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Abstract 

The identification of cell types in single-cell RNA sequencing (scRNA-seq) data is a critical task in understanding complex biological systems. 
Traditional supervised machine learning methods rely on large, well-labeled datasets, which are often impractical to obtain in open-world sce- 
narios due to budget constraints and incomplete information. To address these challenges, we propose a no v el computational frame w ork, 
named AnnoGCD, building on Generalized Category Discovery (GCD) and Anomaly Detection (AD) for automatic cell type annotation. Our semi- 
supervised method combines labeled and unlabeled data to accurately classify known cell types and to disco v er no v el ones, e v en in imbalanced 
datasets. AnnoGCD includes a semi-supervised block to first classify known cell types, f ollo w ed b y an unsupervised block aimed at identifying 
and clustering no v el cell types. We e v aluated our approach on five human scRNA-seq datasets and a mouse model atlas, demonstrating superior 
performance in both known and novel cell type identification compared to existing methods. Our model also exhibited robustness in datasets 
with significant class imbalance. The results suggest that AnnoGCD is a powerful tool for the automatic annotation of cell types in scRNA-seq 
data, providing a scalable solution for biological research and clinical applications. Our code and the datasets used f or e v aluations are publicly 
a v ailable on GitHub: https:// github.com/ cecca46/ AnnoGCD/ . 
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ntroduction 

hen applied to the open-world, machine learning methods
nevitably encounter both known and novel classes ( 1 ). Su-
ervised approaches have received widespread attention and
hey rapidly progressed through the collection of large labeled
atasets ( 2 ). These approaches normally assume that (i) the
lass distributions remain unchanged during the training and
esting phase, and that (ii) all classes are known in advance
nd have some labeled examples. Both these assumptions are
nrealistic for open-world contexts, where the labelling or col-

ection of large numbers of samples might be difficult due to
actors such as budget constraints or lack of comprehensive
nformation. Novel Class Discovery (NCD) aims to identify
lusters of unlabeled instances using a similar but disjoint set
f labeled samples, as proposed in several works ( 3 ,4 ). How-
ver, NCD assumes that all the unlabeled samples belong to
ovel classes during the testing phase, thus disallowing the re-
iscovery of known classes in open-world settings. More re-
ently, as shown in Figure 1 , Generalized Category Discovery
GCD) extended NCD to further recognize the known classes
n the unlabeled set ( 5 ). Unfortunately, most of the GCD com-
unity has focused almost exclusively on computer vision
roblems, leaving open the question of how to apply these
rameworks to tabular data where it is not possible to take ad-
antage of powerful computer vision techniques such as con-
olutions, Vision Transformers ( 6 ) or image augmentations.
urthermore, the easy access to a large body of image data (for
xample ImageNet ( 2 ), CIFAR-10 and CIFAR-100 ( 7 )) allows
ost GCD frameworks to deal with well-balanced datasets,

nd to fully exploit the power of transfer learning. Unfortu-
ately, imbalanced datasets are particularly common in real
orld scenarios, especially when dealing with biological data.
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Along with GCD, Anomaly Detection (AD) has numerous
real-world applications, including fraud detection, network
security, and health monitoring, where detecting anomalous
behavior is crucial for ensuring system integrity and reliabil-
ity ( 8 ). AD methods encompass a wide range of techniques,
such as statistical approaches, clustering algorithms, and deep
learning models, each tailored to different data characteris-
tics and application scenarios ( 9 ). An important setting for
AD is when only labeled normal samples exist, for which one
class classifiers (OCCs) (for instance Support Vector Machines
(SVMs), Isolation Forests or autoencoders) are popular ap-
proaches. Compared to traditional binary or multi-class clas-
sification, OCCs are useful for addressing issues related to
severely imbalanced datasets ( 10 ). 

Cell type identification with statistical and machine learn-
ing methods has emerged as a promising approach in decipher-
ing complex biological systems. Exploiting high-dimensional
single-cell data, such as single-cell RNA sequencing (scRNA-
seq), supervised machine learning algorithms have been used
to classify cell types based on their transcriptional pro-
files ( 11 ). Various methods, from logistic regression to Con-
volutional Neural Networks (CNNs), have been success-
fully applied for cell type classification tasks ( 12 ). These
techniques enable the extraction of intricate patterns from
scRNA-seq data, facilitating the discrimination of differ-
ent cell types with high accuracy. Despite their promising
results, popular computational pipelines like SingleR ( 13 )
are either based on reference transcriptomic datasets or
require fully supervised training ( 14 ). Consequently, their
performance is highly dependent on the prior informa-
tion selected or on the quality of the manually annotated
ember 5, 2024. Accepted: November 11, 2024 
enomics and Bioinformatics. 
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Figure 1. Generalized Category Discovery aims to correctly cluster samples in novel and known classes (for example neuronal cells) by utilizing 
knowledge from the labeled data. 

