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Abstract
Motivation: Mathematical modelling plays a crucial role in understanding inter- and intracellular signalling processes. Currently, ordinary differ-
ential equations (ODEs) are the predominant approach in systems biology for modelling such pathways. While ODE models offer mechanistic 
interpretability, they also suffer from limitations, including the need to consider all relevant compounds, resulting in large models difficult to han-
dle numerically and requiring extensive data.
Results: In previous work, we introduced the retarded transient function (RTF) as an alternative method for modelling temporal responses of sig-
nalling pathways. Here, we extend the RTF approach to integrate concentration or dose-dependencies into the modelling of dynamics. With this 
advancement, RTF modelling now fully encompasses the application range of ODE models, which comprises predictions in both time and concen-
tration domains. Moreover, characterizing dose-dependencies provides an intuitive way to investigate and characterize signalling differences be-
tween biological conditions or cell types based on their response to stimulating inputs. To demonstrate the applicability of our extended approach, 
we employ data from time- and dose-dependent inflammasome activation in bone marrow-derived macrophages treated with nigericin sodium 
salt. Our results show the effectiveness of the extended RTF approach as a generic framework for modelling dose-dependent kinetics in cellular 
signalling. The approach results in intuitively interpretable parameters that describe signal dynamics and enables predictive modelling of time- and 
dose-dependencies even if only individual cellular components are quantified.
Availability and implementation: The presented approach is available within the MATLAB-based Data2Dynamics modelling toolbox at https:// 
github.com/Data2Dynamics and https://zenodo.org/records/14008247 and as R code at https://github.com/kreutz-lab/RTF.

1 Introduction
Signalling networks play a crucial role in controlling cellular 
behaviour, and deciphering these networks under different 
biological conditions is a fundamental goal of systems biol-
ogy. One of the key approaches in this field involves quanti-
fying the activation of cellular compounds and employing 
mathematical modelling to gain insights into signalling mech-
anisms and understand disease-causing malfunctions.

Traditionally, the prevailing modelling approach has been 
to translate known biochemical interactions into systems of 
ordinary differential equations (ODEs) using rate laws such 
as the law of mass action or enzyme kinetics. These mechanis-
tic models, often referred to as rate-equation models, provide 
a mathematical representation of interactions of signalling 
compounds. In these models, each variable and parameter in 

the equations corresponds to a real biochemical entities and 
interaction strength within the pathway.

This approach offers mechanistic interpretability since 
each parameter corresponds to real biochemical entities, 
allowing for the precise assessment of compound contribu-
tions, integration of prior knowledge (e.g. typical concentra-
tions or timescales), and predictions under conditions such as 
knockout or overexpression.

However, ODE-based mechanistic modelling also has certain 
limitations. The resulting models are non-linear with respect to 
parameters, posing computational challenges such as numerical 
integration of high-dimensional stiff ODEs and dealing with lo-
cal optima during parameter estimation. Additionally, statistical 
methods, which can account for the non-linearity of the models 
need to be applied for model inference and uncertainty analysis. 
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Another drawback is the necessity to include all relevant 
compounds, leading to large models that require substantial 
amounts of data to estimate the unknown model parameters.

To address these challenges, model reduction techniques 
have been proposed to decrease the model size by eliminating 
unnecessary components. However, model reduction limits 
mechanistic interpretability and can lead to biased reduction 
in model uncertainties.

As described in detail in Kreutz (2020), there are several al-
ternative approaches for function estimation in the scientific 
literature. They fall into two main categories: non-parametric 
and parametric regression. Non-parametric methods like 
smoothing splines (Wahba 1975, Verbyla et al. 1999), 
Gaussian processes (Cressie 1990), and kernel regression 
(Watson 1964) do not require a pre-defined model structure, 
while parametric approaches, such as polynomial regression 
(Bradley and Srivastava 1979), non-linear regression techni-
ques, and regression based on fractional polynomials (Royston 
and Sauerbrei 2008, Long and Ryoo 2010) rely on specified 
models. In systems biology, alternatives to ODE modelling 
have been developed to describe and investigate the dynamics 
of biochemical interactions. Gaussian processes are used for 
learning unknown differential functions (Heinonen et al. 
2018) or inferring latent biochemical species (Gao et al. 2008). 
Boolean models, which represent cellular signalling networks, 
can be transformed into continuous ODEs to serve as approxi-
mations. Additionally, dynamic Bayesian networks (Sachs 
et al. 2002) offer ODE approximations with parallelized simu-
lations on GPUs (Liu et al. 2012). Logic-based ODEs have also 
been used to model cell signalling, combining logical rules with 
traditional ODE frameworks (Morris et al. 2010). However, 
these alternative modelling approaches often result in uncom-
mon dynamics and are not specifically tailored to cellular sig-
nalling processes.

