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Adeno-associated virus (AAV)–based gene therapy is an emerging treatment for hemophilia

A (HA) and hemophilia B (HB). In this systematic review and meta-analysis, we searched for

studies of adult males with severe or moderately severe HA or HB who received AAV-based

gene therapy. Annualized bleeding rate (ABR), annualized infusion rate (AIR), total factor

use, factor levels, and adverse events (AEs) were extracted. Eight HA trials representing 7

gene therapies and 211 patients and 12 HB trials representing 9 gene therapies and 184

patients were included. For HA, gene therapy resulted in an annualized decrease of 7.58

bleeding events (95% confidence interval [CI], −11.50 to −3.67) and 117.2 factor infusions

(95% CI, −151.86 to −82.53) compared with before gene therapy. Factor VIII level at

12 months ranged from 10.4 to 70.31 IU/mL by 1-stage assay. HB gene therapies were

associated with an annualized decrease of 5.64 bleeding events (95% CI, −8.61 to −2.68) and

58.92 factor infusions (95% CI, −68.19 to −49.65). Mean factor IX level at 12 months was

28.72 IU/mL (95% CI, 18.78-38.66). Factor expression was more durable for HB than HA;

factor IX levels remained at 95.7% of their peak whereas factor VIII levels fell to 55.8% of

their peak at 24 months. The pooled percentage of patients experiencing a serious AE was

19% (10%-31%) and 21% (10%-37%) for HA and HB gene therapies, respectively. No

thrombosis or inhibitor formation was reported. AAV-based gene therapies for both HA and

HB demonstrated significant reductions in ABR, AIR, and factor use.
Introduction

Hemophilia A and B (HA and HB, respectively) are inherited X-linked bleeding disorders, characterized
by deficiency of factor VIII (FVIII) and FIX, respectively. Hemophilia affect >1.2 million individuals
worldwide, with HA being more common than HB.1 Hemophilia primarily affects males, although
females can also be affected. Disease severity is characterized by factor level. Severe hemophilia is
defined as <1% factor activity, moderate hemophilia as factor activity level ≥1% to ≤5% of normal, and
mild hemophilia as factor activity level of >5% to <40% of normal.2 About one-half to two-thirds of
patients with HA and approximately one-third to one-half of patients with HB have severe disease.1,3

Patients with severe hemophilia are prone to spontaneous and recurrent bleeding events, most
commonly into joints, which can lead to severe degenerative arthropathy over time.
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Prophylactic clotting factor replacement has been used for
decades to prevent or mitigate bleeding events and hemophilic
arthropathy. More recently, subcutaneously administered nonfactor
therapies have expanded treatment options for patients.4,5 How-
ever, both factor prophylaxis and subcutaneous therapies are
costly, require regular administration, and do not fully correct
hemostasis, thereby exposing patients to a risk of breakthrough
bleeding and the need for intensification of therapy for surgery.

Adeno-associated virus (AAV)–based gene therapy has emerged
as a novel treatment strategy aimed at overcoming these limita-
tions. It introduces an AAV vector that inserts a functional copy of
the missing clotting factor gene into patients’ hepatocytes so that
clotting factor can be expressed.5,6 Valoctocogene roxaparvovec
was approved as the first gene therapy for HA in the United States
in June 2023.7 Etranacogene dezaparvovec and fidanacogene
elaparvovec were approved by the US Food and Drug Adminis-
tration in November 2022 and April 2024, respectively, for adults
with HB. Several other gene therapies are under various stages of
development.8,9 Although these therapies appear to have few
serious adverse events (AEs), a notable toxicity of hepatotropic
AAV-based gene therapy is liver toxicity, which can result in loss of
transgene expression of factor.6-8

Given the rapid advancements and approvals in the field, it is
essential to evaluate the overall impact of these therapies. We
conducted a systematic review and meta-analysis of AAV-based
gene therapies for HA and HB to summarize the efficacy and
safety of this emerging therapeutic class.

Methods

The protocol for this systematic review was registered in PROS-
PERO (#CRD42023444873).10 Our study was conducted
according to preferred reporting items for systematic reviews and
meta-analysis guidelines.11

Search strategy and study selection

We electronically searched 4 databases (the Cochrane Library,
Embase, PubMed, and Scopus) from database inception to 26 May
2024. A search strategy and relevant keywords were determined in
consultation with a health sciences librarian. Search terms were
focused on HA and HB as well as gene therapy. A full search
strategy is available in supplemental Methods. Conference pro-
ceedings from 2013 through 2023 (inclusive) from the annual
meetings of the American Society of Hematology, International
Society on Thrombosis and Hemostasis, and European Hematol-
ogy Association were hand-searched.

We included human studies on adult males with severe or
moderately severe HA or HB (≤2% FVIII or FIX, respectively) who
received AAV-based gene therapy targeting hepatocytes. We
excluded case reports and series, editorials, and reviews.

