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Summary

The depletion of disruptive variation caused by purifying natural selection (constraint) has been 

widely used to investigate protein-coding genes underlying human disorders1–4, but attempts to 

assess constraint for non-protein-coding regions have proven more difficult. Here we aggregate, 

process, and release a dataset of 76,156 human genomes from the Genome Aggregation Database 

(gnomAD), the largest public open-access human genome allele frequency reference dataset, and 

use this dataset to build a genomic constraint map for the whole genome (called Gnocchi). We 

present a refined mutational model that incorporates local sequence context and regional genomic 

features to detect depletions of variation. As expected, the average constraint for protein-coding 

sequences is stronger than for non-coding regions. Within the non-coding genome, constrained 

regions are enriched for known regulatory elements and variants implicated in complex human 

diseases and traits, facilitating the triangulation of biological annotation, disease association, 

and natural selection to non-coding DNA analysis. More constrained regulatory elements tend 

to regulate more constrained protein-coding genes, which in turn suggests that non-coding 

constraint can aid the identification of constrained genes that are as yet unrecognized by current 

gene constraint metrics. We demonstrate that this genome-wide constraint map improves the 

identification and interpretation of functional human genetic variation.

The expansion in the scale of human whole-genome or exome sequencing data has allowed 

characterization of the patterns of variation in human genes. With these data it is possible to 

directly assess the strength of negative selection on loss-of-function (LoF) and missense 

variation by modeling “constraint,” the depletion of variation in a gene compared to 

an expectation conditioned on that gene’s mutability. Using coding variant data from 

sequencing thousands to hundreds of thousands of humans5, we and others previously 

developed constraint metrics that classify each protein-coding gene along a spectrum of 

LoF/missense intolerance5–7, providing a valuable resource for studying the functional 

significance of human genes1–4. Although of outsized biological importance, protein-coding 

regions comprise less than 2% of the human genome, and the vast non-coding genome has 

been much less characterized, even though the importance of non-coding variation in human 

complex diseases has been long recognized8–12.

Several challenges arise when extending the gene constraint model to the non-coding 

space. First, the sample size of human whole-genome reference data has been relatively 

small compared to the exome, limiting the power of detecting depletions of variation at a 

fine scale. Second, in coding regions, the gene model enables accurate prediction of the 

effect of specific variants on amino acid translation; such nucleotide-specific models of 

the consequences of basepair changes are not available in non-coding regions. Third, there 

is a strong expectation from Mendelian genetics and existing constraint analyses that the 

coding regions, while a small fraction of the genome, are grossly overrepresented for rare 
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and common disease mutations under selection. Fourth, the mutation rate in non-coding 

regions is highly heterogeneous and can be affected not only by local sequence context as 

commonly modeled in gene constraint metrics but also by a variety of genomic features at 

larger scales13,14.

Current methods attempting to evaluate non-coding constraint can be broadly divided 

into three categories: 1) context-dependent mutational models that assess the deviation of 

observed variation from an expectation based on the sequence composition of k-mers (e.g., 

Orion15, CDTS16, DR17); 2) machine-learning classifiers that are trained to differentiate 

between disease-associated variants and benign variants (e.g., CADD18, GWAVA19, 

JARVIS20); and 3) phylogenetic conservation scores that use comparative genomics data 

to infer evolutionary constraint (e.g., phastCons21, phyloP22). While all these methods 

aid in our understanding of the non-coding genome, each suffer from limitations/biases, 

respectively as 1) overlooking the influence of regional genomic features beyond the scale 

of flanking nucleotides on mutation rate; 2) a strong dependence on the availability of 

well-characterized functional mutations as training data; and 3) compromised power to 

detect regions that have only recently been under selection in the human lineage and may 

have a functional impact on human-specific traits or diseases.

Here we present a genome-wide map of human constraint (called Gnocchi: Genomic 

NOn-Coding Constraint of HaploInsufficient variation), generated from a high-quality 

set of variant calls from 76,156 whole-genome sequences (gnomAD v3.1.2 https://

gnomad.broadinstitute.org). We describe an improved model of human mutation rates that 

jointly analyzes local sequence context and regional genomic features and quantifies the 

depletion of variation in tiled windows across the entire genome. Incorporating constraint 

evidence from functional elements linked to genes can enhance the identification of genes 

under strong constraint and aid in the functional interpretation of non-coding regions. Our 

study aims to depict a genome-wide view of how natural selection shapes patterns of human 

genetic variation and identify which functional genomic elements likely harbor variation 

with potential clinical significance.

Aggregating 76,156 whole genomes

We aggregated, reprocessed, and performed joint variant-calling on 153,030 whole genomes 

mapped to human genome reference build GRCh38, of which 76,156 samples were retained 

as high-quality sequences from unrelated individuals, without known severe pediatric 

disease, and with appropriate consent and data use permissions for the sharing of aggregate 

variant data (Supplementary Fig. 1–5 and Supplementary Table 1–3). Among these samples, 

36,811 (48.3%) are of non-European ancestry, including 20,744 individuals with African 

ancestries and 7,647 individuals with admixed Amerindigineous ancestries. After stringent 

quality control, we discovered a set of 644,267,978 high-confidence short nuclear variants 

(single nucleotide/indel variants; gnomAD v3.1.2), of which 390,393,900 low-frequency 

(allele frequency [AF]≤0.1%), high-quality single nucleotide variants were used for building 

the genome-wide constraint map. These correspond to approximately one variant every 4.9 

bp (one low-frequency variant every 8 bp) of the genome, providing a high density of 

variation.
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Gnocchi quantifies genomic constraint

To construct a genome-wide mutational constraint map, we divided the genome into 

continuous non-overlapping 1kb windows, and quantified constraint for each window by 

comparing the expected and the observed variation in our gnomAD dataset. Here, we 

implemented a refined mutational model, which incorporates trinucleotide sequence context, 

base-level methylation, and regional genomic features to predict expected levels of variation 

under neutrality. In brief, we estimated the relative mutability for each single nucleotide 

substitution with one base of adjacent nucleotide context (e.g., ACG -> ATG), with 

adjustment for the effect of methylation on mutation rate at CpG sites, which become 

saturated for mutation at sample sizes above ~10K genomes23 (Extended Fig. 1a,b and 

Supplementary Fig. 6; Methods). Meanwhile, we adjusted the effects of regional genomic 

features for each trinucleotide mutation rate based on the occurrence of de novo mutations 

(N=413,304 previously detected in family-based whole-genome sequencing studies24,25; 

Extended Fig. 1c), and then applied it to establish the expected number of variants per 1kb 

across the entire genome (Methods).

We quantified the deviation from expectation for each 1kb window using a Z score7 - 

hereinafter referred to as “Gnocchi” (Methods; Extended Fig. 1d,e) - which was centered 

around zero for non-coding regions (median=0.08), and was significantly higher (more 

constrained) for windows containing any protein-coding sequences (median=1.47, Wilcoxon 

P<10−200; Fig. 1a). Gnocchi is positively correlated with the percentage of coding bases in a 

window and presented a substantial shift towards higher constraint for exonic sequences 

from directly concatenating coding exons into 1kb windows (median=3.17; Extended 

Fig. 2a–c). About 3.12% and 0.05% of the non-coding windows exhibited constraint as 

strong as the 50th and 90th percentile of exonic regions (Extended Fig. 2d). Comparing 

Gnocchi against the adjusted proportion of singletons (APS) score, a measure of constraint 

developed for structural variation (SV)26, we found a significant correlation (linear 

regression beta=0.01, P=4.3×10−65, Fig. 1b; Methods), providing an internal validation of 

our approach.