Table 1. Comparison of different problem settings 

Problem setting Label data Unlabeled data 

Known 
classes 

Unknown 
classes 

Supervised learning � ✗ ✗ 
Semi-supervised learning � � ✗ 
Robust Semi-supervised 
learning 

� � Reject 

Novel Class Discovery � ✗ � 

Generalized Category 
Discovery 

� � � 

In the supervised learning setting, models are trained exclusively on labeled 
samples and they are only able to classify data (both labeled and unlabeled) 
into known classes. For semi-supervised and robust semi-supervised learn- 
ing, the model leverages both labeled and unlabeled data, with the latter only 
classifying the known and rejecting the novel classes. Novel Class Discovery 
assumes that only novel classes exist in the unlabeled set and it is unable to 
re-discover known classes. Generalized Category Discovery aims to gener- 
alize Novel Class Discovery to further recognize the known classes in the 
unlabeled set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Motivated by common real-world scenarios and by the
need to improve annotation of cell types in scRNA-seq,
we developed a computational method, named AnnoGCD,
building on ideas from Generalized Category Discovery and
Anomaly Detection. We propose a simple, albeit efficient,
semi-supervised computational pipeline that yields strong and
robust performance for the identification of novel cell types,
even with imbalanced datasets and for rarely occurring cell
types. AnnoGCD is computationally efficient and only re-
quires partially labeled data to correctly classify samples in
known classes and automatically discover novel cell types. 

Relat ed w ork 

This paper addresses the problem of Generalized Category
Discovery for automatic cell type annotation from single cell
RNA-seq data. A summary of the problem setting of interest
is given in Table 1 , and more details follow. 

Semi-supervised learning 

Semi-supervised learning (SSL) combines a small amount of
labeled data with a large amount of unlabeled data dur-
ing training. These hybrid approaches are particularly use-
ful for settings in which labeling data is expensive or time-
consuming ( 15 ). Traditional semi-supervised methods work
under the assumption that the unlabeled set contains instances
from the same classes as a given label set. As such, they cannot 
be trivially extended to discover novel classes. On the other 
hand, robust SSL methods ( 16 ) relax this assumption by as- 
suming that instances from novel classes may appear in the 
unlabeled test set. However, robust SSL approaches aim to re- 
ject instances from novel classes, which are treated as out-of- 
distribution instances. 

Generalized Category Discovery 

As proposed in ( 17 ), Novel Class Discovery aims to label the 
unknown samples with novel classes starting from a disjoint 
set of labeled examples. Since these approaches assume that 
only novel classes exist in the unlabeled set, they cannot iden- 
tify the known classes which surely exist in an open-world set- 
ting. Introduced in ( 5 ), Generalized Category Discovery aims 
to generalize Novel Class Discovery to further recognize the 
known classes in the unlabeled set. Notable approaches in- 
clude ORCA ( 18 ), a deep learning pipeline combining a su- 
pervised objective on the known classes and a pairwise objec- 
tive on unlabeled data to generate pseudo-labels, and Open- 
con ( 19 ), which uses a contrastive loss to learn a compact 
representation space for both known and novel classes and a 
prototype-based out-of-distribution (OOD) detection to sep- 
arate known and novel data. 

Cell type annotation 

Automatic cell annotation is pivotal for research on disease 
progress and tumour microenvironments ( 20 ). In essence,
computational methods aim at detecting a gene expression 

pattern in a cell or cluster that corresponds to the gene expres- 
sion signature of a recognized cell type or state, leading to the 
assignment of a specific label. Several works proposed the use 
of machine learning methods for automatic cell type annota- 
tion. CaSTLe ( 21 ) employs an XGBoost classification model; 
CHETAH ( 21 ) requires a reference scRNA-seq dataset from 

which it constructs a hierarchical classification tree which is 
then traversed to classify the input cells; scPred ( 22 ) combines 
Principal Component Analysis (PCA) and a Support Vector 
Machine model for cell type classification; introduced in ( 23 ) 
and based on the original BERT ( 24 ), scBERT was recently 
proposed to infer cell types from single-cell RNA-seq data.
All the aforementioned methods, while successful in the pre- 
dictive task, suffer from two major drawbacks: (i) they require 
a large amount of labeled data for supervised training, and (ii) 
they are unable to infer cell types not seen during training. 
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roblem statement 

he objective of GCD entails classifying instances belong-
ng to established known classes and identifying novel classes
ithin unlabeled data. This task starts from a labeled dataset

ontaining only the known classes (Figure 1 ). Consider the
iven labeled training data X 

L = { x i , y i } with y i ∈ Y 

L . All
lasses in Y 

L are considered known and K = |Y 

L | is the num-
er of known classes. The unlabeled data X 

U consists of sam-
les of known classes from Y 

L as well as instances of novel
lasses. Note that we do not have access to the labels in X 

U ,
or do we know the number of novel classes. The known and
ovel class sets are constructed as non-intersecting sets, and
e denote the underlying label set as Y 

all where Y 

L ⊂ Y 

all .
he learning task is to assign to all the unlabeled instances in
 

U classes from Y 

all . While applicable to any kind of tab-
lar data, in this paper we consider the problem of recog-
izing known cell types and inferring previously unseen cell
ypes from unlabeled single-cell RNA sequencing data. Con-
equently, for the rest of the paper, we use the terms ‘class’ and
cell type’ interchangeably. 

