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Abstract 

Background Despite a wealth of data from high-income countries, there is limited information on the distinct epi-
demiological patterns observed in diverse, densely populated regions within Latin America. This retrospective analysis 
of COVID-19’s four major waves in Bogotá, Colombia, evaluates 1.77 million cases in detail.

Methods A comprehensive suite of statistical methods was employed. Transmission dynamics were assessed by esti-
mating the instantaneous reproduction number R(t) , while variant-specific transmission advantages were estimated 
using multinomial logistic regression models. Disease severity was assessed through a suite of indicators: Hospitalisa-
tion Case Ratio (HCR), intensive care unit case ratio (ICU-CR), case fatality ratio (CFR), hospitalisation fatality ratio (HFR), 
and ICU fatality ratio (ICU-FR). Additionally, we analysed the distribution of hospitalisations, ICU admissions, and fatali-
ties by age group and wave. We employed a Bayesian hierarchical model to capture epidemiological delays—such 
as onset-to-death, hospitalisation, and ICU admission durations to estimate hospital and ICU stay durations.

Results Our findings reveal substantial variation in R(t) , with peaks exceeding 2.5 during the ancestral and Omicron 
waves. Over the course of the pandemic, we observed a 78% reduction in CFR, underscoring shifts in clinical severity. 
The third wave, associated with the Mu variant, recorded the highest case and death counts, alongside a decreased 
CFR, an elevated HFR, and a shift in the most affected age group towards younger populations. In contrast, the fourth 
wave, driven by the Omicron variant, exhibited the highest reproduction number and the lowest overall severity. This 
wave was characterised by a significant increase in pediatric hospitalisations. The study reveals a continued decline 
in the mean durations of hospital and ICU stays across the four waves, with hospital stays decreasing from 10.84 
to 7.85 days and ICU stays dropping from 16.2 to 12.4 days.

Conclusions This study reveals significant shifts in transmission and severity metrics—including mortality, hospitali-
sation, and ICU rates and stays—across age groups during Bogotá’s four COVID-19 waves. These insights underscore 
the value of retrospective analyses to understand the pandemic’s varied impact and inform public health strategies 
in diverse urban settings.
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Background
Understanding the statistical characteristics of an epi-
demic is crucial for modelling and managing public 
health emergencies. During the COVID-19 pandemic, 
early estimates based on preliminary reports [1, 2] were 
crucial for projecting spreading scenarios across different 
geographies. This pandemic exhibited marked geographi-
cal heterogeneity, influenced initially by variations in 
population demographics and health system capacities, 
and later by the diversity in interventions and contact 
patterns [3]. The evolving epidemiological scenario was 
further complicated by the advent of novel SARS-CoV-2 
variants and unequal vaccination rates, presenting chal-
lenges in comprehending the regional disease dynamics 
[4].

In Latin America, especially in major urban centres 
like Bogotá, Colombia, distinct epidemiological patterns 
emerged during the COVID-19 pandemic. Some of these 
trends were initially identified in the early phases of the 
outbreak [5], yet a comprehensive retrospective charac-
terisation remains lacking. While numerous studies have 
detailed epidemiological parameters across various high-
income countries [6, 7], there is a notable deficit in holis-
tic retrospective analyses that integrate epidemiological, 
clinical, and genomic data on a global scale, particularly 
in the Latin American context.

Addressing this void, our study presents a nuanced 
statistical analysis and comparative examination of the 
transmission and severity of the first four COVID-19 
waves in Bogotá. Covering March 2020 to April 2022, 
our work distinguishes itself by synthesising diverse data 
sources -–such as the confirmed COVID-19 case data-
base from the District Health Secretary of Bogotá and the 
surveillance data published by GISAID—to elucidate the 
pandemic’s multifaceted dynamics in a key Latin Ameri-
can urban setting.

Methods
Data
Confirmed cases
The confirmed cases database of the District Health Sec-
retary of Bogotá stores individual information on dates: 
symptoms onset, admission to general hospitalisation 
and intensive care units (ICU), discharge from hospitali-
sation services, and death. It also contains information on 
the condition of patients, the level of severity of the infec-
tion, and demographic details such as age and sex [8]. 
This database is maintained and updated with the daily 
report of confirmed cases from polymerase chain reac-
tion and antigen tests and the information on patients’ 
status provided by the National Epidemiology Surveil-
lance System.