Gnocchi highlights non-coding function

To further validate the Gnocchi metric and investigate the functional relevance of non-

coding regions under selection, we examined the correlation between Gnocchi and several 

annotations of functional non-coding sequences (Fig. 2a). First, we found that candidate 

cis-regulatory elements (cCREs, derived from ENCODE27 integrated DNase- and ChIP-

seq data) are significantly enriched in the most constrained percentile of the genome 

(Gnocchi≥4, OR=2.77 compared to the genome-wide average, Fisher’s exact P<10−200); 

cCREs with a promoter-like signature (cCRE-PLS) presented the strongest enrichment 

(OR=7.28), followed by elements with a proximal/distal enhancer-like signature (pELS 

OR=4.35, dELS OR=2.14), and as a negative control, elements bound by CTCF but not 

associated with a regulatory signature showed no enrichment (CTCF-only OR=0.82). These 

patterns indicate that a large fraction of the constrained non-coding regions may serve 

a regulatory role, in line with previous findings15,16,20. Similarly, significant enrichment 

was found for an independent set of active, in vivo-transcribed enhancers (identified by 
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FANTOM CAGE analyses28; OR=3.58) and super enhancers29 (OR=3.41), which are 

groups of enhancers in close genomic proximity regulating genes important for cell type 

specification30. By aggregating the regulatory annotations, we estimated that ~10.4% and 

~6.3% of promoters and enhancers, respectively, are under selection as strong as the 

average constraint for coding exons (Extended Fig. 3a; Methods). A much higher proportion, 

22.2%, was found for sequences encoding microRNAs (miRNAs), which are increasingly 

recognized as key mediators in various developmental and physiological processes31. In 

contrast, only 3.7% of long non-coding RNAs (lncRNAs) exhibited such strong constraint, 

similar to that of non-coding regions overall (3.1%; Extended Fig. 2d and 3b).

We next examined the distribution of putatively functional non-coding variants on the 

constraint spectrum. There was significant enrichment for non-coding variants implicated by 

genome-wide association studies (GWAS) in the constrained end of the genome: 837/19,471 

constrained windows [Gnocchi≥4] overlapped with GWAS Catalog32 annotations (OR=1.57 

compared to the genome-wide average of 51,430/1,843,559, Fisher’s exact P=2.5×10−32, 

Fig. 2b; Methods). The enrichment became stronger when restricted to the subset of variants 

that had been replicated by an independent study (OR=2.08, P=4.1×10−13). Moreover, 

further strong signals were found for likely causal GWAS variants fine-mapped for 148 

complex diseases and traits in large-scale biobanks33 (OR=3.24, P=3.0×10−10; Methods). 

Across the 95% credible set (CS)-trait pairs, strong enrichment was predominantly seen in 

disease phenotypes, including coronary artery disease (CAD), inguinal hernia, fibroblastic 

disorders, and glaucoma (ORs 3.31–6.02, Fig. 2c; Methods). In the 95% CS of CAD, for 

instance, the highest Gnocchi score was found for rs1897107 and rs1897109 (both within 

the same genomic window chr6:160725000–160726000, Gnocchi=6.32); high constraint 

(Gnocchi≥4) was also found for 26 variants from the same CS (totaling 28/52), which 

together spanned a ~153 kb sequence downstream of the gene PLG (Fig. 2d). PLG encodes 

the plasminogen protein that circulates in blood plasma and is converted to plasmin to 

dissolve the fibrin of blood clots. While dysregulation of the PLG-plasmin system has been 

frequently associated with CAD34–39, no specific variants in PLG have been implicated. 

Our results prioritized a set of non-coding variants in highly constrained regions of PLG, 

which adds quantitative evidence to the implication of PLG in CAD and may help direct or 

prioritize follow-up functional experiments.

Collectively, these results demonstrated a significant positive correlation between constraint 

and functional non-coding annotations, illustrating the utility of Gnocchi in characterizing 

non-coding regions. Yet, we suggest that Gnocchi provides additional information to 

existing annotations For instance, prioritizing ENCODE cCREs by Gnocchi revealed 

increasingly stronger GWAS enrichment in the more constrained cCREs (Extended Fig. 4a), 

and constrained regions outside cCREs also captured significant signals, reflecting the value 

of Gnocchi independent of regulatory annotations. Moreover, besides prioritizing existing 

GWAS results, Gnocchi can be used as a prior for statistical fine-mapping. Using UK 

Biobank (UKBB) traits as examples, incorporating Gnocchi into the functionally informed 

fine-mapping model40 predicted ~13K variant-trait pairs to have an increased posterior 

inclusion probability of causality (ΔPIP≥0.01), in which 164 likely causal associations 

were newly identified at PIP≥0.8 (Extended Fig. 4b; Methods). While only functional tests 

can ultimately validate the underlying causality, our constraint map presents a valuable 
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resource for expanding or refining the catalog of functional non-coding variants in the 

human genome.

Gnocchi versus other non-coding metrics

To benchmark the performance of Gnocchi in prioritizing non-coding variants, we extended 

the analyses of GWAS variants to compare it with other population genetics-based 

constraint metrics (Orion15, CDTS16, gwRVIS20, and DR17). Specifically, we assessed the 

performance of different metrics in identifying putative functional non-coding variants – as 

aforementioned, a) GWAS Catalog32 variants (N=9,229 with an independent replication); b) 

GWAS fine-mapping33 variants (N=2,191), and additionally, c) a subset of high-confidence 

causal variants from b (N=140); and d) likely pathogenic Mendelian variants (N=1,026 

from ClinVar41) and the Human Gene Mutation Database (HGMD)42 – against background 

variants in the population with a similar allele frequency (hereafter referred to as “positive” 

and “negative” variant set, respectively; Methods). Overall, Gnocchi achieved the highest 

performance across all comparisons, as measured by the area under curve (AUC) statistic 

(Fig. 3a,b and Extended Fig. 5). The performance was also more stable than others when 

varying the allele frequency threshold for the negative variant set (Extended Fig. 5). This 

may be due to other metrics being informed by the site frequency spectrum, which made the 

classification performance sensitive to differences in allele frequency between the positive 

and negative variants. We also showed that our performance was robust to the artificial 

break of genomic windows (non-overlapping 1kb) by reconstructing Gnocchi scores in a 

sliding-window (1kb stepped by 100bp) approach as adopted by other metrics (Extended 

Fig. 6).

Extending the comparison to include phylogeny-based conservation scores (phyloP22, 

phastCons21, and GERP43) revealed relatively low performance compared to the 

population genetics-based constraint metrics (Fig. 3a,b). The conservation scores were 

weakly correlated with constraint (Spearman’s rank correlation coefficient 0.017–0.19, 

Extended Fig. 7), suggesting that intraspecies (human lineage-specific) constrained regions 

complement, rather than reflect a subset of, regions that are conserved across species. 

Each individual metric also contributed to the classification when modeled as independent 

predictive variables (Fig. 3c,d; Methods), reinforcing the complementary nature of different 

approaches. Variants that were uniquely captured by Gnocchi, for instance, tended to be 

in regions with high recombination rates (3.45-fold the rest of the positive variant set) and 

high DNA methylation (2.74-fold; Methods), both associated with an increased mutation 

rate that had been adjusted in our refined mutational model. To further illustrate this 

improvement, we rebuilt our constraint model from solely the local sequence context, i.e., 

without adjustment on mutation rate by regional genomic features, and confirmed that 

Gnocchi outperformed such metrics (Extended Fig. 6). Altogether, we demonstrate that 

Gnocchi is an effective metric for identifying functional variants in the non-coding genome; 

at the same time, we suggest that a combination of different metrics is likely to provide the 

most informative results for prioritizing functional variation.
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Gnocchi prioritizes copy number variants

Besides single nucleotide variants (SNVs) that have been extensively studied in GWAS, 

copy number variants (CNVs) causing dosage alterations (deletions/loss or duplications/

gain) of DNA represent another important class of variation for contributing variability in 

risk for human disease44–49. Yet, unlike SNVs, CNVs can be large and determining the 

“minimal critical region”50 with a pathogenic effect has been a major challenge. Although 

CNVs primarily affect non-coding sequences, the most commonly studied mechanism is 

still the dosage alteration of overlapping protein-coding genes51. Using our genome-wide 

constraint map, we explored the possibility that constrained non-coding regions are also 

sensitive to a dosage effect, which may underlie the pathogenicity of corresponding CNVs.

