the human body as downstream
molecules (Butler et al, 2020). Importantly, the development of
lipidomics technology and the advances in machine learning have
allowed for the discovery of cancer-specific signatures and the
construction of statistical classifiers for screening in population
(Capper et al, 2018; Chen et al, 2023b; Mayerle et al, 2018).
Therefore, lipid metabolites are expected to become promising
biomarkers and some liquid biopsy-based lipids have been reported
in diagnosis of lung cancer and pancreatic cancer (Wang et al,
2022; Wolrab et al, 2022). Due to the importance of lipid
metabolism and the gap in exploiting serum lipid signatures for
the screening of GC, elucidating the role of lipid metabolites in the
detection and prognosis evaluation of GC is extremely urgent.

Here, serum lipidomics data of GC patients and healthy donors
from multiple cohorts were analyzed to portray the lipid metabolic
landscape of GC. Novel tools of liquid biopsy for diagnosis and
prognosis prediction of GC were developed through machine
learning using lipid signatures and further affirmed in an external
validation cohort and a predictive cohort. Notably, the SLMS
outperformed the traditional biomarkers of gastrointestinal tumors
in diagnosing GC patients, especially patients with early-stage GC.
In addition, the GCPS can predict the survival of GC patients and
subtype-specific genes may be beneficial for the individualized
treatment of GC. Moreover, we also conducted multi-omics
analyses on GC tissues, which confirmed the lipid metabolism
disorder in GC and the rationality of the SLMS and GCPS.
Collectively, our exploration refreshed our understanding of the
lipid metabolic fingerprints of GC and the machine learning
predictors were conducive to the early detection and precision
medicine in GC.

Results

The depiction of GC lipid metabolic landscape

First, to investigate the metabolic reprogramming of GC, lipids and
hydrophilic metabolites were detected in 28 GC patients and 28
healthy donors. As shown in Fig. EV1A, principal component
analysis indicated that the difference of lipids was more significant
than that of hydrophilic metabolites. Based on this interesting
finding and the significance of lipid metabolism in cancers, we
would like to describe the lipid metabolic landscape of GC.

As shown in the flow diagram in Fig. 1A, we first collected
serums of 266 GC patients and 266 healthy donors from Sun Yat-
sen University Cancer Center (SYSUCC) as an exploration cohort,
of which 85% were used as the training cohort and 15% as the
testing cohort. Subsequently, serum lipids were detected by ultra
performance liquid chromatography-tandem mass spectrometry
(UPLC/MS) (Xuan et al, 2020a; Xuan et al, 2020b). Quality control
samples were prepared and identically inserted in the analytical
sequence, of which the analysis could be seen in Fig. EV1B–D. To
globally understand the lipid metabolic landscape of GC patients
and healthy donors, the partial least squares-discriminant analysis

(PLS-DA) was performed on the metabolism data in the training
cohort (Figs. 1B and EV1E) and the lipids were ranked by the
variable importance projection (VIP) scores. The results showed
the different lipid metabolic patterns between gastric cancer and
health. This phenomenon was consistent with preliminary findings
and previous research in other solid tumors (Huang et al, 2022;
Wang et al, 2021).

Among the 581 detected lipids, the levels of 207 lipids were
remarkably different between GC patients and healthy donors,
including 36 phosphatidylcholine, 24 lyso-phosphatidylethanola-
mine, 22 ether-linked phosphatidylcholine, 18 sphingomyelin, 17
fatty acid and 90 others (Fig. EV1F). Pathway enrichment analysis
revealed that alpha linolenic acid and linoleic acid metabolism,
biosynthesis of unsaturated fatty acids, beta oxidation of very long
chain fatty acids and glycerophospholipid metabolism changed
along with the occurrence of GC (Fig. EV1G).

Construction of the serum lipid metabolic signature for
GC diagnosis

Machine learning has been applied to detect cancers by establish-
ment of appropriate and effective markers (Capper et al, 2018).
First, to check redundancy of lipid features, we performed a
spearman’s correlation analysis between detected lipids and
revealed a high correlation between detected lipids, especially
the top 50 lipids with the highest VIP scores (Fig. 1C,D).
Therefore, we only included lipids with spearman’s correlation
coefficients less than 0.5 in later analysis. Subsequently, we
utilized machine learning models to establish a diagnostic
predictor for GC in the training cohort (Fig. 1E). Specifically,
ten commonly used classification algorithms, including LDA,
SVM Linear, SVM Linear Weights, SVM Radial, SVM Radial
Weights, RF, KNN, Glmnet, Bayesglm, and QDA, were included
in the selection (Li et al, 2023b) at the same time as the
signature screening on the filtered top 50 lipids sequentially.
Through 10-fold crossover validation, the predictor achieved the
performance with a mean accuracy of 0.963 when the LDA
algorithm (Li et al, 2022) was applied on the filtered top 19
metabolites (Fig. 1F), which made up the serum lipid metabolic
signature (Fig. 1G, Table EV1). In general, we constructed a
diagnostic predictor with the combination of SLMS and LDA
algorithm for GC detection.

To verify whether this predictor is specific for classifying GC
patients and healthy donors, we calculated the scores of LDA-aided
SLMS from the probability of each sample being diagnosed as GC.
As shown in Fig. EV2A,B, the scores of GC patients showed no
significant difference across different stratifications of various
clinical characteristics in the training cohort. In addition, univariate
and multivariate linear regression analyses were carried out on all
GC cases or healthy cases in the training cohort. None of the
clinical characteristics achieved significant P values in the multi-
variate model (Table EV2). Finally, the scores were significantly
higher in GC patients (average score of 0.939) than in healthy
donors (average score of 0.044, Fig. EV2C) and only the SLMS
score was an independent predictive factor of GC status in the
multivariate model (Table EV3). These results shed new light that
the SLMS was independent of clinical characteristics when used for
diagnosing GC and highlighted the potential clinical transforma-
tion of the SLMS.
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Figure 1. Construction of the serum lipid metabolic signature for GC diagnosis.

(A) Flow diagram for the construction and validation of SLMS. (B) Partial least squares-discriminant analysis of serum lipidomics between GC patients and healthy donors
in the training cohort. (C) Heatmap for correlation analysis of the expression of the top 50 lipid metabolites. (D) Histogram of the distribution of spearman’s correlation
coefficients between metabolites. (E) Accuracies of 10 classification algorithms when using different numbers of metabolites. (F) Results of 10-fold crossover validation of
lipidomics data from the training cohort by using LDA and top 19 lipids. (G) The 19 lipids of SLMS and their contribution to component 1, ranking small to large. Bayesglm
bayesian generalized linear models, GC gastric cancer, Glmnet lasso and elastic-net regularized generalized linear model, HD healthy donor, KNN k-nearest neighbor, LDA
linear discrimination analysis, PL precancerous lesion, PLS-DA partial least squares-discriminant analysis, QDA quadratic discriminant analysis, RF random forest, SLMS
serum lipid metabolic signature, SVMLinear linear support vector machine, SVMLinearWeights linear support vector machine with class weights, SVMRadial support
vector machine with radial basis function, SVMRadialWeights support vector machine with radial basis function and class weights, UPLC/MS ultra-high performance liquid
chromatography/mass spectrometry. Source data are available online for this figure.
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Although the scores of SLMS were independent of pTNM stages
(Fig. EV2A), the 19 lipids in SLMS showed 3 significantly distinct
trends (Cluster 1–3) along with the progression of GC pathological
stage (Fig. EV2D). Specifically, the lipids in Cluster 1 (e.g., HexCer
42:2;2O|HexCer 18:1;2O/24:1) exhibited a continuously increasing
pattern while those lipids in Cluster 2 (e.g., LPC 17:0) showed a
sustainably decreasing trend along with cancer development.
Besides, some lipids, such as PE O-44:6|PE O-24:2_20:4, partially
declined after climbing up during the progression of GC. This
finding was beneficial to the specific mechanism study of the
advancement in gastric cancer.