To compute stays at general hospital beds we created end 
dates using the following hierarchy of available dates: ICU 
entrance, discharge, and death. Similarly, we calculated 
stays in ICU creating the end dates from discharge and 
death dates, following the same hierarchy. To validate the 
estimated end dates, we recreated daily occupancy curves 
from the confirmed cases report. We compared them with 
the official report of ICU occupancy for both services avail-
able on the open data websites: Datos Abiertos Bogotá  [9] 
and Saludata Bogotá  [10].

Genomic data
The genomic surveillance data was accessed through 
GISAID [11, 12]. It contains the genomic sequences for 
SARS-CoV-2, processed by different laboratories all 
across the country. We classified the viral lineages using 
the nomenclature presented in the literature [13] and 
counted the sequences grouped by epidemic week, start-
ing from the 12th week of 2021, which is the earliest date 
available.

Statistical methods
Start and end dates of waves
We computed the start and end date of each wave 
using the first derivative criteria for change of convex-
ity applied on the daily series of new cases. For that pur-
pose, we differentiated this series and calculated its roots 
using simple linear interpolation. To avoid multiple roots 
generated by the typical series oscillations, we smoothed 
both series using the Gaussian smoothing method with a 
kernel width of 10 days.

Reproduction numberR(t)  
We estimated the time-varying R(t) using the epidemio-
logical R package EpiEstim [14]. We used the daily report 
of new cases from the confirmed cases database, grouped 
by onset date, to distinguish imported cases from local 
cases. We assumed an incubation period of 5  days and 
a serial interval of 6.48  days with a standard deviation 
equal to 3.83 days [15, 16]. Additionally, we estimated the 
delay time of the database using the percentile 0.9 of the 
distribution of differences between reporting and onset 
dates of cases. We ran these estimations for the total con-
firmed population in Bogotá and for adults 60  years of 
age or older to compute the possible effects of changes 
in the focalisation of massive testing strategies in Bogotá.

Transmission advantage
We evaluated the transmission advantage using a multi-
nomial logistic regression with a single explanatory vari-
able t given by

f (v, t) = α + βv,0t
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where α is the intercept of the model and βv,0 is the var-
iant-specific parameter for the time covariate, which is 
computed with respect to a reference (or pivot) variant. 
For simplicity, we chose Alpha as the pivot variant, which 
is the first observation in time that we have.

In general terms, the coefficients βv,0 can be used to 
calculate the transmission advantage of a variant v with 
respect to the pivot variant (in our case Alpha) by means 
of the following relation [17].

Where  g0 = 4.5days, (3.7− 5.4) is the generation time 
of Alpha [18], and the coefficient was divided by seven to 
normalise its value to daily scale. Thus, we can compute 
the transmission advantages between any two different 
variants w and v , using the transmission rates Tw,0 and 
Tv,0 as follows:

Severe outcomes
We computed the HCR, ICU-CR, CFR, HFR and ICU-
FR disaggregated by sub-populations (i, g) where i ∈ {1,2, 3,4} 
is the number of wave and g ∈ {0− 9, 9− 19, 20− 29, 30− 39,

40− 49, 50− 59, 60− 69, 70− 79, 80+} the age-group. For the case 
ratios we used the following:

Where Xi,g ∈ {Hi,g , ICUi,g } is the cumulative number of 
hospitalised patients ( Hi,g ) and the cumulative number of 
patients at the ICU ( ICUi,g ) in a subpopulation(i, g) , and 
Ci,g is the cumulative number of cases by sub-population. 
On the other hand, the fatality ratios were calculated as:

In this case, Xi,g ∈ {Ci,g ,Hi,g , ICUi,g } and D|Xi,g is the 
cumulative number of deaths given that they belong to 
the population Xi,g [19].

We also computed the percentages of Hospitalisation, 
ICU admission, and deaths per age group and wave:

where Yi,g ∈ {Hi,g , ICUi,g ,Di,g } is the number of 
cases for each outcome per wave and age group and 
Yi ∈ {Hi, ICUi,Di} is the total number of cases for 
each outcome per wave. In all cases, we estimated 

Tv,0 = exp(
βv,0

7
g0),

Tw,v =
Tw,0

Tv,0

XCRi,g =
Xi,g

Ci,g

XFRi,g =
D|Xi,g

Xi,g

Y%i,g = 100×
Yi,g

Yi

95% Confidence Intervals (95% CI) using binomial 
proportions.

