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Longitudinal analysis of glymphatic function 
in amyotrophic lateral sclerosis and primary 
lateral sclerosis
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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of motor neurons in the brain and spinal cord. 
Accumulation of misfolded proteins is central to the pathogenesis of ALS and the glymphatic system is emerging 
as a potential therapeutic target to reduce proteinopathy. Using diffusion tensor imaging analysis along the perivas-
cular spaces (DTI-ALPS) to assess glymphatic function, we performed a longitudinal analysis of glymphatic function 
in ALS and compared it to a disorder in the motor neuron disease spectrum, primary lateral sclerosis (PLS).
From a cohort of 45 participants from the Calgary site in the CALSNIC study (Canadian ALS Neuroimaging 
Consortium), including 18 ALS, 5 PLS and 22 control participants, DTI-ALPS was analysed and correlated to clinical 
features (age, sex, disease presentation, disease severity and progression rate) and white matter hyperintensity bur-
den. This included longitudinal measurements at three time points, 4 months apart.
The DTI-ALPS index was reduced in ALS participants compared with PLS and control participants across all three time 
points. There was no association with clinical factors; however, the index tended to decline with advancing age. Our 
study suggests heterogeneity in glymphatic dysfunction in motor neuron diseases that may be related to the under-
lying pathogenesis.
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Introduction
Amyotrophic lateral sclerosis (ALS) is the most common neurode-
generative disorder of motor neurons. The lifetime risk of ALS is ap-
proximately 1 per 400 of the population.1 It has an immense 
personal and societal impact due to its early age of onset (median 
55 years) and rapid progression from severe disability to death. 
The pathophysiologic mechanisms of ALS are complex and not 
completely elucidated; however, as with other neurodegenerative 
disorders, ALS is associated with the accumulation of misfolded 
proteins in cells of the nervous system.2

The removal of misfolded proteins and other toxic products 
from the central nervous system occurs mainly via the recently dis-
covered glymphatic system, a drainage system formed by astroglial 
endfeet along perivascular spaces that is primarily active during 
slow-wave sleep.3 Recent investigations implicate glymphatic dys-
function in neurodegenerative diseases such as Alzheimer’s and 
Parkinson’s diseases and its role in neurodegeneration has import-
ant lifestyle and public health implications.4 Glymphatic dysfunc-
tion is also increasingly recognized in neurological conditions 
with diverse aetiologies.5,6

One of the major challenges in studying the human glymphatic 
system is the difficulty in visualizing the glymphatic flux in living tis-
sue.7 The perivascular spaces that make up the glymphatic system 
are too small to be easily viewed using conventional neuroimaging 
methods. The diffusion tensor image analysis along perivascular 
spaces (DTI-ALPS) method takes advantage of conventional magnetic 
resonance (MR) diffusion imaging analysis methods applied to the 
major white matter tracts, to calculate an indirect measure of glym-
phatic flow based on a ratio between tensors with and without glym-
phatic contributions. DTI-ALPS can be applied to commonly acquired 
MR diffusion images.8

A recent cross-sectional study using the DTI-ALPS index by Liu 
et al.9 identified reduced glymphatic function in patients with early- 
stage ALS. Using DTI-ALPS, our study presents a longitudinal ana-
lysis (three time points: baseline, 4 and 8 months) in a mixed cohort 
of patients with ALS having longer disease duration and in patients 
with primary lateral sclerosis (PLS), a disorder that affects only 
upper motor neurons (whereas ALS affects both upper and lower 
motor neurons).10 This sample, in addition to replicating the earlier 
finding, provides preliminary information about its relative specifi-
city to ALS and information about the time course, which is crucial 
for understanding a degenerative disease.