The dynamics of cellular signalling processes show typi-
cally curve shapes (Hoare et al. 2020). We have previously 
proposed the retarded transient function (RTF) approach as 
an alternative modelling method specifically designed for dy-
namics commonly observed in ODE models derived by the 
rate-equation approach (Kreutz 2020). The non-mechanistic 
RTF approach incorporates characteristic features of signal-
ling pathway responses, such as new steady states after stimu-
lation, exhibiting monotone or at most one peak dynamics, 
delayed responses, e.g. for downstream compounds, and dy-
namics that are not orders of magnitude faster or slower than 
the measurement timescale. As the approach is describing 
transient dynamics, it is not suitable for several peaks or 
oscillations and therefore should not be applied if such fea-
tures play a prominent role in the dynamics.

In contrasts to mechanistic interpretability in ODE-based 
models, where parameters correspond to molecular interac-
tions and rates, the RTF parameters capture the dynamics 
and can be interpreted intuitively in terms of amplitudes and 
timescales of the sustained and transient response compo-
nents. Thereby they provide valuable biological insights in 
the systems dynamics.

We have shown that the RTF closely approximates the ex-
act solutions of mechanistic ODEs in published pathway 
models and exhibits comparable predictive performance 
when fitted to simulated data and, thus, constitutes a valu-
able alternative modelling approach. The RTF is widely ap-
plicable, as shown recently by its use in the BayModTS 

workflow for analysing diverse biological and clinical time 
course data (H€opfl et al. 2024).

However, so far, the RTF approach has been limited to de-
scribing and predicting time-dependencies, while a major aim 
of systems modelling are predictions for varying stimulations 
or treatments which have not been feasible yet. In this work, 
we extend the RTF approach by incorporating dose- 
dependencies to model the effect of varying stimulation 
concentrations or doses with the help of Hill equations.

We demonstrate the ability of the novel dose-dependent RTF 
approach to effectively explain datasets, by applying it to meas-
urements of inflammasome activation in bone marrow-derived 
macrophages (BMDMs) treated with nigericin. Additionally, 
we illustrate its utility in analysing and interpreting the impact 
of genetic perturbations, such as the NEK7 knockout, on path-
way responses. The presented modelling method is a valuable 
complementary tool for pathway modelling, particularly if only 
a few pathway components are measured or if the primary 
focus is on understanding the input–output behaviour.

2 Methodology
The RTF is a curve-fitting approach which is based on three 
exponential functions and a non-linear transformation of the 
time axis. In the first section, we recapitulate and illustrate 
the RTF as published previously (Kreutz 2020) using a 
slightly different mathematical notation. Then, the RTF is 
generalized to multiple doses. finally, we illustrate the model-
ling and statistical testing of differences between different cell 
types or biological conditions.

2.1 Single-dose RTF
The RTF is defined as 

R treal;θR tð Þ
� �

¼A 1−e−αt treal;τð Þð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Sustained compound

þB 1−e−βt treal;τð Þð Þe−γt treal;τð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Transient compound

þb

(1) 

describes the time-dependency of the non-oscillating response 
of a cellular signalling compound by a sustained and a tran-
sient component. Both components have individual ampli-
tudes A, B and time constants α, β, γ. In addition, an offset b 
and the magnitude σ of the measurement error of the data 

yi ¼ R ti; θR tð Þ
� �

þ εi ; εi � N 0; σ2
� �

(2) 

are estimated based on the measurements yi; i¼ 1; . . . ;N at 
time points ti.

As the response of a pathway compound can be induced 
with some delay, a non-linear time transformation 

t treal; τð Þ ¼ log 10 10treal × 10=T þ 10τ
� �

− log 10 1þ 10τð Þ (3) 

of the real experimental measurement times treal has been sug-
gested (Kreutz 2020). The division by the range of the mea-
surement times T makes the approach independent of time 
units. Time shift τ corresponds to the delay time and, using 
(3) as the argument of the exponential in (1) introduces a re-
tarded response.

Overall, the time-dependent RTF comprises eight parame-
ters θR tð Þ ¼ fA;B;α;β;γ; τ;b;σg, of which the first six parame-
ters determine the dynamics. In this form, the time-dependent 
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RTF only describes the temporal change of one signalling 
compound for one experimental condition, e.g. for one bio-
logical condition or for a single treatment dose. In the follow-
ing, the approach will be generalized to multiple treatment 
doses. For the sake of simplicity, we will only use the term 
‘dose’ in the following to describe the amount or concentra-
tion of an activating or suppressing signalling compound. 
To achieve a positive monotonic relationship between the dy-
namic parameters and multiple doses as introduced in the fol-
lowing section, we have parameterized the single-dose RTF 
using rate constants α, β, γ. In an application setting, the 
reciprocals of α, β, γ can be interpreted as timescales.

