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The continuous evolution of SARS-CoV-2 has led to the emergence of several variants of concern (VOCs) that significantly affect
global health. This study aims to investigate how these VOCs affect host cells at proteome level to better understand the
mechanisms of disease. To achieve this, we first analyzed the (phospho)proteome changes of host cells infected with Alpha, Beta,
Delta, and Omicron BA.1 and BA.5 variants over time frames extending from 1 to 36 h post infection. Our results revealed distinct
temporal patterns of protein expression across the VOCs, with notable differences in the (phospho)proteome dynamics that
suggest variant-specific adaptations. Specifically, we observed enhanced expression and activation of key components within
crucial cellular pathways such as the RHO GTPase cycle, RNA splicing, and endoplasmic reticulum-associated degradation (ERAD)-
related processes. We further utilized proximity biotinylation mass spectrometry (BiolD-MS) to investigate how specific mutation of
these VOCs influence viral-host protein interactions. Our comprehensive interactomics dataset uncovers distinct interaction profiles
for each variant, illustrating how specific mutations can change viral protein functionality. Overall, our extensive analysis provides a
detailed proteomic profile of host cells for each variant, offering valuable insights into how specific mutations may influence viral
protein functionality and impact therapeutic target identification. These insights are crucial for the potential use and design of new

antiviral substances, aiming to enhance the efficacy of treatments against evolving SARS-CoV-2 variants.
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INTRODUCTION

The emergence of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) in late 2019 led to the ongoing
COVID-19 pandemic, which has had profound global health and
socio-economic consequences’'. SARS-CoV-2 continuously evolves,
giving rise to numerous variants of concern (VOCs) with distinct
genetic and phenotypic characteristics>>. Phylogenetic analyses
have revealed that these VOCs diverged autonomously from the
ancestral lineage of wave 1 (W1) viruses. Among them, Alpha
(B.1.1.7), Delta (1.617.2), and Omicron (BA.1 and BA.5) have spread
worldwide, while Beta (B.1.351) and Gamma (P.1) have largely
remained geographically confined. The Omicron variant with its
extensively mutated spike (S) protein signified the most dramatic
antigenic shift to date, evading the adaptive immunity fostered by
vaccinations and prior infections™’. Subsequent Omicron sub-
variants BA.4 and BA.5 swiftly superseded Omicron BA.1 and BA.2,
marking Omicron as the first VOC to spawn globally as dominant
sub—lineagess’s. More recently, Omicron variants XBB1.5, BA2.86
and JN.1 have been prevalent in different countries.

VOCs are thought to have arisen due to evolutionary pressures
to adapt to human hosts and to evade both innate and adaptive
immune responses, thereby enhancing human-to-human trans-
mission®'°. The S protein of SARS-CoV-2 facilitates cellular entry
via the angiotensin-converting enzyme 2 (ACE2) receptor and has

emerged as the most altered protein across VOCs*'". However,

VOCs have also acquired a multitude of non-synonymous
mutations in other proteins, including non-structural, structural,
and accessory proteins, such as NSP3, NSP6, NSP9, NSP12, NSP13,
nucleocapsid (N), membrane (M), envelope (E), ORF3a, ORF®6,
ORF7a, ORF7b, ORF8a, and ORF9b*>'2 The spectrum of mutations
spans widely; VOCs from Alpha to Delta variants possess 20-29
non-synonymous consensus mutations, while Omicron BA.1
possesses more than 60 mutations, predominantly in the S
protein (Fig. 1a; Supplementary Table S1). Additionally, each VOC
bears 4-10 non-coding mutations.

A multifaceted approach integrating genomic and proteomic
analyses is indispensable for studying SARS-CoV-2 variants
within host cells. Techniques such as next-generation sequen-
cing enable the decoding of the complete viral genome and
the identification of specific mutations, thus aiding in tracking
the emergence and dissemination of variants. Concurrently,
proteomics allows the identification of the virus-encoded
proteins that underpin viral functions and host interactions. It
sheds light on how variants modify protein expression,
structure, and function, thereby influencing disease progres-
sion and treatment efficacy.

While extensive proteomics research has been conducted on
SARS-CoV-2 evolution, many studies have focused predominantly
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Overview of SARS-CoV-2 VOCs and the experimental approach to study the host-pathogen interactions. a The epidemiological and
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evolutionary tree of the SARS-CoV-2 variants (modified from Nextstrain.org), illustrating the emergence of the key SARS-CoV-2 VOCs (Alpha,
Beta, Gamma, Delta, and Omicron). b Scheme of the experimental workflow: samples were collected at various time points post infection (1
hpi, 8 hpi, 16 hpi, and 36 hpi), followed by global quantitative proteomics and phosphoproteomics analyses using DIA-PASEF. ¢ Infection
progression was monitored by detecting the SARS-CoV-2 N protein through immunofluorescence microscopy. d Normalized log,-transformed
intensity of SARS-CoV-2 proteins expressed during infection in the VeroE6-H10 cells. The error bars represent one standard deviation, n =3

biological replicates.

on specific proteins or a limited selection of viral protein alterations
of one variant. For instance, previous studies have concentrated on
the Wuhan strain and confined the analysis to a single time point,
potentially overlooking the full spectrum of responses within the
host cells. Additionally, some studies, whilst offering valuable
insights, have solely focused on major open reading frames (ORFs)
of SARS-CoV-2, possibly omitting the effects on individual NSPs and
specific mutations altering virus functions'>™'>.

Our current study expands the proteomics exploration, delving into
the complete ‘hijackome’ during the time course of infection,
especially at later time points than previously observed, with five
prevalent SARS-CoV-2 VOGs. Utilizing VeroE6-H10 cell cultures
infected with Finland-derived Alpha, Beta, Delta, and Omicron BA.1
and BA.5 VOCGs, our analysis spans 1-36 h post infection (hpi) to trace
the virus's trajectory during the infection. We utilized cutting-edge
phosphoproteomics to examine phosphorylation dynamics through-
out the course of the infection, and to discover the effects of
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mutations of SARS-CoV-2 VOC proteins. We further introduced the
VOC-specific mutations of interests into 12 viral proteins and
employed BiolD-MS to decipher mutation-related alterations in
protein interactions. Our approach yields profound insights into the
functional consequences of these mutations, which affect vital cellular
pathways, such as RHO GTPases, MAPK-, EGFR-signaling, and
endoplasmic reticulum (ER)-associated processes. The identification
of the role of these pathways in the response to infection with SARS-
CoV-2 VOCs is instrumental in understanding the virus's symptoma-
tology, replication mechanisms, and prospective therapeutic avenues.

RESULTS

SARS-CoV-2 variants efficiently infect the host cells with
differing infection dynamics

Our primary objective was to systematically and comprehensively
investigate the infection landscape of the SARS-CoV-2 VOCs to
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produce a complete map of the SARS-CoV-2-host cell interactions as other regions responsible
or ‘hijackome’. SARS-CoV-2 is a +ssRNA virus of ~29.9kb in size,
featuring a complex genetic structure comprising ORF1a and ORF1b
that encode polyproteins (ORF1a and ORF1b, respectively), as well
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for accessory and structural proteins,
such as S, E, M, and N proteins, that are vital for viral particle
formation and RNA interaction within the viral core'®. We included
the VOCs Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2) and,
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Fig.2 Comprehensive quantitative proteomics analysis of total proteome changes of the host cells upon infection with the SARS-CoV-2
variants. a Super Venn representation of the total number of proteins quantified in each sample group from all time points. Each row
corresponds to an individual variant. Key: Alpha, light green; Beta, dark green; Delta, coral; Omicron BA.1, blue; Omicron BA.5, lilac; mock,
brown. The numbers at the bottom of each column indicate the total number of proteins shared within the group, while the numbers on top
indicate the number of sample groups within the shared set. Column on the right presents the total identifications within the group.
b Column graph comparing total proteome data to the mock sample at each time point, illustrating the number of proteins exhibiting either
upregulation or downregulation relative to the prior sample time point. ¢ Variant-specific filtering analysis to identify SARS-CoV-2 variant-
specific differences. In this analysis, mock samples were used as a baseline, with data filtering and normalization highlighting statistically
significant alterations. Proteins with significant up- or downregulation compared to mock samples were selected, identifying 47 proteins with
notable changes (logzFC) across time points (1 hpi, 8 hpi, 16 hpi, and 36 hpi) in VOCs. Additionally, proteins with consistent expression
changes across all sampled time points and variants are represented in a heatmap arranged alphabetically. Five selected proteins (TIM22,
STX10, OR13G1, DERL1, and RETREG1) are shown in an alternative format to display their logzFC. d Voronoi graph representing the complete
SARS-CoV-2 ‘hijackome’ of host cell functions on 36 hpi, analyzed using enrichment of Reactome pathways of virus-infected cells compared to
the mock cells. Proteins with significant up- or downregulation (Benjamini-Hochberg corrected P < 0.05, log,FC) in any variant-infected cells
relative to mock were included in the Reactome enrichment analysis, with color gradients illustrating overrepresentation based on adjusted P

values (Benjamini).

Omicron variants BA.1 and BA.5 (Fig. 1a) which are known to have
accumulated multiple mutations leading to structural and func-
tional changes in viral proteins®'”.

To study the functional effects of SARS-CoV-2 infection and
possible differences between the VOCs, we quantified the
differences in the total and phosphorylated proteomes (phospho-
proteomes) at different time points of infection (1 hpi, 8 hpi, 16
hpi, 36 hpi) in VeroE6-TMPRSS2-H10 cells using a Data-
Independent Acquisition combined with Parallel Accumulation
Serial Fragmentation (DIA-PASEF) quantitative proteomics analysis
pipeline (Fig. 1b). We assessed infection progression with
fluorescence microscopy (Fig. 1c), and the viral protein levels
with DIA-PASEF (Fig. 1d). We observed that in cells infected with
Omicron BA.1, and especially with BA.5, viral protein expression
progressed at a slower rate at the early time points (1 hpi, 8 hpi, 16
hpi) compared to Alpha, Beta, and Delta variants. Regardless of the
somewhat different virus titers in inoculation for Alpha and Delta
variants, the slower kinetics in Omicron infection are clearly
evident compared to the Beta variant infected with equal virus
titer. However, BA.1 and BA.5 infections rapidly reached the levels
of the other variants, and the viral protein levels at the 36 hpi time
point were comparable to those of Alpha, Beta, and Delta VOCs
(Fig. 1d; Supplementary Table S2). This finding is in agreement
with previous reports of Omicron infection dynamics'®'. Addi-
tionally, we noted that the Alpha variant exhibited very low levels
of ORF8a expression. This is likely explained by the ORF8a Q27stop
mutation, identified in Alpha variant, either initiating nonsense-
mediated mMRNA decay or resulting in an unstable protein (Fig. 1d).
Interestingly, we detected similarly low levels of ORF8a expression
in the BA.5-infected cells. This validates the sequencing finding
that BA.5 contains a mutation (C27889T) in the middle of the
ORF8a transcriptional regulatory sequences (TRS), that is predicted
to reduce or ablate ORF8a expression’. The lack of ORF8a
expression is most likely beneficial for the virus, as the ORF8a
induces monocytic pro-inflammatory cytokine expression via
NLPR3 inflammasome pathways?'.