Validation of the diagnostic efficacy of SLMS

To assess the efficacy of the LDA-aided SLMS, the receiver
operating characteristic (ROC) curve was employed. The result
revealed that the LDA-aided SLMS achieved a desirable area under
curve (AUC) of 0.993, an accuracy of 0.967, a sensitivity of 0.960
and a specificity of 0.974 in the training cohort (Fig. 2A, Table 1).
To our knowledge, abnormalities of some peripheral blood tumor
markers, including CEA, CA19-9 and CA72-4, may indicate the
presence of gastric cancer (Xu et al, 2023). Therefore, we also
examined the performance of these markers in our cohorts. The
results showed that the efficacy of SLMS was superior to that of
CEA (AUC, 0.536; accuracy, 0.520; sensitivity, 0.075; specificity,
0.965), CA19-9 (AUC, 0.488; accuracy, 0.518; sensitivity, 0.154;
specificity, 0.881), CA72-4 (AUC, 0.645; accuracy, 0.518; sensitivity,
0.154; specificity, 0.881) and the combination of these three
biomarkers (accuracy, 0.579; sensitivity, 0.260; specificity, 0.837;
Fig. 2A, Table 1). To evaluate the robustness and accuracy of the

SLMS, the testing cohort mentioned above (39 GC patients and 39
healthy donors) and an external validation cohort from the
Gastrointestinal and Anal Hospital of Guangdong Province
(98 GC patients and 98 healthy donors) were subjected to serum
lipidomics. The results exhibited that the SLMS generated an AUC
value of 0.989 with an accuracy of 0.974, a sensitivity of 0.949 and a
specificity of 1.000 in the testing cohort, and an AUC value of 0.965
with an accuracy of 0.913, a sensitivity of 0.929 and a specificity of
0.898 in the external validation cohort (Fig. 2B,C; Table 1). The 10-
fold crossover validation and successful validation in dependent
cohorts indicated that there was no overfitting in SLMS. Mean-
while, CEA, CA19-9, CA72-4 and the combination of these three
biomarkers still revealed low AUC values, accuracies, sensitivities,
and specificities in the other two cohorts (Fig. 2B,C; Table 1).
Furthermore, the SLMS was verified to be an independent predictor
of GC in the testing and external validation cohorts (Fig. EV2A–C).

Notably, to further validate our LDA-aided SLMS, we con-
structed a targeted lipidomics method for 19 lipids in SLMS, and
then detected the expression of each lipid in serums from 50 GC
patients and 50 healthy donors. Through the calculation of LDA
algorithm, SLMS achieved good diagnostic performance with an
AUC of 0.886, an accuracy of 0.810, a sensitivity of 0.820 and a
specificity of 0.800 (Fig. 2D,E). These verification efforts confirmed
the earlier findings and the clinical application value of the SLMS.

Previous study has reported that 20–40% of GC patients are
negative for CEA, CA19-9, and CA72-4 on account of the Lewis a-b-

genotype, hence resulting in missed diagnosis (Guo et al, 2023). To
investigate the diagnostic efficacy of the SLMS for this subgroup, we
screened out GC patients with negative CEA, CA19-9, and CA72-4
from each cohort, and assessed the performance of SLMS when used
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Figure 2. Validation of the diagnostic efficacy of SLMS.

(A–C) The ROC curves of SLMS, CEA, CA19-9, and CA72-4 to differentiate gastric cancer patients (all stages) from healthy donors in the training, testing and external
validation cohorts. (D, E) The diagnostic performance of SLMS in targeted lipidomics data. AUC area under curve, CA19-9 carbohydrate antigen 199, CA72-4 carbohydrate
antigen 724, CEA carcinoembryonic antigen, CI confidence interval, HD healthy donor, ROC receiver operating characteristic, SLMS serum lipid metabolic signature.
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for judging them. As shown in Fig. EV2E,F, the SLMS revealed
excellent diagnostic performance with AUCs of 0.993, 0.985, and 0.965
in the training, testing, and external validation cohorts, respectively.
Overall, the result indicated that the SLMS was robust in identifying
GC patients with negative CEA, CA19-9, and CA72-4.

Application of the SLMS in the early detection of GC

Early detection is definitely warranted to improve prognosis in GC
patients (Ma et al, 2023). Gastric cancer, especially the intestinal
type, develops from a cascade of precancerous lesions in a stepwise
progression, so patients with precancerous lesions are at high risk
of GC (Correa, 1992). Identifying cases of precancerous lesions is
significant for executing efficient prevention and management
strategies. Therefore, we further collected serum samples from 71
patients with gastric precancerous lesions from SYSUCC to
constitute a predictive cohort in the validation phase. First, we
examined the abundance of 19 lipids in SLMS in three groups of
healthy donors, patients with precancerous lesions and GC patients.
The results delineated that the abundance of some lipids increased
(Fig. 3A) or decreased (Fig. 3B) in a stepwise manner from normal
to precancerous lesions and then to GC, which suggested that these
lipids may serve as evident biomarkers of disease progression. In
addition, we investigated the performance of SLMS in the
predictive cohort. Consistent with previous results, the SLMS still
achieved high diagnostic efficacy with an AUC of 0.977 in
differentiating GC patients (n = 76) from healthy donors (n = 69,
Fig. 3C). However, the SLMS only had an AUC of 0.782 with a
sensitivity of 0.606 in distinguishing patients with gastric
precancerous lesions from healthy donors (Fig. 3C, Table EV4).
Consequently, the SLMS may tend to identify precancerous lesions
as GC and was beneficial to filter out the patients who need further
gastroscopy examination.

It is well known that an efficient biomarker is capable of
distinguishing patients with early-stage gastric cancer (EGC,
pTNM stage I/II), so we further evaluated the diagnostic
performance of the SLMS in patients with EGC. Primarily, the
scores of LDA-aided SLMS in EGC patients (average of 0.928,
0.903, 0.946, and 0.863, respectively) were remarkably higher than
those of healthy donors (average of 0.044, 0.029, 0.133, and 0.086,
respectively) in the training, testing, external validation and
predictive cohorts (Fig. EV2G). In addition, the SLMS had the
best AUCs (0.992, 0.996, 0.975, and 0.963, respectively) to
discriminate EGC patients from healthy donors in comparison
with CEA, CA19-9 and CA72-4s in all four cohorts (Fig. 3D–G).
Subsequently, by using the cut-off value of 0.5, the accuracy for
identifying EGC patients was 0.964, the sensitivity was 0.945 and
the specificity was 0.974 in the training cohort (Table 2). The
performance of the SLMS was then verified in the other three
cohorts, where accuracies for identifying EGC patients were 0.984,
0.922, and 0.923, respectively; sensitivities were 0.958, 0.977, and
0.886, respectively; and specificities were 1.000, 0.898, and 0.942,
respectively (Table 2). Moreover, the SLMS showed similar high-
performance during different pTNM stages (Table EV5). In
conclusion, these data elucidated that the SLMS could identify
patients with EGC successfully and held great application potential
for early screening in population.

Serum lipid metabolites can predict the prognosis of GC

As previous studies reported that serum markers can predict the
prognosis of tumors (Lee et al, 2023; Ma et al, 2023), we further
explored the application of serum lipids in the prognostic
prediction of GC. As shown in Fig. 4A, the GCPS indicated by
serum lipid metabolites was constructed by using the lipid
metabolic data matrix of GC patients in the exploration cohort

Table 1. Classification performance of SLMS and other traditional gastrointestinal tumor-related biomarkers in GC patients of different cohorts.