Citations were imported into the data management system
Covidence (Veritas Health Innovation, Melbourne, Australia). Two
investigators (S.R.D. and K.J.) independently completed title and
abstract screening. Discrepancies were resolved with consensus
discussion between these 2 investigators (S.R.D. and K.J.), and
disagreements were arbitrated by a third investigator (A.C.). The
same protocol was followed for the full-text review of citations
that were included after title and abstract screening. References
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of included studies were scanned to identify further relevant
studies.

Data extraction and risk-of-bias assessment

Because many included studies provided updated results for the
same trial, references were grouped into clinical trials. For each
included study, 2 investigators (S.R.D. and K.J.) independently
extracted data using a standardized form with discrepancies
resolved by consensus discussion between 4 investigators (S.R.D.,
K.J., A.C., and A.P.). Data extraction included trial identifiers, study
design, location, inclusion and exclusion criteria, AAV vector, dose,
patient demographics and characteristics, and study duration
along with efficacy and safety outcomes. Outcomes were
permitted to be derived from different references of the same trial.
For all outcomes, we prioritized data completeness (eg, inclusion of
mean and standard deviation rather than mean alone) over longer
term follow-up. Our primary outcome was pooled mean difference
(PMD) in total annualized bleeding rate (ABR) from the observa-
tional pre–gene therapy period to the post–gene therapy period.
Secondary efficacy outcomes included PMD in mean annualized
infusion rate (AIR; before therapy, after therapy), PMD in mean
annualized use of factor concentrates (before therapy, after ther-
apy), mean factor plasma levels at prespecified intervals (4 weeks,
and 6, 12, 18, and 24 months) by 1-stage assay (OSA) and
chromogenic substrate assay (CSA), ABR for joint and treated
bleeds, and quality of life. For measurements at prespecified time
points, we allowed for leeway of 1 week for measurements
<1 month, 1 month for measurements between 1 month to 1 year,
and 2 months for measurements ≥1 year from time of gene therapy
administration. If not directly reported, ABR and AIR were derived
with the following calculation: (number of events/number of days) ×
365.25. Safety outcomes included AEs including serious AEs,
infusion reactions, anaphylaxis, alanine aminotransferase (ALT)
elevations, aminotransferase elevations requiring immunosuppres-
sion, inhibitor formation, and thrombosis events. When incomplete
data were reported, ClinicalTrials.gov was queried for posted
results, which were incorporated, provided the results had under-
gone review by the National Library of Medicine to ensure they met
quality control standards. When summary data for an entire study
population were not reported, we included data for distinct cohorts
within the same trial.

For risk-of-bias assessment, we used the National Institutes of
Health/National Heart, Lung, and Blood Institute Quality Assess-
ment Tool for Before-After (Pre-Post) Studies with No Control
Group.12 Two investigators (S.R.D. and K.J.) independently
appraised trial-level quality, and discrepancies were resolved by
consensus discussion between them. Study quality was rated
good (≤4 negative or missing assessment questions and low risk of
bias), fair (5-6 negative or missing assessment questions), or poor
(>6 negative or missing assessment questions or high risk of bias).

Data synthesis and analysis

Meta-analyses of the predefined efficacy and safety outcomes for
HA and HB were performed. For HA, efficacy outcomes included
ABR and AIR, whereas safety outcomes included the incidence of
any AEs, serious AEs, and ALT elevation. For HB, efficacy out-
comes additionally covered factor usage and factor levels at
12 months. Safety outcomes for HB mirrored those of HA. Efficacy
outcomes were all continuous, presented as mean values both
10 DECEMBER 2024 • VOLUME 8, NUMBER 23
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8755 records identified from:
Cochrane (n = 1)
Embase (n = 2917)
Pubmed (n = 1878)
Scopus (n = 2994)
American Society of
Hematology (n = 357)
European Hematology
Association (n = 165)
International Society on
Thrombosis and Hemostasis (n
= 443)

Duplicates removed (n = 3379)

5376 studies screened Studies irrelevant (n = 5118)

258 full-text studies assessed for
eligibility

Studies excluded (n = 126):
Correspondence (n = 6)
Duplicate (n = 70)
Intervention (n = 5)
Outcomes (n = 30)
Population (n = 3)
Review (n = 5)
Study Design (n = 7)

132 studies included in review
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Figure 1. Trial flow for a systematic review of the

literature on AAV-based gene therapy for HA and HB.
before and after gene therapy. Safety outcomes are reported as
incidence rates after therapy.

Given intrinsic heterogeneity in these outcomes across studies,
random-effects meta-analyses were used to derive the pooled
point estimates and 95% confidence intervals (CIs). Specifically,
for the efficacy outcomes, pooled point estimates were obtained
for the pretherapy and posttherapy mean differences. Studies
lacking reported standard deviations for efficacy outcomes were
included in the meta-analyses, with missing standard deviations
imputed from the available data in the sample.13 For safety out-
comes, the analyses provided pooled point estimates of the inci-
dence rates after therapy.