Cells infected with SARS-CoV-2 variants exhibit similar host
cell responses at the protein level

Next, we examined the virus-host protein responses induced by
SARS-CoV-2 VOCs on the VeroE6-TMPRSS2-H10 host cell proteome
using the DIA-PASEF analysis pipeline (Fig. 1b). We detected and
quantified similar numbers of host proteins in all samples, ranging
from 7529 quantified proteins in the samples from mock-infected
cells, to 7851-7900 proteins in the samples from SARS-CoV-2 VOC-
infected cells (Fig. 2a). Of these, 312 proteins were found to be unique
for the SARS-CoV-2-infected cells (Supplementary Table S2). This
larger number of proteins quantified in samples from infected cells
reflects the changes induced by viral infection in host protein
expression. We used Reactome pathway analysis to identify the
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processes to which these 312 proteins were linked (Supplementary
Table S2). The analysis identified five statistically significantly enriched
(Benjamini adjusted P <0.001) pathways; ‘Translation of Accessory
Proteins’ (P=1.69E-05), ‘RUNX3 regulated NOTCH signaling’
(P =3.97E-04), 'Virion Assembly and Release’ (P = 4.67E-04), ‘Regula-
tion of beta-cell development’ (P=6.06E-04), and ‘Regulation of
gene expression in beta cells’ (P = 9.43E-04).

Temporal and variant-specific host protein expression
dynamics during SARS-CoV-2 infection
The effects of a viral infection on the transcriptional and
translational processes of the host cells occur dynamically and
can be observed at different stages post infection. To dissect the
temporal- and VOC-specific variations seen in host cells, we
investigated the number of proteins upregulated or down-
regulated at different time points post infection (1 hpi, 8 hpi, 16
hpi, and 36 hpi) across VOCs. This analysis shed light on the
molecular responses induced by various SARS-CoV-2 variants
over time, particularly on 36 hpi (Fig. 2b; Supplementary Table
S2) offering insights into how each variant may impact the host
cellular machinery. Furthermore, to determine SARS-CoV-2
variant-specific differences between VOCs, we compared the
proteome data from virus-infected cells to mock-infected cells.
We identified 47 proteins that exhibited significant changes
when comparing the proteomes of VOCs to mock samples
across multiple time points (Fig. 2¢; Supplementary Table S2).
Each of these proteins appeared to be significantly (log,Fold
Change (FC)) changed at least once (in a time point) in one of
the VOCs when compared to the mock samples. This visualiza-
tion underscores the proteins that consistently demonstrate
significant abundance changes, shedding light on their potential
roles in the host response to SARS-CoV-2 variants over time.

Interestingly, the majority of these differentially expressed
proteins have previously been linked to processes related to
infections by viruses or other pathogens. Of the differentially
expressed proteins, TIMM22, a protein responsible for mitochon-
drial protein import?>?3, showed a pattern of downregulation at 1
hpi, which transitioned to upregulation at around 8-16 hpi across
variants, suggesting that the SARS-CoV-2 infection impacts on
mitochondrial processes. STX10, a SNARE protein involved in
vesicular transport processes during infection®*, exhibited diverse
expression patterns in response to SARS-CoV-2 variants. In most
variants, including Alpha, Beta, Delta, and Omicron BA.1,
STX10 showed initial downregulation at 1 hpi followed by
upregulation during the early and middle stages of infection.
However, with the Omicron BA.5 variant, STX10 appeared to be
more downregulated as the infection progressed, with its
expression decreasing in later stages.

OR13G1, an olfactory receptor protein, displayed strong
upregulation in the later stages of Alpha and Delta variant

Cell Discovery



infections, contrasting with consistent protein expression levels
throughout the infection by Beta and BA.1 variants, while
exhibiting early upregulation followed by later downregulation
in the case of BA.5. This dynamic modulation suggests a potential
link between OR13G1 and SARS-CoV-2 symptoms, particularly the
loss of smell®.

Two proteins with roles in the ER were expressed in a variant-
specific manner. DERL1 is a critical component of the ER-
associated degradation (ERAD) pathway and responsible for
eliminating misfolded luminal proteins®®?’. It displayed variant-
specific behavior, with the Beta variant notably upregulating
DERL1 throughout infection, and similar trends seen in variants
BA.1 and BA.5, while Alpha and Delta seemingly going up in
middle stages of the infection and returning to their original
levels. RETREG1 is an ER-anchored autophagy regulator known to
be influenced by the SARS-CoV-2 virus's promotion of reticulo-
phagy?®. This process triggers ER stress and inflammatory
responses, contributing to viral infection dynamics. In the Alpha
and BA.5 variants, RETREGT expression remains consistently
downregulated and continues to decrease over time, while in
other variants there is a resurgence of rising expression in the
middle or later stages of infection. Furthermore, the ERAD
pathway, critical for degrading misfolded viral proteins, is
activated in response to SARS-CoV-2 infection, in an attempt to
manage increased protein load and restore ER homeostasis in the
host cell?*3°,

Comprehensive analysis of host cell signaling pathways and
protein regulation during infection at 36 hpi

Finally, to obtain a more comprehensive view of the proteins
and host cell signaling pathways affected during infection, we
employed Reactome pathway analysis for all significantly up-
or downregulated proteins at fully developed infection at 36
hpi (Benjamini adjusted P < 0.05, log,FC £ 1 using the Database
for Annotation, Visualization, and Integrated Discovery (DAVID)
bioinformatics tools), and visualized the enriched Reactome
signaling pathways (Fig. 2d; Supplementary Table S2). Several
parent terms and their subterms were significantly enriched,
such as the term ‘Vesicle-mediated transport’ (adjusted
P=7.0E-4 and 43 proteins) and its subterm ‘Membrane
Trafficking’ (P =6.2E-3 and 38 proteins), the term ‘Metabolism
of proteins’ (P = 6.2E-3 and 90 proteins) and its subterm ‘Post-
translational protein modification’ (P = 8.6E-3 and 68 proteins),
the term ‘Nervous System development’ (P=1.4E-2 and 34
proteins) and its subterm ‘Axon guidance’ (P=1.4E-2 and 33
proteins), and the term ‘Cellular responses to stimuli’
(P=27E-2 and 42 proteins) with its subterm ‘Cellular
responses to stress’ (P =2.1E-2 and 42 proteins). In addition,
‘Infectious disease’ (P=4.4E-2 and 48 proteins) and ‘RHO
GTPases Activate Formins signaling by Rho GTPases’
(P=8.1E-2 and 12 proteins) were enriched. Overall, we
identified several significantly up- or downregulated proteins
associated with key biological processes and signaling
pathways.

Phosphoproteomics analysis reveals pathways activated by
SARS-CoV-2 infection

Since protein phosphorylation is one of the key mechanisms in
the regulation of cellular signaling pathways, analyzing phosphor-
ylation events provides critical insights into how viruses affect
host cell functions and processes. Therefore, we performed
phosphopeptide enrichment, coupled with quantitative mass
spectrometry (MS), on the samples obtained from SARS-CoV-2
VOC-infected cells. Classifying these phosphorylation events
enabled us to deduce the activity of different host cell signaling
pathways®!, which provides insights into the molecular mechan-
isms of infection and can identify potential new therapeutic
targets®>33,
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We analyzed the phosphoproteomes of different SARS-CoV-2
VOC-infected cell proteins at various time points and identified a
total of 488,883 peptides from the entire dataset, encompassing
2500 unique phosphosites from 1395 unique proteins (Supple-
mentary Table S3). To visualize the phosphoproteomal changes
during the infection with different SARS-CoV-2 variants, we
hierarchically clustered each of the quantified phosphoproteomes
(Fig. 3a). The heatmaps display each quantified phosphosite as
log,FC compared to the mock. Only phosphosites with log,FC of <
-2 and = 2 are shown. All variants displayed clear clusters of
phosphosites consistently upregulated through all time points
(dashed box). We did not detect any clear clusters of consistently
downregulated phosphosites. The number of unique proteins
containing upregulated phosphosites ranged from 99 (Omicron
BA.5 variant) to 154 (Delta variant).

Subsequently, we performed Reactome (Fig. 3b) and Gene
Ontology (GO) Biological Process term enrichment analysis on the
phosphoproteins from these clusters from all time points (Fig. 3¢;
Supplementary Table S3). Omicron BA.5 infection did not result in
statistically enriched terms as observed in the other variants, but
showed similar trends. Focusing on the Reactome pathways, a
clear and consistent trend of enrichment (Benjamini adjusted
P<0.05) in the RHO GTPase-related terms (‘Signaling by Rho
GTPases’, ‘Signaling by Rho GTPases, Miro GTPases and RHOBTB3',
and ‘Rho GTPase cycle’) was observed (Fig. 3b). The Alpha, Beta,
Delta and BA.1 variant-infected samples contained > 15 proteins
linked to those terms. Additionally, mRNA related-terms ‘Metabo-
lism of RNA', ‘Processing of Capped Intron-containing Pre-mRNA’,
and ‘RNA Splicing—Major Pathway’, were significantly enriched
with ~10 proteins in each variant-infected cells, except in that of
BA.5. Similar processes were detected with GO Biological Process
enrichment analysis, and additionally we found cell cycle-related
terms (‘cell division” and ‘cell cycle’) to be enriched upon infection
with Alpha and Beta variants only (adjusted P < 0.05). Interestingly,
Beta variant-infected samples also displayed enrichment of the
‘neuron projection development’ term, which was not detected in
other variant-infected cells.

Variants differentially affect the phosphorylation of various
host cell kinases

As regulators of cellular signaling, protein kinases themselves are
known to be activated by phosphorylation and to have key roles
in viral infection®*3*, Therefore, we examined the SARS-CoV-2 VOC
infection-induced phosphorylation changes in the host kinome.
Our analysis revealed distinct variant- and time point-specific
disparities in protein kinase phosphorylation between VOC-
infected and the mock cells (Fig. 4a; Supplementary Table S4).
We detected several clusters in the host kinome, of which three
showed clear upregulation and two downregulation on certain
phosphosites in specific kinases.

Phosphorylations of several members of the AGC kinase family,
named after the protein kinase A, G, and C families (PKA, PKC,
PKG>®) were upregulated during infection. Strong upregulation in
kinase phosphosites was detected in kinases LATS1 (5464 and
S613), PKN1 (S562), PKN2 (5582), and RPS6KA4 (S343 and S347).
Interestingly, the predominantly upregulated LATS1 phosphosite
differed between the variants, with S613 being phosphorylated
upon infection with Alpha, Beta, and Delta variants, and S464
upon Omicron BA.1 or BA.5 variant infection. Phosphorylation of
S464 by NUAK1 and NUAK2 is known to lead to decreased LATS1
protein levels. LATS1 is involved in regulation of cellular
senescence and cellular ploidy>®.