Cohort Panel Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI)

Training cohort SLMS 0.967 (0.946–0.981) 0.960 (0.926–0.982) 0.974 (0.943–0.990)

CEA 0.520 (0.473–0.567) 0.075 (0.044–0.117) 0.965 (0.932–0.985)

CA19-9 0.540 (0.493–0.586) 0.093 (0.058–0.138) 0.987 (0.962–0.997)

CA72-4 0.518 (0.471–0.564) 0.154 (0.110–0.208) 0.881 (0.832–0.920)

CDP 0.549 (0.501–0.595) 0.260 (0.204–0.322) 0.837 (0.782–0.883)

Testing cohort SLMS 0.974 (0.910–0.997) 0.949 (0.829–0.994) 1.000 (0.910–1.000)

CEA 0.551 (0.434–0.664) 0.128 (0.043–0.274) 0.974 (0.865–0.999)

CA19-9 0.538 (0.422–0.652) 0.103 (0.029–0.242) 0.974 (0.965–0.999)

CA72-4 0.500 (0.985–0.615) 0.154 (0.059–0.305) 0.846 (0.695–0.941)

CDP 0.564 (0.447–0.676) 0.308 (0.170–0.476) 0.821 (0.665–0.925)

External validation cohort SLMS 0.913 (0.865–0.949) 0.929 (0.859–0.971) 0.898 (0.820–0.950)

CEA 0.561 (0.489–0.632) 0.143 (0.080–0.228) 0.980 (0.928–0.998)

CA19-9 0.566 (0.494–0.637) 0.143 (0.080–0.228) 0.990 (0.945–1.000)

CA72-4 0.515 (0.443–0.587) 0.153 (0.088–0.240) 0.878 (0.796–0.935)

CDP 0.622 (0.551–0.691) 0.398 (0.300–0.502) 0.847 (0.760–0.912)

The combined diagnostic panel (CDP) was proposed based on CEA, CA19-9 and CA72-4. Specifically, participants who were positive for any of these three
biomarkers would be identified as patients with gastric cancer.
CA19-9 carbohydrate antigen 199, CA72-4 carbohydrate antigen 724, CEA carcinoembryonic antigen, CI confidence interval, GC gastric cancer, SLMS serum lipid
metabolic signature.
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(266 observations with 54 deaths and a median follow-up time of
33 months). Subsequently, we confirmed the generalization ability
of the GCPS in the external validation cohort (98 observations with
30 deaths and a median follow-up time of 46 months) and the
predictive cohort (76 observations with 17 deaths and a median
follow-up time of 32.5 months). Specifically, we identified 2
metabolic subtypes (SI-SII) by using a consensus clustering method
on the metabolic profile of lipids associated with prognosis in the
exploration cohort (Fig. 4B). By generating Kaplan–Meier curves,
we found SI was with significantly worse prognosis than SII with
two-year overall survival (OS) rates of 75.7% and 88.8% for SI and
SII, respectively (hazard ratio = 3.34, 95% CI :1.912–5.848,
P < 0.001, log-rank test; Fig. 4C, Table EV6). Afterward, a subtype

predictor was trained by the Glmnet method (Zuccato et al, 2023)
and employed to predict the subtypes of the samples in the external
validation and predictive cohorts. Then, clinical analysis and
mechanism analysis were conducted to assess the differences
between subtypes. It turned out that SI was related to a larger
maximum diameter (P = 0.001, P = 0.012 and P < 0.001, respec-
tively; Chi-square test; Fig. EV3A, Table EV7) and advanced pTNM
stage (P < 0.001, P = 0.022 and P = 0.003, respectively; Chi-square
test; Fig. EV3B, Table EV8) in the exploration, external validation,
and predictive cohorts. In addition, there were significant
differences in the expression of lipids between the two subtypes
(Fig. EV3C), which were mainly enriched in the pathways of
biosynthesis of unsaturated fatty acids, glycerophospholipid
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Figure 3. Application of the SLMS in the early detection of GC.

(A, B) The significantly downregulated (A) and upregulated (B) metabolites during the process from HD turning to PL and GC finally (Student’s t test). The numbers of the
participants in HD, PL, and GC groups were 69, 71, and 76, respectively. (C) The ROC curves of SLMS in comparing any two groups in the predictive cohort. (D–G) The
ROC curves of SLMS, CEA, CA19-9, and CA72-4 to differentiate GC patients in early-stage from healthy donors in the training (D), testing (E), external validation (F), and
predictive cohorts (G). In the box plots of A and B, the upper bound, the line inside and the lower bound shows the 75th, 50th, and 25th percentiles of the sample while
whiskers are extended to the most extreme data point that is no more than 1.5× interquartile range (75th percentile minus 25th percentile) from the edge of the box. AUC
area under curve, CA19-9 carbohydrate antigen 199, CA72-4 carbohydrate antigen 724, CEA carcinoembryonic antigen, GC gastric cancer, HD healthy donor, PL
precancerous lesion, ROC receiver operating characteristic, SLMS serum lipid metabolic signature.
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metabolism and linoleic acid metabolism (Fig. EV3D). Generally,
we are the first to develop a prognostic subtyping method for GC
based on serum lipid metabolites.

Subsequently, we continued to evaluate the prognostic predic-
tion efficacy of the GCPS. As shown in Fig. 4C and Table EV6, GC
patients with SI had worse OS than those with SII in the external
validation cohort and the predictive cohort, which suggested that
we did not overfit the prognostic prediction model. Notably,
multivariable Cox regression analysis with the GCPS and
clinicopathological characteristics confirmed that the GCPS was a
consistently independent predictive factor of OS (exploration
cohort: hazard ratio = 2.224, 95% CI: 1.141–4.336, P = 0.019;
external validation cohort: hazard ratio = 3.566, 95% CI:
1.355–9.388, P = 0.010; predictive cohort: hazard ratio = 6.386,
95% CI: 1.676–24.336, P = 0.007; Fig. EV3E, Table EV8). Further-
more, the GCPS could also stratify the survival of patients with
advanced GC (AGC, pTNM III/IV). The OS for AGC patients with
SI was strikingly shorter than that for those with SII (P = 0.014,
P = 0.003, and P = 0.002 for the exploration, external validation,
and predictive cohorts, respectively; log-rank test; Fig. 4D). In
summary, we validated the GCPS as a valid predictive system for
OS in GC patients and extended its application in the prognostic
prediction of GC.

Multi-omics reveals a global lipid metabolism
disturbance in GC

The transformations of metabolism in patients’ blood on account
of metabolic reprogramming of cancer cells have been extensively
reviewed in previous studies, disclosing that metabolomic infor-
mation in the blood may partly reflect the existence of tumors and
prognosis of cancer patients (Su et al, 2021; Wang et al, 2021). To
comprehend the lipidome profiling of GC tissues, we conducted

lipidome and spatial metabolome analyses on GC tissues and
normal tissues. First, according to the lipidome results, eight lipids
of SLMS displayed significant differences in abundance between
GC tissues and normal tissues while all lipids of SLMS were
significantly dysregulated in the serum of GC patients in
comparison with healthy donors (Fig. EV4A, Table EV9). As a
supplementary, the expression of five lipids from SLMS in the
serums of GC patients was partially or completely restored to
normal owing to surgical resection of tumor tissues (Fig. EV4B,
Table EV10). Moreover, the spatial metabolome results revealed
that there were different metabolic patterns among the tumor,
paratumor, and normal regions (Figs. 5A,B and EV5). Changes of
lipid metabolites, including glycerophospholipids, glycerolipids,
fatty acids, and sphingolipids were also observed between the
tumor region and the normal region (Figs. 5C,D and EV4C).
Importantly, three lipids in the SLMS could be detected by the
spatial metabolome, and their expression was changed in GC
tissues in situ (Fig. 5E). Finally, transcriptomics analysis (The
Cancer Genome Atlas Research Network, 2014; Data ref: The
Cancer Genome Atlas Research Network, 2014) and proteomics
analysis (Shi et al, 2023; Data ref: Shi et al, 2023) of GC tissues
were conducted to systematically explore lipid metabolic repro-
gramming in GC. The results suggested that quite a few metabolic
pathways related to lipids were dysregulated in GC (Figs. 5F
and EV4D). Notably, there were changes in gene expression and
protein levels related to the pathways enriched by the different
lipids in serums between GC patients and healthy donors, which
were shown in Fig. EV1F and Table EV11. Based on analysis of
multi-omics data, we elucidated the profile of disturbed lipid
metabolism in GC tissues and confirmed the rationality of SLMS in
predicting GC.