We surveyed a collection of ~100K CNVs from a genome-wide CNV morbidity map of 

developmental delay and congenital birth defects52,53. There was a substantial excess of 

CNVs that affected constrained non-coding regions (Gnocchi≥4) among individuals with 

developmental disorders (DD cases) in comparison to healthy controls (42.6% versus 12.5%, 

OR=5.21, Fisher’s exact P<10−200, Fig. 4a; Methods). Moreover, of the 19 loci that had been 

previously identified as pathogenic52, all but one (94.7%) affected constrained non-coding 

regions; the high incidence was recapitulated in a curated set of ~4K putative pathogenic 

CNVs (85.5% in ClinVar41, Fig. 4a). Importantly, the case-control enrichment remained 

significant, albeit attenuated, after adjusting for the size and gene content of each CNV and 

when being tested in the subset of CNVs that are exclusively non-coding (Fig. 4b; Methods). 

Non-coding constraint presented high association with DD CNVs conditioning on gene 

constraint (log[OR]=1.06, logistic regression P<10−100), lending support to the possibility 

that dosage alteration of constrained non-coding regions may be an alternative explanation 

for the mechanism of CNVs underlying DDs.

One known example of pathogenic non-coding dosage alteration is the duplication of 

IHH regulatory domain in synpolydactyly and craniosynostosis54–56. The four implicated 

duplications covered a ~102kb sequence upstream of IHH, with a ~10kb overlapping 

region (“critical region”50; Fig. 4c). The region contained no genes but exhibited high 

levels of constraint (median Gnocchi=2.52, Wilcoxon P=1.3×10−3 compared to the rest of 

the genome). The most constrained window (chr2:219111000–219112000, Gnocchi=4.12) 

overlapped with the major enhancer of IHH, the duplication of which has been shown 

to result in dosage-dependent IHH misexpression and consequently syndactyly and 

malformation of the skull56. This result highlights a potential use of the Gnocchi metric 

to prioritize non-coding regions within large CNVs. As a further illustration, we examined a 

set of non-coding CNVs that had the highest Gnocchi score among the DD cases. The most 

constrained genomic window (chr11:133208000–133209000, Gnocchi=8.87) was affected 

by 12 deletions spanning a ~400kb non-coding sequence (Fig. 4d). While of varying 

size, the deletions shared a common region of ~20kb (potential “critical region”), which 

encompassed the most constrained window and overall, showed a significantly higher 

constraint than the other affected regions (median Gnocchi=1.63 versus 0.84, Wilcoxon 

P=1.6×10−3; Fig. 4d). In addition, the ~400kb sequence also harbored two deletions from 

healthy controls, which interestingly, overlapped with the two lowest Gnocchi scores within 

the region and were significantly less constrained than those from DD cases (median 
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Gnocchi=1.07 versus 0.62, Wilcoxon P=4.74×10−4). These findings suggest that Gnocchi 

can be a useful indicator of critical regions affected by large CNVs, facilitating the 

interpretation of non-coding risk factors in CNV disease association studies.

Gnocchi informs gene function

Given the significant role of non-coding regions in gene regulation, it is natural to expect 

that more constrained regulatory elements would regulate more constrained genes. To test 

this, we analyzed the constraint for enhancers that had been linked to specific genes57 

(Methods). More constrained non-coding regions were more frequently linked to regulating 

a gene (Fig. 5a), and as expected, enhancers linked to constrained genes (predicted by loss-

of-function observed/expected upper bound fraction [LOEUF]5, or curated disease genes 

from58–60; Methods) were significantly more constrained than those linked to presumably 

less constrained genes (median Gnocchi=2.71 versus 1.99, Wilcoxon P=1.3×10−26, Fig. 

5b; Methods), thus supporting a correlated constraint between genes and their regulatory 

elements.

On the other hand, a particularly interesting set of associations are the links between 

constrained enhancers and the “unconstrained” genes predicted by LOEUF, because these 

links may reflect functional significance of the “unconstrained” genes that had been 

previously unrecognized. The lack of predicted gene constraint can be explained by the 

design of LOEUF as a measure of intolerance to rare LoF variation, where small genes 

with few expected LoF variants are likely underpowered. Indeed, stratifying genes by the 

number of expected LoF variants showed a significantly higher enhancer constraint for 

genes that were underpowered (≤5 expected LoF variants)5 compared to genes that were 

sufficiently powered while scored as unconstrained (median Gnocchi=2.64 versus 2.27, 

Wilcoxon P=9.8×10−4, Fig. 5a). This suggests that certain underpowered genes may be 

functionally important but were not recognized in gene constraint evaluation. For instance, 

ASCL2, a basic helix-loop-helix (bHLH) transcription factor, had only 0.57 expected LoFs 

(versus 0 observed) across >125K exomes5; although being depleted for LoF variation, the 

absolute difference was too small to obtain a precise estimate of LoF intolerance. Yet, we 

found ASCL2 had a highly constrained enhancer (Gnocchi=5.58), located ~16kb upstream 

of the gene, where >40% of the expected variants were depleted (188.6 expected versus 

112 observed, chr11:2286000–2287000). The same genomic window also contained an 

eQTL chr11:2286192:G>T that was predicted to be significantly associated with ASCL2 
expression61; elevated ASCL2 expression has been implicated in the development and 

progression of several human cancers62–64. This example highlights the value of non-coding 

constraint – as a complementary metric to gene constraint – for identifying functionally 

important genes.

A practical implementation of this finding is to integrate the constraint of regulatory 

elements into the modeling of gene constraint, which essentially gains power from extending 

the functional unit of a gene to encompass its regulatory components. As a proof-of-

principle, we tested whether adding the Gnocchi score of enhancer to LOEUF improves the 

prioritization of underpowered genes. The enhancer Gnocchi score was found a significant 

predictor of constrained genes (logistic regression P=7.4×10−11 conditioning on LOEUF) 
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and improved the performance of LOEUF in identifying constrained genes that were 

underpowered (AUC = 0.80 versus 0.73, bootstrap P=0.03, Fig. 5b; Methods). Moreover, 

such approaches would allow incorporation of tissue/cell-type specific information into gene 

constraint modeling given the diverse range of epigenomic data. We explored this by testing 

whether the constraint of tissue-specific enhancers is predictive of tissue-specific gene 

expression (as a proxy for tissue-specific gene function). The enhancer Gnocchi score, again 

conditioning on LOEUF, was a significant predictor of the expression level of target genes in 

matched tissue types (Fig. 5c; Methods). These results further support the application of the 

Gnocchi metric for improving the characterization of gene function. While we acknowledge 

that the biological consequences of mutations in enhancers are not clearly understood and 

thus natural selection may differ in strength depending on mechanistic consequence, an 

extended model to incorporate non-coding variation information in a biologically-informed 

way holds promise to facilitate our understanding of the molecular mechanisms underlying 

selection.

Discussion

We have previously developed constraint metrics that leverage population-scale exome 

and genome sequencing data to evaluate genic intolerance to coding variation for each 

protein-coding gene5,23. Here, we adopted the same principle with an extended mutational 

model to assess constraint across the entire genome, using our latest release of gnomAD 

(v3.1.2), a dataset of harmonized high-quality whole-genome sequences from 76,156 

individuals of diverse ancestries. Improvements to constraint modeling include unified 

fitting of the mutation rate for all substitution and trinucleotide contexts and inclusion 

of regional genomic features to refine the expected variation in non-coding regions 

(Methods). We validated our metric, called Gnocchi, using a series of external functional 

annotations, with a focus on the non-coding genome, and demonstrated the value of 

Gnocchi for prioritizing non-coding elements and identifying functionally important genes. 

We have made the Gnocchi scores publicly accessible via the gnomAD browser (https://

gnomad.broadinstitute.org).