Probability distributions of epidemiological delays
We fitted the probability density functions (PDFs) to the 
observed distributions for onset to death, general hos-
pitalisation, and ICU entrance; and for stays at general 
hospital and ICU beds. We used a Bayesian hierarchical 
 model20 to fit the parameters of each distribution. In this 
order, we assumed that the set of n parameters {qi,j} of the 
j th wave was normally distributed as follows:

Where i = 1,2, 3, .., n runs over n parameters of cer-
tain PDF, j = 1,2, 3,4 is the wave, qi,Bog is the value of 
the i th parameter of the PDF estimated for Bogotá and 
σi ∼ N+(0,1) is the standard deviation which is assumed 
to be distributed as a truncated normal distribution. For 
simplicity, we assumed normal truncated distributions 
N+(0,1) as prior probabilities for the parameters at the 
district level. All the parameters were estimated within a 
95% Bayesian Credible Interval (95% BCI).

We ran all the estimations of posterior samples using 
the Hamiltonian Monte Carlo (HMC) algorithm imple-
mented in Stan, setting four chains of 2000 iterations 
(1000 for warming up and 1000 for sampling). To get 
the best fitting for each epidemiological distribution, we 
compared the models by pairs using the Bayes Factor 
(BF), as follows:

Here z(y|Mi) is the evidence of the model Mi , com-
puted using the Laplace approximation corrected with 
Thermodynamic Integration [20, 21].

We fitted the multinomial regressions and the Bayes-
ian hierarchical models using the HMC algorithm imple-
mented in Stan. In all the cases, we used a typical number 
of 2000 iterations (1000 for warming up and 1000 for 
sampling) and sampled over 4 chains.

All methods implemented in this paper are publicly 
available on GitHub [22].

Results
Overview
Bogotá comprises an estimated 8 million inhabitants. 
According to official data [23], 52% of the population 
is female and 48% is male. The age pyramid is com-
posed of 13% adults older than 60 years, 53% between 
18 and 59  years, and 24% younger than 18  years. The 
health system is composed of around 80% contribu-
tive affiliates and 20% subsidised individuals. During 

qi,j ∼ N (qi,Bog , σi),

Bij =
z(y|Mi)

z(y|Mj)
.
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the COVID-19 pandemic, the city experienced about a 
third of the impact in terms of cases and deaths in the 
country. Between March 2020 and April 2022, Bogotá 
reported a total of around 1.77 million confirmed cases 
and 112,985 hospitalisations, including 38,088 ICU 
admissions, and 29,512 deaths associated with COVID-
19. Across this period, there were four discrete “waves” 
of transmission (Fig. 1a, and details in Additional file 1: 
Table  S1, also see Statistical methods section for how 
“waves” were defined). Across all waves, a larger num-
ber of COVID-19 cases were reported in females than 
in males (Fig.  1b). The highest R(t) values were regis-
tered at the beginning of the first wave and close to the 
peak of the fourth wave (Fig.  1c). The former is asso-
ciated with the original virus lineage from Wuhan and 
the latter with the Omicron variant (Fig. 1d). Genomic 
sequencing data is only available from March 2021 
onwards and shows the third wave (the largest and 
deadliest, with 781,276 cases and 13,188 deaths dur-
ing this period) was dominated by the Mu variant. 
Although the Delta variant dominated between August 
and September 2021, this did not lead to the resurgence 
of transmission and caused another wave. The fourth 
wave was dominated by Omicron (Fig. 1d).

Transmission advantage
Analysis of genomic sequencing data collated from cases 
in Bogotá over the period from March 2021 onwards 
highlights a dynamic pattern of establishment and 
replacement of variant lineages (Fig. 2). During the initial 
period following the availability of sequencing data, we 
observed the replacement of the Gamma variant by the 
Mu variant (mainly associated with the third wave). The 
Mu variant was subsequently replaced by the Delta vari-
ant (though this establishment occurred without leading 
to a resurgence of transmission). Following this, Delta 
was replaced by the Omicron variant (which caused the 
fourth wave of transmission in Bogotá) (Fig. 2a).