Materials and methods
Subjects and data collection

Data were included from the Calgary participants enrolled in the 
Canadian ALS Neuroimaging Consortium (CALSNIC) study.11 A total 
of 45 participants, including 18 ALS, 5 PLS, and 22 healthy controls, 
were enrolled. As part of this prospective study, participants were 

followed longitudinally with standardized MR imaging performed 
at three time points (0, 4 and 8 months). Detailed clinical information 
was also collected as part of this study, and in our analysis, we exam-
ined age, sex, ALS Functional Rating Scale-Revised (ALSFRS-R) score, 
bulbar versus limb onset, progression rate (ALSFRS-R point loss per 
month) and disease duration (months from symptom onset until 
time of recruitment to the study) as clinical variables.

Neuroimaging

CALSNIC participants underwent a standardized 1-h MR protocol at 
three time points (baseline, 4 months and 8 months). MR scans were 
acquired on a 3 T GE Discovery 750 using a 12-channel phased-array 
head coil. The protocol included three-dimensional T1- and 
T2-weighted (fluid-attenuated inversion recovery, FLAIR) anatomical, 
diffusion, resting-state functional MR and susceptibility-weighted 
imaging.11 The DTI-ALPS analysis method used the T1-weighted 
and diffusion imaging data. Diffusion imaging acquisition used an 
echo planar imaging (EPI) sequence with repetition time (TR) = 9 s, 
echo time (TE) = 84.5 ms, field of view (FOV) = 256 × 256 mm, 
reconstructed isotropic voxel size of 2 mm, 70 axial slices, 30 diffusion 
directions with b = 1000 s/mm2 and phase encoding direction =  
posterior-anterior. T1-weighted structural imaging used a fast 
gradient echo sequence with TR = 7.4 ms, TE = 3 ms, flip angle = 11°, 
inversion time TI = 400 ms, FOV = 256 × 256 mm and reconstructed 
isotropic voxel size of 1 mm.

FLAIR imaging was used to assess the white matter hyperinten-
sity (WMH) burden. FLAIR sequence parameters were TR = 9000 ms, 
TE = 140 ms, TI = 2250 ms, FOV = 256 × 256 mm and reconstructed 
isotropic voxel size of 1 mm.

DTI-ALPS processing

We followed the method described by Taoka and colleagues.8 Briefly, 
this method extracts the DTI Tensor information for each of two re-
gions of interest in each hemisphere and calculates the ratio of the 
tensors parallel to known glymphatic channels (assumed to contain 
glymphatic signal) and tensors perpendicular to those channels (as-
sumed to lack glymphatic signal). See the Supplementary material
for more details of region of interest placement and representative 
image.

White matter hyperintensity burden

FLAIR images were scored for WMH burden using the scale devel-
oped by Fazekas et al.12,13 This semiquantitative scale ranges from 
0–6 and is the sum of individual scores for periventricular white 
matter (0–3) and deep white matter (0–3), where a higher score indi-
cates more severe lesion burden. FLAIR mages were reviewed by 
two raters (R.J.S. and G.P.), scored independently, and discordant 
scores were resolved by joint review of images to obtain a consen-
sus score.
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Mixed effects linear model

The DTI-ALPS data were entered into a series of linear mixed-effects 
models fit with REML, including the effect of diagnosis, age, sex, time 
point and the interaction between diagnosis and time with subject as 
a random effect. Model details are described in the Supplementary 
material. Analyses were repeated to consider the association with 
WMH burden as scored. For the ALS/PLS cases, the relationship of 
DTI-ALPS index to ALSFRS-R score and progression rate was tested. 
These subgroup experiments are detailed in the Supplementary 
material along with details of the statistical packages.

Results
Participant characteristics are summarized in Table 1. The age and 
sex distributions were similar between groups, and the measure of 
disability by ALSFRS-R was similar between ALS and PLS partici-
pants. ALS participants had an average disease duration of 
37.4 months at the time of their baseline scan and an average pro-
gression rate of 0.52 ± 0.37 ALSFRS-R score point loss per month.