One key challenge in quantifying non-coding constraint is the estimation of the true 

base mutation rate, which can be affected by various genomic phenomena, potentially 

operating at different scales. To this end, we extended our previous mutational model, 

which computed the relative mutability of each substitution in a trinucleotide context, to 

include adjustments for regional genomic features that may index processes influencing 

mutagenesis. The adjustment was applied to each specific trinucleotide context and allowed 

a varying genomic scale for each specific feature (Methods). The added value of this 

adjustment was demonstrated by the improved performance of Gnocchi in identifying 

functional variants (Extended Fig. 6). Gnocchi also outperformed other genome-wide 

predictive scores, while each metric tended to provide complementary information. We 

note that all comparisons were restricted to non-coding regions for explicitly evaluating 

the metrics in prioritizing non-coding variants, and we further eliminated potential bias 

from nearby genes by recapitulating the results within regions >10kb away from any 

protein-coding exons (Supplementary Fig. 7). Overall, Gnocchi presented consistent, high 

performance in identifying functional non-coding variants in the human genome.
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Despite the clear constraint signal identified for non-coding regions, many limitations exist. 

First, the lack of prior classification of the molecular consequences of non-coding variants, 

as analogous to “nonsynonymous” versus “synonymous” informed by the genetic code in 

coding regions, limits the resolution of non-coding constraint assessment (e.g., to measure 

constraint against “LoF” variation). While there are rich resources defining regulatory 

elements in the non-coding genome, no method is available for determining the impact 

of each possible variant on gene regulation and the distribution of their effect sizes genome-

wide. Further, the interpretation of non-coding constraint, especially in the context of gene 

regulation, can only be informative when considered in a particular context, such as a tissue/

cell type, developmental stage, or environment. Such information is not inherently built 

into our constraint metric nor in the mutational dataset; thus ad hoc integration of external 

annotations (e.g., tissue-specific enhancers as analyzed in this study) is often necessary 

for justifying specific biological implications. Also, since the detection of depletion of 

variation is immune to negative selection after reproductive age, genomic regions involved in 

late-onset phenotypes are likely to go underrecognized.

Finally, while this is among the largest datasets of human genomes examined to date for 

non-coding constraint, our method will substantially increase in power and resolution as 

sample sizes increase. Benchmarking on the depletion of variation seen in coding regions, 

we are currently well-powered to detect extreme non-coding constraint as strong as the 

90th percentile of coding exons of similar size, and we estimate a sample size of ~340K 

genomes to detect constraint as to the 50th percentile (Extended Fig. 8a; Methods). Much 

larger sample sizes will be required for further increasing the resolution, for instance from 

1kb to a 100bp scale, we would need ~5.3M samples (Extended Fig. 8b); under the current 

sample size, 1kb presented optimal performance when compared to varying window sizes 

tested from 100bp-3kb (Extended Fig. 8c). Meanwhile, we emphasize the importance of 

increasing genetic ancestral diversity in population-scale datasets like gnomAD. A more 

diverse population would identify a larger number of rare variants, thereby increasing the 

power of detecting depletions of variation. We explicitly demonstrated this by reconstructing 

Gnocchi from the subset of European population and comparing it to that from an equal-

sized subset containing all diverse populations – the latter was proven to achieve a higher 

predictive power (Extended Fig. 8d). Future efforts towards a larger, more diverse human 

reference dataset would empower finer studies of the influence of human demography on 

constraint metrics, facilitating a fuller understanding of the distribution and effect of human 

genetic variation.

Overall, our study demonstrates the value of the genome-wide constraint map in 

characterizing both non-coding regions and protein-coding genes, providing a significant 

step towards a comprehensive catalog of functional genomic elements for humans.

Methods

Aggregation, variant-calling, and quality control of gnomAD genome data

We aggregated whole genome sequence data from 153,030 individuals spanning projects 

from case-control consortia and population cohorts, in a similar fashion to previous efforts65. 

Informed consent was obtained for the original studies that generated sequencing data and 
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we keep a blank copy of those consents on file with our local Office of Research Subject 

Protection (ORSP). The Institutional Review Board (IRB) has approved our study protocol, 

and we confirm that we have complied with all relevant ethical regulations relating to human 

research subjects.

We harmonized the sequencing data using the GATK Best Practices pipeline and joint-

called all samples using Hail66, and developed and utilized an updated pipeline of sample, 

variant, and genotype quality control to create a high-quality callset of 76,156 individuals, 

computing frequency information for several strata of this dataset based on attributes such 

as ancestry and sex for each of 644,267,978 short nuclear variants (see Supplementary 

Information).

Estimation of trinucleotide context-specific mutation rates

We estimated the probability of a given nucleotide mutating to one of the three other 

possible bases in a trinucleotide context (XY1Z -> XY2Z), by computing the proportion 

of all possible variants observed per context in the human genome. Since CpG transitions 

begin to saturate (proportion observed approaching 1) at a sample size of ~10K genomes, 

we downsampled the gnomAD dataset to 1,000 genomes for this calculation. The computed 

proportion observed values, which represent the relative mutability of each trinucleotide 

context, were further scaled so that the weighted genome-wide average is the human per-

base, per-generation mutation rate (1.2×10−8) to obtain the absolute mutation rates μ. To 

estimate the proportion of variants expected to be observed in the full gnomAD dataset of 

76,156 genomes, we fitted the actual proportion observed in the dataset against μ, using an 

exponential regression that caps at 1 for refining the estimates of (near-)saturated variant 

types (R2=0.999, Extended Fig. 1a,b; Supplementary Data 1).

A total of 390,393,900 high-quality, rare (AF≤0.1%) variants observed in 76,156 gnomAD 

genomes, a dataset of 6,079,733,538 possible variants at 2,026,577,846 autosomal sites (30–

32X coverage), were used in the calculation of trinucleotide context-specific mutation rates. 

The estimates are well-correlated with the mutation rates reported in previous independent 

studies and are highly stable across different AF thresholds in gnomAD (Supplementary Fig. 

6).

Adjustment of the effect of DNA methylation on CpG mutation rates

Given the strong effect of DNA methylation on increasing the mutation rate at CpG sites, 

we stratified all CpG sites by their methylation levels and computed the proportion observed 

within each context and methylation level. As an improvement to our previous methylation 

annotation (by averaging different tissues65), we analyzed methylation data from germ 

cells across 14 developmental stages, comprising eight from preimplantation embryos 

(sperm, oocyte, pronucleus, two-cell-, four-cell-, eight-cell-, morula-, and blastocyst-stage 

embryos)67 and six from primordial germ cells (7Wk, 10Wk, 11Wk, 13Wk, 17Wk, and 

19Wk)68. For each stage, we computed methylation level at each CpG site as the proportion 

of whole-genome bisulfite sequencing reads corresponding to the methylated allele. To 

derive a composite score from the 14 stages, we regressed the observation of a CpG variant 

in gnomAD (0 or 1) on the methylation computed at the corresponding site (a vector of 14), 

Chen et al. Page 11

Nature. Author manuscript; available in PMC 2024 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and we used the coefficients from the regression model as weights to compute a composite 

methylation score for each CpG site. This metric was further discretized into 16 levels (by 

a minimum step of 0.05: [0,0.05], (0.05,0.1], (0.1,0.15], (0.15,0.2], (0.2,0.25], (0.25,0.3], 

(0.3,0.5], (0.5,0.55], (0.55,0.6], (0.6,0.65], (0.65,0.7], (0.7,0.75], (0.75,0.8], (0.8,0.85], 

(0.85,0.9], (0.9,1.0]) to stratify CpG variants in the mutation rate analysis.