We detected robust phosphorylation of kinases PKN1 and PKN2
upon infection with all variants. PKN1 and PKN2 kinase activity is
activated upon binding to Rho proteins (RHOA, RHOB and RAC1),
connecting RHO GTPAse signaling pathway detected in enrich-
ment result to these phosphorylation results®>’*%, PKN1 and PKN2
kinase activities are also regulated by caspase-3 (CASP3) cleavage
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Fig.3 Time-course phosphoproteome analysis of SARS-CoV-2 variant infection. a Cluster plot illustrating the temporal dynamics of protein
phosphorylation across different time points during SARS-CoV-2 variant infections. A comprehensive comparison was conducted between
variants and mock cells to identify the variant-specific upregulation (red) or downregulation (blue). The numbers above the arrows represent
the unique proteins detected in each boxed upregulated cluster. b, ¢ Selected clusters of consistently upregulated phosphorylation events
were analyzed for Reactome pathway enrichment (b) and GO Biological Process enrichment (c) using the DAVID functional annotation tool.
The top 10 enriched pathways and processes, ranked by count, are shown with their respective adjusted P-values (Benjamini). An asterisk
adjacent to each bar indicates a statistically significant enrichment threshold (P < 0.05), with the corresponding adjusted P-value.
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during apoptosis*®*°. The 5562 phosphosite in PKN1 detected in
our phosphorylation results is proximal to the caspase-3 cleavage
site, D558 and D560, and thus possibly regulates the cleavage. We
also detected strong upregulation of phosphorylation of kinase
RPS6KA4 on phosphosites S343 and S347. The phosphosite 5343 is
known to be phosphorylated by the upstream kinases MAPK1 and
MAPK3, and it is also autophosphorylated, a phenomenon
essential for its catalytic activity®'.

Phosphorylations of the PIKK kinases ATR (T1989) and MTOR
(T1162) were upregulated by infection with all variants. The PIKK
kinases are known to participate in V(D)J recombination, meiotic
division, chromosome maintenance, sensing DNA damage and
DNA damage repair, and cell cycle regulation®. The phosphoryla-
tion of ATR T1989 autophosphorylation site is required for its
kinase activity®.

Various STE kinases showed increased phosphorylation in
response to infection with all variants and at most time points
post infection. These include MAPK (Mitogen-Activated Protein
Kinase) kinases; MAP3K2 (5240), MAP3K5 (S874 and S878),
MAP4K4 (S643, S734, and S884); and STK10 (S438), STK39 (5283),
and TNIK (S680 and S769). The role of MAPKs in viral infection
signaling has been suggested also for coronaviruses**,

It is worth mentioning that we also detected downregulation of
phosphorylation of several CMGC kinase family kinases. For
example, phosphorylation of PRPF4B (Y849) is highly down-
regulated upon infection by Alpha and Beta, but not by Delta,
Omicron BA.1, and Omicron BA.5 variants. Phosphorylation of
SRPK2 (S511 and S508) is upregulated in later stages of viral
infection, especially in infection with Alpha, Delta and Omicron
BA.1 variants. Both of these kinases are involved in pre-mRNA-
related processes such as RNA splicing®. These findings
emphasize the specificity of phosphorylation events associated
with distinct SARS-CoV-2 variants.

We also detected extensive downregulation of AAK1 phosphor-
ylation on sites T568 and S572 upon infection with all variants.
AAK1 regulates clathrin-mediated endocytosis by phosphorylating
the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2)
which ensures high-affinity binding of AP-2 to cargo membrane
proteins during the initial stages of endocytosis*®*’. By regulating
clathrin-mediated endocytosis, AAK1 plays a role in the entry of
e.g., hepatitis C virus as well as the life cycle of other viruses such
as Ebola and Dengue viruses*®,

Phosphorylation sites in SARS-CoV-2 proteins reveal potential
functional impacts

When analyzing the phosphorylation sites in SARS-CoV-2 proteins,
we noticed that N, ORF9b, and M proteins were the only viral
proteins that were detected in our phosphoenriched MS results
(Fig. 4b). The detected phosphosites, present in all the VOCs used
in this study, validate many of the possibly phosphoregulated sites
predicted based on protein sequence®*°. To predict the potential
role of these phosphorylation events, we mapped the sites onto
the respective protein 3D structures.

Since N protein lacks a comprehensive whole protein 3D
structure, we utilized the N protein domains (PDB: 6WKP, 7PKU,
and 6WZO) to predict the effect of phosphosites on the N protein
structure and function. The majority of phosphosites were located
in the N-terminal part of the N protein. In the near proximity of the
RNA-binding region, we identified the phosphorylation sites T76
and S79, coinciding with the two mutations of interest, D63G and
P8OR, described below. Furthermore, we identified phosphoryla-
tion site Y268 in the putative NLRP3 binding region and in the
proximity of the nuclear localization signal region. The NLRP3 is a
protein involved in innate immune responses and phosphoryla-
tion in this region may modulate interactions with NLRP3,
potentially affecting the host's immune response to the virus
infection. The observation of phosphorylation sites in the
proximity to the nuclear localization signal region suggests a
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potential role in regulating the subcellular localization of SARS-
CoV-2 N protein (Supplementary Fig. 51).°°7>2

We used AlphaFold 3 to predict the structures of human NLRP3,
SARS-CoV-2 N protein, and the N protein dimerization domain
(260-340 aa), which is suggested to bind to NLRP3°3. While
AlphaFold 3 could not accurately predict the full SARS-CoV-2 N
protein structure (pTM = 0.39), it identified two domain-like
structures, one of which likely contains the NLRP3 binding site,
resembling the 6WZO structure. The N protein dimerization
domain matched the 6WZO structure, validating the prediction.
The NLRP3 structure prediction was more consistent (pTM = 0.64)
and featured a ‘swan/dragon-like’ conformation with a half-barrel
binding domain.

Attempts to predict NLRP3-N protein binding were inconclusive
(pTM <0.5) due to the uncertainty of the N protein structure.
However, predictions using the N protein dimerization domain
(with and without the Y268 phosphosite) showed some consis-
tency (pTM = 0.5), with ~50% of the peptide binding to the NLRP3
half-barrel domain in a manner that positioned Y268 toward the
barrel. This aligns with Pan et al.>® findings, suggesting that Y268
may play a role in binding.

We further validated the NLRP3-N protein interaction experi-
mentally through co-immunoprecipitation (co-IP) using wild-type
(WT) N protein and two phosphosite mutants (Y268D and Y268F).
Dot blot analysis revealed that the N Y268F mutant showed
stronger binding to NLRP3 compared to Y268D (P = 0.000006) and
WT (P =0.000007) N proteins. The substitution of tyrosine with
phenylalanine (Y268F) eliminates the phosphorylation site, sug-
gesting that the loss of phosphorylation at this position may
enhance the interaction between the N protein and NLRP3. In
contrast, the Y268D mutation, which mimics a phosphorylated
state, showed weaker binding to NLRP3, indicating that phos-
phorylation of Y268 may hinder or reduce the interaction. The WT
protein, which can be phosphorylated at Y268, also exhibited
lower binding affinity compared to Y268F, supporting the idea
that phosphorylation at this site modulates the interaction. These
results suggest that phosphorylation of Y268 negatively regulates
the N protein’s binding to NLRP3, likely by introducing electro-
static repulsion or altering the protein’s conformation, while the
unphosphorylated form enhances this interaction through hydro-
phobic or aromatic interactions.

ORF9b has been identified as one of the key players in SARS-
CoV-2 viral evolution and immune escape®**. Here, we detected
two specific phosphorylation sites, S50 and T72, within the ORF9b
protein. Based on the molecular structure (PDB: 6Z4U), we
observed that both phosphorylation sites were located approxi-
mately in the beginning of the B-sheet, closer to the protein core.
This positioning suggests that these phosphorylation sites may
play a role in ORF9b structural activation and morphological
changes.

As for virus M protein, we observed a trend indicating that
the 3’ intravirion end is a phosphorylation-rich region. This
observation is expected, considering that M proteins often play
a crucial role in intracellular signaling and cellular recognition
processes.

Overview of gene expression across SARS-CoV-2 variants

To examine the viral infection progression at the transcriptional
level, we conducted gene expression analysis using NanoString
technology, which enables direct quantification of RNA molecules
without the need for reverse transcription or amplification. From
our NanoString analysis (Supplementary Table S9 and Fig. S2), we
quantified the expression of 456 genes, which were categorized
into immune response/inflammation (174 genes), signal transduc-
tion (76 genes), transcription factors (68 genes), cell cycle/
proliferation (38 genes), and apoptosis/cell death (18 genes). Each
SARS-CoV-2 variant exhibited a distinct gene expression pattern.
Beta variant samples demonstrated moderate to high expression
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of apoptosis and immune response genes, suggesting an active particularly high expression levels of both immune response and
yet balanced immune response. In contrast, Alpha variant samples apoptosis genes, reflecting a strong and aggressive immune
showed elevated expression of inflammatory and apoptosis- response that may contribute to the severe clinical outcomes
related genes, indicating a more aggressive immune response often observed with COVID-19 infections caused by this variant®>.
associated with this variant. Delta variant samples exhibited BA.1 samples displayed varied gene expression profiles, with some
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Fig. 5 Protein-protein interaction changes detected for the 50 mutations in the SARS-CoV-2 variants. a An overview of all mutations
detected in SARS-CoV-2 variant proteins (dark blue). Mutations selected for this study are highlighted in green and small arrow at the top of
the columns. b Genomic architecture of SARS-CoV-2, which includes 14 ORFs encoding structural proteins (S, E, M, and N), non-structural
proteins (pp1a and pp1lab), and nine accessory proteins. Structures of 12 selected viral proteins with their corresponding PDB IDs (RCSB PDB
database) are shown, with variant-specific mutations highlighted in light pink. Structural proteins are shown in slate blue, and other ORFs in
limon. NSPs cleaved from ppla and pplab are depicted in teal. ¢ Schematic illustration of the BiolD pipeline. The MAC-tagged viral ORF
generates an inducible ORF-expressing cell line, and interacting proteins are purified using single-step affinity purification, followed by MS
analysis. d Multi-group difference scatter plot derived from PPl data, comparing mutations in each viral ORF to the WT viral ORF at the MS1
level. Significant changes in protein levels were identified, and these proteins were cross-referenced with a high-confidence list of interacting
proteins from spectral count (MS2) data. The scatter plot displays log,FC values on the y-axis against comparison groups on the x-axis with the
number above (upregulated) or below (downregulated) each bar indicating the number of significant interactions with the viral protein.

samples showing high levels of cell adhesion and migration
genes. Interestingly, BA.1 also showed moderate expression of
inflammatory genes, indicating a less aggressive inflammatory
response compared to Delta variant. BA.5 samples were char-
acterized by high expression of immune-related and apoptosis
genes, reflecting an immune response.