We applied a multinomial regression methodology to 
calculate the relative transmission of each variant (see the 
“Methods” section). Our analyses highlight that Delta, 
Gamma, Mu, and Omicron were more transmissible than 
Alpha, being 1.84 (95% BCI 1.63–2.13), 1.35 (95% BCI 
1.19–1.56), 1.45 (95% BCI 1.28–1.68), and 3.92 (95% BCI 
3.35–4.61) times more transmissible, respectively. Omi-
cron exhibited the highest transmission advantage with 
respect to all the variants, being 2.13 (95% BCI 1.95–
2.33), 2.91 (95% BCI 2.65–3.2), and 2.7 (95% BCI 2.46–
2.96) times more transmissible than Delta, Gamma, and 
Mu, respectively.

Fig. 1 Overview of the COVID-19 pandemic in Bogotá: a confirmed cases (left) and cumulative deaths (right) during the pandemic; b distribution 
of cases by age group and sex; c instantaneous reproduction number during the pandemic; d prevalence of SARS-CoV-2 variants since March 2021. 
Dashed lines in panels a and c correspond to the start and end dates of the four waves
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Note that, after the third wave, Delta became domi-
nant in Bogotá, leading to the extinction of Mu. This fact 
makes it necessarily more transmissible than Mu (1.3 
times its transmission advantage). Despite this, Delta did 
not cause a new outbreak after the end of the third wave.

Severe outcomes
The HCR, the ICU-CR, and the CFR decreased dra-
matically across the four waves of the pandemic (see 
Fig. 3a–c).

During the first wave, the all-ages CFR was noted to 
be 2.70% (95% CI 2.60–2.80). In the second wave, there 
was a substantial decrease at 1.80% (95% CI 1.80–1.90). 
The third wave saw a further marginal reduction in the 
CFR, at 1.70% and a significant change was observed in 
the fourth wave, where the CFR dropped substantially 
to 0.60% (95% CI 0.50–0.60). It means a 78% reduction 
of CRF from the first to the fourth wave (See details in 
Additional file 1: Table S6).

Contrastingly, the HFR showed varying trends across 
the four waves of the pandemic. In the first wave, the HFR 
was 23.90% (95% CI 23.50–24.40), and slightly higher 
in the second wave, at 24.30% (95% CI 23.80–24.90). A 
notable increase was observed in the third wave, where 
the HFR rose to 31.00% (95% CI 30.50–31.40), while 
the fourth wave saw a significant decrease in the HFR, 

dropping to 18.90% (95% CI 18.00–19.70). Similar trends 
were observed for ICU-FR with the highest values during 
the third wave (see Fig. 3 and Additional file 1: Table S6).

The age group with the highest difference to the overall 
trend of the other three waves was 50–59, with an HFR 
and ICU-FR of 26.00% (95% CI 25.10–26.80) and 40.00% 
(95% CI 38.50–41.50), respectively. Interestingly, the val-
ues of the ICU-FR showed an increasing trend with age up 
to the 70–79 age group and then a decline for the 80 + age 
group during the first to the third waves (Fig. 3b).

In addition to the severe outcome ratios, we calculated 
the percentages of the population in general hospital 
and ICU services, as well as the distribution of deaths by 
age group for each wave (Fig.  4). The overall behaviour 
of the first three waves (Fig.  4a–c) was similar, yet the 
fourth wave exhibited drastic changes. Despite a signifi-
cant decrease in the number of the population present-
ing severe outcomes during the fourth wave (Additional 
file 1: Fig. S4), the percentage of children below 10 years 
of age in general hospitalisation and ICUs (Fig.  4a, b) 
increased in comparison to the other waves. Moreo-
ver, the percentage of deaths predominantly occurred 
in the population aged 80 years and older, reversing the 
decreasing trend observed in this age group during the 
first three waves.

It is noteworthy that, except for the fourth wave, the 
hospitalisation and ICU percentages per wave were 
highest among those aged between 50 and 69 years, and 

Fig. 2 Transmission advantage for variants detected in Bogotá since March 2021. a Multinomial regressions setting Alpha as the pivot variant 
(95% BCI). b Results for the transmission advantage between Alpha, Delta, Gamma, Mu, and Omicron. The first row of the heatmap contains 
the coefficient obtained directly for the multinomial regressions, which describes the advantage of a variant v (Alpha, Delta, Gamma, Mu, 
and Omicron) with respect to the reference variant Alpha. Notice that the first matrix element in this diagram trivially equals zero, as well 
as the whole diagonal of the matrix, because there is no advantage of any variant with respect to itself
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Fig. 3 Severity parameters per age group and wave of the COVID-19 pandemic in Bogotá (95% CI). a, b Hospitalisation case ratio (HCR) and ICU 
case ratio (ICU-CR); c Case fatality ratio (CFR); d, e hospitalisation fatality ratio (HFR) and ICU fatality ratio (ICU-FR)