Adjustment of the effects of regional genomic features on mutation rates

To estimate the effects of regional genomic features on mutation rates under neutrality, 

we uti3lized de novo mutations (DNMs), as a proxy of spontaneous mutations, and fitted 

logistic regression models using the genomic features as predictive variables. A set of 

413,304 unique DNMs were compiled from two large-scale family-based whole-genome 

sequencing studies69,70, and an exclusive set of 4,104,879 genomic sites (~10× the DNMs) 

randomly drew from the genome was used as the “nonmutated” background. For each DNM 

or background site, we computed 13 genomic features (see Collection of genomic features) 

at four scales by taking the mean value of 1kb, 10kb, 100kb, and 1Mb windows centering 

at the site. This generated a feature matrix of 13×4=52 columns and 413,304+4,104,879 

=4,518,183 rows. The matrix was further divided based on the trinucleotide context of 

each DNM or background site (by row) to assess the effects of genomic features on 

context-specific mutation rates. In particular, for CpG contexts, features that were correlated 

with DNA methylation (GC content, CpG_island, short interspersed nuclear element, and 

nucleosome density), which had been used for adjusting CpG mutation rates, were excluded 

from the analysis.

For each trinucleotide context, we first performed univariable logistic regression to 

select features that are significantly associated with an increased/decreased probability 

of observing a DNM. Features with a significant association surpassing the Bonferroni 

correction for 13×4=52 tests were selected; if a feature was significant at multiple genomic 

scales, the smallest window size was selected for the highest resolution (Extended Fig. 1c). 

Next, we fitted multivariable logistic regression using the selected features to predict DNMs 

from the background. To control for multicollinearity, we transformed the input feature 

matrix using principal components analysis (PCA71) to generate decorrelated predictive 

variables (i.e., the principal components or PCs). The regression coefficients were the 

primary output of interest, which represent the effects of genomic features on increasing (a 

positive coefficient) or decreasing (a negative coefficient) the mutation rate, and were used 

for adjusting the expected number of variants in a given region. The selected features, the 

PCs, and the coefficients are summarized in Extended Fig. 1c and are available as pickle 

files for implementation (see Code availability).

Prediction of expected number of variants per 1kb

Using the trinucleotide mutation rate estimates and the above adjustments, we computed the 

expected number of variants in a given 1kb genomic window as follow:

Code availability
All code to perform quality control of the resource is publicly available at https://github.com/broadinstitute/gnomad_qc, and many of 
the functions are documented in a Python package (gnomad) at https://broadinstitute.github.io/gnomad_methods/index.html. The code 
to compute the constraint statistics is available at https://github.com/atgu/gnomad_nc_constraint.
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Exp w = ∑
i

64
r w i ∑

j = 1

3
∑

m = 1

k
n w i, j, m × pi, j, m

where i denotes one of the 64 trinucleotide contexts; j denotes one of the three bases 

substituting the central nucleotide; m denotes one of the k DNA methylation levels, where 

k=16 for CpG sites (see Adjustment of the effect of DNA methylation on CpG mutation 

rates) and k=1 for non-CpG sites (i.e., no stratification). Essentially, the expected value of 

variants in a genomic window w is calculated by multiplying the number of possible variants 

(n) in w by the probability of a variant (p) and summing across all trinucleotide contexts (i), 
substitutions (j), and methylation levels (m); pi, j, m is the trinucleotide mutation rate estimated 

in this study (as described in Estimation of trinucleotide context-specific mutation rates).

Additionally, Exp is adjusted by a factor r, which represents the effect of regional genomic 

features of w on mutation rate. For each i, specific features have been pre-selected 

and their effects on mutation rate have been estimated using logistic regression models 

(see Adjustment of the effects of regional genomic features on mutation rates). Denote 

the feature values, computed centering w and decorrelated by PCA, and the regression 

coefficients by x = x1, x2, . . , xt  and β = β1, β2, . . , βt , respectively, where t is the number 

of selected features for i, the adjustment factor r is defined as the ratio of logit given x w
to that of the genome-wide average x−: r = β ∙ x w /β ∙ x−; since the adjustment is specific to 

each trinucleotide context, r is further subscribed by i.

Construction of Gnocchi

We created a signed score - called Gnocchi - to quantify the depletion of variation 

(constraint) at a 1kb scale by comparing the observed variation to an expectation:

χ2 = Obs − Exp 2/Exp

Genoccℎi = χ2 if Obs < Exp

− χ2 if Obs ≥ Exp

The observed variant count (Obs) is the number of unique rare (AF≤0.1%) variants in a 1kb 

window identified in the gnomAD dataset of 76,156 genomes, and the expected number 

of variants (Exp) is established as described above based on the sequence context and the 

regional genomic features of the 1kb window.

Gnocchi scores were created for 2,689,987 non-overlapping 1kb windows across the human 

genome, comprising 2,561,056 on autosomes and 128,931 on chromosome X. Due to the 

lack of DNM data on chromosome X, the genomic feature adjustment factor r was assessed 

using autosomal regions and extrapolated to chromosome X. We performed downstream 

analyses separately for autosomes and chromosome X and presented the former as primary, 
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with the latter provided in Supplementary Fig. 8. For the analyses, we filtered the dataset 

to windows where 1) the sites contained at least 1,000 possible variants, 2) at least 80% 

of the observed variants passed all variant call filters (INFO/FILTER equals to “PASS”), 

and 3) the mean coverage in the gnomAD genomes was between 25–35X (or 20–25X for 

chromosome X). This resulted in 1,984,900 autosomal windows (77.5% of initial) for the 

primary analyses, of which 141,341 overlapped with coding regions and 1,843,559 were 

exclusively non-coding. The computed Gnocchi scores are available in Supplementary Data 

2. We also computed the sores in a sliding window approach (1kb stepped by 100bp) and 

provided them in Supplementary Data 3.

Collection of genomic features

The 13 regional genomic features used for adjusting trinucleotide mutation rate are 1) GC 

content72, 2) low-complexity region73, 3) short and 4) long interspersed nuclear element72, 

distance from the 5) telomere and the 6) centromere72, 7) male and 8) female recombination 

rate69, 9) DNA methylation, 10) CpG island72, 11) nucleosome density74, 12) maternal and 

13) paternal DNM cluster75. Data were downloaded from the referenced resources, lifted 

over to GRCh38 coordinates when needed using CrossMap76, and files in .bed or .BigWig 

format were processed using bedtools77 and bigWigAverageOverBed78 to obtain feature 

values within specific genomic windows.

Correlation between Gnocchi and APS

As an internal validation, we compared our Gnocchi score against the SV constraint score 

APS79. For each SV from the original study79, we assessed its constraint by assigning 

the highest Gnocchi score among all overlapping 1kb windows. The correlation between 

Gnocchi and APS was evaluated across 116,184 high-quality autosomal SVs scored by both 

metrics, using a linear regression test. In Fig. 1b, the correlation was presented by the mean 

value of APS across ascending constraint Gnocchi score bins, with 95% confidence intervals 

computed from 100-fold bootstrapping.

Correlation between Gnocchi and putative functional non-coding annotations

We validated the Gnocchi metric using a number of external functional annotations, 

including 926,535 ENCODE cCREs80 (34,803 promoter-like [PLS], 141,830 proximal 

enhancer-like [pELS], 667,599 distal enhancer-like [dELS), and 56,766 CTCF-only 

elements), 63,285 FANTOM581 enhancers, 331,601 super enhancers (SEdb82), 111,308 

GWAS Catalog83 variants (with an association P ≤ 5.0×10−8; 9,229 with an independent 

replication), 2,191 GWAS variants fine-mapped across population biobanks with a posterior 

inclusion probability of causality≥0.984, and 100,530 CNVs from a CNV morbidity map of 

developmental delay85,86.