Heterogeneity was quantified by Higgins and Thompson hetero-
geneity measure (I2)14 and tested using Cochran Q statistic,15

which examines the existence of statistically significant differ-
ences between subgroups. The values of I2 and Cochran Q test P
values were reported. The heterogeneity measure I2 was calcu-
lated based on the weighted sum of the difference between the
pooled estimate and the effect size (eg, mean difference) for each
study. An I2 value of 0% to 25% represents nonsignificant het-
erogeneity, 26% to 50% represents low heterogeneity, 51% to
75% represents moderate heterogeneity, and >75% represents
high heterogeneity. A Cochran Q test with a P value of <.05
indicates statistically significant heterogeneity between studies.
10 DECEMBER 2024 • VOLUME 8, NUMBER 23
For outcomes with significant heterogeneity, a sensitivity analysis
was completed by removal of outlier results followed by repeat
quantification of the heterogeneity measure I2. Outlier results were
determined first by visual inspection of funnel plots and by absolute
value of z score.

Potential publication bias was assessed through a funnel plot16 for
visual inspection and the Egger test17 to evaluate asymmetry within
the funnel plot. The results of the Egger test were reported
alongside the funnel plot, with a P value of <.05 leading to rejection
of the null hypothesis of symmetry in the funnel plot, indicating that
there exists evidence suggesting the significant publication bias. A
funnel plot displays the estimated point estimates (eg, mean dif-
ference, proportion) on the x-axis against the standard error of the
estimated point estimates on the y-axis. The standard error on the
y-axis was calculated based on reported standard deviations and
sample sizes. All analyses were performed using the R package
“meta” in R, version 4.2.1.

Results

Literature search

Of the 8755 citations identified, 8497 were excluded based on
duplication or title and abstract screening, leaving 258 for full-text
review. Of these, 132 publications met eligibility criteria.7,8,18-123

These references were grouped into 8 distinct trials, representing
AAV GENE THERAPY FOR HEMOPHILIA 5959



Table 1. Characteristics of included studies

Trial name/

NCT (phase)

Gene therapy

(prior names) Setting Design

N* (n for

individual

dose

cohorts)

AAV

vector

Dose(s)

(vg/kg)

Age (y),

mean

(range)

Non-

White,

%

Duration

(mo)

Hemophilia

severity

(severe/

moderately

severe [%])

Time at which

ABR

measurement

started

HA

Alta/NCT03061201
(1/2)

Giroctocogene
fitelparvovec (PF-
07055480/SB-525)

United States Open-label, dose-
escalation, cohort study

11 AAV6 9e11, 2e12,
1e13, 3e13

30 (18-47) 18.2 62 100/0 Week 3

GENEr8-1/
NCT02576795 (1/2)

Valoctocogene
roxaparvovec (BMN-
270)

United Kingdom Open-label, dose-
escalation, cohort study

13 (7, 6) AAV5 6e13
4e13

30.4 (23-42)
31.3 (22-45)

14.3
16.7

72 100/0 Week 4

GENEr8-1/
NCT03370913 (3)

Valoctocogene
roxaparvovec (BMN-
270)

13 countries† Open-label, single-arm,
cohort study

134 AAV5 6e13 31.7 (18-70) 28.4 36 100/0 Week 5

NCT03003533/
NCT03432520 (1/2)

Dirloctogene
samoparvovec (SPK-
8011)

5 countries‡ Open-label, dose-
escalation, cohort study

24 AAV3 5e11
1e12
1.5e12
2e12

32.8 (18-52) NR 60 94.4/5.6 Week 4

NCT03734588 (1/2) SPK-8016 United States Open-label, single-arm,
cohort study

4 AAV-Spark 5e11 (18-63) NR 15 100/0 NR

NCT03370172 (1/2) TAK-754 8 countries§ Open-label, dose-
escalation, cohort study

4 AAV8 2e12
6e12

(18-75) NR 10 100/0 NR

NCT03588299 (1/2) BAY 2599023
(AAVhu37.hFVIIIco)

6 countries|| Open-label, dose-
escalation, cohort study

9 AAVhu37 5e12, 1e13,
2e13, 4e13

NR NR 23 100/0 NR

NCT03001830GO-8
(1/2)

GO-8 (AAV8-HLP-hFVIII-
V3)

United States, United
Kingdom

Open-label, dose-
escalation, cohort study

12 (1, 3, 3, 5) AAV8 6e11, 2e12,
4e12, 6e12

NR NR 60 100/0 NR

HB

BENEGENE-2/
NCT02484092 (1/2)

Fidanacogene elaparvovec
(SPK-9001)

United States, Australia Open-label, single-arm,
cohort study

15 AAV-
Spark100

5e11 35.6 (18-53) 14.3 12 60/40 Day 0

BENEGENE-2/
NCT03861273 (3)