Fig. 4 Age percentage distribution of COVID-19 cases in hospitalisation, ICU services and deaths by wave (95% CI). The corresponding values 
for each point of the same colour sum up to 100%
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lowest for individuals under 20  years old. For example, 
in the third wave, the least hospitalised age group was 
10–19 years, and the most hospitalised was 50–59 years, 
with 0.85% (95% CI 0.85–0.86) and 23.02% (95% CI 
23.01–23.03) of the hospitalised cases in that wave, 
respectively (Additional file 1: Table S6).

Furthermore, during the fourth wave, which corre-
sponded to a period when the Omicron variant was prev-
alent in the city (Fig. 1d), there was a marked increase in 
the percentage of hospitalised cases and ICU admissions 
for the age group 0–9  years. The percentages rose from 
2.70% (95% CI 2.70–2.71) in the first wave to 16.17% (95% 
CI 16.15–16.19) in the fourth wave for general hospitalisa-
tion and from 1.32% (95% CI 1.31–1.33) in the first wave 
to 10.20% (95% CI 10.15–10.26) for ICU admissions. How-
ever, these drastic increases did not result in a correspond-
ing rise in the percentage of deaths for this age group.

Conversely, the percentage of deaths among the elderly 
(80 + years) dramatically increased in the fourth wave to 
54.11% (95% CI 54.03–54.19). This age group accounted 
for 928 of the 1715 deaths that occurred during the 
fourth wave (Additional file 1: Table S1). Still, this rise in 
the contribution of deaths from this age group did not 
reflect an increase in the total number of deaths com-
pared to previous waves, due to the overall lower severity 
of the Omicron variant as indicated by the reported fatal-
ity ratios (Fig. 3).

Epidemiological delay distributions
We utilised a previously developed hierarchical Bayes-
ian framework [24] to fit different statistical distri-
butions to data describing the delays between key 
epidemiological outcomes (e.g. COVID-19 symptom 
onset and death). Our results highlight marked vari-
ation in the different epidemiological distributions 
across the four waves, with a clear downward trend 

for the fourth wave compared to previous ones. The 
highest values were observed for the second wave for 
the parameters onset to hospitalisation, and onset to 
death. Also, narrower distributions were observed for 
the fourth wave (Fig.  5). In most cases, we found evi-
dence in favour of the Generalised Log-Normal distri-
bution as the best model, except for the onset-to-death 
distributions, for which the best model was the Gamma 
distribution (Additional file 1: Fig. S3 and Tables S4 and 
S5).

For the time from symptoms onset to hospitalisation, 
mean values of around 7–8  days were observed for the 
first three waves, with a significant reduction for the 
fourth wave to 5.54 (95% BCI 5.49–5.57) days. For the 
time from symptoms onset to ICU admission, the mean 
values were reduced from the first to the fourth waves 
and went from 12.31 (95% BCI 12.22–12.38) days to 7.84 
(95% BCI 7.55–8.17). For the time from symptoms onset 
to death, the mean value decreased from the first to the 
fourth waves, from 17.42 (95% BCI 17.33–17.5) to 14.87 
(95% BCI 14.65–15.03) days.

For the duration of the hospital stay, a reduction of 
around 2 days, from 10.84 (95% BCI 10.72–10.98) to 8.83 
(95% BCI 8.74–8.93) days, was observed from the first to 
the second wave. No further changes were observed for 
the third wave. However, a further reduction of almost 
1  day, from 8.77 (95% BCI 8.69–8.86) to 7.85 (95% BCI 
7.7–8.01) days, was observed for the fourth wave with 
respect to the third wave. Interestingly, for the duration 
of the ICU stay, a reduction of about 1 day was observed 
in each consecutive wave, going from 16.2 (95% BCI 
15.91–16.52) to 15.4 (95% BCI 15.16–15.67) and to 14.41 
(95% BCI 14.25–14.61), during the first, second, and 
third waves respectively. A further decrease of 2 days was 
observed for the fourth wave, for which the mean ICU 
stay time was 12.4 (95% BCI 11.9–13.11).