During the progression of infection, gene expression of the
panel genes was initially low, corresponding to the early stages of
the host response. By 8 hpi, there was a noticeable increase in
immune response gene expression across all variants, marking the
onset of the host immune response. By 16 hpi, gene expression
profiles revealed a stronger immune response with significant
upregulation of inflammatory and antigen presentation genes,
especially in Delta and Alpha variants. By 36 hpi, gene expression
peaked for many apoptosis and inflammatory genes, particularly
in Delta and BA.5 samples, indicating that the immune response
had reached its peak activity. The increase in transcription levels at
16 hpi supports the selection of 36 hpi as a later time point for
analysis.

Molecular cloning of the SARS-CoV-2 variant-specific viral ORF
variants and mapping their host-cell interactions

To understand the effect of mutations in VOCs, we assessed the
mutation-induced changes in virus—host protein interactions. We
analyzed the sequences of the five SARS-CoV-2 variants (GISAI-
D.Org 2024) and identified and selected 50 distinct mutations of
interest affecting 12 viral proteins (NSP2, NSP3, NSP5, NSP6,
NSP12, NSP13, S, ORF3a, E, ORF7a, ORF8a, and N) (Fig. 5a;
Supplementary Table S1). We mapped the selected VOC muta-
tions onto the structures of SARS-CoV-2 proteins (structures
obtained from the RCSB Protein Data Bank (RCSB PDB), imaged by
pyMol) (Fig. 5b).

To further study effects of mutations on viral ORFs, we
conducted proximity-labeling (BiolD) experiments coupled with
liquid chromatography-mass spectrometry (LC-MS) analysis to
investigate possible alterations in protein—protein interactions
(PPIs). The proximity labeling approach is advantageous due to its
ability to capture also weak or transient interactions spatiotem-
porally and to allow the interactome analysis in the native cellular
context'**®>7 We generated SARS-CoV-2 ORF variant-expressing
isogenic tetracycline-inducible HEK293 cell lines and subjected
them to our BiolD pipeline (Fig. 5c).

Our BiolD analysis yielded a comprehensive dataset of totally
5654 high-confidence interactions (HCls) and 1151 high-
confidence interacting proteins (HCIPs) with the 12 Wuhan-Hu-1
(WT) viral ORFs and the 50 mutated SARS-CoV-2 ORFs (Supple-
mentary Table S6). A comparative analysis was carried out to
assess the protein interactions of mutated viral ORFs in contrast to
the WT ORFs (Fig. 5d). Predominantly, the increased number of
interactions was observed to concentrate around the S protein,
which is consistent with the extensive variety of variants in this
protein. The data also reveal a significant increase in interactions
with the mutated N protein, NSP12, NSP13, ORF3a, and ORF7a.
Interestingly, with ORF8a we detected decreased number of
interactions with the mutants. This decreased number of
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interactions with the mutated ORF8a, is likely attributable to the
Q27stop mutation, which effectively leads to the loss of ORF8a
functionality. This also correlates with our earlier findings (Fig. 1d),
where we mostly observed a very low levels of ORF8a in Alpha
and Omicron BA.5 carrying the Q27stop mutation.

Additionally, to analyze the expression, subcellular localization
and the potential morphological changes induced by the viral
proteins, we transfected the previously generated MAC-tagged
versions of the SARS-CoV-2 ORFs into U2-0OS cells (Fig. 6a, b). To
detect the ORF expression, we employed the HA-epitope within
the MAC-tag. To evaluate the general cell morphology and
cytoskeleton integrity, we utilized Phalloidin staining, and to
visualize the ER, we used Concanavalin A staining. The
expression of ~80% (49 of 62 constructs) of the SARS-CoV-2
ORF constructs was verified by the immunofluorescence
analysis, with non-productive or toxic expression of some S
mutants (Fig. 6a; Supplementary Table S5, Fig. S3).

Wuhan-Hu-1 (WT) E protein and P71L mutated E protein were
both well expressed in the U2-OS cells. The N protein mutants,
D63G, P80R and D377Y were also expressed comparably to the WT
N protein. The N protein P80R and D377Y mutations, unique to the
Delta variant, resulted in a localization shift in nucleus/cytoplasm
equilibrium (towards the nucleus). We noted a distinct difference
in the NSP6 S106-108del mutant compared to WT NSP6.
Specifically, the cells expressing S106-108del mutant exhibited
smaller budding vesicle-like structures, contrasting with the larger
vesicle-like structures observed in the cells expressing WT NSP6,
confirming the observation described also previously®®.

As shown in our previous study®®, NSP3 induces nuclear actin
localization, now both in cells expressing WT and K977Q
mutated NSP3.

The expressed S proteins were mostly localized to the ER,
except the T716l mutated S protein, which showed an enhanced
cytoplasmic localization. Our previous study described the
localization of ORF3a around the ER-Golgi region®, and now,
with the use of specific ER staining, we can confirm that ORF3a is
also localized in the ER. Furthermore, our results suggest that the
ORF3a proteins mutated at Q52H and S253P have different
localization patterns, being more cytoplasmic compared to the
Wuhan-Hu-1 ORF3a (Fig. 6a).

Using the MS-microscopy approach, which utilizes the BiolD HCI
data to assign tested proteins to a subcellular location, we
obtained high localization correlation with our immunofluores-
cence microscopy analysis (Fig. 6b). Combining and comparing
the BiolD and microscopy data provides a robust validation of our
findings.

Overlapping pathways are affected by mutations in SARS-
CoV-2 VOCs in the interactome, proteome and
phosphoproteome datasets

Delving more in depth in BiolD results, we analyzed the whole
SARS-CoV-2 interactome with the host cell proteins. We analyzed
the interactions formed by the 12 SARS-CoV-2 ORFs and the
corresponding 50 mutants with the host proteome. In total, the 62
ORF constructs yielded 1151 HCIPs of which 11% were WT ORF-
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Fig. 6 Molecular microscopy and immunofluorescence analysis of the SARS-CoV-2 mutation localization and induced cellular
phenotypes. a Immunofluorescence microscopy images of the SARS-CoV-2 proteins expressed from the MAC-tagged viral ORFs, transfected
into U2-0OS cells, and detected by immunofluorescence. Scale bars, 10 um. b MS-microscopy analysis heatmap of the mutations from VOCs,
illustrating the estimated localization of the bait protein based on proximity-dependent biotin identification coupled with MS interaction
results.
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specific, 24% were shared by the WT ORFs and mutated ORFs, and
65% were mutated ORF-specific. To generate an almost complete
SARS-CoV-2-host interactome, we combined all of the SARS-CoV-2
ORF HCIs with HCIPs to an interactome knowledge graph
depicting the interactor specific Reactome pathways (Fig. 7a;
Supplementary Table S6). Similar pathways, connected with the
SARS-CoV-2, were detected with the ORFs as in the global
proteome and phosphoproteome analyses of the SARS-CoV-2
VOC-infected cells. The most commonly detected pathways with
SARS-CoV-2 ORFs include ‘Metabolism’ (192 proteins), ‘Immune
System’ (79), ‘Metabolism of proteins’ (52), ‘Signaling by Rho
GTPases’ (41), Transport of small molecules’ (38), and ‘Membrane
Trafficking’ (36). Comparison of the BiolD Reactome results with
the total proteome Reactome findings (Fig. 2), resulted in
identification of 61 unique proteins shared between BiolD data
(851 unique proteins) and total proteome dataset (368 unique
proteins) (Fig. 7b; Supplementary Table S6). In Reactome terms
this translates to 36 unique Reactome pathways, such as ‘ER
Quality Control Compartment (ERQC)’, ‘N-glycan trimming in the
ER and Calnexin/Calreticulin cycle’, ‘Signaling by Rho GTPases’,
and ‘Neutrophil degranulation’.

Our comprehensive data on the total proteome, phosphoryla-
tion, and PPIs in both SARS-CoV-2 variant-infected cells and SARS-
CoV-2 protein-expressing cells highlights key cellular pathways
involved in SARS-CoV-2 infection and reveals a multitude of
specific, critical interactions that may inform new therapeutic
strategies.

Druggability assessment for the key proteins in the SARS-CoV-
2 ‘hijackome’ reveals novel druggable target candidates

To explore the potential to develop new therapeutic strategies
based on our findings, we compiled a list of 1474 proteins of
interest. This list includes all target candidates that showed
significant changes in protein expression and phosphorylation in
infected cells, as well as prey proteins identified with high
confidence in the PPIs dataset (Supplementary Table S9). We
analyzed their potential druggability by a combined structure-
based druggability prediction and knowledge mining approach. In
the structure-based analysis, we screened 12,153 protein struc-
tures for the presence of druggable pockets: 6531 X-ray crystal
structures, 4172 electron microscopy (EM) structures, and 1450
AlphaFold models. Fifteen proteins were excluded from the
analysis, since no structural data were available. Initially, we
focused on conventional druggable sites, since, as also discussed
in our previous study, ligand binding can induce conformational
changes resulting in the possible perturbation of PPIs>®>°, 1126 of
the targets were predicted to be likely druggable by drug-like
small molecules targeting well-enclosed pockets (Supplementary
Table S9). In contrast, when attempting to directly disrupt PPIs,
targetable sites are typically shallower and more hydrophobic,
which we accounted for with a modified pocket screening
protocol®. We found 680 targets with potential PPI sites, which
were predicted to be druggable or likely druggable by small
molecules. Sites with volumes of 160-800 A were considered
druggable, but we also detected several potential PPI sites with
larger volumes. Those are unlikely to be directly druggable by
small drug-like molecules but might still be amenable to targeting
approaches with other types of interactors or could be addressed
by targeting subsites. 61 targets further showed potentiaallgl
druggable cryptic sites: Their initial volume was below 160 A’
but it was possible to induce the opening of the sites with a ligand
molecule, using a modeling protocol accounting for limited
protein flexibility®® (Supplementary Table S9).

We additionally analyzed bound ligands in all experimental
structures for their properties and found that 273 proteins had been
previously described to bind one or more ligands satisfying Lipinski’s
Rule-of-Five (RoF) as a metric for drug-likeness of orally bioavailable
compounds®'. Inhibitors of PPIs (iPPIs), on the other hand, often
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violate RoF, since they have higher molecular weight and are more
hydrophobic®?. A further 114 proteins of interest contained ligands
with a property profile more similar to iPPIs (Supplementary Table
S9). Finally, based on the literature analysis and the Therapeutic
Target Database (TTD)®3, 69 of the proteins can be considered
established targets with examples for successful drug design or
patenting, 91 are currently being explored in clinical research and
another 129 have at least been previously studied to some degree
(Supplementary Table S9). The full druggability analysis workflow is
schematically depicted in Supplementary Fig. S4.