aterials and methods 

he proposed AnnoGCD framework consists of two main
omponents: (i) a semi-supervised block and (ii) an unsuper-
ised block. This two-step approach ensures that, during the
rst semi-supervised phase, which aims to assign to samples
n X 

U the classes in Y 

L , the unknown examples belonging to
he known classes would be identified and assigned the cor-
ect labels. Having re-discovered the existing cell types in X 

U ,
he unsupervised block is then employed to identify the novel
lasses. We detail each block and its components in the next
ections. 

emi-supervised block 

e start by training a semi-supervised block, shown in Fig-
re 2 , to classify the unknown samples in one of the known
 classes. The semi-supervised block is composed of a data

ncoder model e θ , a data decoder model d ψ 

and a predictor
odel p φ . The encoder is used to map the input data X , both

abeled and unlabeled, to a latent representation Z of fixed
imension: e θ : X → Z. Any choice of encoder can be used
epending on the input data, such as CNN for image data,
ulti-layer Perceptron (MLP) for tabular data or Graph Neu-

al Network ( 25 ) for relational data. A decoder is then used to
econstruct the initial data from Z. Along with the encoder–
ecoder module, we train a predictor p φ : X 

L → Y 

L which
earns to classify the known samples in the correct labeled
lasses. After the joint training of the encoder, decoder and
redictor, given the presence of known cell types in the un-
abeled samples, we use the latent representations Z 

L of the
abeled cells to train K OCCs, where K is the number of known
lasses. In detail, each one of the OCC classifiers—name it k -
CC—is trained using labeled samples for class k ( Z 

L 
k ) to rec-

gnize instances of a known class k , where k ∈ [1, 2, …, K ].
fter training, the encoded representations of the unknown
ata Z 

U are fed as input to all the K OCCs to perform infer-
nce and to determine whether an unlabeled sample belongs
o one of the known K classes. 

Semi-supervised labelling via consensus: The OCCs aim to
etect whether an unknown sample was likely to have been
enerated by the underlying distribution of one of the known
classes. Given an unknown sample x 

u , it is possible that (i)
a single OCC predicts x 

u to belong to its class, (ii) multiple
OCCs predict x 

u to belong to their classes or (iii) none of the
OCCs predicts x 

u to belong to its class. For the first case, we
simply assign label k predicted by the k -OCC to sample x 

u . If
x 

u is predicted to potentially belong to multiple classes, we use
a simple nearest neighbor approach, where the most common
label amongst the top N neighbors of x 

u from the label set is
assigned as a label. Finally, if none of the OCCs predicts x 

u

to belong to its class, x 

u remains unlabeled as it is probably
significantly different from all the K known classes. 

Loss functions: We train the semi-supervised block us-
ing two loss functions: (i) self-supervised mean-squared error
(MSE) loss on the entire data and (ii) cross-entropy loss on
the labeled data. In detail, using the notation introduced in the
previous sections and in Figure 2 , we define the self-supervised
encoder-decoder loss on the entire dataset as: 

L MSE = 

1 

M 

M ∑ 

i =1 

‖ x i − d ψ ( e θ ( x i )) ‖ 2 (1)

and the loss on the labeled data as: 

L label = − 1 

M 

M ∑ 

i =1 

K ∑ 

j=1 

y l i, j · log ( ̂  y l i, j ) (2)

where M is the total number of samples, y l i, j is the true label

indicator for a labeled sample x 

l 
i and class j , K represents the

number of classes, and 

ˆ y l i, j is the probability predicted by the

predictor p φ for x 

l 
i belonging to class j . 

The total loss is then given by: 

L = αL MSE + βL label (3)

where the hyper-parameters α and β are automatically learned
during the joint training of the encoder, decoder and predic-
tor, allowing the model to dynamically adjust their values for
optimal performance. 

Unsupervised block 

While the semi-supervised block serves to classify the un-
known samples in X 

U into the correct known cell type classes,
it does not allow the discovery of novel classes. By integrating
an unsupervised block in the AnnoGCD framework, shown
in Figure 3 , we aim to classify the samples which the semi-
supervised block failed to label due to their significant dif-
ference from the known classes. The unsupervised block in-
volves: (i) constructing a graph from the remaining unlabeled
samples in X 

U , (ii) generating meaningful embeddings for
each node of the graph based on neighbourhood informa-
tion and (iii) identifying novel classes (and the number of
novel classes) using a non-parametric probabilistic clustering
approach. 

Graph construction: While for the re-discovery of known
classes, we could exploit the presence of the labeled examples
through the predictor p φ , the remaining cells in X 

U lack of
any annotation. As such, we developed an unsupervised block
exploiting the similarities of the unknown samples. In detail,
from the unlabeled set in X 

u , we construct a graph G = ( V ,
E ) where each node v ∈ V is a cell, and interaction between
two cells is described by an edge e ∈ E . Different ways exists
to define the connectivity of G (for example, computing the
correlation between the features of all pairs of nodes and cre-
ating an edge between two nodes if their correlation exceeds a
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Figure 2. The semi-supervised bloc k, whic h aims to re-disco v er samples belonging to the known K classes, is composed of a data encoder model ( e θ), a 
data decoder model ( d ψ 

) and a predictor model ( p φ). The encoder maps the input data to a latent representation; the decoder reconstructs the initial 
data; a predictor learns to classify the known samples in the correct labeled classes. After the joint training of e θ, d ψ 

and p φ, a collection of K One-Class 
Classifiers (OCCs) is trained using the latent embeddings to determine whether each of the unlabeled samples belongs to one of the known classes. 