To assess the correlation between Gnocchi and the collected functional elements, we 

intersected each annotation with the scored 1kb windows binned by Gnocchi score (<-4, 

[-4,-3), [-3,-2), [-2,-1), [-1,-0), [0,1), [1,2), [2,3), [3,4), ≥4), and counted the frequency 

of overlapping windows within each bin. The enrichment of a given annotation (except 

CNVs) at a constraint level was evaluated by comparing the corresponding frequency to the 

genome-wide average using a Fisher’s exact test. In the analysis of CNVs, we assessed their 
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enrichment in constrained regions by assigning each CNV the highest Gnocchi score among 

its overlapping windows and comparing the proportions of constrained CNVs (Gnocchi≥4) 

from cases of developmental delay and healthy controls (Supplementary Data 4). The 

enrichment was further examined using a logistic regression model to adjust for the size 

and gene content (gene constraint65 and gene number) of each CNV. We note that we 

performed all above analyses restricting to exclusively non-coding windows to evaluate the 

use of Gnocchi in characterizing the non-coding genome.

Estimation of constraint for aggregated regulatory annotations

We estimated how constrained the sequences encoding regulatory elements overall 

compared to coding exons by aggregating the regulatory annotations at a 1kb scale. These 

included 7,246 promoter-, 154,003 enhancer-, 117 microRNA (miRNA)-, and 414,084 

long non-coding RNA (lncRNA)-1kb elements, created from concatenating ENCODE 

cCREs-PLS, cCREs-dELS, GENCODE87 miRNA, and FANTOM5 lncRNA88 annotations, 

respectively, into 1kb windows. Similarly, 27,875 exonic 1kb elements were created from 

aggregating all protein-coding exons. Gnocchi scores were computed for the created 1kb 

elements and the percentiles of each regulatory annotation were compared against the exonic 

region. Benchmarking on the 50th percentile (median) of exonic regions, we estimated the 

proportion of the regulatory elements that are under selection as strong as the coding exons.

Incorporation of Gnocchi into GWAS fine-mapping

To demonstrate the use of Gnocchi in statistical fine-mapping, we performed approximate 

functionally informed fine-mapping89 incorporating Gnocchi score and our previous fine-

mapping results for 119 UK Biobank (UKBB) traits84. The Gnocchi scores were normalized 

and used as functional prior probabilities to update the posterior inclusion probabilities 

(PIPs; denoted as PIPZ) based on the previous UKBB fine-mapping (using a uniform prior, 

PIPunif) and SuSiE90. To exclude signals that potentially correspond to coding variants, 

we restricted our analysis to 60,121 non-coding variants in 6,592 SuSiE 95% credible set 

(CS)-trait pairs that do not contain variants within 1 kb of exonic regions. A total of 13,069 

variant-trait pairs were predicted to have an increased PIP (ΔPIP≥0.01) of causality. The 

variants, associated traits, and PIP scores (PIPunif and PIPZ) are provided in Supplementary 

Data 5.

Comparison of Gnocchi and other predictive metrics

We compared the Gnocchi metric with other seven genome-wide predictive scores – 

Orion91, CDTS92, gwRVIS93, DR94, phyloP95, phastCons96, and GERP97. Each score was 

downloaded from the original study, lifted over to GRCh38 coordinates (for Orion) and 

multiplied by −1 (for CDTS, gwRVIS, and DR) when needed so that a higher value 

represents a higher constraint/conservation for all metrics. Pairwise correlation between the 

scores was assessed by comparing the mean value of each score on 1kb windows, using a 

Spearman’s rank correlation test.

We evaluated the predictive performance of each metric in distinguishing functional non-

coding variants (“positive” variant set) from background variants (“negative” variant set). 

Four positive variant sets were compiled from public databases: 1) 9,229 variants from 
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GWAS Catalog83 (with an independent replication), 2) 2,191 variants from a recent 

fine-mapping study84 (with a posterior inclusion probability of causality≥0.9), 3) 140 

high-confidence variants from 2), and 4) 1,026 variants from ClinVar98 (annotated as 

“pathogenic” or “likely pathogenic”) and HGMD (annotated as ‘disease-causing mutation’ 

[DM] curated by92). All variants were filtered to non-coding regions; in particular, 

pathogenic variants were more strictly filtered to intergenic/intron variants given its strong 

predominance of variants close to protein-coding exons (>90% were splice site/region 

variants). A further stringent non-coding subset was generated by excluding variants within 

10kb to any exons, which resulted in 1) 4,379, 2) 967, 3) 59, and 4) 45 variants. For 

each positive variant set, a negative variant set was created by randomly drawing variants 

from the Trans-Omics for Precision Medicine (TOPMed) whole-genome sequencing dataset 

(Freeze 8)99 to ~10× the size of corresponding positive variant set, of which the most 

severe molecular consequence is intergenic or intron and the AF approximates the positive 

variant set; AF>5% and allele count (AC)=1 were applied respectively for matching positive 

variant set 1)-3) and 4), based on their AF distributions in TOPMed (Fig. 3b). The 

selected variants were scored by each of the eight metrics, using bedtools77 (for .bed files) 

and bigWigAverageOverBed74 (for .BigWig files), and the performance of each metric in 

classifying positive and negative variants was assessed by the area under curve (AUC) 

statistic, as presented by the receiver operating characteristic (ROC) curve.

To investigate whether different metrics capture complementary information in the 

classification, we fitted logistic regression models using all eight metrics as independent 

variables. The relative contribution of each metric was evaluated by the dominance 

analysis100,101, which estimates the dominance of one predictor over another by comparing 

their additional R2contributions across all subset models. We further explored whether 

specific features were particularly captured by (and may have contributed to the performance 

of) our metric. We merged all positive variant sets and focused on a set of variants (N=204) 

that were uniquely prioritized by our metric, defined as being captured in the 99th percentile 

of Gnocchi score but not in that of any other scores. Specific features associated with these 

variants were evaluated by comparing values of the 13 genomic features of these variants to 

the rest of the positive variant set. The fold change was used to indicate the extent to which a 

feature is distinguished in variants captured by Gnocchi from others.

Correlation of constraint between non-coding regulatory elements and protein-coding 
genes

To examine whether constraint of non-coding regulatory elements informs the constraint of 

their target genes, we compared Gnocchi scores of enhancers linked to constrained genes 

and unconstrained genes. The former included well-established gene sets of 189 ClinGen102 

haploinsufficient genes, 2,454 MGI103 essential genes mapped to human orthologs, 1, 771 

OMIM104 autosomal dominant genes, and 1,920 LOEUF65 first-decile genes; and the latter 

included a curated list of 356 olfactory receptor genes and 189 LOEUF last-decile genes 

with at least 10 expected LoF variants (which are sufficiently powered to be classified into 

the most constrained decile65). The LOEUF underpowered list included 1,117 genes with 

≤5 expected LoF variants. Enhancers linked to each gene were obtained from the Roadmap 

Epigenomics Enhancer-Gene Linking database, which used correlated patterns of activity 
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between histone modifications and gene expression to predict enhancer-gene links105,106. 

For each gene, we aggregated and merged enhancers predicted from all 127 reference 

epigenomes and assigned the most constrained enhancer to each gene for the analysis of 

enhancer-gene constraint correlation (Supplementary Data 6).

In the analysis of correlation between tissue-specific enhancer constraint and tissue-specific 

gene expression, we processed the enhancer-gene links with the same principle as 

described above but within specific tissue types (as defined in the Roadmap Epigenomics 

metadata107). For each gene and tissue type, we searched for tissue-specific gene expression 

in the Genotype-Tissue Expression (GTEx108) database (RNASeQCv1.1.9) and computed 

a normalized median expression for each gene (log2(TPM+1)). Enhancer constraint and 

gene expression values were calculated for 11 matched tissue types, and the correlation 

within each tissue type was evaluated by regressing gene expression on enhancer constraint, 

including gene constraint (LOEUF score) as a covariate.