Focusing on the 60 proteins which showed major changes in
protein expression, phosphorylation and PPls, we predicted 46 to
possess likely druggable deep binding sites, and 14 to have
druggable PPI sites. Of the predicted proteins, 17 of them had
high to medium druggability confidence, were mostly researched
and established targets with only three exceptions, and accounted
for 16 and 5 druggable deep and PPI sites, respectively. However,
with few exceptions, such as histone deacetylase 6 and
hexokinase-247%%, even those particularly likely druggable target
candidates have so far not been studied in depth in context of
their potential role in, and impact on, infections with SARS-CoV-2
or other coronaviruses. Additionally, even when just considering
the most robust target candidates highlighted by our experi-
mental studies, half of the to date unexplored proteins were
predicted to have potential druggable deep binding sites, and
almost one third potential iPPI-targetable sites. Drawn from the
druggable ‘hijackome’ of SARS-CoV-2, those, as well as several
candidates flagged mainly by protein expression and proteomics
or PPI studies, may represent particularly promising starting points
for the development of novel anti-coronaviral strategies.

DISCUSSION

The current investigation into SARS-CoV-2 variants’ interactions
with host cells underscores the complexity of viral infection
dynamics and host-pathogen interplay. By employing a compre-
hensive multi-omics approach, we systematically characterized the
temporal and variant-specific alterations in host cell proteins and
cellular processes upon infection with SARS-CoV-2 VOCs, namely
Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron BA.1
and BA.5. The variants in our analysis have allowed us to observe
similarities and certain differences in infection spatiotemporal
dynamics. These observations may partially explain variant-
specific differences in pathogenesis and can be considered in
developing strategies to combat SARS-CoV-2. This study’s breadth,
spanning quantitative proteomics, phosphoproteomics, and inter-
action proteomics, offers an extremely broad view into the
molecular mechanisms underpinning SARS-CoV-2 variant patho-
genicity and host defense systems. By employing quantitative
proteomics and phosphoproteomics, we gained valuable insights
into how SARS-CoV-2 VOCs impact cellular signaling networks
throughout the entire course of infection, from 1 hpi to 36 hpi. The
inclusion of the 36 hpi time point seems especially important for
understanding the progression of infection in its later stages. It
reveals the changes of transcription factors’ activities, providing
insight into how the virus modulates host transcriptional
responses and signaling networks during prolonged infection
times. This likely correlates with immune responses or viral
evasion strategies, as well as cellular stress or the onset of cell
death. By integrating data on phosphorylation changes in cellular
signaling molecules with variant-specific mutations in viral ORFs
and their impact on protein expression, as detected by proximity
labeling, we generated a comprehensive functional and mechan-
istic view of SARS-CoV-2 infection. This wealth of information
enhances our understanding not only of SARS-CoV-2 infection but
also of variant-induced changes. The knowledge base serves as a
foundation for further analyses and potential drug discovery
approaches.
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Fig.7 SARS-CoV-2-host physical and functional interaction knowledge graph. a SARS-CoV-2 high-confidence interactome map with the 12
WT and 50 mutated SARS-CoV-2 proteins. The enriched Reactome term clusters display interactions with preys with the corresponding terms.
The Venn diagram showing the prey overlap detected by WT and mutated ORFs. b The circular dendrogram of 36 Reactome pathways depicts
the overlap of Reactome terms between the two datasets. The Venn diagrams illustrate shared proteins and Reactome terms between the
global proteome dataset and the BiolD dataset.
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However, we acknowledge several limitations in our analysis,
including the analysis of a limited number of variants, which may
not encompass the full genetic diversity of the most recent
circulating SARS-CoV-2 strains after BA.5. Moreover, the investiga-
tion of each mutation individually may overlook potential co-
effects of mutations, as well as co-factors and interactions among
viral proteins during infection. Additionally, the use of only one
cell line does not fully represent the large and diverse set of cell
types and tissues targeted by SARS-CoV-2. Furthermore, the
predominantly in vitro experiments may not completely replicate
the complex conditions of viral infection in vivo in an organism,
and the direct applicability of the findings to other coronavirus
types and new variants may be limited.

The role of Rho GTPase signaling in SARS-CoV-2 variant-
infected cells

The consistent upregulation of Rho GTPase signaling components
across SARS-CoV-2 variants suggests a conserved viral strategy to
remodel the host cell cytoskeleton, promoting viral entry,
replication, and release. In contrast, the variant-specific phosphor-
ylation patterns observed in kinases and phosphosites point to
diverse regulatory mechanisms employed by different VOCs to
hijack host cell signaling, highlighting the virus’'s evolutionary
adaptations. Our research identified specific mutations and
proteins that enhance Rho GTPase cycle regulation and associa-
tion (Fig. 7a). Reactome enrichment from BiolD analyses
emphasized the significance of viral protein interactions with
Rho GTPase signaling. Key mutations — including S-protein
mutations (D138Y, D215G, D80A, E484K, L241-243del, L452R,
P681H, R190S, Y144del), NSP12 (P323L), ORF3a (Q57H), ORF7a
(T120I, V82A), and NSP6 (5106-108del) — were identified in both
total proteome and comparison analysis results relative to Wuhan-
Hu-1 (WT). The Rho GTPase pathway, regulated by Rho GTPases, is
crucial in numerous cellular processes®”. Activation or alteration in
Rho GTPase expression in cells expressing mutations in S, NSP6
(Alpha, Beta, Gamma, Omicron BA.1/5), and ORF7a (Delta) may
trigger distinct signaling pathways and cellular responses. Rho
GTPases play multiple roles in SARS-CoV-2 infection®®, including
enhancing viral entry and ACE2 receptor regulation, the primary
receptor for viral entry®®®. Activation of RhoA and Rac1, for
example, modulates ACE2 expression, potentially increasing
infection rates®®’®. SARS-CoV-2 internalization requires actin
cytoskeleton remodeling, to which Rho GTPases contribute’®.
Additionally, Rho GTPases regulate intracellular trafficking, essen-
tial for viral component trafficking and replication compartment
formation”'. They also modulate immune responses during
coronavirus infection by regulating proinflammatory cytokine
production and immune cell migration, bolstering the host
response against the virus’?. Notably, Rho GTPase signaling is
activated in various viral infections, including respiratory syncytial
virus and Ebola virus infections’>™">,

Exploitation of ERAD pathway for viral replication and host
cell hijacking

Additionally, the GO enrichment analysis for biological processes
demonstrated a strong association between certain SARS-CoV-2
VOC mutations, notably NSP12 (P323L), ORF8a (E92K), and S
(A570D, A701V, D80A, L18F, P681H, P681R, R190S, T478K), with
biological processes related to the ERAD and ER-related pathways
(Fig. 7a; Supplementary Tables S7, S8). Our global quantitative
proteome data further confirmed an upregulation of the ERAD
pathway linked to these mutations, consistent with findings from
our previous study’®.

In the ERAD pathway, the virus is expected to enter host cells
and replicate in the ER-Golgi intermediate compartment (ERGIC)
and ER. During the viral replication cycle, the SARS-CoV-2
produces a large number of viral proteins, some of which may
be misfolded or aberrantly processed’®’”. The ERAD pathway
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recognizes these misfolded viral proteins and targets them for
degradation to prevent their accumulation, which can disrupt
normal cellular processes and induce cellular stress responses’®,
An increase in the expression of several components of the ERAD
pathway has been implicated in the response to SARS infection.
For example, studies have shown that the SARS-CoV-2 triggers the
unfolded protein response in infected cells, which is a cellular
stress response that upregulates ERAD components to cope with
the increased misfolded protein load and restore ER
homeostasis>®”°,

Manipulation of host mRNA dynamics and viral replication
machinery

In addition, mechanisms related to mRNA and RNA processing
play a crucial role in the SARS-CoV-2 life cycle. Notably, SARS-CoV-
2 has demonstrated its ability to interfere with host cell mRNA
splicing and mRNA stability. This viral strategy effectively
prioritizes the translation of viral mRNAs over host cell mRNAs,
enabling the virus to take over the host cell protein synthesis
machinery for its own replication®®. Furthermore, SARS-CoV-2
exhibits the capacity to modulate host cell RNA processing and
mMRNA stability to evade the host immune responses. For instance,
by perturbing mRNA splicing and stability, the virus can reduce
the production of interferons (IFNs), which are essential compo-
nents of the host's antiviral defense®'. We also detected several
connections of SARS-CoV-2 infection with host cell mRNA
regulation. In NSP13 viral mutant expressing cells, a decrease in
innate immune response to viral infection was observed,
indicating a potentially important role in immune evasion®.
NSP13 is primarily involved in unwinding and separating double-
stranded RNA during viral replication®2. It is considered an
attractive target for antiviral drug development as it plays a
critical role in viral replication83. NSP12, on the other hand,
catalyzes the synthesis of newly synthesized RNA molecules using
the viral RNA genome as a template®®. NSP12 is also an essential
enzyme for viral replication and a target for antiviral drug
development®>®®, Drugs like remdesivir that target NSP12 have
shown efficacy in treating COVID-19 patients®’. In GO term
interactome analysis, the NSP12 P323L mutation, present in all
variants, showed more connections with the citric cycle regulation
and innate immune system compared to the WT NSP12 protein.
The NSP12 P323L mutant also exhibited interaction with proteins
regulating innate immune responses and negative regulation in
apoptotic processes. Such interactions were also seen for NSP13
ORF variants.

Previous studies have shown that SARS-CoV-2 ORF6, ORF8, and
N proteins are potent IFN antagonists®®~?°. Additionally, NSP13,
ORF3b, ORF9b and ORF7a have also been found to exhibit
ubiquitination and type | IFN antagonism®°%°'. One study linked
ORF7a to the inhibition of type | IFN gene expression®?. Another
study found that the K119A mutation in ORF7a reduces its
antagonism of IFN signaling, suggesting that ubiquitination at
K119A is crucial for downregulating the host antiviral response®’.
Similarly, nearby mutations, such as T120l, may also impact IFN
response. In our Reactome enrichment analysis, pathways
regulating RNA and innate immune responses were significantly
enriched among interactors of ORF7a mutants (V82A and T120lI).
Mutations in ORF7a, especially in the Delta variant, may therefore
contribute to the increased dominance of these variants over
earlier strains. These findings imply that specific mutations in
SARS-CoV-2 proteins, particularly those that downregulate IFN
response, could drive the emergence and success of new viral
variants.

The N protein of SARS-CoV-2 primarily functions in packaging
the viral genome and has an RNA binding ability®®®. The N
protein has been suggested to act as a viral suppressor of RNAi in
other coronaviruses, inhibiting IFN production. The N protein
interacts with the helicase domain of RIG-I leading to reduced IFN-
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3 gene expression due to reduced recognition of viral RNA by RIG-
18993, Mutations in the N protein show upregulation of cellular
proteins involved in translation and RNA binding, as well as
immune evasion, suggesting an increased ability of viral N protein-
expressing cells for immune evasion®. Due to its key role in RNA
binding and viral replication, the N protein is a potential target for
drug development®. Considering the structural and phosphosite
information, we can predict N protein mutations D63G and P8OR
to have importance in immune evasion. These mutations are
commonly seen in Gamma and Delta variants.