2.2 Dose-dependent RTF
In biochemistry and pharmacology, Hill equations are often 
used to describe how a response depends on the dose of an 
activator, drug, or binding partner (Hill 1910). The 
Hill equation 

H dð Þ ¼M
dh

Khþ dh
(4) 

has three parameters: the maximum value M, the 
half-maximal quantity K, and the Hill coefficient h, which 
controls the sigmoidality. The half-maximal quantity K cor-
responds to the dose where half of the maximum activation is 
reached, and, in the context of pharmacokinetics, is often re-
ferred to as EC50. A visualization of how these parameters 
effect the Hill equation are displayed in Supplementary 
Table S2.

In the chosen parametrization, the response delay parame-
ter τ is the only parameter with a negative monotonic 

relationship with increasing dose. Therefore, the correspond-
ing Hill equation is modified to show a negative monotonic 
relationship with increasing doses: 

~H dð Þ ¼M 1 −
dh

Khþdh

� �

: (5) 

In order to obtain a dose-dependent formulation of the 
RTF, we use Hill equations to replace the six dynamic param-
eters of the time-dependent RTF R t;θR tð Þ

� �
to describe how 

the kinetics depend on dose d: 

A ! A dð Þ ¼MA
dhA

KhA
A þ dhA

(6) 

B ! B dð Þ ¼MB
dhB

KhB
B þ dhB

(7) 

α ! α dð Þ ¼Mα
dhα

Khα
α þdhα

(8) 

β ! β dð Þ ¼Mβ
dhβ

Khβ
β þ dhβ

(9) 

γ ! γ dð Þ ¼Mγ
dhγ

Khγ
γ þ dhγ

(10) 

τ ! τ dð Þ ¼Mτ 1 −
dhτ

Khτ
τ þdhτ

 !

: (11) 

This is phenomenological description of the dose- 
dependency. For a motivation, see Supplementary Section S2. 
Plugging these replacements into (1) results in the dose- 

Figure 1. Illustrations of how dose dependence of dynamic parameters translates into kinetics. See Supplementary Table S3 for a complete overview. (a) 
Hill curve showing the dose dependency of amplitude A. (b) Resulting kinetics for the three values of A highlighted in a. For better clarity, only the 
sustained part is displayed and the response saturates to the value of A. (c) The dose-dependency of the response time τ follows a decreasing Hill curve. 
(d) The three highlighted values of τ in c impact the time shift τ of the RTF response curves.
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dependent RTF R d; t;θR t;dð Þ
� �

which has in its most general 
form 20 parameters 

θR t;dð Þ
¼ fMA;MB;Mα;Mβ;Mγ;Mτ;KA;KB;Kα;

Kβ;Kγ;Kτ;hA;hB;hα;hβ;hγ;hτ;b; σg :
(12) 

In case there is no dose-dependency, all half-maximal doses 
K are zero, resulting in all Hill equations becoming constant. 
In this case, the Hill coefficients h no longer have any influ-
ence and the dose-dependent RTF simplifies to the time- 
dependent RTF where the parameter values are given by 
the amplitudes M. In other words, the single-dose RTF 
represents the special case where KA ¼ KB ¼ Kα ¼ Kβ ¼ Kγ ¼

Kτ ¼ 0 and MA ¼ A;MB ¼ B;Mα ¼ α;Mβ ¼ β;Mγ ¼ γ;Mτ ¼ τ 
are constants.

Figure 1 illustrates how the dose dependencies of the 
parameters A and τ, shown in panels a and c, impact the cor-
responding dose-dependent RTFs. For most parameters of 
the RTF, an increasing dose results in a stronger effect as ex-
emplified for amplitude A of the sustained RTF part in panel 
b. The time shift τ decreases with higher doses, prompting a 
faster response of the RTF, as shown in panel d. 
Supplementary Table S3 contains similar figures for all 
parameters of the dose-dependent RTF.

2.3 Dose-dependent RTF for multiple conditions
Since in field of molecular biology typically several biological 
conditions are compared, e.g. different tissues, cell types, 
treatments, or genetically modified cells, we further general-
ize the dose-dependent RTF by introducing condition- 
dependent parameters 

θR t;dð Þ
! θR cð Þ t;dð Þ

: (13) 

Here, the superscript index in parentheses, i.e. cð Þ, refers to 
the considered biological conditions.