DTI-ALPS indices were significantly reduced in ALS participants in 
comparison to controls (P = 0.002) (Fig. 1A). This reduction was not 
identified amongst PLS participants; however, the sample size for 
this group was small (n = 5). When considering longitudinal data at 
the 4- and 8-month time points, the DTI-ALPS index showed a statis-
tically significant difference in the pattern of change over time at 
8 months for patients versus controls (Fig. 1B) (P = 0.05). We did not 
find any significant correlation with ALSFRS-R score (P = 0.4), progres-
sion rate (0.9) and sex (0.6). The DTI-ALPS index reduced significantly 
with the advancing age of participants (Fig. 2) (P = 0.0002).

Based on the cerebral region of interest for the study, we inves-
tigated the association of lower DTI-ALPS with WMH burden. Most 
scans had Fazekas scores in the range of 0–2, suggesting a low bur-
den (Fig. 3). No statistically significant associations with Fazekas 
scores were observed (P = 0.07), although only a single participant 
had a high Fazekas score (≥4).

Discussion
Using DTI-ALPS, we found reduced glymphatic function in ALS com-
pared to controls and PLS participants. Our study confirms and ex-
tends the findings by Liu et al.9 This prior study included patients 
with early-stage ALS with average ALSFRS-R scores of 43.6 and aver-
age disease duration of only 9.0 months. In our study, disease dur-
ation was longer (average duration 37.4 months from symptom 
onset) and patients had more severe disability (average ALSFRS-R 
score 34.53; Table 1). Our study extends these findings by revealing 
the DTI-ALPS reductions in ALS persist as disease progresses, demon-
strated by the longitudinal measurements in our participants after 4 
and 8 months (Fig. 1B).

The glymphatic system is primarily active during slow-wave 
sleep.3 Altered glymphatic function is associated with sleep disrup-
tion in Alzheimer’s and Parkinson’s diseases4 that in many cases oc-
curs prior to the cognitive and neuromotor symptoms.14 Whether 
glymphatic dysfunction is a cause, consequence or bystander in these 
proteinopathies remains to be determined. Sleep disruption is also re-
cognized in ALS patients,15 although it is not clearly described as a pre-
symptomatic feature for ALS, and its relationship to pathogenesis is 
unclear.16 Given that clinically apparent neurodegeneration is often 
restricted to the motor system and glymphatic alterations are ob-
served throughout disease progression (Fig. 1), ALS may be a disease 
of choice to study glymphatic alterations in neurodegeneration and 
amenable to therapeutic intervention.17

The glymphatic flow depends on vascular pulsations from the car-
diovascular and respiratory systems, and both systems can be im-
paired early in ALS by autonomic dysfunction and weakness of 
bulbar and respiratory musculature.18 Aquaporin-4 (AQP4), the water 
channel expressed in central nervous system tissues, is critical to the 
flow of fluid across astrocytic endfeet, and is known to be over- 
expressed in ALS pre-clinical models and patients.19 This observation 
may be compensatory or protective as reduction of AQP4 function in 
pre-clinical ALS animal models has been shown to cause earlier onset 
and death.20

In the longitudinal analyses, there is a qualitative increase in the 
DTI-ALPS index at the 8-month time point for ALS participants 
(Fig. 1B). This is probably related to drop-out of more severely affected 
ALS patients as the study continued. Amongst the ALS participants, 10 
were able to complete the 4-month scan, and only five were able to 
complete the 8-month scan. This may be informative on its own 
and suggests that patients with the most severe disease also had 
the most severe glymphatic dysfunction as measured with 
DTI-ALPS. It raises the potential for DTI-ALPS as a possible prognostic 
biomarker for ALS, which will be an important question for future 
study. When evaluating evidence from studies of DTI-ALPS in other 
neurodegenerative disorders, the DTI-ALPS index declines in correl-
ation with cognitive function in Parkinson’s disease5 and appears to 
be a predictive marker of the development of dementia in patients 
with cerebral small vessel disease.6 Further longitudinal studies 
with larger cohorts of ALS participants will be needed to determine 
whether similar associations exist in ALS.