Figure 3. Starting from the remaining cells in X 

U , the unsupervised block constructs a k-Nearest Neighbors (kNN) graph, where edges are created 
between samples that are among the k-nearest neighbors of each other. To exploit the local neighborhoods and cell-to-cell similarities, the kNN graph is 
fed to a graph encoder model, Deep Graph Infomax (DGI) in our case, to learn node representations in an unsupervised manner. Using the latent 
representations learned from DGI, a Dirichlet Process Mixture Model is used to automatically infer the number of novel classes of cell types and 
perform clustering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

certain threshold to control the sparsity of the graph). For our
application, we considered a simple and efficient kNN graph,
where edges are created between samples that are among the
k-nearest neighbors of each other. 

Graph encoder: To exploit the local neighborhoods and
cell-to-cell similarities, we fed the constructed kNN graph
as input to the Deep Graph Infomax (DGI) model to learn
a lower-dimensional representation for each cell. Introduced
in ( 26 ), DGI is an approach for learning node representa-
tions within graph-structured data in an unsupervised man-
ner. In essence, DGI works by maximizing local mutual in-
formation by learning a node representation which captures
the global information content of the entire graph. That is
achieved through an encoder that maps the input feature and
adjacency matrix to an embedding space. The encoder is com-
posed of graph convolutional layers for aggregating features
over neighbouring nodes with a parametric rectified linear
unit as the activation function. As a proxy for maximizing
the local mutual information, a discriminator is used to as-
sign probability scores which evaluate how much the graph
level information is contained in a local node representations.
DGI is proposed to learn a representation of each sample that
takes into account both the expression and the nearest neigh- 
bors connectivity structures. 

Non-parametric probabilistic clustering: Bayesian nonpara- 
metric (BNP) techniques address model complexity in a fun- 
damentally different way compared to conventional meth- 
ods. While the number of parameters remains fixed in con- 
ventional analytics, BNP methods operate within a statisti- 
cal framework characterized by the potential for an infinite 
number of parameters. One notable statistical framework is a 
stochastic process known as the Dirichlet Process (DP). Due 
to their flexibility in identifying clusters from data, Dirich- 
let Process Mixture Models (DPMMs) have become popu- 
lar in a large number of applications ( 27 ,28 ). DPMMs are 
an extension of finite mixture models where the number of 
components (clusters) is not fixed a priori. Instead, they use 
a DP as a prior distribution over the mixture components,
enabling models to automatically determine the appropri- 
ate number of clusters by analyzing the posterior mean or 
mode of the weight of each component. Having learned a la- 
tent representation for each node of G using DGI, we em- 
ploy a DPMM to automatically infer the novel classes of cell 
types. 
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inal label refinement via consensus 

nce both the semi-supervised and unsupervised blocks of
nnoGCD are executed, all samples in X 

U are assigned either
o one of the known K classes or to a novel cell type. In the
nal step of the proposed pipeline, we perform a simple label
efinement involving a nearest neighbor procedure, where all
he cells are assigned the most common label among their top
eighbors in X 

U . 

atasets 

o evaluate the proposed approach, we made use of five pub-
ic multimodal datasets: the human bone marrow mononu-
lear cells (BM-CITE) ( 29 ), the human peripheral blood
ononuclear cells from lung (LUNG-CITE) ( 30 ), the hu-
an peripheral blood mononuclear cells (PBMC-multiome)

accessible under: https:// www.10xgenomics.com/ ), the hu-
an PBMC cells measured with the DOGMA-seq protocol

PBMC-DOGMA) ( 31 ), and the human PBMCs measured
ith the TEA-seq protocol (PBMC-TEA) ( 32 ). For our eval-
ation, we only focus on single-cell RNA data from these
atasets. Every cell in each dataset is annotated with the cor-
esponding cell type, and the pre-processing of the single-cell
equencing data followed that described in ( 33 ). For each
ataset, we removed the cells whose annotated types appeared
ess than a pre-determined threshold in the entire dataset
less than 100 times in our case) and computed the Gini
ndex as a measure of the degree of inequality in the dis-
ributions of the different cell types. For each dataset, we
elected 50% of the classes to act as known classes and
he remaining 50% as unknown classes; moreover, to al-
ow for re-discovery in the unlabeled set, 70% of the known
lasses are labeled, with the unknown and the rest of the
nown all considered unlabeled. A summary of the datasets
sed for evaluation, the split between novel and known cell
ypes and their imbalance (Gini) indexes are reported in
able 2 . 

xperimental results 

valuation metrics: We evaluated the performance of
nnoGCD on both known and novel classes. For the re-
iscovery of known cell types, resulting from the semi-
upervised block, we simply computed the classification accu-
acy between the generated labels and the ground truth labels.
or the unknown classes, the clustering accuracy is calculated
y solving the prediction-target class assignment based on the
ungarian algorithm. Proposed in ( 34 ), the Hungarian algo-

ithm is a combinatorial optimization algorithm that solves
he assignment problem in polynomial time, ensuring the op-
imal matching between predicted and true labels. Finally, we
lso evaluated the overall accuracy for both known and novel
lasses. 