Fidanacogene elaparvovec
(SPK-9001)

14 countries¶ Open-label, single-arm,
cohort study

45 AAV-
Spark100

5e11 29 (18-62) NR 15 NR Week 12

B-LIEVE/
NCT05164471 (1/2)

Verbrinacogene
setparvovec (FLT180a)

United States, United
Kingdom

Open-label, single-arm,
cohort study

6 AAVS3 7.7e11 NR NR 12 NR NR

B-AMAZE/
NCT03369444 (1/2)

Verbrinacogene
setparvovec (FLT180a)

United States, Ireland,
Italy, United Kingdom

Open-label, dose-
escalation, cohort study

10 (2, 2, 4, 2) AAVS3 3.84e11,
6.4e11,
8.32e11,

1.28e12

37.2 (25-67) 10 27.2 90/10 Day 15

NCT02396342 (1/2) AMT-060 Denmark, Germany,
The Netherlands

Open-label, dose-
escalation, cohort study

10 (5, 5) AAV5 5e12
2e13

69 (35-72)
35 (33-46)

0
20

60 80/20
100/0

NR

HOPE-B/
NCT03569891 (2b)

Etranacogene
dezaparvovec (AMT-
061)

United States Open-label, single-arm,
cohort study

3 AAV5 2e13 46.7 (43-50) 66.7 36 66.7/33.3 Day 0

NCT, National Clinical Trial; NR, not reported; vg, vector genomes.
*For the dose-escalation studies, n for each dose cohort is specified in parentheses for the studies which have specified that data.
†United States, Australia, Belgium, Brazil, France, Germany, Israel. Italy, Korea, South Africa, Spain, Taiwan, and United Kingdom.
‡United States, Australia, Canada, Israel, and Thailand.
§United States, United Kingdom, Austria, France, Germany, Hungary, Italy, and Spain.
ǁUnited States, Bulgaria, France, Germany, The Netherlands, and United Kingdom.
¶United States, Australia, Brazil, Canada, France, Germany, Greece, Japan, Korea, Saudi Arabia, Sweden, Taiwan, Turkey, and United Kingdom.
#United States, Belgium, Denmark, Germany, Ireland, The Netherlands, Sweden, and United Kingdom.
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Table 1 (continued)

Trial name/

NCT (phase)

Gene therapy

(prior names) Setting Design

N* (n for

individual

dose

cohorts)

AAV

vector

Dose(s)

(vg/kg)

Age (y),

mean

(range)

Non-

White,

%

Duration

(mo)

Hemophilia

severity

(severe/

moderately

severe [%])

Time at which

ABR

measurement

started

HOPE-B/
NCT03569891 (3)

Etranacogene
dezaparvovec (AMT-
061)

8 countries# Open-label, single-arm,
cohort study

54 AAV5 2e13 41.5 (19-75) 25.9 26.5 81/19 Month 7

NCT01687608 (1/2) BAX335 United States Open-label, dose-
escalation, cohort study

8 AAV8 2e11, 1e12,
3e12

30.5 (20-69) 12.5 86 NR NR

NCT00979238 (1) scAAV2/8-LP1-hFIXco United States, United
Kingdom

Open-label, dose-
escalation, cohort study

10 AAV8 2e11, 6e11,
2e12

36.3 (22-64) NR 128 100/0 NR

101HEMB01/
NCT02618915 (1/2)

DTX101 United States, Bulgaria,
United Kingdom

Open-label, dose-
escalation, cohort study

6 (3, 3) AAVrh10 1.6e12, 5e12 (50-84, 18-49) NR 12 NR Day 0

NCT04135300 (1) BBM-H901 China Open-label, single-arm,
cohort study

10 AAV843 5e12 NR 100 13 NR NR

NCT00515710 (1/2) AAV2-hFIX16 United States Open-label, dose-
escalation, cohort study

7 AAV2 8e10, 4e11,
2e12

34 (20-63) NR 180 100/0 NR

NCT, National Clinical Trial; NR, not reported; vg, vector genomes.
*For the dose-escalation studies, n for each dose cohort is specified in parentheses for the studies which have specified that data.
†United States, Australia, Belgium, Brazil, France, Germany, Israel. Italy, Korea, South Africa, Spain, Taiwan, and United Kingdom.
‡United States, Australia, Canada, Israel, and Thailand.
§United States, United Kingdom, Austria, France, Germany, Hungary, Italy, and Spain.
ǁUnited States, Bulgaria, France, Germany, The Netherlands, and United Kingdom.
¶United States, Australia, Brazil, Canada, France, Germany, Greece, Japan, Korea, Saudi Arabia, Sweden, Taiwan, Turkey, and United Kingdom.
#United States, Belgium, Denmark, Germany, Ireland, The Netherlands, Sweden, and United Kingdom.
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A