Fig. 5 Epidemiological delay distributions. Average number of days for onset to hospitalisation, onset to ICU admission, onset to death, hospital 
stay, and ICU stay by wave (95% BCI)
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Discussion
This study constitutes the first detailed exploration of 
the COVID-19 pandemic’s progression in Colombia, 
employing an extensive dataset that includes 177 mil-
lion cases, 105,831 deaths, 36,313 hospital admissions, 
and 28,274 ICU admissions from Bogotá between 2020 
and 2022. It uniquely compares transmission and sever-
ity parameters across four distinct waves, offering critical 
insights into the dynamic nature of the pandemic.

The analysis of transmission, as indicated by the R(t) , 
revealed significant fluctuations. During the early days 
of the pandemic in March 2020, linked to the ancestral 
strain, the R(t) reached 2.8, denoting high transmission. 
A similar peak in transmission ( R(t) =2.7) occurred in 
the fourth wave, around November 2021, correspond-
ing with the Omicron variant’s emergence. Studies have 
reported that the attack rates for the first three waves 
in Bogotá were 30% (95% CI 27.3–32.8) [25], 53% (95% 
CI 45–62) [5], and 70–80% [26]. Genomic data avail-
able from the latter part of the second wave disclosed a 
sequence of variant displacement: Gamma initially over-
took Alpha, followed by Mu’s dominance in the third 
wave, the most extensive of the pandemic. This preva-
lence of Mu between April and July 2021 is hypothesised 
to have led to a significant proportion of the local pop-
ulation contracting the virus. The transition from the 
third to the fourth wave saw the Delta variant ascend to 
dominance, causing the decline of Mu. This trend mirrors 
observations from India and Europe, underscoring Del-
ta’s heightened transmission [27]. However, Delta’s rise in 
Bogotá did not trigger a new outbreak, likely due to the 
reduced pool of susceptible individuals after the third 
wave. The emergence of Omicron towards the end of 
2021 then swiftly replaced Delta, instigating a large wave 
of infections, attributable to its ability to evade immune 
responses.

Our findings show a transmission advantage of 2.13 
(95% BCI 1.95–2.33) of Omicron over Delta, 2.91 (95% 
BCI 2.65–3.2) over Mu, and 2.7 (95% BCI 2.46–2.96) 
over Alpha. These results align with previous stud-
ies, which reported similar transmission advantages for 
emerging variants, such as the increased transmissibil-
ity of Alpha over the wild-type strain observed in Eng-
land [28], Gamma over prior lineages in Brazil [29], Delta 
over previously circulating lineages in India [30], as well 
as a global analysis of variant transmission advantages 
across many countries [31]. Although our method can-
not decompose the different contributing components 
for each variant considered here, the transmission advan-
tage likely arose due to a combination of higher intrin-
sic transmissibility [32] and some immunity escape [33]. 
Evidence exists supporting the relevance of both fea-
tures, though the comparative contributions of each to 

the transmission advantage likely vary depending on 
the variant being considered. We note that our method 
(which utilises information routinely collected by public 
health agencies conducting genomic sequencing) cannot 
decompose the relative contributions of transmissibility 
increase and immune evasion to the observed transmis-
sion advantage; this would represent a productive area of 
future research.

In examining severity parameters, a consistent reduc-
tion across the waves was noted in the likelihood of hos-
pitalisation, ICU admission, or death among confirmed 
cases. This trend aligns with observations from other 
nations, such as the UK, where a shift in severity esti-
mates from the first wave was noted, primarily due to 
advancements in medical care [34]. Nonetheless, some 
intriguing patterns in severity emerged during the third 
and fourth waves that are worth mentioning.

The third wave, though characterised by high case and 
mortality rates at the population level, exhibited a lower 
CFR but a higher risk of death post-hospitalisation or 
ICU admission. This pattern does not necessarily point 
to an inherently more severe Mu variant, but rather to 
a greater influx of severe cases into hospitals due to the 
largest infection surge. The strain on hospital capacity 
during this period reached an all-time high, as evidenced 
by peak hospital and ICU occupancy rates (Additional 
file 1: Fig. S2).