If dose-dependent time course datasets are measured for 
multiple biological conditions, interpreting differences from a 
reference condition is often of primary interest. To character-
ize differences in the RTF parameters over multiple 
conditions, we define a reference condition and introduce 
fold-changes, i.e. two conditions are parameterized with 
multiple fold-change parameters Δ by 

M 1ð Þ
A ;M 2ð Þ

A ! M 1ð Þ
A ;ΔMA M 1ð Þ

A (14) 

M 1ð Þ
B ;M 2ð Þ

B ! M 1ð Þ
B ;ΔMB M 1ð Þ

B (15) 
. . .

K 1ð Þ
A ;K 2ð Þ

A ! K 1ð Þ
A ;ΔKA K 1ð Þ

A
(16) 

K 1ð Þ
B ;K 2ð Þ

B ! K 1ð Þ
B ;ΔKBK 1ð Þ

B (17) 
. . .

h 1ð Þ
A ;h 2ð Þ

A ! h 1ð Þ
A ;ΔhA

h 1ð Þ
A

(18) 

h 1ð Þ
B ;h 2ð Þ

B ! h 1ð Þ
B ;ΔhB h 1ð Þ

B

. . .
(19) 

if condition (1) is considered as reference.

2.4 Parameter estimation
The dose-dependent RTF can describe experimental data y(t) 
from time course data measurements across various doses 
and biological conditions, including those with replicates. 

For the jointly estimation of all of the model parameters in 
comparison to the data, the maximum likelihood approach is 
used, i.e. the estimated parameters 

θ̂ ¼ arg max
θ

LL yjθð Þ (20) 

maximize the log-likelihood LL yjθð Þ.
To account for non-linearity during optimization, and es-

pecially to ensure the identification of the global minimum, 
we employ multi-start optimization (Raue et al. 2013). 
The so-called waterfall plot visualization (see Supplementary 
Fig. S1) is used to check the reliability of the numerical opti-
mization and to guarantee that the best optimum has been 
found repeatedly.

In the implementation chosen here, a single parameter σ, 
which quantifies the magnitude of the measurement errors, is 
jointly fitted with all other parameters. However, other error 
models, such as absolute and relative error models, or multi-
ple σ parameters for groups of data points with different mea-
surement errors, could be implemented if needed based on 
the data.

2.5 Confidence intervals and significant condition- 
dependencies
Given that the RTFs depend non-linearly on the parameters, 
and considering the usual limitations in data availability 
within the systems biology domain, it is crucial to avoid using 
local linear approximations for uncertainty quantification. 
Instead, uncertainty quantification methods that are specifi-
cally designed to handle non-linear systems should be used. 
This ensures the accurate and reliable estimation of uncer-
tainties associated with RTF parameters and predictions. 
Thus, for the estimation of confidence intervals (CIs), we ap-
ply the profile likelihood approach (Raue et al. 2009), which 
has been proven to account for non-linearity and is one of the 
most frequently applied approaches for pathway models 
(Kreutz et al. 2013).

The profile likelihood provides a continuous evaluation of 
the likelihood ratio test (LRT) statistic for individual parame-
ters (Cox and Hinkley 1979). In the context of systems 
biology, the profile likelihood is typically calculated on the 
log-scale because parameter are strictly positive and may vary 
over orders of magnitudes. By calculating the profile likeli-
hood and setting a threshold which corresponds to a pre- 
determined confidence level, the results can be interpreted 
in relation to the LRT. For instance, if the value Δ¼0 falls 
outside the 95% CI, it implies a significant LRT with a 
significance level of 5%. To statistically assess whether a 
fold-change parameter significantly differs from 1 (i.e. log- 
fold-change log Δð Þ 6¼ 0 for a given experimental condition), 
one can evaluate the profile likelihood for the log-fold- 
change parameter. The null hypothesis log Δð Þ ¼ 0 is rejected, 
if this value lies outside the respective CI, i.e. the profile likeli-
hood for log Δð Þ ¼ 0 is above the significance threshold.

2.6 Parameter constraints and model reduction
In case data availability is limited, mathematical models with 
an excessive number of parameters can give rise to overfitting 
issues. To mitigate this issue in the context of time-dependent 
RTF modelling, we previously suggested to specify parameter 
bounds and perform model reduction (Kreutz 2020).

The default parameter bounds were adapted to the dose- 
dependent RTF as shown in Table 1. The bounds for the 
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maximum values Mθ match the ones for the corresponding 
parameters θR tð Þ proposed in Kreutz (2020). The bounds 
proposed for MA and MB assume a model of up-regulation of 
the transient and sustained parts. If one of the amplitudes 
A or B is expected to be a down-regulation, the respective 
sign can be changed or the bounds can be set to 
− ub;0½ � ¼ − 2 max yð Þ− min yð Þ

� �
;0

� �
. y refers to the experi-

mental time course data of all measured doses. If multiple 
conditions are compared, only the data of the reference con-
dition is used for the definition of the boundaries.