Incorporation of non-coding constraint of regulatory elements into gene constraint 
modeling

To demonstrate the practical value of non-coding constraint in improving gene constraint 

modeling, we compared two models – using 1) LOEUF and 2) LOEUF+enhancer Gnocchi 

score (as described in Correlation of constraint between non-coding regulatory elements and 

protein-coding genes) – in predicting constrained genes, with a particular focus on genes 

that were underpowered in LOEUF. A set of 3,220 unique constrained genes were curated 

from ClinGen102, MGI103, and OMIM104 (see Correlation of constraint between non-coding 

regulatory elements and protein-coding genes), and a set of 356 olfactory receptor genes 

was used as the unconstrained genes. We trained logistic regression models on 50% of the 

genes and tested the performance on 77 underpowered genes in the remaining 50%. The 

predictive performance of the two models were measured by AUC, and the significance of 

the difference in AUCs was assessed using a bootstrap test109.

Power of constraint detection

We estimated the power of our metric in detecting non-coding constraint as the percentage 

of the non-coding genome to obtain a high Gnocchi score (Gnocchi≥4) under a certain 

strength of negative selection, which was quantified by the level of depletion of variation 

(i.e., 1-observed/expected). For a given depletion of variation, the minimum number of 

expected variants to achieve a Gnocchi≥4 was determined, and the number of samples 

required to achieve the expected number of variants was estimated using a linear model 

of log(number of expected variants) ~ log(number of samples) from downsampling the 

gnomAD dataset. The power was estimated at two scales – 1kb (used in this study) and 

100bp – and benchmarked by the depletion of variation observed in coding exons of similar 

size.
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Extended Data

Extended Data Fig. 1: 
Construction of mutational model and Gnocchi score. a,b, Estimation of trinucleotide 

context-specific mutation rates. The proportion of possible variants observed for each 

substitution and context in 76,156 gnomAD genomes (y-axis) is exponentially correlated 

with the absolute mutation rate estimated from 1,000 downsampled genomes (x-axis). 

Fit lines were modeled separately for human autosomes (a) and chromosome X (b). 

c, Estimation of the effects of regional genomic features on mutation rates. The 

effects of 13 genomic features at four scales (window sizes 1kb-1Mb; x-axis) on the 

mutation rate of 32 trinucleotide contexts (y-axis) are shown, colored by the coefficient 

from regressing de novo mutations (DNMs) on each specific feature and window 

size. Red/Blue color indicates a positive/negative effect of increasing the feature value 

on mutation rates; grey crosses indicate significant features at the smallest possible 
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window size after Bonferroni correction for 13×4=52 tests. Abbreviations: LCR=low-

complexity region, SINE/LINE=short/long interspersed nuclear element, Dist=Distance, 

Recomb=Recombination, Methyl=Methylation. d,e, The distribution of Gnocchi score as 

a function of expected and observed variation. Each point represents the Gnocchi score of a 

1kb window on the genome (N=1,984,900 on autosomes (d) and N=57,729 on chromosome 

X (e)), which quantifies the deviation of observed variation from expectation. A positive 

Gnocchi score (red) indicates depletion of variation (observed<expected) and the higher the 

score the stronger the depletion; the red dashed line indicates the 99th percentile of Gnocchi 

scores across the autosomes (d) or chromosome X (e).

Extended Data Fig. 2: 
Comparison of Gnocchi score between coding and non-coding regions. a, The proportion 

of highly constrained windows (Gnocchi≥4) as a function of the percentage of coding 

sequences in a window (left to right: N=1,906/49,525, 3,244/55,676, 2,240/18,461, 

1,506/7,094, 969/3,519, 569/1,946, 364/1,223, 283/910, 243/724, 10,392/30,138). The 

intervals (x-axis) are left exclusive and right inclusive. “Exonic only” refers to the 1kb 

windows created from directly concatenating coding exons into 1kb sequences. Error bars 

indicate standard errors of the proportions. b, The exonic-only regions (N=27,875; purple) 

present a significantly higher Gnocchi score than regions that are exclusively non-coding 

(N=1,843,559; blue). Dashed lines indicate the medians. c, The proportion of highly 

constrained windows (Gnocchi≥4) as a function of the proportion of exonic windows being 

added to the dataset of non-coding windows. d, Gnocchi score percentiles of non-coding 

versus exonic windows. About 0.05% (100–99.95%) and 3.12% (100–96.88%) of the 
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non-coding windows exhibit similar constraint to the 90th and 50th of exonic regions, 

respectively.

Extended Data Fig. 3: 
Estimation of constraint for aggregated regulatory annotations. a,b, Gnocchi scores of 

aggregated promoter (dark purple), enhancer (light purple), microRNA (miRNA; dark blue), 

and long non-coding RNA (lncRNA; light blue) annotations are compared against those 

of exonic (a) and non-coding (b) regions at a 1kb scale. The Gnocchi score percentiles 

of each annotation (y-axis) are benchmarked by the score deciles of exonic or non-coding 

regions (10–100 percentiles; x-axis); the grey dashed vertical line indicates the median (50th 

percentile).

Extended Data Fig. 4: 
Applications of Gnocchi for characterizing non-coding regions in addition to existing 

functional annotations. a, Use of Gnocchi for prioritizing non-coding regions with or 

without a regulatory annotation (N=464,504 and 1,379,055, respectively). Constrained non-

coding regions are enriched for GWAS variants, independent of the candidate cis-regulatory 

element (cCRE) annotation from ENCODE. Error bars indicate 95% confidence intervals 

of the odds ratios. b, Use of Gnocchi in statistical fine-mapping. The increase in posterior 

inclusion probability (PIP) when incorporating Gnocchi score as a functional prior into 

previous fine-mapping results (that used a uniform prior; denoted as PIPGnocchi and PIPunif, 
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respectively) is shown for 164 new likely causal associations with a PIPGnocchi ≥0.8 as a 

function of PIPGnocchi.

Extended Data Fig. 5: 
Comparison of Gnocchi and other predictive metrics in prioritizing non-coding variants. 

a, Receiver operating characteristic (ROC) curves of Gnocchi and other seven metrics in 

classifying putative functional non-coding variants (“positive” variant set) – left to right: 

9,229 GWAS Catalog variants, 2,191 GWAS fine-mapping variants, a subset of 140 high-

confidence fine-mapped variants, and 1,026 likely pathogenic variants – against “negative” 

variant set randomly drew from the population with a similar allele frequency (AF). AF>5% 

and allele count (AC)=1 were applied respectively for matching the three GWAS variant sets 

and the likely pathogenic variant set, based on their AF distributions in TOPMed (shown in 
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b). b, AUCs of the classification with a varying AF threshold for the negative variant set. 

As most GWAS variants are common and most likely pathogenic variants are very rare (not 

seen in the population), AF>5% and AC=1 were applied respectively in the primary analyses 

shown in a.

Extended Data Fig. 6: 
Comparison of constraint scores built from different mutational models and genomic 

windows. Gnocchi (presented in this study) outperforms the scores rebuilt from mutational 

models that only consider local sequence context – trinucleotide (trimer-only) or 

heptanucleotide (heptamer-only) – without adjustment on mutation rate by regional genomic 

features, and the performance is robust to the artificial break of genomic windows when 

computed at a 1kb sliding by 100bp scale.
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Extended Data Fig. 7: 
Pairwise correlations between different constraint/conservation metrics. The Spearman’s 

rank correlation between each pair of the eight metrics was computed based on the mean 

value of each score on 1kb windows across the genome.
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Extended Data Fig. 8: 
Power of constraint detection. a,b, The sample size required for well-powered non-coding 

constraint detection. The percentage of non-coding regions powered to detect constraint 

(Gnocchi≥4) at a 1kb (a) and 100bp (b) scale under varying levels of selection (depletion 

of variation) is shown as a function of log-scaled sample size. Lighter color indicates 

milder deletion of variation (weaker selection), which requires a larger sample size to 

detect constraint; the grey dashed vertical line indicates the current sample size of 76,156 

genomes. Dotted curves (left to right) benchmark the 95th, 90th, and 50th percentile of 

depletion of variation observed in coding exons of similar size. The number of samples 

required to obtain an 80% detection power is labeled at corresponding benchmarks. c, AUCs 

of Gnocchi scores computed on different window sizes in identifying putative functional 

non-coding variants. 1kb (used in this study) presents the optimal window size with high 

performance while maintaining reasonable resolution. d, AUCs of Gnocchi scores computed 

from different subsets of gnomAD in identifying putative functional non-coding variants. 