Since multi-omics analysis indicates the reprogramming of lipid
metabolism in GC tissues, we speculated that the metabolic

Table 2. Classification performance of SLMS and other traditional gastrointestinal tumor-related biomarkers in EGC patients of different cohorts.

cohort (EGC vs HD) panel Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI)

Training cohort (109 vs 227) SLMS 0.964 (0.938~0.981) 0.945 (0.884~0.980) 0.974 (0.943~0.990)

CEA 0.673 (0.620~0.723) 0.064 (0.026~0.128 0.965 (0.932~0.985

CA19-9 0.676 (0.623~0.725) 0.028 (0.006~0.008) 0.987 (0.962~0.997)

CA72-4 0.619 (0.565~0.671) 0.077 (0.003~0.140) 0.881 (0.832~0.920)

Testing cohort (24 vs 39) SLMS 0.984 (0.915~1.000) 0.958 (0.789~0.999) 1.000 (0.910~1.000)

CEA 0.651 (0.520~0.767) 0.125 (0.027~0.324) 0.974 (0.865~0.999)

CA19-9 0.619 (0.488~0.739) 0.042 (0.001~0.211) 0.974 (0.865~0.999)

CA72-4 0.603 (0.472~0.724) 0.201 (0.071~0.422) 0.846 (0.695~0.941)

External validation cohort (43 vs 98) SLMS 0.922 (0.865~0.960) 0.977 (0.877~0.994) 0.898 (0.820~0.50)

CEA 0.702 (0.619~0.776) 0.070 (0.001~0.190) 0.980 (0.928~0.998)

CA19-9 0.716 (0.634~0.789) 0.093 (0.026~0.221) 0.990 (0.945~1.000)

CA72-4 0.660 (0.575~0.737) 0.163 (0.068~0.307) 0.878 (0.796~0.935)

Predictive cohort (35 vs 69) SLMS 0.923 (0.854~0.966) 0.886 (0.732~0.968) 0.942 (0.858~0.984)

CEA 0.702 (0.604~0.788) 0.143 (0.005~0.303) 0.986 (0.922~1.000)

CA19-9 0.692 (0.594~0.779) 0.086 (0.018~0.231) 1.000 (0.948~1.000)

CA72-4 0.654 (0.554~0.745) 0.171 (0.066~0.337) 0.899 (0.802~0.958)

CA19-9 carbohydrate antigen 199, CA72-4 carbohydrate antigen 724, CEA carcinoembryonic antigen, CI confidence interval, EGC early-stage gastric cancer, HD
healthy donor, SLMS serum lipid metabolic signature.
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features were also different between GC tissues from SI and SII.
Thus, we further conducted transcriptome analysis on GC tissues
from different subtypes. Pathway enrichment of differentially
expressed genes revealed that metabolism-related pathways,
including lipid metabolism, were significantly different between
the two prognostic subtypes, which confirmed the conclusion of
lipidomics (Fig. 5G, Table EV12). Eventually, to explore potential
subtype-specific drug targets, we searched the DGIdb database for
genes with significant differences between the two subtypes. Some
genes associated with lipid metabolism and lipid transport were
identified, such as CHAT and FFAR1 in SI and APOB, APOC3,
and MTTP in SII (Hooper et al, 2005; Zhang et al, 2022) (Fig. 5H,
Table EV13). To sum up, we further verified the metabolic

differences in two prognostic subtypes and identified some gene
targets that were beneficial to subtype-specific therapy.

Discussion

It has been reported that ctDNAs and exosome-derived non-coding
RNAs could act as novel diagnostic biomarkers for GC (Guo et al,
2023; Maron et al, 2019). Nevertheless, a small amount of ctDNAs
in circulation require sensitive and expensive detection techniques
while the fragmented exosome-derived ncRNAs could not reflect
the overall genetic profile of the tumors. In contrast to DNA and
RNA, lipids could directly reflect the holistic and real-time

Figure 4. Serum lipid metabolites can predict the prognosis of GC.

(A) Workflow for the building and validation of GCPS. (B) Patient subgrouping based on the lipids associated with prognosis (P < 0.05 for univariable variant cox analysis
and spearman’s correlation coefficients less than 0.5 between lipids). Samples and lipid metabolites are displayed as columns and rows, respectively, and the color of each
cell shows the z-score of the relative abundance of the lipids (logarithmic scale in base 2). (C) Kaplan‒Meier curves for OS based on the GCPS for the exploration, external
validation, and predictive cohorts. (D) Prognostic analysis of the GCPS in GC patients with different stages in the exploration, external validation, and predictive cohorts. P
values were determined by log-rank test (C, D). CI confidence interval, GC gastric cancer, GCPS gastric cancer prognostic subtype, HR Hazard ratio, OS overall survival.
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phenotypes of the tumors. Besides, the detection method of lipids,
such as UPLC/MS, was universal and low-cost. Recent studies have
shown that lipidomics could be utilized in the diagnosis of various
cancers (Wang et al, 2022; Wang et al, 2021; Wolrab et al, 2022). In
parallel, the SLMS and GCPS we established in this study exhibited
great performances in the diagnosis and prognostic prediction of
GC. Clinically effective management of cancers demands the

integration of early detection with risk stratified intervention. The
SLMS could be used in recognizing potential GC patients, who
would be confirmed by endoscopic biopsy finally. This strategy
could improve the accuracy and efficiency of early screening.
Subsequently, GC patients were classified into two groups with high
and low risk of poor survival through GCPS. The postoperative
therapeutic regimen of them will be formulated with overall
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Figure 5. Multi-omics analysis reveals a global lipid metabolism disturbance in GC.

(A) The H&E stain image of tissue section and magnified images of different regions (×20), scale bar = 1 mm. The region of gastric cancer, paratumor, and normal were
encircled by blue, red, and yellow lines, respectively. (B) The metabolite-driven segmentation of tissue section based on the metabolome data, scale bar = 1 mm.
(C) Enrichment analysis of differentially expressed metabolites between the GC regions and the normal regions. (D) Heatmap showing the lipids that were differentially
expressed between GC and normal regions. (E) A hierarchical clustering plot and heatmap showing the global abundance of lipids in SLMS between GC and normal tissues.
(F) Volcano plots showing the changes of metabolic pathways in GC through transcriptome analysis (380 GC tissues vs 37 normal tissues) and proteome analysis (194 GC
tissues vs 194 normal tissues). (G) Bar plot of the KEGG pathway map enriched by differentially expressed genes between two prognostic subtypes. (H) Heatmap of
differentially expressed druggable targets between prognostic subtypes. The pathways (G) and genes (H) in red color are associated with the metabolism and transport of
lipids. The expression levels of metabolites or genes in (D), (E), and (H) are represented as row-normalized z-scores. P values were determined by Hypergeometric test
(C, G), Student’s t-test (D, F), Paired t-test (E), and Deseq2 (H). FA fatty acids, GC gastric cancer, GP glycerophospholipids, GL glycerolipids, H&E hematoxylin and eosin,
KEGG Kyoto Encyclopedia of Genes and Genomes, p-adj adjusted P value for multiple testing via the Benjamini-Hochberg procedure, SL sphingolipid, SLMS serum lipid
metabolic signature.
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consideration of pTNM stages and GCPS. In general, the innovative
lipid fingerprints were valuable and promising for the diagnosis and
prognosis of GC.