Building a more complete view on the SARS-CoV-2 host cell
‘hijackome’

Several proteomics analyses have been performed on SARS-CoV-2
virus-infected cells. In an earlier study by Klann et al.'?, the authors
identified an enhanced expression of GFR signaling components,
an observation that was also verified in our study. However, being
an early study, it primarily focused on the Wuhan SARS-CoV-2
strain and was limited to a single time point of 24 h. Another study
by Stukalov et al."* expanded the investigation further by having
multiple time points up to 36 h, observing later stages of viral
infection and reaffirming interactions related to the GFR signaling
pathway. A study conducted by Thorne et al.”® focused specifically
on the Alpha variant, revealing its increased ability to suppress
innate immune responses compared to an ancestral virus variant.
Utilizing proteomics and RNA sequencing, they identified
increased levels of specific viral proteins known to antagonize
the innate immune response, suggesting a mechanism for the
Alpha variant’s increased transmission.

A study by Bouhaddou et al.®® aimed to understand different
SARS-CoV-2 variants’ effects on viral replication and cellular
responses using mMRNA sequencing, AP-MS, and sgRNA phospho-
proteomics. They found three convergent molecular strategies
across variants, altered viral gene expression, modulation of viral
protein phosphorylation, and protein-coding mutations affecting
virus—host interactions. Despite seemingly similar to the study by
Bouhaddou et al.%®, our research offers unique insights; while they
used AP-MS, we employed proximity labeling that, based on our
previous study by Liu et al.>®, was found to be effective in capturing
transient interactions, and more suitable for studying
host-pathogen signaling than AP-MS. Our study mainly focused
on variants delivered from Finland (Alpha, Beta, Delta, Omicron
BA.1, and Omicron BA.5), while Bouhaddou et al.’® included a
broader range of globally circulating variants. Our study also
includes the more recent BA.5 variant and additional time points up
to 36 hpi. The need for later time point analyses were suggested by
Stukalov et al.”’, which highlighted the importance of later than
16 h stages post infection for protein level analyses. Our time points
of 1 hpi, 8 hpi, 16 hpi, and 36 hpi provide a more dynamic
understanding of the infection process from start to end, though
our focus was to show the less studied 36 hpi virus dynamics.

Liu et al.”” conducted similar phosphopeptide enrichment in
rhesus monkeys, inspecting SARS-CoV-2. We observed overlap
between Bouhaddou et al.*®, Liu et al.>” and our study in global
proteomics data, with ~50% overlap among the three studies,
each having unique identifications. However, phosphopeptide
data were less comparable between studies, and additionally, Liu
et al”” did not have any variant data. Nonetheless, the
combination of datasets from Calu-3 and VeroE6 cell models,
along with rhesus monkey data, provides a more comprehensive
understanding of SARS-CoV-2 infection and host-pathogen
interactions. Additional studies are still needed to delve deeper
into host responses, especially with the emergence of new
variants.

Additionally, in this study, we employed an extensive analysis of
the potential druggability across the SARS-CoV-2 host cell
‘hijackome’. Our analyses highlighted a considerable number of
key proteins as established druggable or actively studied targets,
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but also pointed to over 800 target candidates with predicted
druggable sites amenable to modulation by classical drug-like
molecules and over 500 with small-molecule druggable PPI sites,
all of which appear to be presently largely unexplored. Our
analysis indicates that many of the most promising target
candidates, identified for their significant changes in protein
expression, phosphorylation, and PPIs, have high druggability
potential but have not been extensively studied in the context of
SARS-CoV-2. Approximately half of these key proteins are
predicted to be druggable yet remain unexamined, presenting
numerous opportunities for novel ‘hijackome’-targeting strategies
that merit further investigation.

CONCLUSION

In summary, our extensive proteomic analysis of SARS-CoV-2
variants using quantitative proteomics, phosphoproteomics, and
proximity-labeling interactomics revealed variant-specific differ-
ences in host protein interactions, expression, and activation of
cellular signaling networks. Examining Alpha, Beta, Delta, BA.1,
and BA.5 variant infections in in vitro cultured cells, we observed
differences in replication kinetics among variants, as well as
distinct capacities to modulate host protein expression and
activation. Key components of the Rho GTPase cycle, RNA splicing,
and ERAD-related processes showed enhanced expression and
activation, along with variant-specific alterations. Our findings
shed light on the dynamic regulation of cellular pathways during
SARS-CoV-2 infection and identify potential targets for new
therapeutic interventions. This research significantly advances
our understanding of SARS-CoV-2's interactions with host cell
proteins at the proteomic level, providing a foundation for further
mechanistic and molecular studies of this important virus.

MATERIALS AND METHODS

Cloning

Entry clones containing genes of interest were obtained from the
ORFeome collection (ORFeome and MGC Libraries; Genome Biology Unit
supported by HiLIFE and the Faculty of Medicine, University of Helsinki,
and Biocenter Finland). The gene of interest used for generating the stable
cell lines was fused to MAC-tag-C (Addgene, Plasmid #108077) destination
vector using Gateway cloning techniques. The plasmids used in this project
are available from Addgene. The gene of interest used for protein
interaction validation was fused to a modified pDEST40 vector (with a 3x
V5 C-terminal tag) using Gateway cloning techniques. Point mutations of
SARS-CoV-2 variants were created by performing site-directed mutagen-
esis to plasmids using Q5 high-Fidelity DNA polymerase (NEB, M0491L).
Primers were obtained from Eurofins Genomics. Mutations of interest were
designed based on GISAID database (GISAID.ORG) and WHO classification
of variant of concern/interest including Alpha (B.1.1.7 and Q lineages), Beta
(B.1.351 and descendent lineages), Gamma (P.1 and descendent lineages),
Delta (B.1.617.2 and AY lineages), and Omicron (B.1.1.529, BA.1, lineages).
Final selection of the mutation of interest (50 constructs) was based on the
significant occurrence of mutation within variant strains.

Cell culture

The Flp-In™ 293 T-REx cell line (Invitrogen, R78007), HEK293 cell line
(ATCC® CRL-1573™), and U2-OS (ATCC®, HTB-96™) were maintained under
the manufacturer-recommended conditions. Transfection and generation
of stable cell lines were performed as previously described”’. Briefly, Flp-
In™ 293 T-REx cells were co-transfected with the MAC-tagged bait or GFP
construct and pOG44 vector (V600520, Invitrogen) using FUGENE 6
transfection reagent (Promega, Wisconsin, USA). At 48 hpi, cells were
selected for 3 weeks in medium containing hygromycin B (100 pg/mL;
Invitrogen). The positive clones, containing stable isogenic MAC-tagged
baits, were further expanded to 80% confluence in 10 x 150-mm cell
culture plates (CELLSTAR, Greiner) in complete culture medium. Cells from
five plates were used for one biological replicate, and to induce the
expression of protein of interest, 1ug/mL tetracycline (Sigma-Aldrich,
T3383-25G) was added, together with 50 uM biotin (Thermo Fisher
Scientific, 29129) for 24 h before harvesting.
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Virus preparation

SARS-CoV-2 variants were isolated from nasopharyngeal samples in VeroE6
or VeroE6-TMPRSS2-H10%® cells: FIN34-21 (Alpha variant; GenBank
ON532062.1), FIN32-21 (B.1.351, Beta variant; 0OK448476.1 and
EPI_ISL_3471851), FIN37-21 (B.1.617.2, Delta variant, OK626882.1 and
EPI_ISL_2557176) and Omicron variants FIN56-21 (BA.1.1 variant,
EPI_ISL_8586102) and FIN61-22 (BAS5 variant, OP435368 and
EPI_ISL_13118918). Viruses were further amplified in VeroE6-TMPRSS2-H10
cells in DMEM supplemented with 2% fetal calf serum, 2 mM L-glutamine,
and 2mM penicillin-streptomycin. Virus stocks were tittered in VeroE6-
TMPRSS2-H10 cells by median Tissue Culture Infectious Dose (TCIDsc) assay
as described before®>1%°

Infection experiments

For infection, VeroE6-TMPRSS2-H10 cells were seeded on the previous
day (3x10° cells per 10-cm? dish, 0.4 x 10° cells per 6-well plate well,
and 0.075 x 10° cells per 24-well plate well) in DMEM supplemented with
10% fetal calf serum, 2 mM L-glutamine, and 2mM penicillin-
streptomycin. At the time of infection, the medium was changed to
DMEM supplemented with 2% fetal calf serum, 2 mM L-glutamine, and
2 mM penicillin-streptomycin, and cells were kept in this medium for the
rest of the time. Cells were infected with SARS-CoV-2 variants in half of
the designated, final medium volume. Following infection, the cells were
incubated in 37 °C and 5% CO, for 1 h, after which the remaining half
volume of the infection medium was added. Note that the inoculated
virus was not removed. Depending on the experiment and the virus, the
final titers were 20,000-70,000 TCIDso/mL. In proteome and RNA
analyses, the final titers were: 70,000 TCIDso/mL Fin-34, 58,000 TCIDso/
mL Fin-37, and 25,000 TCIDso/mL for Fin-32, Fin-56 and Fin-61. For
immunofluorescent analyses, the final titers were 56,000, 46,400 and
20,000 TCIDso/mL, respectively. Protein and RNA samples were collected
and cells for immunofluorescence were fixed at time points of 1 hpi, 8
hpi, 16 hpi and 36 hpi. Samples from uninfected cells were collected as
controls.

Sample preparation from the infected samples

We plated 3 x 10° cells per 10-cm? dish (MOI of 0.1-0.2) on the previous
day based on the cell count on the plating day. For protein samples, the
cells were infected with 3-8 x 10° TCIDs, of variant per 10-cm? plate. At the
time of sample collection, the plates were kept on a cold plate, the
medium was removed, cells were washed once with ice-cold TBS, 0.5 mL
ice-cold freshly made 8 M urea solution (in 50 mM NH,4HCOs supplemented
with Phosphatase Inhibitor Cocktail (Roche)) was added per 10-cm? dish,
and the cells were scraped off the plate. Cell lysates were kept on ice and
stored at —80 °C until analysis.

Infection rate estimation with immunofluorescence

For immunofluorescence, the cells were infected with 0.1-0.28 x 10°
TCIDs, of variant per 24-well plate well. The cells were fixed with 4%
formaldehyde for 1 h, the plates were washed with phosphate-buffered
saline (PBS), and stored in PBS at 4 °C until analysis. The fixed cells were
blocked and permeabilizated with 0.5% bovine serum albumin (BSA,
Sigma-Aldrich) and 0.1% Triton X-100 (Sigma-Aldrich) in PBS (Gibco) for
30 min at room temperature. Subsequently, primary antibodies of in-
house SARS-CoV-2 rabbit anti-N (gift from Sari Maljanen and llkka
Julkunen) and rabbit anti-S1 antibodies'®!, diluted in 3% BSA in PBS,
were added for 1 h at room temperature. The cells were washed thrice
for 10 min with PBS. Secondary antibodies (Goat a-rabbit IgG (H + L)
Alexa Fluor Plus 488, Thermo Fisher Scientific) and 4/,6-diamidino-2-
phenylindole (DAPI, Life Technologies), both diluted in 3% BSA in PBS,
were applied to the cells for 1 h at room temperature in dark. The cells
were washed thrice for 10 min in 3% BSA in PBS. Subsequent imaging
was performed utilizing the EVOS FL Auto imaging system (Life
Technologies). The images were processed in Fiji, a common, open-
source distribution of Image)'®. To estimate the infection percentage,
the nuclei were segmented using the StarDist2D plugin in Fiji'®. A
binary classifier was trained using the Trainable Weka Segmentation
plugin'®* in Fiji to identify which cells were infected and which were not.
Roughly 20% of the images taken in the first repetition were used for
training the algorithm and the remaining 80% of the images from the
same repetition were used for validation. The resulting algorithm was
then used on subsequent repetitions and image sets.

