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Aims Intracellular calcium (Ca2+) overload is known to play a critical role in the development of cardiac dysfunction. Despite the remark-
able improvement in managing the progression of heart disease, developing effective therapies for heart failure (HF) remains a chal-
lenge. A better understanding of molecular mechanisms that maintain proper Ca2+ levels and contractility in the injured heart could 
be of therapeutic value.

Methods 
and results

Here, we report that transcription factor zinc finger E-box-binding homeobox 2 (ZEB2) is induced by hypoxia-inducible factor 
1-alpha (HIF1α) in hypoxic cardiomyocytes and regulates a network of genes involved in Ca2+ handling and contractility during is-
chaemic heart disease. Gain- and loss-of-function studies in genetic mouse models revealed that ZEB2 expression in cardiomyo-
cytes is necessary and sufficient to protect the heart against ischaemia-induced diastolic dysfunction and structural remodelling. 
Moreover, RNA sequencing of ZEB2-overexpressing (Zeb2 cTg) hearts post-injury implicated ZEB2 in regulating numerous 
Ca2+-handling and contractility-related genes. Mechanistically, ZEB2 overexpression increased the phosphorylation of phospho-
lamban at both serine-16 and threonine-17, implying enhanced activity of sarcoplasmic reticulum Ca2+-ATPase (SERCA2a), thereby 
augmenting SR Ca2+ uptake and contractility. Furthermore, we observed a decrease in the activity of Ca2+-dependent calcineurin/ 
NFAT signalling in Zeb2 cTg hearts, which is the main driver of pathological cardiac remodelling. On a post-transcriptional level, we 
showed that ZEB2 expression can be regulated by the cardiomyocyte-specific microRNA-208a (miR-208a). Blocking the function 
of miR-208a with anti-miR-208a increased ZEB2 expression in the heart and effectively protected from the development of patho-
logical cardiac hypertrophy.

Conclusion Together, we present ZEB2 as a central regulator of contractility and Ca2+-handling components in the mammalian heart. Further 
mechanistic understanding of the role of ZEB2 in regulating Ca2+ homeostasis in cardiomyocytes is an essential step towards the 
development of improved therapies for HF.
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1. Introduction
Heart failure (HF) caused by ischaemic heart disease (IHD) is the most 
common cardiac disorder and is a leading cause of death worldwide.1–3

IHD is caused by the (partial) occlusion of coronary arteries, which leads 
to a reduction in blood flow to the heart. Current treatments for IHD in-
clude reperfusion therapy and medications that cause a significant reduc-
tion in immediate mortality rates. However, improved quality of life and 
long-term survival remain unattained due to the detrimental pathological 
remodelling accompanying IHD.4

A main hallmark of IHD is the hypoxia-induced loss of cardiomyocytes and 
the development of a rigid fibrotic scar that affects cardiac contractility.5,6

Within cardiomyocytes, ischaemic injury causes calcium (Ca2+) overload 
that leads to hypertrophy and perturbed contractility and eventually cardi-
omyocyte dysfunction.7,8 One major cause of this pathological remodelling 
is the dysregulation of a network of Ca2+-handling genes.9–11 Identification 
of factors which can control Ca2+ homeostasis after injury could contribute 
to the design of novel IHD therapies.

Given the well-known roles of hypoxia-inducible factor 1-alpha (HIF1α) in 
cardiomyocyte biology after ischaemic injury,12–17 we used sequencing data 
from the infarcted heart to identify genes downstream of HIF1α that could 
potentially play a role in its cardioprotective effects. In doing so, we were able 
to identify zinc finger E-box-binding homeobox 2 (ZEB2) as a downstream 
transcription factor of HIF1α in cardiomyocytes, which is induced during 
hypoxia and decreases in expression with age. ZEB2 is a central regulator 
of epithelial-to-mesenchymal transition (EMT),18,19 cellular dedifferentiation, 
and foetal development.20,21 Recently, we further identified ZEB2 as a key 
cardioprotective factor, which signals to endothelial cells in a cell non- 

autonomous manner to promote angiogenesis, hence maintaining cardiac 
function after ischaemic damage.22,23

Here, we show that upon ischaemic injury, an increase in ZEB2 in cardio-
myocytes induces a gene network involved in cardiac contraction and Ca2+ 

handling, which corresponds to a better maintenance in function after is-
chaemic damage. We further show that ZEB2 is post-transcriptionally 
regulated by miR-208a and that the therapeutic inhibition of miR-208a 
can effectively increase ZEB2 levels and prevent pathological remodelling 
and cardiac dysfunction. Our findings demonstrated that under hypoxic 
conditions, ZEB2 controls a transcriptional network of Ca2+-handling 
genes in cardiomyocytes, which subsequently mediates the contractile 
function of the heart.