Experimental details: We applied Principal Component
nalysis (PCA) to reduce the dimensionality of the single-cell
NA data, and selected the first 64 principal components as

nput to our pipeline. For the semi-supervised block, we em-
loyed a simple Multilayer Perceptron (MLP) as predictor p φ

Figure 2 ) with two hidden layers of dimension 32, where ev-
ry linear layer is followed by Relu non-linearity and softmax
n the final layer. We also employed a simple three-layered
utoencoder where each linear layer but the final one is fol-
lowed by Relu to learn a hidden representation of size 32.
After optimizing the loss in Equation 3 for 500 epochs, we
trained K One-Class Support Vector Machine Classifiers (OC-
SVMs) with Radial Basis Function kernels ( 35 ). The num-
ber N of nearest neighbors we used to generate a consensus
for the semi-supervised labelling was 20, while 10 neighbors
were employed for the final refinement. For the unsupervised
block, we constructed a k-Nearest Neighbors (kNN) graph
using the nearest 50 neighbors for each sample and trained a
two-layered DGI model for 500 epochs to learn a lower di-
mensional representation of size 32 for each cell. Finally, we
clustered the unknown samples using a Dirichlet Process Mix-
ture Model (DPMM) to identify the novel classes. Specifically,
we first fit a DPMM with a large number of components (20 in
our case) and then used the posterior weight of each compo-
nent to select the number of clusters. On all datasets, we used
a fixed threshold t to identify the significant components; that
is if the posterior weight πi ≥ t , component i is considered
significant. We empirically selected t = 0.05 for all our exper-
iments. The above mentioned hyperparameters were chosen
using cross validation only on the known classes (whose labels
are available) as described in ( 36 ) to avoid data leakage. In de-
tail, for each cross validation split, the instances of around half
of the known classes are selected to form another set whose
labels are hidden ( X 

hid ). After training the model with this
new data split, we evaluated its performance on the instances
of X 

hid since their labels are available. To evaluate a given
combination of hyperparameters, this approach is applied to
all the splits, and performances on the hidden classes are aver-
aged. The hyperparameter combination that achieved the best
performance is selected and applied to the full dataset ( 36 ).
Table 3 gives a comprehensive list of the evaluated hyperpa-
rameters and configurations. 

Baselines: We start by comparing the proposed approach
to two GCD pipelines: Openworld Semi-supervised Novel
Class Discovery (OpenNCD) ( 38 ) and Projection-Based NCD
(PBN) ( 36 ). OpenNCD leverages contrastive learning to cre-
ate class prototypes that are progressively refined for classi-
fying known and novel data. While effective in its domain
and as with most GCD frameworks, OpenNCD is primarily
designed for imaging data and relies heavily on feature ex-
traction techniques, such as ResNet-18 ( 39 ), which are less
suitable for non-vision data like single-cell RNA sequencing
(scRNA-seq). Additionally, given the wide availability of im-
age datasets, OpenNCD does not adequately handle imbal-
anced datasets, which are common in biological data. To the
best of our knowledge, PBN is the only other method de-
veloped to tackle the problem of GCD in the tabular con-
text. It consists of an encoder that learns a shared represen-
tation between the known and novel classes, a classification
network trained on the latent representations to distinguish
the known classes, and a decoder that reconstructs the data
for both known and novel classes. Once the encoder, decoder
and classification network have been trained, the unlabeled
data is projected by the trained encoder into the latent space
and then clustered to discover novel classes. While PBN re-
lies on a simple clustering process after learning a shared la-
tent space, AnnoGCD employs a two-step approach based a
semi-supervised block for known class classification and an
unsupervised block for novel class discovery, providing a more
robust discovery mechanism, especially in scenarios character-
ized by strong class imbalance and high-dimensional data like
scRNA-seq. 

https://www.10xgenomics.com/
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Table 2. Datasets used for evaluation of the proposed framework 

Dataset Species Protocol Organ No. of cells Known types Novel types Gini Index 

BM-CITE Human CITE-seq Bone Marrow 30 672 12 11 0.89 
LUNG-CITE Human CITE-seq PBMC&Lung 10 470 8 8 0.85 
PBMC-Multiome Human Multiome PBMC 11 787 6 6 0.84 
PBMC-TEA Human TEA-seq PBMC 25 517 5 4 0.84 
PBMC-DOGMA Human DOGMA-seq PBMC 13 763 5 5 0.65 

Table 3. Evaluated hyperparameters for the experimental setup 

Hyperparameter Evaluated Values 

Number of Principal 
Components 

{32, 64 , 128} 

MLP Hidden Layers { 2 , 3} 
MLP Hidden Layer Size {16, 32 , 64} 
Autoencoder Hidden Layers {2, 3 } 
Autoencoder Hidden Layer Size {16, 32 , 64} 
Masked autoencoder ( 37 ) {Yes, No } 
OC-SVM Kernel {Linear, Radial Basis Function } 
Number of Nearest Neighbors 
( N ) 

{10, 20 , 50} 

Final Refinement Neighbors { 10 , 20} 
kNN Graph Neighbors {20, 50 , 100} 

The best hyperparameters, shown in bold, were chosen using cross validation 
on the known classes (whose labels are available) as described in (36). 