While with an equal sample size, the downsampled dataset with diverse ancestries presents 

higher performance than the Non-Finnish European (NFE)-only dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Distribution of Gnocchi scores across the genome. a, Histograms of Gnocchi scores for 

1,984,900 1kb windows across the human autosomes. Windows overlapping coding regions 

(N=141,341 with ≥ 1bp coding sequence; red) overall exhibit a higher Gnocchi score 

(stronger negative selection) than windows that are exclusively non-coding (N=1,843,559; 

blue); dashed lines indicate the medians. b, The correlation between Gnocchi score and 

the adjusted proportion of singletons (APS) score developed for structural variation (SV) 

constraint. A collection of 116,184 autosomal SVs were assessed using Gnocchi by 

assigning each SV the highest Gnocchi score among all overlapping 1kb windows, which 

shows a significant positive correlation with the SV constraint metric APS. Error bars 

indicate 100-fold bootstrapped 95% confidence intervals of the mean values.
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Fig. 2: 
Correlation between Gnocchi and functional non-coding annotations. a,b, Distributions of 

candidate regulatory elements (a) and GWAS variants (b) along the spectrum of Gnocchi 

in non-coding regions. Enrichment was evaluated by comparing the proportion of non-

coding 1kb windows, binned by Gnocchi, that overlap with a given functional annotation 

to the genome-wide average. Error bars indicate 95% confidence intervals of the odds 

ratios. cCRE, candidate cis-regulatory element: N=34,803 with a promoter-like signature 

(PLS), N=141,830 with a proximal enhancer-like signature (pELS), N=667,599 with a 

distal enhancer-like signature (dELS), N=56,766 bound by CTCF without a regulatory 

signature (CTCF-only); Super enhancers: N=331,601; FANTOM enhancers: N=63,285; 

GWAS Catalog: N=111,308 variants with an association P ≤5.0×10−8, N=9,229 with 

an independent replication; GWAS fine-mapping: N=2,191 variants fine-mapped with a 

posterior inclusion probability of causality≥0.9. See Methods for details on data collection. 

c, Enrichment of fine-mapped variants in constrained non-coding regions (Gnocchi≥4). 

Credible set (CS)-trat pairs with a significant enrichment are shown, ordered by the lower 

bound of 95% confidence interval; only lower bounds are shown for presentation purposes. 

d, The distribution of variants fine-mapped for coronary artery disease (CAD) in constrained 
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regions (Gnocchi≥4) of PLG. Each bar shows the Gnocchi score of a 1kb window (gaps 

indicate windows removed by quality filters); windows containing fine-mapped variants are 

colored by purple, and the number of variants in each window is annotated on top of the 

bar correspondingly. Ten variants are located within PLG introns, four are mapped to the 

antisense gene of PLG (ENSG00000287558), and 14 reside in the downstream intergenic 

regions.
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Fig. 3: 
Performance of Gnocchi and other predictive metrics in prioritizing non-coding variants. 

a,b, Receiver operating characteristic (ROC) curves of Gnocchi and other seven metrics in 

classifying putative functional non-coding variants – 2,191 GWAS fine-mapping variants (a) 

and 1,026 likely pathogenic variants (b) – against background variants in the population. 

The performance of each metric was measured and ranked by the area under curve (AUC) 

statistic. c,d, The relative contribution of different metrics in classifying GWAS variants (b) 

and likely pathogenic variants (c). The eight metrics were modeled as eight independent 

predictors for the classification, and the relative contribution of one predictor over another 

was evaluated by estimating their additional R2contributions across all subset models.
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Fig. 4: 
Contribution of non-coding constraint in evaluating copy number variants (CNVs). a, 

Proportions of constrained CNVs (Gnocchi≥4) identified in individuals with developmental 

delay (DD cases) versus healthy controls. Constrained CNVs are more common in DD cases 

than controls (7,239/17,004=42.6% versus 10,403/83,526=12.5%) and are most frequent for 

CNVs previously implicated as pathogenic (18/19=94.7% by DD and 3,433/4,014=85.5% 

by ClinVar). Error bars indicate standard errors of the proportions. b, Contribution of 

non-coding constraint to predicting CNVs in DD cases versus controls. Non-coding 

constraint remains a significant predictor for the case/control status of CNVs after adjusting 

for gene constraint (LOEUF score), gene number, and size of CNVs (Ncase=17,004, 

Ncontrol=83,526; purple), as well as being tested in the subset of non-coding CNVs 

(Ncase=8,702, Ncontrol=66,795; blue). Error bars indicate 95% confidence intervals of the log 

odds ratios. c, CNVs at the IHH locus associated with synpolydactyly and craniosynostosis. 

The four implicated duplications (grey horizontal bars) span a ~102kb sequence upstream 

of IHH. Each vertical bar shows the Gnocchi score of a 1kb window within the locus, 

with the highest score overlapping the IHH gene (red) and the highest non-coding score 

overlapping the major IHH enhancers (purple); gaps indicate windows removed by quality 

filters. d, Non-coding CNVs with the highest Gnocchi score identified in DD cases. The 

highest-scored window is located within the potential “critical region” (purple vertical bars) 

shared by 12 DD deletions (red horizontal bars; grey indicates two deletions observed in 

controls). The critical region overall, has a significantly higher Gnocchi score than the other 

regions affected by DD or control deletions, as shown in the kernel density estimate (KDE) 

plot on the right.
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Fig. 5: 
Correlation of constraint between non-coding regulatory elements and protein-coding 

genes. a, The proportion of non-coding 1kb windows overlapping with enhancers that 

were predicted to regulate specific genes, as a function of their Gnocchi scores. 

More constrained non-coding regions are more frequently linked to a gene (left to 

right: N=2,022/62,894, 2,743/62,653, 7,475/134,279, 20,383/252,354, 43,414/376,829, 

66,343/417,743, 65,343/313,110, 38,785/152,787, 15,417/51,439, 6,663/19,471). Error bars 

indicate standard errors of the proportions. b, Comparison of the Gnocchi scores of 

enhancers linked to constrained and unconstrained genes. Enhancers of established sets 

of constrained genes (four blue boxes: N=189 haploinsufficient genes, N=2,454 essential 

genes, N=1,771 autosomal dominant disease genes, N=1,920 LOEUF-predicted constrained 

genes) are more constrained than enhancers of presumably less constrained genes (two 

grey boxes: N=356 olfactory receptor genes, N=189 LOEUF-predicted unconstrained 

genes). Enhancers of genes that are underpowered for gene constraint detection (“LOEUF 

underpowered”, N=1,117) present a higher constraint than those powered yet unconstrained 

genes (“LOUEF unconstrained”). The box plots show the distribution of Gnocchi scores 
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of enhancers linked to different gene sets, denoting the median, quartiles and range 

(excepting outliers). c, Improvement of incorporating enhancer constraint into LOEUF in 

prioritizing underpowered genes. ROC curves and AUCs show the performance of two 

logistic regression models using LOEUF (blue) and LOEUF+enhancer Gnocchi score 

(purple) as independent predictive variables to classify constrained and unconstrained 

genes, tested on a set of 77 underpowered genes. d, Contribution of enhancer constraint 

to predicting gene expression in specific tissue types. The x-axis shows the linear regression 

coefficient of tissue-specific enhancer Gnocchi score predicting the expression level of 

target genes in matched tissue types (NHSC&B-cell=11,970, NBrain=11,555, NHeart=10,759, 

NPancreas=10,572, NBlood&T-cell=10,403, NMuscle=10,380, NAdipose=9,316, NLiver=8,838, 

NSpleen=8,308, NOvary=7,926, NLung=7,499), conditioning on gene constraint (LOEUF 

score). Error bars indicate 95% confidence intervals of the coefficient estimates.
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