As the sustained and the transient part of the response are 
usually triggered together, α� γ is assumed by default. For 
the Hill coefficient h and the half-maximum quantity of the 
Hill equation K, new default bounds are proposed here. And 
for all dose-dependent parameters fA;B;α;β;γ; τg, the same 
bound for h and K is used.

For dose-dependent RTF modelling, being applied both to 
single and multiple conditions, we recommend applying 
model reduction by a backward elimination procedure. This 
iterative approach facilitates repeated removal of parameters 
that are deemed unnecessary for adequately capturing the 
data. Furthermore, depending on the specific biological con-
text, it may be desired to pre-define parameters as being not 
dose-dependent, e.g. by setting the respective K to zero, based 
on prior knowledge. Additionally, not all parameters need to 
be condition-specific due to the underlying biological setting 
and it could be plausible to assume that certain parameters 
are shared among conditions.

3 Results
To demonstrate its applicability, the extended RTF approach 
is applied to data quantifying NLRP3 inflammasome activa-
tion in BMDMs triggered by the bacterial toxin nigericin. An 
inflammasome is a multi-protein complex which initiates in-
flammatory responses and can induce cell death. During 
inflammasome activation, interleukin-1β (IL-1β) is released. 
An enzyme-linked immunosorbent assay was used for detect-
ing and quantifying IL-1β. Measurements were taken for a 
fixed set of time points for different treatment doses and dif-
ferent biological conditions. The experiment was conducted 
for two experimental conditions: with wild-type cells and 
with NEK7 knockout cells.

In the first step, the time-dependent RTF, introduced in 
Kreutz (2020), is fitted for each treatment dose separately to 
the dynamics of the data from wild-type cells. Then, the dose- 

dependent RTF introduced in this manuscript is fitted to the 
wild-type data for all treatment doses in a joint fit, and the 
results are compared with the individual fits. Finally, the 
dose-dependent RTF for multiple conditions is fitted to both 
wild-type and knockout data to identify significant differen-
ces of the dose-dependent kinetics in knockout cells. For the 
parameter estimation of all models, the bounds proposed in  
Table 1 were used. They are shown in Supplementary Tables 
S4–S12.

3.1 Modelling dose-dependent dynamics
In the first step, the traditional single-dose RTF (1) was fitted 
for each treatment dose separately to the data of the wild- 
type cells. Based on prior biological knowledge, we set B¼0 
resulting in the RTF having no transient part. The remaining 
parameters are θR tð Þ ¼ fA;α; τ;b;σg. For each of the seven 
treatment doses, we get individual estimates for the model 
parameters. In total, the single-dose RTF requires 35 parame-
ters over all 7 doses. These individual fits are based on (1) 
and do not allow for predictions for unobserved doses. The 
resulting fits are shown in Fig. 2 (dashed lines).

Next the dose-dependent RTF is used to model dynamics 
of the wild-type cells by jointly fitting all treatment doses si-
multaneously. For this purpose, the parameters A, α, τ are 
replaced with the Hill equations (6), (8) and (11) in (1) as de-
scribed above. As before, we presumed that there is no tran-
sient part of the response and set the amplitude B to zero. In 
contrast to the total 35 parameters that are needed to model 
the RTF for each dose individually, only 11 parameters are 
needed for the dose-dependent joint model independent of 
the number of doses: fMA;Mα;Mτ;KA;Kα;Kτ;hA;hα;hτ;b;σg.

For each of the dose-dependent parameters A, α and τ, 
there are three Hill parameters: M, K and h. Additionally, 
there are three parameters b and σ that are independent of 
the dose.

Although the dose-dependent RTF model requires fewer 
parameters and enforces that the dose-dependencies of the 
RTF parameters follow Hill functions, the fit to the data 
shows no visible loss in explaining the data (Fig. 2). To com-
pare the dose-dependent RTF fit with the individually fitted 
RTFs, we used the fixed σ as fitted by the dose-dependent 
RTF for both models. This results in χ2 ¼ 56:0 for the dose- 
dependent RTF with 10 fitted parameters, and χ2 ¼ 65:5 for 
the individually fitted RTFs to each of the 7 doses for 30 
parameters in total. A LRT yields a P-value close to 1, indi-
cating that there is no significant difference between the 

Table 1. Default parameter bounds and suggested initial values for parameter optimization.