Table 4. Grid searched parameters for the baselines 

Method Parameter Values 

OpenNCD ( 38 ) Learning Rates {0.0001, 0.001, 0.01} 
Taus ( τ) {0.1, 0.3, 0.5} 
Batch Size {128, 256, 512} 

PBN ( 36 ) Encoder Layers {2, 3} 
Learning Rates {0.0001, 0.001, 0.01} 
Dropout Rates {0.2, 0.4, 0.6} 
Latent Space Sizes {16, 32, 64} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison with baselines: To allow for a fair compari-
son, we replaced the ResNet-18 encoder and used the first 64
principal components as input to OpenNCD. We performed
grid search to identify the optimal learning rate, temperature
scale τ and batch size. Similarly for PBN, we performed grid
search to identify the optimal number of layers for the en-
coder network, the best learning rate, dropout rate and latent
space dimension for each scRNA dataset independently. The
full list of searched hyperparameters for the baseline meth-
ods is given in Table 4 . Furthermore, for both OpenNCD and
PBN, the number of novel classes to discover was given as an
additional input. Table 5 shows the accuracy comparison of
our AnnoGCD and the two baselines for known, novel, and
all classes over three different iterations. Our model exhibits
the best performances in re-discovering known classes for four
out of five datasets. AnnoGCD was also able to identify the
novel classes with the highest accuracy in all but one dataset.
When compared in terms of accuracy over all classes, our
pipeline reached the best results across all datasets. As shown
in Table 5 , AnnoGCD was successful in the task of identifying
known and novel cell types even in biological datasets char-
acterized by strong label imbalance, as indicated by the Gini
indexes in Table 2 . 

Ablation studies: To investigate the influence of the su-
pervised component in the semi-supervised block, we trained
the proposed pipeline without the predictor p φ (Figure 2 ).
The accuracy of the semi-supervised block, which measures 
the ability to re-discover existing classes, is reported in the 
first column of Table 6 . Comparing the results without the 
predictor p φ from Table 6 to the accuracy on the known 

classes in Table 5 , it is clear that the presence of the super- 
vised component in the semi-supervised block is useful to 

slightly increase the prediction performances. Similarly for 
the unsupervised block, we evaluated its accuracy to discover 
novel classes when discarding the locality information pro- 
vided by the graph embeddings. In this case, the principal 
components were used to perform novelty detection by the 
non-parametric probabilistic clustering. Comparing the re- 
sults in the second column of Table 6 to the accuracy on the 
novel classes in Table 5 clearly shows that integrating the lo- 
cality and connectivity structure by means of graph embed- 
dings is crucial for correctly identifying novel classes of cell 
types. 

Embeddings visualization: Figure 4 shows the UMAP pro- 
jections of the embeddings Z learned by the semi-supervised 

block for two of the evaluated datasets: BM-CITE (left) and 

LUNG-CITE (right). In the left plot of Figure 4 , we observe 
well-separated clusters corresponding to different cell types,
indicating that the semi-supervised block effectively captures 
the intrinsic structure of the data and separates distinct cell 
types. The clusters are annotated with cell type labels pre- 
dicted by the OCCs, such as CD14 Monocytes (CD14 Mono),
CD8 Naive, CD4 Naive, CD4 Memory, CD8 Memory, CD8 

Effector, NK (Natural Killer) cells, MAIT (Mucosal-associated 

invariant T cells), Memory B, Naive B, Prog RBC (Progenitor 
Red Blood Cells) and GMP (Granulocyte-Monocyte Progeni- 
tors). The clear separation between these clusters suggests that 
the model accurately distinguishes between different known 

cell types based on their specific gene expression profiles. The 
right plot of Figure 4 shows labeled clusters for the LUNG- 
CITE dataset. The labels include B Plasma cells, CD8 CM 

(Central Memory CD8 T cells), CD4 EM (Effector Memory 
CD4 T cells), NK (Natural Killer) cells, CD8 (T cells), CD4 (T 

cells), Monocytes and B Blood cells. Similarly to the left plot,
this visualization demonstrates well-defined clusters, indicat- 
ing the model’s proficiency in learning meaningful representa- 
tions of cell types. The clustering of T and B cells into distinct 
groups showcases AnnoGCD’s ability to recognize and cate- 
gorize different immune cell subtypes accurately . Finally , by 
automatically learning representations able to form biologi- 
cally relevant clusters, AnnoGCD shows potential utility in 

enhancing the understanding of cellular heterogeneity in var- 
ious biological contexts. 