Girocto. fit., phase 1/2
Valocto. rox., phase 1/2 (cohort 3)
Valocto. rox., phase 1/2 (cohort 4)
Valocto. rox., phase 3
Dirlocto. sam., phase 1/2
SPK-8016, phase 1/2

7
7
6

112
18

4

7
7
6

112
18

4

4.30
0.80
1.00
1.30
0.99
1.20

9.43
16.30
12.20

5.40
11.59

7.25

–5.13
–15.50
–11.20

–4.10
–10.60

–6.05

2.9830
2.1000
2.2700
0.4800
1.8200
1.3800

26.4600
15.7000
15.4000
11.0600
11.6700

7.4100

–20 –10 0 10 20
Heterogeneity: I 2 = 43%, �2 = 9.1865, P = .12

Common effect model 154 154 –5.36

0.8%
2.4%
2.1%

77.7%
11.0%

6.0%

100.0%
--

3.6%
8.9%
8.1%

38.8%
23.6%
17.1%

--
100.0%–7.58

[–24.85; 14.60]
[–27.23; –3.77]

[–23.66; 1.26]
[–6.15; –2.05]

[–16.06; –5.14]
[–13.44; 1.34]

[–7.17; –3.55]
[–11.50; –3.67]Random effects model

Study Total TotalMean MeanSD SD MD 95%-CI
Weight

(common)
Weight

(random)Mean Difference
Post Pre

B

Valocto. rox., phase 1/2 (cohort 3)
Valocto. rox., phase 1/2 (cohort 4)
Valocto. rox., phase 3
Dirlocto. sam., phase 1/2

7
6

112
18

7
6

112
18

4.54
9.60
2.00
0.20

136.70
146.50
135.90

57.50

20.4170
37.9770
52.0000
75.7600

7.3930
9.7600
6.4000
1.3000 5.0%

100.0%
--

22.1%

23.7% 26.9%
6.2% 23.1%

65.1% 27.9%

--
100.0%

[–92.30; –22.30]

[–148.24; –116.07]
[–168.27; –105.53]
[–143.60; –124.20]

[–137.67; –122.01]
[–151.86; –82.53]

Heterogeneity: I 2 = 83%, �2 = 1096.4576, P � .01

Common effect model 143 143

–132.16
–136.90
–133.90

–57.30

–129.84
–117.20Random effects model

Study Total MD 95%-CI
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–150–100 0 100 150–50 50

Figure 2. Efficacy outcomes for HA. Forest plot of individual and PMD with 95% CI in (A) ABR and (B) AIR for AAV-based gene therapies for HA.
7 gene therapies and 211 people with HA (PwHA), and 12 distinct
trials representing 9 gene therapies and 184 people with HB
(PwHB; supplemental Table 1). Figure 1 shows the PRISMA flow
diagram for study selection.

Study characteristics

Studies were primarily early phase trials (phase 1, n = 2; phase 2,
n = 1; phase 1/2, n = 14), and 3 trials were phase 3.8,26,63 All
phase 3 trials were single-arm, pre/post cohort studies. Twelve
trials were multinational. Study characteristics are summarized in
Table 1.

Efficacy of AAV-based gene therapy for HA

Of 8 studies,38,55,63,112,113 5 reported ABR data for pooled anal-
ysis. A random-effects model of 154 PwHA showed a PMD
of −7.58 bleeding events per year (95% CI, −11.50 to −3.67;
I2 = 43%; P = .12) in favor of the post–gene therapy period
(Figure 2A). Three studies38,63,112 representing 143 PwHA
reported AIR data with a PMD of −117.20 infusion per year
(95% CI, −151.86 to −82.53; I2 = 83%; P < .01; Figure 2B) with
significant between-study heterogeneity. There were insufficient
data to complete a meta-analysis on annual factor concentrate use.
Both studies reporting annual factor concentrate use showed a
decrease after gene therapy, with the GENEr8-1 phase 3 trial for
valoctocogene roxaparvovec showing a decrease from 3961 to
125 IU/kg per year63 and the phase 1/2 trial for GO-8 showing a
decrease from 4097 to 1186 IU/kg per year.23 Measurement of
factor levels was done with both OSA and CSA in 5 trials and was
not specified in 2 trials. Mean factor levels measured by OSA at
12 months after gene therapy ranged from 10.4 IU/dL in the phase
1/2 trial for SPK-8016113 to 70.31 IU/dL in the 2 highest-dose
cohorts (cohorts 3 and 4) in the phase 1/2 trial for valoctoco-
gene roxaparvovec.112 Because of limited data, a meta-analysis of
factor levels was not performed.
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Safety of AAV-based gene therapy for HA