Accumulating evidence has demonstrated the crucial role of
precancerous lesions in the stepwise progression model of the
initiation of gastric cancer and has provided some markers during
this evolution (Sugano et al, 2023). A recent study has identified
plasma metabolomic signatures in precancerous gastric lesions that
progress to GC (Huang et al, 2021) and an extracellular vesicle-
derived lncRNA GClnc1 has been proven to accurately differentiate
between GC and gastric precancerous lesions (Guo et al, 2023).
Moreover, the lipid panel consisting of PC 44:5, PC 35:6e, and SM
d40:3 was verified to be valuable for colorectal advanced adenoma
to colorectal cancer sequence (Chen et al, 2023a). In this study, it
was observed that several lipids in the SLMS presented a gradually
decreasing or increasing tendency during the progression from
normal to gastric precancerous lesions and then to GC. This result
implied that lipid metabolism reprogramming is accompanied by
alterations in the abundance of lipids in blood when normal tissues
start to become malignant and emphasized the necessity of
concentrating on these gradually altering lipids. Therefore, a
multicenter prospective study with sufficient precancerous lesion
patients can be conducted to explore the diagnostic capacity of the
lipid signatures. In summary, we preliminarily explored the
expression of lipids in patients with gastric precancerous lesions
and expanded the possibility of using lipids to recognize
precancerous lesions.

The pTNM staging system, based on the findings of imaging and
pathology, has remained most crucial to treatment guidance and
prognostication for GC (Fang et al, 2018). However, the clinical
outcomes and prognosis of AGC patients are still very different
even if they are at the same stage and accept similar treatment
because of the higher tumor heterogeneity in AGC (Smyth et al,
2020). This finding reminded clinicians of reconsidering the
current strategy in recommending postoperative adjuvant therapy
according to pTNM stage. In addition, GC patients with different
molecular characterizations were summarized into different The
Cancer Genome Atlas (TCGA) classifications, which could suggest
different prognoses and provide a roadmap for trials of targeted
therapies [42]. From another perspective, we constructed the GCPS
which could better stratify GC patients, especially AGC patients,
into different prognostic subtypes. The GCPS not only increases the
accuracy of survival prediction before surgery but also provides
guidance for postoperative therapy. Under the same stage, patients
with SI need more treatment and closer follow-up. Furthermore, we
analyzed the potential druggable targets that can be beneficial for
subtype-specific therapy. In conclusion, we demonstrated that the
lipid metabolic fingerprint can be used for prognosis stratification
and may assist in more appropriate clinical management.

In this study, we integrated the lipidome, spatial metabolome,
transcriptome, and proteome to describe the landscape of lipid
metabolism in GC tissues. Based on the systematic analysis,
glycerophospholipid metabolism, linoleic acid metabolism and
biosynthesis of unsaturated fatty acids were related to the
occurrence and development of GC. Previous studies have
shown that dysregulation of the glycerophospholipid metabolism
drove cancer cell proliferation and mediates immune reflection

(Henderson et al, 2019; Saito et al, 2022). Linoleic acid was reported
to prompt cancer cells to die and potentiate CD8+ T-cell metabolic
fitness thus promoting antitumor immunity (Nava Lauson et al,
2023). Biosynthesis of unsaturated fatty acids was involved in
maintaining lipid homeostasis during tumor progression (Terry
et al, 2023). These findings implied that targeting lipid metabolism
in tumors represents a highly promising therapeutic strategy
for GC.

However, there are still some limitations in our study. First,
more functional verification studies of lipids are needed to elucidate
the underlying biological mechanism and provide novel interven-
tion targets. Second, it should be noted that the levels of serum
metabolites are affected by various confounding factors, including
diet, gut microbiota and lifestyle (Bose et al, 2020). Besides, our
study solely focuses on the East Asian population in South China.
Therefore, a prospective cohort with a more rigorous design,
including taking the aforementioned factors into account and
recruiting more participants with diverse geographical locations
and racial backgrounds, will be needed to transform our results into
clinical practice. Generally, this first-time utility of lipid metabolic
fingerprint for GC diagnosis and prognosis prediction will require
further investigation.

In conclusion, we are the first to perform a comprehensive
portray program of lipid metabolic landscape of GC, including
serums and tissues. We also provide a kind of innovative lipid-
based tool of liquid biopsy for the diagnosis and prognosis
predicting of GC, which is pioneering in the field of the clinical
application of gastric cancer lipid metabolism.

Methods

Reagents and tools table

Reagent/Resource Reference or Source

Identifier or
Catalog
Number

Experimental Models

Patient samples Sun Yat-sen University
Cancer Center and
Gastrointestinal and Anal
Hospital of Guangdong
Province

Tables EV2–3;
Source data
for Fig. 1

Recombinant DNA

Antibodies

Oligonucleotides and other sequence-based reagents

Chemicals, Enzymes and other reagents

carnitine C16:0-d3 Sigma-Aldrich Cat#55107

palmitic acid-d3 Sigma-Aldrich Cat#615951

Cer d18:1-d7/18:0 Avanti Cat#860677P

LPC 17:0-d5 Avanti Cat#855679L

PC 17:0/22:4-d5 Avanti Cat#855678L

PE 17:0/17:0 Avanti Cat#830756P

SM d18:1/15:0-d9 Avanti Cat#860686P

TG 15:0/18:1/15:0-d5 Avanti Cat#860901P
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Reagent/Resource Reference or Source

Identifier or
Catalog
Number

Software

Mass Spectrometry-Data
Independent Analysis (MS-
DIAL) software (v4.9)

open access

Analyst (v1.6) AB SCIEX

R software (v 4.0.5) Open access

mixOmics R package (6.14.1) Rohart et al, 2017

caret R package (v 6.0-88) Kuhn, 2021

pROC R package (Version
1.18.0)

Open access

ConsensusClusterPlus R
package (v 1.54.0)

Wilkerson and Hayes, 2010

ComplexHeatmap R
package

Gu et al, 2016

survival R package (v 3.2-7) Therneau, 2020

MetaboAnalyst (v.5.0) Cardinal 2.14.0

Other

ACQUITY UPLC system Waters

tripleTOF™ 5600 plus mass
spectrometer

AB SCIEX

hybrid QQQ-linear ion trap
mass spectrometer, Q-Trap
5500 system

AB SCIEX

Q Exactive HF mass
spectrometer

Thermo Fisher Scientific

DGIdb database Griffith et al, 2013

Ethics approval

All samples were collected with the informed consent from the
donors and approval by the Human Genetic Resources Manage-
ment Office of China (permit number, [2023] CJ0426). This study
was conducted in line with the clinical protocol approved by the
Institutional Research Ethics Committee of SYSUCC (Guangzhou,
China, permit number B2022-769-01). This study conformed to the
principles set out in the World Medical Association Declaration of
Helsinki and the Department of Health and Human Services
Belmont Report.