Quantity of labeled samples: Table 5 shows AnnoGCD ac- 
curacies for each dataset when 50% of the classes are regarded 

as known and the remaining 50% as unknown. In addition,
70% of the known classes were labeled, with the unknown 

and the rest of the known all considered unlabeled. We in- 
vestigated the ability of our approach to identify known and 
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Table 5. Comparisons for known, novel and all classes over three different iterations 

Dataset Known Novel All 

Ours ( 38 ) ( 36 ) Ours ( 38 ) ( 36 ) Ours ( 38 ) ( 36 ) 

BM-CITE 0.82 ± 0.004 0.69 ± 0.015 0.64 ± 0.010 0.67 ± 0.046 0.74 ± 0.012 0.48 ± 0.009 0.79 ± 0.031 0.74 ± 0.018 0.54 ± 0.011 
LUNG-CITE 0.89 ± 0.002 0.54 ± 0.010 0.42 ± 0.008 0.74 ± 0.004 0.73 ± 0.014 0.49 ± 0.006 0.87 ± 0.001 0.72 ± 0.016 0.46 ± 0.010 
PBMC- 
Multiome 

0.95 ± 0.004 0.78 ± 0.010 0.34 ± 0.009 0.76 ± 0.053 0.68 ± 0.012 0.69 ± 0.011 0.83 ± 0.028 0.72 ± 0.012 0.48 ± 0.010 

PBMC-TEA 0.68 ± 0.008 0.73 ± 0.016 0.71 ± 0.010 0.72 ± 0.024 0.64 ± 0.013 0.32 ± 0.009 0.81 ± 0.015 0.73 ± 0.017 0.38 ± 0.010 
PBMC- 
DOGMA 

0.90 ± 0.015 0.72 ± 0.013 0.37 ± 0.010 0.50 ± 0.040 0.47 ± 0.014 0.44 ± 0.012 0.76 ± 0.038 0.63 ± 0.016 0.39 ± 0.010 

For each dataset, 50% of the classes are regarded as known and the rest 50% as unknown. In addition, 70% of the known classes are labeled, with the unknown and the 
rest of the known all considered unlabeled. Best results are shown in bold . 

Table 6. ( left ) Accuracy of the semi-supervised block without the super- 
vised loss. ( right ) Accuracy of the unsupervised block without the graph 
embeddings. Means and standard da v ations are computed o v er three dif- 
ferent iterations 

Dataset w / o Predictor 
w / o Graph 
Embeddings 

BM-CITE 0.81 ± 0.002 0.48 ± 0.014 
LUNG-CITE 0.88 ± 0.005 0.44 ± 0.008 
PBMC-Multiome 0.94 ± 0.003 0.55 ± 0.071 
PBMC-TEA 0.68 ± 0.007 0.69 ± 0.009 
PBMC-DOGMA 0.87 ± 0.010 0.53 ± 0.041 

n  

s  

r  

b  

a  

p  

m  

c  

m  

f
 

d  

i  

c  

p  

s  

o  

s  

t  

5  

u  

t  

w  

m  

1
 

o  

o  

i  

h  

b  

t  

t  

p  

A  

a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ovel cell types, with varying numbers of labeled samples. Re-
ults of this evaluation for one of the datasets, BM-CITE, are
eported in Table 7 . While the accuracy of the semi-supervised
lock remains high, since most of the re-discovered cell types
re correctly classified, decreasing the number of labeled sam-
les results in a larger proportion of known examples being
issed by the semi-supervised block. As a result, the identifi-

ation of new classes of cell types is hindered and the perfor-
ances decrease as more and more samples are being removed

rom the label set, as is clearly evident from Table 7 . 
Mouse model organism: Since ORCA ( 18 ) is a popular

eep learning pipeline for open-world semi-supervised learn-
ng, and it was applied in the original manuscript to a single-
ell Mouse Ageing Cell Atlas ( 40 ), we use it as a further com-
arison to our pipeline. The Mouse Ageing Cell Atlas con-
ists of 93 718 cells from 50 cell types collected across 23
rgans of the mouse model organism. Similarly to ORCA, we
elected the 2866 most highly variable genes and used 50% of
he classes as seen and 50% as novel classes. We then selected
0% of seen classes as the labeled dataset, and the rest as the
nlabeled set. The largest class has 13 268 examples, while
he smallest class has 479 examples. Given the larger dataset,
e trained our semi-supervised block with a larger hidden di-
ension of size 64, and optimized the loss in Equation ( 3 ) for
000 epochs. 
Results of this comparison are shown in Table 8 . In terms

f re-discovering known classes, our approach was able to
utperform ORCA, which showed better results in identify-
ng novel classes of cell types. Overall, our approach showed
igher accuracy on the entire dataset, outperforming ORCA
y a large margin. While advantageous for reducing bias
owards seen classes and improving novel class discovery,
he uncertainty adaptive margin mechanism that ORCA em-
loys slows down the learning of known classes. In contrast,
nnoGCD’s semi-supervised learning block effectively lever-
ges labeled data to learn known classes with higher preci-
sion and ensures stronger classification accuracy for known
categories. 