SPRINGER NATURE

NanoString platform analysis for immune response profiling
For the RNA samples, cells were infected with 0.5-1.4 x 10° TCIDs, of the
variant per well in a 6-well plate. At the time of sample collection, the
plates were placed on a cold surface, the medium was removed, and the
cells were washed once with ice-cold PBS. Subsequently, 0.3 mL of RA1
buffer (Macherey-Nagel) containing 20 MM DTT was added to each well,
and the cell lysate was gently resuspended by pipetting. The cell lysates
were then kept on ice and stored at —80 °C until further analysis. RNA was
extracted using the RNeasy® Mini Kit (Qiagen, 74004, Hilden, Germany).
Approximately 100 ng of RNA was then analyzed using the NanoString
nCounter gene expression platform (NanoString Technologies, Seattle,
USA). The RNA was hybridized with the NanoString nCounter® Human
Auto-immune Profiling panel (770 transcripts) according to the manufac-
turer’s instructions. Hybridization was performed on the nCounter Prep
Station (NanoString Technologies), and the pre-loaded cartridges were
scanned three times using the NanoString Digital Analyzer. The resulting
gene expression data were analyzed with nSolver™ 4.0 analysis software
(NanoString Technologies). Positive controls were used to account for
potential sample variations, and data normalization was performed using
housekeeping genes included in the panel, along with negative control
subtraction.

Quantitative proteomics and phosphoproteomics sample
preparation

Viral-infected cell samples were lysed in lysis buffer 8 M Urea, 50 mM
NH4HCO; supplemented with 1x phosphatase and protease inhibitors
cocktail (Sigma-Aldrich, P2745 and P8340) on ice. The lysate was cleared by
centrifugation at 16,000% g for 10 min at 4 °C. The protein concentration was
determined using a BCA protein assay kit (Thermo Fisher Scientific). Equal
amounts of protein (250 pg) were obtained for all samples. Proteins were
reduced with Tris(2-carboxyethyl) phosphine (TCEP; Sigma Aldrich), and
alkylated with iodoacetamide. Samples were diluted by fourfold (to <2 M
urea) with 50mM ammonium bicarbonate (AMBIC; Sigma-Aldrich), and
digested with Sequencing Grade Modified Trypsin (Promega) in approximate
ratio of 1:50 to 1:20 (w/w) at 37 °C for 16 h. Finally, the peptide samples were
desalted with C18 Macrospin columns (Nest Group). Desalted peptides were
divided for whole proteome analysis and the following phosphoproteome
analysis. For phosphopeptide enrichment, desalted peptide mixtures were
firstly loaded into a stage-tip packed with Tis-IMAC microspheres which were
prewashed with loading buffer (80% acetonitrile/6% trifluoroacetic acid
(TFA)). The Tiz-IMAC microspheres with enriched phosphopeptides were
collected by centrifugation. To remove nonspecifically absorbed peptides,
the Tis-IMAC microspheres were washed with 50% acetonitrile/6% TFA/
200 mM NaCl and 50% acetonitrile/0.1% TFA sequentially. To elute the
enriched phosphopeptides, elution buffer containing 10% NH,OH was
added and the enriched phosphopeptides were eluted with centrifugation.
The supernatant containing phosphopeptides was collected and lyophilized
for LC-MS/MS analysis.

Proximity labeling

For BiolD-MS approach, cell pellets were thawed in 3 mL of ice-cold lysis
buffer (0.5% IGEPAL, 50 mM HEPES, pH 8.0, 150 mM NaCl, 50 mM NaF,
1.5mM NaVOs;, 5mM EDTA, 0.1% SDS, 0.5mM PMSF, and protease
inhibitors), and lysates were sonicated and treated with Benzonase®
Nuclease (Santa Cruz Biotechnology, sc-202391). Lysate was then
centrifuged, and clear solution containing target proteins was obtained.
Lysate was subjected to a one-step purification via Strep-Tactin®
Sepharose® resin (IBA). A detailed description of the method used here
can be found in a previous protocol®’.

MS sample preparation

Purified protein lysis sample was prepared further for LC-MS. To break
disulfide bonds, the samples were incubated with 5mM TCEP (Sigma-
Aldrich, #C4706, USA) at 37 °C for 20 min. Samples were let cool to room
temperature and alkylated with 10 mM iodoacetamide (Fluka, Sigma-
Aldrich, #57670, USA) at room temperature for 20 min. Samples were
trypsin-digested with 1.5 ug Sequencing Grade Modified Trypsin (V5111,
Promega) at 37 °C for 16 h. After digestion peptides were quenched with
10% TFA and finally, desalted with BioPureSPN MINI C18 columns (The nest
Group, Inc.). A detailed description of the method used here can be found
in a previous protocol®’. The dried peptides were reconstituted in 30 L
Buffer A (0.1% (vol/vol) TFA and 1% (vol/vol) acetonitrile in HPLC water).
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Samples were further diluted 1+ 19 pL with HPLC water containing 0.1%
(vol/vol) formic acid. The manufacturer’s instructions were followed to load
into Evotips (Evosep).

LC-MS analysis

The desalted samples underwent analysis using the Evosep One liquid
chromatography system, which was coupled to a hybrid trapped ion
mobility quadrupole TOF mass spectrometer (Bruker timsTOF Pro)
through a CaptiveSpray nano-electrospray ion source. Peptide separa-
tion was achieved using an 8 cm x 150 pm column packed with 1.5 pm
C18 beads (EV1109, Evosep) following the 60-sample-per-day method,
which employed a 21-min gradient time. Mobile phases A and B
consisted of 0.1% formic acid in water and 0.1% formic acid in
acetonitrile, respectively. For BiolD samples, the MS analysis was
conducted in positive-ion mode using a data-dependent acquisition
(DDA) approach in PASEF (Parallel Accumulation Serial Fragmentation)
mode, utilizing the DDA-PASEF-short_gradient_0.5s-cycletime method.
The DIA MS analysis was performed in the positive-ion mode with DIA-
PASEF method'® with sample optimized DIA scan parameters. We
performed DDA in PASEF mode from a pooled sample to be able to
adjust DIA-PASEF parameters optimally to each sample type. To perform
sample-specific DIA-PASEF parameter adjustment, the default DIA-short-
gradient acquisition methods were adjusted based on the sample-
specific DDA-PASEF run with the software ‘tims Control’ (Bruker
Daltonics). The following parameters were modified for each sample
type: phoshory enrichment, mass range 433-1684 Da, mobility range
0.85-1.3 1/KO, cycle time estimate 1.80s and for total proteome, mass
range 370-1370Da, mobility range 0.85-1.30 1/KO0, with cycle time
estimate 1.27 s. The ion mobility windows were set to best match the ion
cloud density from the sample type-specific DDA-runs.

Following the analysis, the raw data obtained for both total proteome
and phosphoproteomics underwent processing using DIA-NN (version
1.8.1) software. For total proteome DIA-NN, the parameters included a
maximum of 1 missed cleavage, up to 3 variable modifications, N-terminal
methionine excision, carbamidomethylation of cysteine residues, oxidation
of methionine, acetylation of the N-terminus, peptide length ranging from
7 to 30 amino acids, precursor charge ranging from 2 to 4, precursor m/z
range of 300-1600, fragment ion m/z range of 100-1700, and mass
accuracy of 15 ppm, with MS1 accuracy also set at 15 ppm. For
phosphoproteomics DIA-NN, the parameters were similar, with 1 missed
cleavage allowed, a maximum of 3 variable modifications, N-terminal
methionine excision, carbamidomethylation of cysteine residues, exclusion
of oxidation on methionine residues, acetylation permitted at the N-
terminus, peptide length ranging from 7 to 30 amino acids, precursor
charge ranging from 2 to 4, precursor m/z range of 300-1600, fragment ion
m/z range of 100-1700, and a mass accuracy of 15 ppm, with MS1 accuracy
also set at 15 ppm. BiolD raw data were processed with FragPipe v17.1
utilizing MSFragger'® against reviewed human entries of the UniProtKB
database (downloaded 8.3.2022) coupled with SARS-CoV-2 protein
information derived from GISAID. Carbamidomethylation of cysteine
residues was used as the static modification. N-terminal acetylation and
oxidation of methionine were used as the dynamic modification.
Biotinylation of lysine and N-termini were set as variable modifications.
Trypsin was selected as the enzyme, and maximum of two missed
cleavages were allowed. Both instrument and label-free quantification
parameters were left at default settings. Final results from these steps are
Spectral Counts values from peptides with FDR < 0.01 from Philosopher.

Identification of high-confidence PPIs

The web tool (http://proteomics.fi/) incorporated with Significance Analysis
of INTeractome (SAINT)-express version 3.6.3'%” was used as a statistical
approach for identification of specific HCls from BiolD-MS data. HCls were
defined by an estimated protein-level Bayesian FDR (BFDR) of <0.05.
Furthermore, we used our own in-house contaminant GFP library for
Proximity Dependent Biotinylation with a cutoff frequency of =50%,
except for an average spectral count fold change >3 to remove non-
specific interactors. Most common MS contaminants were removed from
results. Results are bait normalized.

MS-microscopy analyses

For any bait of interest, the averaged peptide-spectrum match values of
each prey protein were calculated and uploaded to the web tool (http://
proteomics.fi/) to calculate their subcellular distribution.
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Immunostaining and fluorescence microscopy

Transfected U20S U2-OS (ATCC®, HTB-96™) cells were cultivated in 96-well
optical bottom plate (Brooks, MGB096-1-2-LG-L). After fixation in 4%
paraformaldehyde in PBS and permeabilization in Triton X-100, cells were
incubated with primary (anti-HA 1gG1, BioLegends, 901502) antibodies.
Next, cells were washed twice with PBS and incubated with PhenoVue
Fluor 488-Donkey Anti-Mouse Antibody Cross-Adsorbed (PerkinElmer,
2DXM488C1), PhenoVue Fluor 568-Phalloidin (PerkinElmer, CP25681),
PhenoVue Fluor 647-Concanavalin A (PerkinElmer, CP96471), DAPI (Santa
Cruz, 28718-90-3). After staining, cells were washed twice and imaged in
PBS. Imaging was performed using a Molecular Devices Nano high-content
screening microscope, using Nikon 20x/0.45 S Plan Fluor ELWD, WD
8.2-6.9 mm (pixel size of 0.328 pm) objective. The following filter sets were
used for multicolor acquisition: DAPI (Ex: 377/50 nm, Em: 447/60 nm,
Dichroic: 409 nm), GFP (Ex: 472/30 nm, Em: 520/35 nm, Dichroic: 495 nm),
Texas Red (Ex: 562/40 nm, Em: 624/40 nm, Dichroic: 593 nm), Cy5 (Ex: 628/
40 nm, Em: 692/40 nm, Dichroic: 660 nm). Images were stored as TIFF and
processed (linear intensity scaling, pseudocoloring, composite panel
assembly) using a custom-made python script.