Patient enrollment

In this study, a retrospective cohort that recruited a total of 944
participants was built from 2003 to 2021. We have used G*power
3.1.9.7 for a priori estimation of the sample sizes and our study has
met the need of sample numbers for training models. All
participants had their blood drawn after fasting for at least 8 h.
Specifically, computer generated random numbers were used to
assign 85% of the samples from the exploration cohort into the
training cohort and 15% of the samples into the testing cohort. For
GC patients, the inclusion criteria included (1) confirmed by
pathological examination, (2) serum samples prior to surgery, (3)
not receiving any neoadjuvant therapy, including medication, and

(4) complete clinical data and follow-up. For patients with gastric
precancerous lesions, the inclusion criteria included: (1) patholo-
gical results consistent with the definition of gastric precancerous
lesions from the guideline of the American Society for Gastro-
intestinal Endoscopy, (2) no cancer. Notably, some patients with
precancerous lesions have more than one kind of precancerous
lesion at the same time. The health statuses of healthy donors could
be confirmed by the medical examination results and consulting
medical history. For healthy donors, the inclusion criteria included:
(1) no precancerous or malignant gastric lesions confirmed by
endoscopy, (2) no tumor history or gastric precancerous lesion
history. Baseline clinicopathological data, including age, sex, tumor
maximum diameter, tumor location, tumor differentiation, pTNM
stage, vascular invasion, nerve infiltration, human epidermal
growth factor receptor 2 (HER2), smoking history, drinking
history, family tumor history, body mass index, CEA, CA19-9,
and CA72-4, were collected. The pathologic staging was based on
the Union for International Cancer Control (UICC) Tumor-Node-
Metastasis (TNM) staging system (8th edition). The definition of
overall survival was the duration from the surgery time to death
from any cause. Patients without known events were reviewed at
the date of last confirmed follow-up. The clinical characteristics of
all participants could be found in the Source Data for Fig. 1A and
Tables EV2–3. Besides, the inclusion criteria of serum samples after
surgery included (1) from the same patients as preoperative
samples, (2) within three months after surgery, (3) before any
postoperative adjuvant therapy.

Serum sample preparation

Samples were collected according to standard procedures and
stored in the cancer biobanks of SYSUCC and Gastrointestinal and
Anal Hospital of Guangdong Province. Afterward, a chloroform/
methanol/water system was applied to extract hydrophilic meta-
bolites and lipids from the samples. Specifically, for lipidome
analysis, 450 µL of methanol with internal standards (including
carnitine C16:0-d3, palmitic acid-d3, Cer d18:1-d7/18:0, LPC 17:0-
d5, PC 17:0/22:4-d5, PE 17:0/17:0, SM d18:1/15:0-d9, and TG 15:0/
18:1/15:0-d5) was added to 50 µL of each serum sample. The
mixture was vortexed followed by the addition of 700 µL chloro-
form. After phase breaking using 200 µL water and centrifugation
(13,000 × g, 4 °C, 15 min), two aliquots of 320 µL hydrophobic layer
were collected and freeze-dried for subsequent positive ion mode
and negative ion mode detection, respectively. Notably, all the
concentration of internal standards in extraction solvent for serum
samples were 0.4 μg/mL. Quality control (QC) samples were
prepared by using mixed serum samples from participants. For
the detection of hydrophilic metabolites in serum, capillary
electrophoresis-mass spectrometry (CE-MS) analysis was
employed. Detailed CE-MS methods were performed as previously
described (Zeng et al, 2014).

Lipidomics

Untargeted lipidomics of serum samples was performed by an
ACQUITY UPLC system (Waters) coupled with a tripleTOF™
5600 plus mass spectrometer (AB SCIEX) as a previous study
described (Xuan et al, 2020b). Briefly, lyophilized samples were
reconstituted in chloroform/methanol (2:1, v/v) and diluted
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threefold in ACN/IPA/H2O (65:30:5, v/v/v) containing 5 mM
ammonium acetate. The C8 AQUITY column (2.1 mm × 100 mm ×
1.7 µm) was used for lipid separation. The mobile phases consisted
of 3:2 (v/v) ACN/H2O (10 mM ammonium acetate, phase A) and
9:1 (v/v) IPA/ACN (10 mM ammonium acetate, phase B). The flow
rate was set as 0.3 mL/min and the column temperature was 60 °C.
The elution gradient started at 50% B, was held at this
concentration for 1.5 min, was linearly increased to 85% B at
9 min, reached 100% B at 9.1 min and was held at this
concentration for 1.9 min. Finally, the elution gradient was
returned to 50% B within 0.1 min and held at this concentration
for 1.9 min for equilibration. The total run time was 13 min. The
ion spray voltage for mass spectrum (MS) was set at 5500 V and
4500 V in positive and negative ion modes, respectively. The
interface heater temperature was 500 °C and 550 °C in positive and
negative ion modes, respectively. Ion source gas 1, ion source gas 2,
and curtain gas were set at 50, 50, and 35 psi in positive ion mode
and 55, 55, and 35 psi in negative ion mode, respectively. The MS
scan range was 150–1250 Da in both positive mode and negative
mode. The MS/MS fragmentation patterns were acquired using an
information-dependent analysis; the collision energy was set to
30 V (positive mode) and −30 V (negative mode) with a collision
energy spread of 10 V. QC samples were identically inserted in the
analytical sequence after every run of 20 serum samples to monitor
the reproducibility of the analytical method. The analysis of quality
control data could be found in Fig. EV1. Untargeted lipidomics was
also employed to detect postoperative serum samples in Fig. EV4B.

Data processing

According to instructions (Tsugawa et al, 2015), raw data were
processed using mass spectrometry-data independent analysis (MS-
DIAL) software (v4.9). The following parameters were set: (data
collection) RT begin, 0 min; retention time end, 13 min; mass range
begin, 150 Da; mass range end, 1250 Da; (peak detection) mass slice
width, 0.1 Da; smoothing method, linear weighted moving average;
smoothing level, 3 scan; minimum peak width, 5 scan; exclusion
mass list, none; (alignment) retention time tolerance 0.1 min
(positive mode) and 0.2 min (negative mode). Default values were
used for other parameters. Lipid features were obtained with mass-
to-charge ratio (m/z), retention time and MS/MS pattern by
searching acquired MS/MS spectra against the internal MS/MS
LipidBlast library in MS-DIAL program (Tsugawa et al, 2020). In
this study, accurate mass tolerance (MS1) and accurate mass
tolerance (MS2) were 0.01 Da and 0.025 Da, respectively. For lipids
without ionic fragments but appeared in the full scan mass
spectrogram, the identity of these lipid candidates was further
confirmed by comparing the relative retention time between the
known lipids and the candidate peaks within the same lipid class.
For specific MS/MS fragments used to assign lipid class, for
example, 184.0739 was selected as a characteristic product ion for
PC, LPC, PC-O, LPC-O, and SM. 369.3516 was selected as a
characteristic product ion for CE. 266.2791, 264.2635, 262.2479,
and 312.326 were selected as characteristic product ions of Cer or
HexCer with skeletons d18:0, d18:1, d18:2, and d20:0, respectively.
241.0119 was selected as a characteristic product ion for PI. For
acyl chains, 251.2016, 283.2642, 281.2485, 279.2329, 303.2325,
301.2169, and 327.2329 were taken as the characteristics of

appearance of fatty acyls 16:2, 18:0, 18:1, 18:2, 20:4, 20:5, and
22:6, respectively. After peak integration and normalization, lipid
features with the RSD < 30% were selected for subsequent analyses.
Manual assignment was performed to examine detailed lipid
structural information on characteristic ions, neutral loss of certain
groups, and/or fatty acyl ionic fragments. For lipids with distinct
characteristic ions, fatty acyl ionic fragments, and/or neutral loss of
certain groups in the MS/MS spectrum, structural compositions of
lipids were annotated (e.g., PC 38:6|PC 18:2_20:4). For those
without fatty acyl fragments but with only information on
characteristic ions and/or neutral loss of specific groups, they
would be annotated with total no. of carbons and double bonds of
acyl chains, e.g., PC 42:6. The relationship between retention time
and number of acyl chain carbon or number of acyl chain double
bond was further confirmed within the same lipid class.