Parameter Description Lower bound (lb) Upper bound (ub) Default initial guess

Ma
A;M

a
B Maximum value for Amplitude A, B 0 2ðmaxðyÞ− minðyÞÞb 0.1 lb þ 0.9 ub

Mα;Mγ Maximum value for rate constants α;γ 1=ð2ðmaxðt0Þ− minðt0ÞÞÞ 2=miniðt0 iþ1 − t0 iÞ 0.5 lb þ 0.5 ub
Mβ

c Maximum value for rate constant β Mα Mα Mα
Mτ Maximum value for time constant τ − ðmaxðt0Þ− minðt0ÞÞ=5 ðmaxðt0Þ− minðt0ÞÞ=2 − ðmaxðt0Þ− minðt0ÞÞ=10
hd Hill coefficient 1 10 0.5 lb þ 0.5 ub
Kd Half-maximum quantity minðdose>0Þ=10 maxðdoseÞ � 10 0.5 lb þ 0.5 ub
b Data offset minðyÞb maxðyÞb 0.5 lb þ 0.5 ub
σ Measurement error of data minðub;maxð10− 10; maxð10− 10;SDðyÞÞb 0.5 lb þ 0.5 ub

ðmaxðyÞ− minðyÞÞ=104ÞÞb

a For down-regulation switch and change sign: lb¼ − 2ðmaxðyÞ− minðyÞÞ; ub¼ 0.
b y denotes the data that is used for the parameter estimation of the model. For the comparison of multiple conditions only the data from the reference 

condition is used.
c Since the sustained and the transient part of the response are usually triggered together, α¼ γ is assumed by default.
d The suggested boundaries for the Hill coefficient and the half-maximum quantity are identical for all dose-dependent parameters of the RTF.
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quality the dose-dependent RTF compared to the individual 
fits. As they have a larger amount of parameters, the individ-
ual RTFs are over-parameterized compared to the dose- 
dependent RTF. Furthermore, the dose-dependent RTF 
ensures a monotonic increase of the response for all doses, 
which is not guaranteed in the individual fits (see Fig. 2 
dashed lines for 4, 5, 6 µM). Despite this, the dose-dependent 
RTF describes dynamic responses to varying doses, enabling 
predictions of system dynamics for unmeasured treat-
ment regimes.

3.2 Modelling condition-dependencies
To demonstrate the applicability of the dose-dependent RTF 
across various conditions, it is applied to both wild-type cell 
data and the data obtained from the cells with an NEK7 
knockout (Fig. 3). The corresponding joint fits are shown in  
Fig. 3. The wild type serves as a reference condition and is 
augmented with fold-changes Δ for each parameter [(14)– 
(19)]. The likelihood profiles of these fold-change parameters 
Δ are shown in Fig. 4, where the dashed line shows the 95% 
confidence level, with the x-axis displayed in logarith-
mic scale.

For fold-changes of MA, Mα; Mτ, KA and hα, there is a 
significant change in NEK7 knockout cells indicated by 

fold-factors significantly different from one, i.e. the 95% CI 
for the log-fold-changes do not cover zero. Conversely, for 
the parameters Kα; Kτ, hA and hτ the log-fold-change Δ¼0 
lies within the 95% CI. As these factors do not significantly 
differ from 1, the corresponding parameters exhibit no 
condition-dependency. Therefore, a model reduction proce-
dure could be applied by iteratively eliminating the 
condition-dependencies of these parameters. However, as 
with any model reduction procedures, such backward elimi-
nation might result in different solutions depending on the 
specific order in which parameters are removed.

4 Conclusion
The development of a comprehensive toolbox of methods 
applicable and tailored to a broad range of applications and 
research questions is crucial for performing effective model-
ling in systems biology. This manuscript proposes a novel 
approach for dynamic modelling of cellular signalling pro-
cesses, especially if ODEs are not feasible, e.g. due to compu-
tational problems arising from large model sizes or a lack of 
sufficient experimental data for all relevant compounds in a 
mechanistic model. Here, we extended the RTF to describe 
dose-dependencies typically observed in the context of 

Figure 2. Comparison of fitting individual functions to each dose (single-dose RTF approach) with a joint fit of the dose-dependent joint model on the 
same experimental data. In contrast to the 35 parameters of the individual fits, the joint model requires only 11 parameters to describe the data and 
enables predictions for unobserved doses.

Figure 3. The condition-specific dose-dependent RTF can describe the data generated over two different conditions (wild-type cells and NEK7 knockout 
cells). Furthermore, fold-changes Δ can be estimated and tested for significance.
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cellular signalling. The applicability and efficacy of the ap-
proach is demonstrated at the example of the analysis of 
time- and dose-dependent measurements of inflamma-
some activation.

The presented dose-dependent modelling can be applied to 
individual signalling compounds to capture and explain ex-
perimental observations. Notably, the dose-dependent RTF 
requires fewer parameters than the single-dose RTF approach 
if applied to multi-dose experiments and substantially fewer 
than those needed for ODE modelling.