Co-IP

For co-IP validation, HEK293 cells (5 x 10° per well) were seeded in a 6-well
plate and co-transfected with 500 ng each of Strep-HA-tagged prey and
V5-tagged bait constructs using Fugene 6. After 24 h, cells were washed
with ice-cold PBS and lysed with 1 mL of HENN lysis buffer (50 mM HEPES,
pH 8.0, 5mM EDTA, 150 mM NaCl, 50 mM NaF, 0.5% IGEPAL, 1 mM DTT,
1mM PMSF, 1.5mM Na3VO,, and 1x protease inhibitor) on ice. Lysates
were centrifuged at 16,000 x g for 20 min at 4 °C to obtain the supernatant.

In parallel, 30 pL of Strep-Tactin Sepharose resin was washed twice with
200 pL of HENN lysis buffer. The clear lysate was then incubated with the
beads for 1 h at 4 °C on a rotation wheel. After incubation, the beads were
collected by centrifugation, washed three times with 1 mL of HENN buffer,
and each wash involved centrifugation at 4000 x g for 30's at 4 °C. Finally,
60 uL of 2x Laemmli buffer was added to the beads, boiled at 95 °C for
5min, and the samples were analyzed via dot blot to validate PPIs.

For dot blot analysis, the Bio-Dot Microfiltration system was used as per
the manufacturer’s instructions. The nitrocellulose membrane was pre-
washed with TBS, and 10 pL of the sample was spotted and drained under
vacuum. The membrane was blocked with 5% milk in TBS-T for 60 min,
followed by incubation with mouse anti-V5 (1:5000) overnight at 4 °C. After
washing with TBS-T, HRP-conjugated goat anti-mouse (1:2000) was applied
for 60 min at room temperature. The membrane was washed, incubated
with ECL solution, and imaged.

To detect additional targets, the membrane was stripped, re-blocked,
and incubated with rabbit anti-HA (1:2000) overnight at 4°C. After
washing, goat anti-rabbit (1:2000) was applied, and the membrane was re-
imaged to detect HA-tagged proteins, confirming the protein interaction.

Data preprocessing

The experimental data underwent bait normalization as a preliminary step.
Following bait normalization, missing values in the data were imputed
using the QRILC (Quantile Regression-based Imputation using Locally
Constant functions) method using the ‘imputeLCMD’ R package and R
(version 4.3.1). Furthermore, median normalization was conducted on the
data as a normalization step prior to analysis.

Correlation analysis

A differential abundance analysis was performed to compare protein
abundance levels across sample groups. Log,FC and P-value were
calculated using python (version 3.9.7) and ttest_ind from scipy.stats
python package based on the imputed and normalized intensity data. The
P-values were corrected using Benjamini-Hochberg correction method
from the ‘multitest’ module of the ‘statsmodels.stats’ package. Figures
were generated using plotly python library.

GO enrichment analysis

We employed the DAVID tool to unravel the functional intricacies of the
proteome dataset. The primary goal was to uncover enriched GO terms
and pathways that shed light on the molecular context of the identified
proteins. Our investigation encompassed three key aspects of GO:
Biological Process (BP), Cellular Component (CC), and Molecular Function
(MF). DAVID discerned GO terms that exhibited significant enrichment
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within our protein dataset. Simultaneously, we analyzed cellular pathways
by applying the KEGG and Reactome pathway analyses' %%,

Structural analysis of mutation sites

In order to present the three-dimensional (3D) structure of our proteins of
interest, PyMol version 2.5 (Schrodinger LLC, New York, NY, USA) was used.
The crystal structures of the SARS-CoV-2 proteins were obtained from the
Protein Data Bank (PDB)''®, while de novo models were taken from the
AlphaFold protein folding prediction database and Swiss-Prot database.
Figures of the protein structure were generated using the PyMol
software'""""2,

In silico protein structure preparation

For each protein of interest, AlphaFold models (v4) were collected from the
AlphaFold Protein  Structure Database''’,  https://alphafold.ebi.ac.uk
(accessed August 14th 2024). All available X-ray diffraction and EM structures
were collected from the RCSB protein databank''®, https://www.rcsb.org/
(accessed August 14th 2024). Experimental structures were preprocessed
with an in-house workflow using Python 3.12 and BioPython 1.83 as follows:
Structures with less than 80 amino acid length were dropped. Relevant
chains were extracted from multi-protein complexes. Where possible, the
preferred biological assembly as recorded in the RCSB PDB was retained for
homo-multimeric structures, with monomers serving as a fallback. All water
molecules, non-structural ions, solvents and ligands except cofactors (heme
groups, iron-sulfur clusters and hybrids, NADH, NADPH, FAD and FMN) were
removed from the structures.

All structures were prepared with the Schrédinger Protein Preparation
Wizard''*""* using default settings. Hydrogens were added, relevant bond
orders and cofactor charge states assigned, where applicable. The protein
amino acid protonation states were determined with PROPKA (pH 7) prior
to hydrogen bonding network optimization. All structures were subjected
to a restrained minimization in the OPLS4 force field using standard
settings.

Pocket druggability calculations

Schroédinger SiteMap was used for site prediction and druggability
analyses''*"'"6, All targets were screened for well-defined druggable sites
using SiteMap with standard settings. Sites with a druggability score
(DScore) of 0.8 or higher were considered druggable''>. To detect more
shallow, hydrophobic sites often associated with PPIs, a modified SiteMap
protocol described by Loving et al. 2014 was used®®. Modified SiteMap
parameters were employed as previously described (grid =0.35), mod-
phobic =0, maxdist=10, enclosure =0.4, maxvdw = 1.0, dtresh=5.0,
mingroup = 7 and nthresh = 7°° and the modified druggability descriptor
DScore+ was computed (DScore + 0.3 * hydrophobic). Candidate sites
with volumes of 160-800 A3 were labeled druggable PPI sites. Larger
pocket regions were counted separately as ‘large PPI sites’. Pockets with a
volume below 160 A% were considered cryptic. Cryptic pockets with DScore
+ of at least 1.3 were subjected to a two-step induced fit docking (IFD)
pipeline using Schrédinger Glide and Prime'™*'"” as previously
described®. Briefly, grid centers were determined as centroids of all site
residues. IFD parameters were kept at defaults except for the outer box
size being set to 25 A. In the first step, a naphthalene molecule was docked
to the site and, if poses were retrieved, the two top-scoring complexes by
IFDscore were progressed into the second stage. Using the same grid
center as in stage 1 and removing the naphthalene ligand from the
receptor structure, the tetra-substituted naphthalene derivative was
docked in another IFD run®. All resulting complexes from stage 2 were
subjected to SiteMap analysis with the parameter set for PPl sites and
evaluating only the site with the bound naphthalene derivative. Cryptic
sites with a DScore+ of at least 1.7 and a volume of at least 160 A® were
labeled druggable cryptic sites. Smaller sites matching the DScore+
requirement were recorded with the keyword cryptic, but not considered
druggable.

Since both the original and the modified SiteMap protocol were
validated on X-ray crystallographic structures, EM structures with their
often significantly lower resolution and AlphaFold models with their
potential structural uncertainties were analyzed separately in all steps.

Assessment of known ligand profiles

SMILES for all ligands in the experimental structures were collected via the
RCSB GraphQL APl with an in-house Python 3.12 workflow and
standardized and analyzed with RDKit v2023.09.4. Molecular weight
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(MW), heavy atom count, numbers of hydrogen-bond (HB) donors and
acceptors and logP were computed and ligands were classified as follows:
‘Extended drug-like: MW 200-650 Da, at least 10 heavy atoms; ‘Satisfies
Rule-of-Five (ROF): MW < 500 Da, HB donors < 5, HB acceptors < 10,
logP < 5;'iPPI-like violations”: up to two violations to ROF MW = 500 Da and
logP > 5 were allowed®'.

Assessment of literature coverage and target status
Each protein of interest was queried in PubMed with the Entrez API of
BioPython 1.83. Total counts returned for each query were counted and no
further processing or curation was done. Each query was run once for each
protein of interest, including the protein name as obtained from UniProt
(The UniProt Consortium 2023). All terms were searched across all available
fields and by MeSH terms. The following keywords were used: (i) ‘drug
design’ or ‘drug discovery’, ‘Covid-19' or ‘SARS-CoV-2' and ‘protein
expression’ and ‘assay’ to identify potential coverage in SARS-CoV-2
literature with experimental assay on protein level; (ii) ‘drug design’ or
‘drug discovery’, ‘Covid-19' or ‘SARS-CoV-2' to assess any literature on the
target candidate in the context of SARS-CoV-2; and (iii) ‘drug design’ or
‘drug discovery’ and ‘protein expression’ and ‘assay’ to determine whether
the target candidate was previously studied (experimentally) in any other
context. Full queries are available as Supplementary information.
Additionally, UniProt accession codes were mapped against targets in
the Therapeutic Target Database (TTD, https://db.idrblab.net/ttd (accessed
September 15th 2024))°® and target classes for all targets in the TTD were
recorded.

Classification by druggability confidence

To indicate the confidence in the druggability of a protein of interest,
all proteins were grouped in druggability categories based on the
analysis results, ranging from most likely druggable (4) to not
druggable (0). Since SiteMap had not been validated with EM
structures or AlphaFold models, druggability indicated by their
analysis was considered ‘likely druggable’ (3). When different structural
datasets indicated different druggability, but the majority suggested
druggable sites, we classified the target as ‘potentially druggable’ (2)
or ‘possibly not druggable’ (1), if the majority suggested no druggable
sites. In the analysis of known ligands, the presence of only iPPI-like
ligands was considered ‘potentially druggable’ (2) since RoF violations
can generally be associated with a loss of (orally available) drug-
likeness and may occur in compounds that are not iPPIs. For literature
and TTD-analysis, clinical, patented and established targets are flagged
as ‘druggable’, research-level targets (in TTD or at least 100 PubMed
results) as ‘potentially druggable’, and cases where at least 10 PubMed
results were retrieved were assigned 1 as ‘potential research targets’.
All scores from individual groupings were summed up into a
druggability confidence score to reflect the amount of evidence that
the protein in question is druggable, with higher confidence scores
being more likely druggable.
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