Feature selection

The relative expression of lipids was normalized by the correspond-
ing internal standards and then transformed to the base-2
logarithm plus 5. Data generated by both positive-ion and
negative-ion modes were merged together and scaled. PLS-DA
were performed based on the scaled and pre-processed metabolism
data of the training cohort and the lipids were ranked based on
the VIP scores. The SCCs between the expressions of two lipids
were calculated. To avoid duplicated information for training
machine learning models, we proposed a step-wise feature selection
strategy. Initially, the top-ranked lipid was selected. Then, the next
lipid along the rank was checked sequentially and included only if
the SCCs were less than 0.5 between this lipid and all the already
included lipids; otherwise, this lipid was removed.

Construction of the machine learning model

The classification model was constructed based on the expression of
filtered top-ranked lipids (with the selected number of lipids tried from
2 to 50) in the training cohort in a 10-fold crossover validation manner
(10 repeats) using the caret R package (v 6.0-88). Ten common
classification models including k-nearest neighbor (KNN), random
forest (RF), lasso and elastic-net regularized generalized linear model
(Glmnet), linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), Bayesian generalized linear model (Bayesglm), linear
support vector machine (SVMLinear), SVM with Radial basis function
(SVMRadial), support vector machine with radial basis function
(SVMRadialWeights), and linear support vector machine with class
weights (SVMLinearWeights) were compared, where parameters of
each algorithm were optimized by crossover validation and grid-search
strategies. Concretely, the hyper-parameters of each algorithm, if any,
were optimized by the train function in the caret package with default
settings, this function can fit predictive models over different tuning
parameters. The best tuning parameters for all algorithms were listed in
Source Data for Fig. 1E. The comparisons were according to the average
accuracies of the 10-fold crossover validation analysis based on the
training cohort. Finally, the LDA algorithm was selected and the score
of the diagnostic predictor can be calculated as the following equation:

score:lda jð Þ ¼
X
k

αk�metabolitek;j þ α0
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where αk represents the coefficient corresponding to the kth
metabolite, and metabolitek,j represents the scaled and pre-
processed expression value of the kth metabolite in patient j, α0
represents a constant. Samples with a score greater than 0.5 were
judged as originating from GC patients; otherwise, they were judged
as originating from healthy donors (Capper et al, 2018).

Based on the subtypes of samples from the exploration cohort,
Glmnet algorithm was employed to train a subtype predictor and
the equation of the Glmnet algorithm was shown as follows.

min
β0 ;β

1
N
wilðyi; β0 þ βTxiÞ þ λ

1� αð Þ��jβj��22
2

þ α
��jβj��1

" #

where β represents the coefficient vector, xi represents the pre-
processed metabolism profiles of the patient i, and wi is the
observation weight (default = 1). l(yi,ηi) is the negative log-likelihood
contribution for observation i. The elastic net penalty is controlled by
α and bridges the gap between lasso regression (α = 1, the default)
and ridge regression (α = 0). The tuning parameter λ controls the
overall strength of the penalty. The score of each subtype calculated
by the subtype predictor signified the probability of the sample being
confirmed as each subtype. The sample was finally identified as the
subtype of which the score was higher.

The diagnostic predictor and the subtype predictor can be
obtained from the link (https://github.com/diChen310/ML_GC)
where investigators can get the instructions and methods for use
simultaneously.

Serum targeted lipidomics

An ACQUITY UPLC system (Waters) coupled with a hybrid QQQ-
linear ion trap mass spectrometer, Q-Trap 5500 system (AB
SCIEX) was used for UPLC/QQQ MRM MS-based targeted
lipidomics analysis. The LC conditions for targeted lipidomics
analysis were the same as those in the nontargeted lipidomics
analysis mentioned above. For MS detection, the QQQ MRM MS
was operated with IonSpray Voltage 5500 V in positive mode, the
temperature was set as 500 °C; both Ion Source Gas 1 (GS1) and Ion
Source Gas 2 (GS2) were set as 50. In negative mode, the QQQ
MRM MS was operated with IonSpray Voltage −4500 V; the
temperature was set as 550 °C; both GS1 and GS2 were set as 40.
The Collision Gas and Curtain Gas were set as ‘high’ and 35,
respectively, in both modes. The declustering potential (DP) and
collision energy (CE) of lipid ion pairs were optimized as described
before (Xuan et al, 2018) and then the precursor ion (Q1),
characteristic product ion (Q3), lipid name (ID), optimized DP,
and CE were imported into the MS acquisition method. The lipids
monitored were processed with the Analyst software in Explore
Mode and Quantitate Mode (version 1.6, AB SCIEX).

Tissue lipidomics

GC tissues and control tissues were taken from 10 GC patients
during surgery and then subjected to untargeted lipidomics. For
tissue samples, sheared tissues were weighed and then 500 μL
methanol with internal standards were added. Mixed grinding
apparatus (Scientz-24) was used for homogenization (35 Hz, 1 min)
followed by addition of 500 μL chloroform and vortex for 30 s.
After phase breaking using 200 μL water and centrifugation

(13,000 × g, 4 °C, 15 min), 240 μL hydrophobic layer was collected
and freeze-dried for lipidomics analysis. At the same time, the QC
sample was prepared by combining the hydrophobic layer from
each sample and then vacuum dried. The same chromatographic
separation method was performed on a Waters ACQUITY UPLC
system coupled with a Q Exactive HF mass spectrometer (Thermo
Fisher Scientific). Specifically, the ion spray voltages were 3.5 and
3.0 kV in positive and negative ion modes, respectively. The full MS
scan range was 120–1600 Da with a resolution setting of 120,000.
The automatic gain control (AGC) target value was 3 × 106; the
maximum injection time was 200 ms in full-scan MS and their
values were 1 × 105 and 50 ms in MS/MS scans. The resolution
setting for tandem mass spectra was 60,000. The stepped normal-
ized collision energy (NCE) was set to 15%, 30%, and 45%. The
capillary temperature and aux gas heater temperature were 300 °C
and 350 °C, respectively. The aux gas and sheath gas were set as
10 psi and 45 psi, respectively. The S-lens RF level was 50. The raw
data were normalized by corresponding internal standards and
tissue weights.

Spatial metabolome and transcriptome analysis

Tumor tissues and normal tissues (5 centimeters away from the
margin of the tumor) were taken from 11 GC patients during
surgeries and sent for matrix-assisted laser desorption/
ionization–mass spectrometry imaging (Dufresne et al, 2019).
Metabolite extraction, metabolite detection and data analysis were
performed by Wuhan Metware Biotechnology Co., Ltd. (Wuhan,
Hubei, China). Metabolite identification was performed by
comparing the MS and MS/MS spectrum information with the
in-house database and the Human Metabolome Database
(HMDB). Besides, extracted adducted ions without MS/MS
fragmentation information were imported into in-house database
and the HMDB and annotated for lipid species according to
molecular weight with an error < ±10 ppm. In addition, all
confirmed target peaks were used to conduct spatially-aware
nearest shrunken centroids clustering to obtain ten partition. As
shown in Fig. 5B and Fig. EV5, each partition was represented by a
color and different color-labeled partitions represented different
metabolic patterns. Furthermore, adjacent tissue sections of
samples undergoing mass spectrometry image (MSI) were stained
with hematoxylin-eosin.

GC tissues from 10 SI patients and 10 SII patients were
collected. Total RNA was extracted using TRIzol reagent (Invitro-
gen) after the tissues were broken with a homogenizer. RNA-seq
and data analysis were conducted by Wuhan Metware Biotechnol-
ogy Co., Ltd. (Wuhan, Hubei, China). Potential subtype-specific
drug targets were investigated based on the genes with significant
differences between the two subtypes (P < 0.05) and the DGIdb
database (Griffith et al, 2013).