Six studies reported AEs and 7 studies reported serious AEs of
AAV-based gene therapy for HA. Overall, 99% of PwHA experi-
enced an AE (95% CI, 49-100; Figure 3A) and 19% experienced a
serious AE (95% CI, 10-31; Figure 3B). There was no evidence of
significant between-study heterogeneity (I2 = 0% and P > .05 for
both). ALT elevation was reported in 7 studies, which occurred in
71% (95% CI, 50-85) of PwHA, with evidence of significant het-
erogeneity across studies (I2 = 67%, P < .01; Figure 3C). On
sensitivity analysis, there was evidence suggesting the existence of
between-study heterogeneity after the removal of 2 studies99,113

with outlier results detected by z score (supplemental Table 2).
Two studies reported anaphylaxis, which occurred in 2.2% of
PwHA in the GENEr8-1 study of valoctocogene roxaparvovec63

and 0% in the phase 1/2 study of dirloctocogene samoparvo-
vec.38 All studies reported no inhibitor formation or thrombosis.

Efficacy of AAV-based gene therapy for HB

Eight studies8,22,26,28,33,69,73 representing 156 PwHB were
included in the pooled analysis for ABR. The PMD for ABR
throughout follow-up was −5.64 (95% CI, −8.61 to −2.68)
bleeding events per year with significant between-study hetero-
geneity (I2 = 70%; P < .01; Figure 4A). On sensitivity analysis,
removal of the 2 outlying studies28,73 on funnel plot suggested that
there was evidence showing nonsignificant between-study het-
erogeneity for the remaining studies (supplemental Table 3). Five
studies8,26,28,33,52 reporting AIR had a PMD of −58.92
(95% CI, −68.19 to −49.65) infusions per year without significant
heterogeneity between studies (I2 = 53%; P = .07; Figure 4B).
Data on annualized use of factor concentrate was available in 5
studies,22,26,33,69,73 showing a PMD of −2656.52
(95% CI, −3073.24 to −2239.79) IU/kg per year without signifi-
cant heterogeneity (I2 = 0%; P = .56; Figure 4C). Two studies
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Figure 3. Safety outcomes for HA. Forest plot of individual and pooled proportion with 95% CI of patients who experienced (A) AE, (B) serious AE, and (C) ALT elevation for

AAV-based gene therapies for HA.
reporting annualized factor use in IU per year without participant
weight showed a numerical decrease in annualized factor use. The
HOPE-B phase 3 trial of etranacogene dezaparvovec showed a
decrease from 257 338 to 8486 IU per year,8 and the phase 1/2
10 DECEMBER 2024 • VOLUME 8, NUMBER 23
trial of BAX335 showed a decrease from 221 250 to 99 941 IU
per year.52 Factor level measurement was reported with OSA alone
in 7 studies, both OSA and CSA in 2 studies, and not reported in 3
studies. Factor level by OSA at 12 months after gene therapy
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Figure 4. Efficacy outcomes for HB. Forest plot of individual and PMD with 95% CI in (A) ABR, (B) AIR, (C) annualized factor use (IU/kg), and (D) FIX level at 12 months for

AAV-based gene therapies for HB. MD, mean difference; MRAW, raw mean.
administration was pooled for meta-analysis across 5
studies8,26,33,69 representing 126 PwHB with a mean FIX level of
28.72 IU/dL (95% CI, 18.78-38.66) with statically significant het-
erogeneity (I2 = 85%; P < .01; Figure 4D). On sensitivity analysis,
after removing 2 outlying studies detected by z score, the phase 2b
and 3 trials for etranacogene dezaparvovec,8,69 the I2 value of 0%
5964 DESHPANDE et al
suggested the nonsignificant between-study heterogeneity for the
remaining studies (supplemental Table 3).

Safety of AAV-based gene therapy for HB

Eleven trials reported AEs and serious AEs with 94% of PwHB
experiencing an AE (95% CI, 68-99; Figure 5A) with statistically
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Figure 5. Safety outcomes for HB. Forest plot of individual and pooled proportion with 95% CI of patients who experienced (A) AE, (B) serious AE, and (C) ALT elevation for

AAV-based gene therapies for HB.
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Table 2. Risk-of-bias assessment

Trial name/NCT

(phase)

Gene therapy

(prior names)

1. Study

question

2. Eligibility

criteria and

study

population

3. Study

participants

representative

of clinical

populations of

interest

4. All

eligible

participants

enrolled

5.

Sample

size

6.

Intervention

clearly

described

7. Outcome

measures

clearly

described,

valid, and

reliable

8. Blinding

of

outcome

assessors

9.

Follow-

up rate

10.

Statistical

analysis

11.