In contrast to mechanistic ODE models, individual observ-
ables can be modelled without the need for integrating all rel-
evant compounds of a signalling process as required for 
mechanistic models.

Since the dose-dependent RTF model describes dynamic 
responses as a function of varying doses, it also enables 
predictions of system dynamics for unmeasured treatment 
doses. It also facilitates fitting of input–output behaviour of 
a system of interest in a less elaborate manner by a 
phenomenological, non-mechanistic mathematical descrip-
tion. Moreover, it offers novel opportunities to link mathe-
matical models of related signalling processes, e.g. for multi- 
scale models.

Additionally, the intuitive interpretation of its parameters, 
e.g. as amplitudes, delays and time rates, supports the charac-
terization and understanding of signalling dynamics.

Furthermore, this approach enables statistically rigorous 
analysis of differences in the responses of biological path-
ways. This not only deepens our insight into cell signalling 
but also provides a structured framework for testing hypothe-
ses and comparing various biological conditions such as wild 
type and knockout.

In particular, when the amount of available data is limited, 
assumptions must be made for mathematical modelling in or-
der to balance the trade-off between flexibility and overfit-
ting. Therefore, the dose-dependent RTF approach has 
certain application limits, like any other modelling approach. 
As also discussed in Kreutz (2020), the single-dose RTF is tai-
lored to non-oscillatory response kinetics, as typically ob-
served as the initial response in ODE systems resulting from 
the rate-equation approach. Therefore, responses with more 
than one peak or oscillations are not accurately described by 
the RTF but only effectively as an average over any oscilla-
tions that may occur. As shown in Kreutz (2020), the RTF is, 
nevertheless, very well suited for the vast majority of pathway 
models, so that the RTF can be applied for a broad range of 
applications.

In summary, the introduced dose-dependent RTF serves 
as a promising and interpretable complementary modelling 
approach for the investigation of cellular signalling processes. 
Its ability of accurately explaining data, providing 
intuitive insights, supporting predictions of time- and dose- 
dependencies and facilitating statistical testing renders it a 
valuable addition to the repertoire of systems biology model-
ling techniques benefiting the understanding of dynamic 
signalling processes when ODEs are hardly feasible.

Author contributions
Olaf Groß and Svenja W€ohrle conceived and conducted the 
experiments. Clemens Kreutz developed the theoretical for-
malism. Timo Rachel and Eva Brombacher implemented the 
approach. Timo Rachel performed the simulations and ana-
lysed the results supervised by Clemens Kreutz. Clemens 

Figure 4. The profile likelihood of the fold-change parameters Δ can be used to test, which parameters are significantly different in the knockout 
condition. The intersection points between the dotted threshold and the profile likelihood indicate the margins of the 95% confidence interval (CI) 
highlighted by grey colouring. If the 0 on the logarithmic scale (corresponding to 1 on the linear scale) is outside the 95% CI, the likelihood ratio test is 
significant to a 5% significance level, indicating significantly different characteristics of the dose-dependency between both conditions.

Non-mechanistic pathway modelling                                                                                                                                                                                      7 



Kreutz, Timo Rachel, and Eva Brombacher wrote and 
reviewed the manuscript.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest: None declared.

Funding
This research was funded by the Deutsche 
Forschungsgemeinschaft (DFG, German Research Foundation) 
under Germany’s Excellence Strategy (CIBSS—EXC-2189— 
Project ID 390939984), as well as by the DFG’s Collaborative 
Research Center (SFB 1597—Project ID 499552394). Additional 
support was provided by the University of Freiburg through its 
Open Access Publishing program.

Data availability
The data and code underlying this article are available in 
Zenodo, at https://dx.doi.org/10.5281/zenodo.14008246.

References
Bradley RA, Srivastava SS. Correlation in polynomial regression. Am 

Stat 1979;33:11–4. https://doi.org/10.1080/00031305. 
1979.10482644

Cox DR, Hinkley DV. Theoretical Statistics. Boca Raton, Florida, U.S.: 
CRC Press, 1979.

Cressie N. The origins of kriging. Math Geol 1990;22:239–52. https:// 
doi.org/10.1007/BF00889887

Gao P, Honkela A, Rattray M et al. Gaussian process modelling of la-
tent chemical species: applications to inferring transcription factor 
activities. Bioinformatics 2008;24:i70–5. https://doi.org/10.1093/ 
bioinformatics/btn278

Heinonen M, Yildiz C, Mannerstr€om H et al. Learning unknown ode 
models with Gaussian processes. In: International Conference on 
Machine Learning. Stockholm, Sweden: PMLR, 2018, 1959–68.