The longitudinal analysis also showed a different pattern of 
change between disease participants and controls (Fig. 1B). To our 
knowledge, there is no current literature on normal fluctuations 
in glymphatic function on this timescale, so the exact interpret-
ation of the pattern of fluctuation in the controls is unclear. 
Additional longitudinal studies that include healthy control popu-
lations will help to better inform future research.

PLS participants did not show the same reductions in DTI-ALPS 
index compared to controls, and this remained the case longitudin-
ally. PLS participants in this study had a longer disease duration 

Table 1 Participant characteristics

ALS participants PLS participants Controls Total

Number of participants (female/male) 18 (8/10) 5 (2/3) 22 (12/10) 45 (23/22)
Age, mean (SD) 57.6 (11.7) 58.8 (2.6) 56.6 (8.8) 57.3 (9.6)
Limb onset: bulbar onset (for ALS cases) 15:3 – – –
ALSFRS-R score, mean (SD) 34.53 (7.5) 34.40 (3.2) N/A N/A
Estimated progression rate (ALSFRS-R point loss per month), mean (SD) 0.52 (0.37) 0.25 (0.14) N/A N/A
Disease duration in months from symptom onset, mean (SD) 37.4 (27.0) 86.9 (79.4) N/A N/A

ALS = amyotrophic lateral sclerosis; ALSFRS-R = ALS Functional Rating Scale-Revised; PLS = primary lateral sclerosis; SD = standard deviation.
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(average 86.9 months), but given the slower progression compared 
to ALS, studies of PLS likely require longer follow-up.

The finding that the DTI-ALPS index is similar between PLS par-
ticipants and controls is intriguing; it suggests that the DTI-ALPS re-
duction in ALS participants is not simply the result of neurological 
disability (since ALS and PLS participants have similar ALSFRS-R 
scores in this study, 34.53 compared to 34.40; Table 1). Although 

ALS and PLS are both motor neuron disorders, there are clear differ-
ences in clinical presentation, disease pathogenesis, and neuro-
pathology.21 The differing DTI-ALPS indices between these 
disorders may be an indication of differing risk factors, pathogenic 
and/or neuroprotective mechanisms. The number of PLS partici-
pants in this study was small (n = 5) and future studies with a larger 
sample size will consolidate or refute this idea.

Figure 1 Diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index in amyotrophic lateral sclerosis (ALS), primary lateral scler-
osis (PLS) and control participants and DTI-ALPS index over time. (A) ALS participants have significantly reduced DTI-ALPS index in comparison with 
both controls and PLS participants. This includes aggregated data from images at the baseline, 4-month and 8-month time points (P = 0.002). 
(B) Longitudinal representation of the data across the three time points (mean ± standard deviation). DTI-ALPS is reduced in ALS participants compared 
to PLS and control participants at all three time points. We observe a statistically significant difference in the pattern of change over time at the 
8-month time point for cases versus controls (P = 0.05).
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Some limitations of this study include the relatively small num-
bers of patients and characteristics of our cohort. The cohort is com-
posed of participants with generally slow disease progression of 0.52 
points/month in the ALSFRS-R score, which is lower than the usual 
average ALS progression rate of 1 point/month.22 As the CALSNIC 
study involved longitudinal assessments, this may have favoured 
the recruitment of participants with relatively more stable disease. 
As such, this study may not be representative of the complete ALS 
disease spectrum and further studies should also investigate more 
rapidly progressing disease. Within our study, no correlation was ob-
served between disease progression rate and DTI-ALPS index. 
However, it is important to note that there was attrition of partici-
pants in the ALS group over time (n = 17, 10 and 5, respectively, at 
the three time points) which may have affected these results, and 
again may have favoured participants with milder disease. To better 
stratify patients based on their disease severity, future study may 
consider staging patients using ALS staging methods such as King’s 
and/or Milano-Torino systems.23 Glymphatic function may also dis-
proportionately affect specific neurologic systems in ALS; therefore, 
we also recommend that future studies with larger sample sizes 
should consider analyses of cognitive function as well as measures 
of upper motor neuron dysfunction. Similarly, given the relationship 
of glymphatic function to vascular pulsations from the cardiovascular 
and respiratory systems, any correlation of DTI-ALPS index to auto-
nomic, cardiac, or respiratory dysfunction should be considered in 
the future.