Multiple

outcome

measures

12. Group-level

interventions

and individual-

level outcome

efforts

Quality

rating

HA

Alta/
NCT03061201
(1/2)

Giroctocogene
fitelparvovec
(PF-
07055480/
SB-525)

Y Y Y NR N Y Y N Y NR Y NA Fair

GENEr8-1/
NCT02576795
(1/2)

Valoctocogene
roxaparvovec
(BMN-270)

Y Y Y NR N Y Y N NR NR Y NR Fair

GENEr8-1/
NCT03370913
(3)

Valoctocogene
roxaparvovec
(BMN-270)

Y Y Y NR Y Y Y N Y Y NR NR Good

NCT03003533/
NCT03432520
(1/2)

Dirloctocogene
samoparvovec
(SPK-8011)

Y Y Y NR Y Y Y NR Y Y Y NA Good

NCT03734588
(1/2)

SPK-8016 Y Y Y NR N Y Y NR N Y NR NA Fair

NCT03370172
(1/2)

TAK-754 Y Y Y NR N Y Y N NR NR NR NR Poor

NCT03588299
(1/2)

BAY 2599023
(AAVhu37.
hFVIIIco)

Y Y Y NR N Y Y NR NR Y Y NA Poor

NCT03001830GO-
8 (1/2)

GO-8 (AAV8-
HLP-hFVIII-
V3)

Y Y Y NR Y Y Y NR Y Y Y NA Good

HB

BENEGENE-2/
NCT02484092
(1/2)

Fidanacogene
elaparvovec
(SPK-9001)

Y Y Y N Y Y Y NR Y Y Y NA Good

BENEGENE-2/
NCT03861273
(3)

Fidanacogene
elaparvovec
(SPK-9001)

Y Y Y Y Y Y Y NR Y Y Y NA Good

B-LIEVE/
NCT05164471
(1/2)

Verbrinacogene
setparvovec
(FLT180a)

Y Y Y NR N Y Y NR NR NR NR NA Poor

B-AMAZE/
NCT03369444
(1/2)

Verbrinacogene
setparvovec
(FLT180a)

Y Y Y Y Y Y Y NR Y NR NR NR Good

NCT02396342
(1/2)

AMT-060 Y Y Y Y CD Y Y N Y Y Y NA Good

HOPE-B/
NCT03569891
(2b)

Etranacogene
dezaparvovec
(AMT-061)

Y Y Y NR N Y Y NR Y N NR NA Fair

CD, cannot determine; N, no; NA, not applicable; NCT, National Clinical Trial; NR, not reported; Y, yes.
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significant between-study heterogeneity (I2 = 45%; P = .04) and
21% experiencing a serious AE (95% CI, 10-37; Figure 5B) with
nonsignificant between-study heterogeneity (I2 = 10%; P = .34).
ALT elevation was reported in 10 studies and occurred in 32% of
PwHB (95% CI, 19-49) with nonsignificant heterogeneity
(I2 = 34%; P = .11; Figure 5C). Three studies reported no inci-
dence of anaphylaxis. No study reported formation of an inhibitor or
thrombosis.

Durability of gene expression for HA and HB beyond

12 months

For trials reporting factor levels at 24 months after administration of
gene therapy, we compared the highest previously reported factor
level with the factor level at 24 months, weighted by size of study
population. HA gene therapies fell to 55.8% of their peak FVIII level
at 24 months. HB gene therapies fell to 95.7% of their peak FIX
level at 24 months.

Risk-of-bias assessment

All trials followed a before-after or pre-post design and were
assessed with the National Institutes of Health/National Heart,
Lung, and Blood Institute Quality Assessment Tool for Before-After
(Pre-Post) Studies with no control group. We assessed the plu-
rality (10, 50.0%) of trials to have good quality; 6 (30.0%) trials
were assessed to have fair quality; and 4 (20.0%) trials to have
poor quality, primarily because of missing methodological infor-
mation (Table 2).

Publication bias

On evaluation for publication bias for the primary outcome of ABR,
funnel plots and Egger tests were used. The results indicated that
nonsignificant heterogeneity was present for HA gene therapies
(P = .0876; Figure 6A). For HB, the Egger test was significant
(P = .0006), with the funnel plot showing asymmetry, especially for
2 studies28,73 with a larger absolute PMD and relatively larger
standard error, which may overestimate the magnitude of the point
estimate for ABR in HB gene therapies (Figure 6B; supplemental
Table 3).
Discussion

We performed a systematic review and meta-analysis on the effi-
cacy and safety of AAV-based gene therapies for HA and HB. We
found that PwHA and PwHB had significantly lower annualized
bleeding events and factor infusion requirements after gene ther-
apy compared with factor prophylaxis before gene therapy. At
24 months, we observed that factor levels declined to 55.8% of
their peak level among PwHA, whereas they remained durable
among PwHB. Treatment was well tolerated. There was no inhibitor
formation or thrombotic events reported among eligible studies.

AAV-based gene therapy has emerged as a promising treatment
for PwHA and PwHB, offering advantages over prophylaxis with
factor concentrate or emicizumab. As our results show, a single
infusion of vector reduces bleeding and mitigates or eliminates the
burden of frequent infusions compared with prophylaxis with factor
concentrate. However, more work is needed to optimize gene
therapy for hemophilia before it can be considered a treatment of
choice for most patients.
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Figure 6. Publication bias. Funnel plot for trials of AAV-based gene therapies for (A) HA and (B) HB.
First, most studies we identified excluded patients with neutralizing
anticapsid antibodies or a history of inhibitors to FVIII or FIX, greatly
limiting who is eligible to receive treatment. Efforts to expand
eligibility for these therapies is paramount.