Statistical analysis

Sample size was chosen based on the need for statistical power.
Two-sided test was used in the statistical analysis and P < 0.05 was
defined as significant. All analysis scripts were programmed using
R software (v 4.0.5), with the mixOmics R package (6.14.1) for
PLS-DA (Rohart et al, 2017), the caret R package (v 6.0-88) for
machine learning (Kuhn, 2021), the pROC R package (Version 1.18.0)
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for ROC curve analysis, the ConsensusClusterPlus R package (v 1.54.0)
for consensus clustering method (Wilkerson and Hayes, 2010), the
ComplexHeatmap R package for drawing of heatmap (Gu et al, 2016),
the survival R package (v 3.2-7) for the log-rank test and univariant and
multivariant Cox analysis (Therneau, 2020), the MetaboAnalyst (v.5.0)
for pathway enrichment analysis and the R package (Cardinal 2.14.0) for
analysis of metabolite spatial distribution and spatial segmentation.
In addition, the specificity, sensitivity, and accuracy were calculated
based on MedCalc (https://www.medcalc.org/calc/diagnostic_test.php)
while pathway enrichment was performed on the website (https://
www.metaboanalyst.ca/MetaboAnalyst/upload/
EnrichUploadView.xhtml).

Graphics

The images of “serum collection” and “UPLC/MS” in synopsis were
created with BioRender.com.

Data availability

The lipidomics data generated in this study could be available in the
link (www.ebi.ac.uk/metabolights/MTBLS9126) (Yurekten et al,
2024), and this data could also been accessed in the OMIX (https://
ngdc.cncb.ac.cn/omix) under accession No. OMIX007487. The
spatial metabolomics would be made available on the link (https://
metaspace2020.eu/project/cai-2023); The HE images of samples
that underwent the spatial metabolomics are available in
zenodo (https://doi.org/10.5281/zenodo.13744125). RNA-seq data

generated in this study are available in Genome Sequence Archive
HRA005690 (http://bigd.big.ac.cn/gsa-human/).

The source data of this paper are collected in the following
database record: biostudies:S-SCDT-10_1038-S44321-024-00169-0.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44321-024-00169-0.
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The paper explained

Problem
Early detection is of great significance for improving prognosis of
patients with gastric cancer (GC). Liquid biopsy is a revolutionary tool
for early diagnosis and prognosis prediction of GC. In addition, lipids
can directly reflect the cancer phenotype and provide real-time feed-
back on the human body’s condition. However, the landscape of lipid
metabolism in GC remains unknown and there are few studies on the
application of lipid detection through liquid biopsy in the diagnosis and
prognosis of GC.

Results
We constructed the serum lipid metabolic signature (SLMS) for GC
diagnosis based on the lipidomics data from a large-scale cohort and
the SLMS was demonstrated to exhibit excellent diagnostic perfor-
mance in distinguishing GC patients from healthy donors with accura-
cies exceeding 0.9 in multiple cohorts. Then, we developed the gastric
cancer prognostic subtypes (GCPSs), which could successfully classify
GC patients into groups with good or poor prognosis. Last, multi-omics
analysis revealed the global lipid metabolism disturbance of GC both in
serums and tissues.

Impact
Our current study fills the gap in the study of serum lipid metabolism in
GC and provides a promising liquid biopsy-based tool for the diagnosis
and prognosis prediction of GC. The proposed SLMS and GCPS might
assist in early screening and appropriate clinical management of GC.
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Expanded View Figures

Figure EV1. The analysis of preliminary experiment data and quality control data.

(A) PCA on the lipid data or hydrophilic metabolite data of GC patients (n= 28) and healthy donors (n= 28). (B) PCA on the participant samples and QC samples showed
that the QC samples were highly correlated. (C) Spearman’s correlation coefficients between QC runs, ranging from 0.97 to 1, demonstrated the high stability and
reproducibility of data. (D) Intensity distribution of lipid species indicated that QC samples (n= 49) had good consistency with participant samples in quantification of
serum lipid levels; The sample numbers of GC, HD, and PL groups have been shown in Fig. 1A. (E) The validity of the partial least squares-discriminant analysis in Fig. 1B
showed no overfitting (permutation test, n= 1000). Q2 measures the predictive ability of the model, while R2Y measures the goodness of fit. (F) The significantly changed
lipids between GC patients and healthy donors. The classes of lipids are displayed in different colors. The black circle indicates 0 of the lipid level and the height of the bar
represents the normalized lipid levels. The direction of bars pointing towards and away from the center represents the lipid level of healthy donors and GC patients,
respectively. (G) The pathway enriched by the significantly changed lipid in serums (Hypergeometric test). The definitions of box plots in (A) and (D) were consistent with
those in Fig. 3A,B. PCA principal component analysis, PC principal component, QC quality control, GC gastric cancer, HD healthy donor, PL precancerous lesion.
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Figure EV2. The influence factor of the score of SLMS.

(A) The SLMS scores of GC patients were compared between different stratification of age, maximum diameter, sex, differentiation, location, pTNM, vascular invasion,
nerve infiltration, HER2 and BMI in the training, testing and external validation cohorts. (B) The SLMS scores of GC patients were compared between different stratification
of smoking history, drinking history and family tumor history in the training, testing, and external validation cohorts. (C) The difference between the SLMS score of GC
patients and that of HDs in the training, testing, and external validation cohorts. (D) Mfuzz clustering of lipid trajectories during GC progression using 19 lipids according to
the lipid changes’ similarity. Lipids in each cluster are presented on the side. HD, healthy donor. (E, F) The diagnostic performance of SLMS when used in detecting GC
patients with negative CEA, CA19-9, and CA72-4. (G) The difference between the SLMS score of EGC patients and that of HDs in the training, testing, external validation,
and predictive cohorts. P values were determined by Wilcox test and Data presented as the mean ± S.D. (A, B, C, G). CA19-9 carbohydrate antigen 199, CA72-4
carbohydrate antigen 724, CEA carcinoembryonic antigen, CI confidence interval, EGC early-stage gastric cancer, GC gastric cancer, HD healthy donor, NTB negative for
three biomarkers, SLMS serum lipid metabolic signature, ns non-significant; ***P < 0.001; **P < 0.01; *P < 0.05. Source data are available online for this figure.
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Figure EV3. Characterization of GCPS.

(A) The overlap between GCPS and maximum diameter. (B) The overlap between GCPS and pTNM stage. (C) Volcano plot comparing different lipids between SI and SII.
(D) Enrichment analysis of different lipids between SI and SII. Hits are indicated by the size of the circle and significance is indicated by the color of the circle. (E)
Multivariate Cox proportional hazards analyses of OS in patients with gastric cancer in three cohorts. The circles in red color indicated the P value was less than 0.05. P
values were determined by Chi-square test (A, B), Wilcox test (C), Hypergeometric test (D), and Wald test (E). GCPS gastric cancer prognostic subtype, NS non-
significant, OS overall survival, pTNM pathological Tumor-Node-Metastasis.
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Figure EV4. Analysis of the metabolites in SLMS.

(A) The significantly changed metabolites between gastric cancer (n= 10) and normal tissues (n= 10). (B) Metabolites that partially or completely return to normal levels
after surgery (n= 50 per group). (C) Volcano plot showing the lipids that were differentially expressed between GC and normal regions. (D) Top 10 lipid-related metabolic
pathways highly expressed in cancer tissues and normal tissues according to the transcriptome and proteome analysis. P values were determined by T test (A–D) and
adjusted via the Benjamini-Hochberg procedure (D). The definitions of box plots in (A) and (B) were consistent with those in Fig. 3A,B. AS after surgery, BS before surgery,
HD healthy donor, SLMS serum lipid metabolic signature.
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Figure EV5. The global metabolic landscape of patients with gastric cancer.

H&E stain image and metabolite-driven segmentation of contiguous gastric cancer tissue sections. Scale bar = 1 mm. The blue, red, and yellow areas represent tumor,
paratumor, and normal regions, respectively.
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