On the other hand, the fourth wave, predominantly 
driven by Omicron, presented the lowest values of all 
severity parameters during the pandemic: CFR, HCR, 
ICU-CR, HFR, and ICU-FR. The marked decrease in 
severity was accompanied by a notable reduction in 
delay times across various metrics (onset to hospitalisa-
tion, onset to death and hospitalisation stays), potentially 
reflecting the overall less severe nature of this wave. This 
reduction could be a consequence of both the substantial 
vaccination coverage (60% with at least the first dose) and 
the reduced severity of the Omicron variant. Intriguingly, 
despite lower severity metrics, this wave witnessed an 
increase in mortality among those over 80 and a rise in 
hospitalisations in the under-10 age group.

The vaccination strategy against COVID-19 in Bogotá 
likely played an important role in the decrease of sever-
ity parameters across waves, particularly on the fourth 
wave. The vaccination programme in the country only 
started after the second wave. The two-dose scheme in 
Bogotá started by age-order but covered less than 1% of 
the population by the beginning of the third wave and 
reached 30% by the end of that wave. Nonetheless, it sur-
passed 50% by the beginning of the fourth wave. A ret-
rospective analysis estimated the vaccine effectiveness 
at 82.7% (95% CI 82.1–83.2) for preventing hospitalisa-
tion and 86.0% (95% CI 85.5–86.5) for preventing death 
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in the country [35]. A waning in the protective effect of 
vaccines against symptomatic infection by Omicron was 
reported by a case–control study in Bogotá, although it 
was not reflected in the protection against hospitalisation 
[36]. These studies clearly show that vaccination contrib-
uted to the reduction of severity, at the population level, 
particularly in the fourth wave which correlates with our 
findings. Some studies have also demonstrated a lower 
severity of Omicron compared to Delta [28, 37] and a 
reduction of severity of subsequent infections after natu-
ral prior exposure. These factors together (vaccination, 
lower intrinsic severity, and prior immunity) may have 
contributed to a decrease in severity parameters in the 
fourth wave, despite an increase in variant transmission.

A high heterogeneity has been found in delay times 
across regions. A systematic review [38] found that South 
America had the longest average length of stay in hospi-
tals at 20.85 days (95% CI 14.80–26.91), while Africa had 
the lowest value at 8.56 days (95% CI 1.00–22.76). Note 
that in our results, the length of stay in hospital was dis-
aggregated by successive times in general hospital beds 
and ICU beds, with values between 7.85 and 10.84 days 
(95% BCI 7.7–10.98) and 12.4–16.2 days (95% BCI 11.9–
16.52), respectively. The onset to death exhibited simi-
lar values during the first three waves: 17.42  days (95% 
BCI 17.33–17.5), 18.75 days (95% BCI 18.66–18.84), and 
17.47  days (95% BCI 17.42–17.51), comparable to the 
average value reported in China, which was 17.8  days 
(95% CI 16.9–19.2) [39]. Highly heterogeneous results 
have been reported for this parameter in Brazil, with 
an average of 15.2 days (95% BCI 15.1–15.3) and highly 
variable across states [24]. Our estimates of the length of 
stay show an important decrease (of about 3  days) dur-
ing the fourth wave (median 14.87, 14.65, 15.03), which 
was dominated by the Omicron variant and with most 
of the population vaccinated. Studies in Denmark have 
demonstrated that vaccination played a role in the reduc-
tion of this parameter [40]. In summary, the fourth wave 
exhibited the shortest epidemiological timelines of the 
pandemic. The duration from symptom onset to hospi-
talisation and death remained relatively stable through-
out the first three waves. Meanwhile, other hospital stay 
durations consistently decreased from one wave to the 
next.

Conclusions
Overall, this study underscores the dynamic and evolving 
nature of the COVID-19 pandemic in Bogotá, marked by 
significant variations in transmission rates, severity, and 
clinical outcomes across the four waves. The data indicate 
a gradual reduction in disease severity, as evidenced by a 

substantial decrease in the Case Fatality Ratio (CFR) and 
shorter hospital and ICU stays over time. Each wave, driven 
by distinct SARS-CoV-2 variants, had unique impacts on 
different age groups and healthcare demands. The findings 
highlight the critical importance of ongoing surveillance 
and adaptive healthcare strategies to address the challenges 
posed by emerging variants, reinforcing the need for flex-
ible, informed public health responses. Additionally, the 
study emphasises the role of collaboration between govern-
mental and academic institutions, which has been essential 
for developing the technological infrastructure necessary 
to access comprehensive data and enable robust analysis. 
Such partnerships are vital for deepening our understand-
ing of pandemic dynamics and informing future outbreak 
preparedness and response strategies.
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