Over-representation analysis of novel clusters: Over-
representation analysis (ORA) is a widely used statistical
method for interpreting gene expression data to identify cell
types. It involves comparing the proportion of a set of genes of
interest (those that are differentially expressed) that are associ-
ated with a particular biological pathway or function, against
the proportion expected by chance in a reference set of genes.
ORA is particularly valuable in scRNA-seq sequencing stud-
ies, where it helps in characterizing and identifying cell types
based on their specific gene expression profiles ( 41 ). To iden-
tify the functional enrichment of the novel clusters identified
by AnnoGCD, we performed ORA using decoupleR ( 42 ). In
detail, to annotate single cell clusters, we used cell type spe-
cific marker genes reported in PanglaoDB ( 43 ) to predict the
most likely cell types per cluster. Using this approach on the
BM-CITE dataset, we were able to map most of the cell types
identified amongst the novel clusters to their ground truth an-
notations. Results are reported in Table 9 . Out of the 11 un-
known cell types (Table 2 ), we were able to automatically map
6 of the cell types predicted by decoupleR to their annotated
type as shown in Table 9 . The remaining unmapped clusters
were manually annotated by inspecting their over-represented
genes. For instance, cluster 14 exhibited over-expression of
MKI67, TOP2A, STMN1 and TYMS genes, known to be
cell cycle and proliferation markers ( 44 ) and were matched
to Hematopoietic Stem Cells (HSC) in the reference dataset.
Cluster 15 showed high expression of hemoglobin beta (HBB)
and ribosomal proteins (RPL3, RPS4X) which is indicative
of erythroid lineage ( 45 ). Since they are closely related to
Megakaryocyte Progenitors, they were matched to this cell
type in the reference dataset. Using this approach, and com-
bining our automatic pipeline with limited manual inspection,
AnnoGCD was able to correctly identify cell type annotations
for the unknown clusters of cells. 

Conclusion 

In this study, we introduced a novel computational frame-
work, named AnnoGCD, that effectively combines semi-
supervised learning with unsupervised methods to tackle
the limitations of traditional supervised settings in open-
world scenarios, particularly for automatic cell type anno-
tation from single-cell RNA sequencing (scRNA-seq) data.
AnnoGCD builds on Generalized Category Discovery (GCD)
and Anomaly Detection (AD) to address the challenges posed
by the need for extensive labeled datasets and the presence
of novel cell types in biological research. Our framework is
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Figure 4. Qualitative visualization of the cell embeddings for the BM-CITE dataset ( left ) and LUNG-CITE ( right ) dataset. These visualizations demonstrate 
well-defined clusters, indicating AnnoGCD’s proficiency in learning meaningful biological representations of cell types. 

Table 7. A ccuracy f or different numbers of labeled samples on the BM- 
CITE dataset 

Dataset Labeled samples Known Novel 

BM-CITE 70% 0.82 0.70 
50% 0.82 0.65 
30% 0.82 0.58 

Table 8. Comparison with ORCA ( 18 ) on the single-cell Mouse Ageing 
Cell Atlas ( 40 ) 

Method Known Novel All 

Ours 0.92 0.60 0.89 
ORCA ( 18 ) 0.89 0.65 0.73 

Best results are shown in bold . 

Table 9. Identification of cell types for the novel classes 

Cluster decoupleR ( 42 ) Reference cell type 

12 Gamma-delta T cells Gamma-delta T cells (gdT) 
13 Dendritic Cells Conventional Dendritic 

Cells 2 (cDC2) 
16 Monocytes / Macrophages CD16 Monocytes (CD16 

Mono) 
17 Plasmacytoid Dendritic 

Cells 
Plasmacytoid Dendritic Cells 
(pDC) 

19 Plasma Cells Plasmablasts 
21 B cells B cell progenitor 

We performed ORA and used decoupleR (42) to identify the most likely cell 
type for each unknown cluster. In the last column, we show which cell type 
was matched in the reference dataset based on the ground truth annotations. 

 

 

 

 

 

designed to handle the realistic constraints of limited labeled
data, budget limitations, and incomplete information, which
are common in practical applications. In detail, AnnoGCD
uses a semi-supervised block to classify known cell types,
followed by an unsupervised block designed to identify and 

cluster novel cell types. The efficacy of AnnoGCD was val- 
idated using five public scRNA-seq datasets, showing supe- 
rior performance in both known and novel cell type identifi- 
cation compared to existing methods. The proposed pipeline 
demonstrated robustness in datasets characterized by signif- 
icant class imbalance, a common issue in real-world biolog- 
ical data. This robustness is critical for ensuring the reliable 
identification of rare or underrepresented cell types, which are 
often pivotal in understanding disease mechanisms and ther- 
apeutic targets. We showed that AnnoGCD was able to learn 

meaningful representations of cell types and that it allowed 

to automatically decipher cell type annotations for unknown 

clusters of cells. Beyond its application to single-cell RNA se- 
quencing data, AnnoGCD holds significant potential for use 
in other domains that require the classification of known 

categories and the discovery of novel ones from complex,
high-dimensional data and future work will involve assess- 
ing its performance across other types of tabular or structured 

data. 

Data availability 

Our code and the datasets used for evaluations are 
publicly available on GitHub: https:// github.com/ cecca46/ 
AnnoGCD/. We also make them available on FigShare: https: 
// doi.org/ 10.6084/ m9.figshare.26889349.v1 . 
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