Hill AV. The possible effects of the aggregation of the molecules of he-
moglobin on its dissociation curves. J Physiol 1910;40:iv–vii.

Hoare SR, Tewson PH, Quinn AM et al. Analyzing kinetic signaling 
data for g-protein-coupled receptors. Sci Rep 2020;10:12263. 
https://doi.org/10.1038/s41598-020-67844-3

H€opfl S, Albadry M, Dahmen U et al. Bayesian modelling of time series 
data (BayModTS)—a fair workflow to process sparse and highly 
variable data. Bioinformatics 2024;40:btae312. https://doi.org/10. 
1093/bioinformatics/btae312

Kreutz C. A new approximation approach for transient differential 
equation models. Front Phys 2020;8:70. https://doi.org/10.3389/ 
fphy.2020.00070

Kreutz C, Raue A, Kaschek D et al. Profile likelihood in systems biol-
ogy. FEBS J 2013;280:2564–71. https://doi.org/10.1111/ 
febs.12276

Liu B, Hagiescu A, Palaniappan SK et al. Approximate probabilistic 
analysis of biopathway dynamics. Bioinformatics 2012;28: 
1508–16. https://doi.org/10.1093/bioinformatics/bts166

Long J, Ryoo J. Using fractional polynomials to model non-linear 
trends in longitudinal data. Br J Math Stat Psychol 2010;63: 
177–203. https://doi.org/10.1348/000711009X431509

Morris MK, Saez-Rodriguez J, Sorger PK et al. Logic-based models for 
the analysis of cell signaling networks. Biochemistry 2010;49: 
3216–24. https://doi.org/10.1021/bi902202q

Raue A, Kreutz C, Maiwald T et al. Structural and practical identifiabil-
ity analysis of partially observed dynamical models by exploiting 
the profile likelihood. Bioinformatics 2009;25:1923–9. https://doi. 
org/10.1093/bioinformatics/btp358

Raue A, Schilling M, Bachmann J et al. Lessons learned from quantita-
tive dynamical modeling in systems biology. PLoS One 2013;8: 
e74335. https://doi.org/10.1371/journal.pone.0074335

Royston P, Sauerbrei W. Multivariable Model-Building: A Pragmatic 
Approach to Regression Analysis Based on Fractional Polynomials 
for Modelling Continuous Variables. Hoboken, New Jersey, U.S.: 
John Wiley & Sons, 2008.

Sachs K, Gifford D, Jaakkola T et al. Bayesian network approach to cell 
signaling pathway modeling. Sci STKE 2002;2002:pe38. https://doi. 
org/10.1126/stke.2002.148.pe38

Verbyla AP, Cullis BR, Kenward MG et al. The analysis of designed 
experiments and longitudinal data by using smoothing splines. J R 
Stat Soc Ser C Appl Stat 1999;48:269–311. https://doi.org/10.1111/ 
1467-9876.00154

Wahba G. Smoothing noisy data with spline functions. Numer Math 
1975;24:383–93. https://doi.org/10.1007/BF01437407

Watson GS. Smooth regression analysis. Sankhy�a 1964;26:359–72.

© The Author(s) 2024. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2024, 40, 1–8
https://doi.org/10.1093/bioinformatics/btae683
Original Paper

8                                                                                                                                                                                                                                    Rachel et al. 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae683#supplementary-data
https://dx.doi.org/10.5281/zenodo.14008246
https://doi.org/10.1080/00031305.1979.10482644
https://doi.org/10.1080/00031305.1979.10482644
https://doi.org/10.1007/BF00889887
https://doi.org/10.1007/BF00889887
https://doi.org/10.1093/bioinformatics/btn278
https://doi.org/10.1093/bioinformatics/btn278
https://doi.org/10.1038/s41598-020-67844-3
https://doi.org/10.1093/bioinformatics/btae312
https://doi.org/10.1093/bioinformatics/btae312
https://doi.org/10.3389/fphy.2020.00070
https://doi.org/10.3389/fphy.2020.00070
https://doi.org/10.1111/febs.12276
https://doi.org/10.1111/febs.12276
https://doi.org/10.1093/bioinformatics/bts166
https://doi.org/10.1348/000711009X431509
https://doi.org/10.1021/bi902202q
https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1371/journal.pone.0074335
https://doi.org/10.1126/stke.2002.148.pe38
https://doi.org/10.1126/stke.2002.148.pe38
https://doi.org/10.1111/1467-9876.00154
https://doi.org/10.1111/1467-9876.00154
https://doi.org/10.1007/BF01437407

	Active Content List
	1 Introduction
	2 Methodology
	3 Results
	4 Conclusion
	Author contributions
	Supplementary data
	Funding
	Data availability
	References