Another possible study limitation is the use of DTI-ALPS as a meas-
ure of glymphatic function. DTI-ALPS is an emerging technique that 
has shown significant promise in ALS and other disorders. There 

may, however, be advantages to contrast-based imaging approaches 
that provide more regional specificity.24 In contrast, DTI-ALPS pro-
vides a single measure of glymphatic function in each hemisphere. 
While reductions in the DTI-ALPS index have been reproducibly 
linked to multiple conditions associated with glymphatic impair-
ment, it is an indirect measure; true confirmation of direct glymphatic 
contributions is difficult.25

The DTI-ALPS index has also been correlated with several other 
imaging markers of vascular and perivascular health. Extracellular 
free water analysis, another diffusion measure, provides information 
about interstitial fluid accumulation, which relates to glymphatic 
drainage.25,26 Vessel pulsatility analysis measures arterial pulsation, 
which is one of the main drivers of glymphatic flow.27 Future imaging 
studies combining these measures with DTI-ALPS might provide 
additional physiological clarity. For robustness, future glymphatic 
imaging studies of ALS participants would benefit from inclusion of 
additional, more invasive, methods to confirm these findings, which 
may also include studies of CSF tracer clearance28 or biomarkers from 
plasma or CSF.29

Because the regions used for the DTI-ALPS analysis may contain 
WMH, we included an analysis of WMH burden to examine for correl-
ation between reduced DTI-ALPS and white matter abnormalities, 
which has been identified in earlier studies25 (Fig. 3). We did not iden-
tify any association between WMH burden and DTI-ALPS scores. 
However, it should be emphasized that most participants had low le-
sion burden (Fig. 3), and therefore, this sample was poorly suited to 
identify the impact of WMHs in this population. Future studies 
should consider any impact of WMHs or other structural changes as-
sociated with DTI-ALPS in ALS. Our method for quantifying the WMH 

Figure 2 Diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index in amyotrophic lateral sclerosis (ALS), primary lateral scler-
osis (PLS) and controls according to participant age. DTI-ALPS index is shown according to participant age, with a trend toward lower values over time 
(P = 0.0002). The age of participants is their age at the time of their first scan in the Canadian ALS Neuroimaging Consortium (CALSNIC) study. Each scan 
is presented as a data-point in this plot (each participant had up to three scans in the study). A trendline shows the main effect of the overall decline in 
the DTI-ALPS index with age in this cohort and the confidence interval.
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burden is semi-quantitative, whereas more quantitative approaches 
may have greater reproducibility.30

In summary, this study demonstrates the finding of reduced 
glymphatic function in ALS participants compared to controls in a 
more advanced cohort and with longitudinal scans across an up 
to 8-month time period. The lack of a similar association in PLS par-
ticipants is of great interest and requires further study. The associ-
ation of glymphatic alteration with ALS is crucially important for 
future study. This would help inform the disease pathogenesis 
and identify targets for future therapies. There is also biomarker 
potential for diagnosis (in cases with UMN presentation to poten-
tially discriminate PLS from ALS) or for prognosis (given the possi-
bility that ALS patients with lower DTI-ALPS were lost to follow-up, 
suggesting more severe disease). Moreover, because easily imple-
mented health interventions (e.g. improved sleep hygiene) can 
modify this system, therapeutic development targeting glymphatic 
function offers translational benefit to patients.
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