Second, improving the prevention, detection, and management of
anticapsid immune responses is a priority. Such responses typically
manifest as hepatic transaminase elevation. Prompt treatment, typi-
cally with corticosteroids, is necessary to minimize loss of factor
expression.75,124 Our results suggest heterogeneity between gene
therapy products with respect to the incidence of ALT elevation.
Some of this heterogeneity may be due to protocol-specific factors.
Protocols used different cutoffs for both grading ALT elevation
(usually either 1.5- or twofold above baseline levels or upper limit of
normal) and for initiating immunosuppression in response to ALT
elevation. Likewise, some protocols used prophylactic prednisolone
and tacrolimus22 in the initial post–gene therapy period to mitigate
vector-related hepatotoxicity whereas others advised initiation of
immunosuppression only in those who developed ALT elevation.
These protocol differences and limited subject-level data preclude
pooled analysis on the impacts of ALT elevation and use of immu-
nosuppression on durability of factor expression and highlight the
need for further research to optimize use of immunosuppression.

Higher rates of ALT elevation were observed in gene therapies for
HA relative to HB, perhaps because of higher vector doses used in
HA. In phase 1/2 studies reporting hepatotoxicity by dose cohorts,
higher doses appeared to yield more hepatotoxicity.22,69 Higher
vector doses were also associated with prolonged time to vector
clearance from body fluids, such as semen.33 The impact of vector
dose on the incidence and severity of other AEs merits further
investigation.

Because the ultimate vision for gene therapy is a 1-time cure, the
long-term durability of clotting factor expression is critical. Our
results highlight what others have found, AAV-based gene therapy
for HB appears to produce stable gene expression for at least 10
years whereas FVIII levels in PwHA tend to decline over time, at
least with some products.108 Although gene therapy may reduce
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health care costs in the long-term, current pricing in the United
States between $2 to $3 million may be cost-prohibitive for some
patients based on their insurance coverage, geographic location,
and health care system. Further study on duration of effect may
yield a better understanding of the cost-effectiveness of gene
therapy.125 Additionally, long-term data regarding safety and
potential toxicities such as risk for insertional mutagenesis need to
be further explored through long-term follow-up.126,127

Our results are in general alignment with another recently pub-
lished systematic review and meta-analysis on AAV-based gene
therapy for hemophilia by Han et al,128 which also demonstrated
significant reductions in ABR and AIR after vector infusion. How-
ever, we believe that our point estimates are more accurate
because we combined successive publications of the same trial
into 1 set of outcomes. In contrast, Han et al counted multiple
publications of the same trial with the same participants as distinct
studies with distinct outcomes, an error known as double-counting
bias.129

A key strength of our analysis is its completeness. By extracting
data from peer-reviewed manuscripts, conference proceedings,
and ClinicalTrials.gov, we were able to include data with the
longest follow-up and most complete outcomes.

Our study also has limitations. First, all of the included studies
followed a nonrandomized, single-group pre/post (before/after)
design rather than a randomized controlled trial, although this is a
typical and reasonable approach when recruitable participants are
limited in rare diseases.130 This trial design limited our ability to
directly compare gene therapies with other therapies of interest
such as emicizumab and extended half-life factor prophylaxis. A
second limitation is the intrinsic heterogeneity between different
gene therapy products and certain aspects of their study designs.
Nevertheless, the similar use of AAV vectors, study populations,
pre/post study designs, and outcomes support the pooling of data
in this context. The direction of treatment effect was uniformly in
favor of gene therapy for the primary outcome (ABR), further
supporting our use of meta-analysis. Finally, there were limitations
10 DECEMBER 2024 • VOLUME 8, NUMBER 23
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to data availability. Some trials were only published as abstracts, or
their latest results were published as abstracts with incomplete
reporting of methods and outcomes. When possible, patient-level
data were used, but they were not uniformly available.

In conclusion, our results demonstrate that AAV-based gene
therapies for both HA and HB significantly reduce ABR, AIR, and
factor use with achievement of hemostatic factor levels and an
acceptable safety profile. FIX levels generally remained stable over
2 years, whereas FVIII levels showed a tendency to decline over
time. The place of gene therapy in the evolving landscape of
hemophilia treatment remains to be determined. Although uptake
has been slow to date,131 AAV-based gene therapy represents an
attractive option for patients who place a high value on freedom
from regular treatment. Efforts to expand eligibility, minimize anti-
capsid immune responses, improve durability of factor expression,
reduce costs, and expand access will only augment the potential of
this game-changing therapy.
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