2. Methods
2.1 Mice
Animal studies were performed according to the guidelines from Directive 
2010/63/EU of the European Parliament on the protection of animals used 
for scientific purposes. Animal experiments were approved by the insti-
tutional policies and regulations of the Animal Welfare Committee of 
the Royal Netherlands Academy of Arts and Sciences (HI 13.2304, 
AVD8011002015250 16.2305/IVD366) and following the Guidelines 
for the Care and Use of Laboratory Animals. Mice were housed with 
12:12 h light:dark cycle in a temperature-controlled room with access to 
food and water ad libitum. We used 8–9-week-old male and female mice 
for all animal experiments as indicated. The number of mice used repre-
sents the minimum required to achieve statistical significance based on 
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previous experience and power calculations. Mice were randomly allo-
cated into experimental groups, and the investigator was blinded to the ex-
perimental group if possible.

2.2 Human heart samples
Approval for studies on human tissue samples was obtained from the 
Medical Ethics Committee of the University Medical Center Utrecht, 
The Netherlands (12#387). Written informed consent was obtained 
or, in certain cases, waived by the ethics committee when obtaining 
informed consent was not possible due to the death of the patient. 
None of the co-authors was involved in tissue collection. Tissue samples 
were anonymized before the access was obtained. In this study, we 
included tissue from the left ventricular (LV)–free wall of patients with 
end-stage HF secondary to IHD. The end-stage HF tissue was obtained 
during heart transplantation or at autopsy. Correlation analysis for 
ZEB2 and HIF1α was performed on tissue samples from the LV-free 
wall of control hearts and patients with IHD (ischaemic region, border 
zone, and remote region).

2.3 Transgenic mouse models
Mice used in this study were generated as previously described.22

Rosa26-LoxStopLoxZeb2 mice24 were crossed with mice harbouring 
a Cre recombinase under the control of the murine Myh6 promoter 
(αMHC-Cre Tg mice),25 to generate αMHC-Cre R26-lslZeb2/lslZeb2 
(Zeb2 cTg) mice. Mice harbouring a floxed allele of Zeb2 (Zeb2 fl/fl)26

were crossed to αMHC-Cre Tg mice to generate Cre-Zeb2 fl/fl (Zeb2 
cKO) mice. Mice were housed in normal conditions with 12:12 h light: 
dark cycles in a temperature-controlled room with food and water ad 
libitum. For all animal experiments, we used 8–9-week-old male mice. 
All mice were genotyped by polymerase chain reaction (PCR) using pri-
mers shown in Supplementary material online, Table S4. The sample size 
was determined by a power calculation based on an echocardiographic 
effect size. Biotechnicians were blinded to group allocation during the 
experiment and when assessing the outcome.

2.4 Ischaemia–reperfusion
Ischaemia–reperfusion (IR) was performed by temporary (1 h) ligation of 
the left anterior descending artery (LAD). Mice were injected subcutane-
ously with buprenorphine (0.05–0.1 mg/kg) as an analgesic at least 30 min 
prior to surgery to alleviate pain or distress. When multiple surgeries take 
place on the same day, all animals received buprenorphine at the same 
time in the morning. After 30 min (or longer), mice were anaesthetized 
with a mix of fentanyl (0.05 mg/kg), midazolam (5 mg/kg), and dexme-
detomidine (0.125 mg/kg) via intraperitoneal injection and supplemen-
ted with 1–2% isoflurane to maintain a surgical plane of anaesthesia. 
Immediately after the surgery, anaesthesia was reversed using atipamezole. 
Mice received a second subcutaneous injection of buprenorphine (0.05– 
0.1 mg/kg) 8–12 h after the first dose to provide additional pain relief. 
The third dose of buprenorphine (0.05–0.1 mg/kg) was subcutaneously ad-
ministered approximately 12 h later (the following day after surgery). After 
the anaesthesia, mice were intubated, and the tracheal tube was connected 
to a ventilator (UNO Micro Ventilator UMV-03). Hair was removed from 
the thorax and neck, and the surgical site was cleaned with iodine and 70% 
ethanol. Skin was subsequently incised at the midline to allow access to the 
left third intercostal space. Pectoral muscles were retracted, and the 
intercostal muscles were cut caudal to the third rib. Wound hooks 
were placed to allow access to the heart. The pericardium was incised 
longitudinally, and a 7.0 silk suture was placed around the LAD and a piece 
of 2–3 mm polyethylene (PE) 10 tubing. One hour later, the PE tubing 
was removed, and the ligature was cut to allow for reperfusion. 
Following the surgery, the rib cage was closed with a 5.0 silk suture, 
and the skin was closed with a wound clip. Mice were disconnected 
from the ventilator by removing the tracheal tube and placed on a 
nose cone with 100% oxygen. During the whole procedure and recovery 
period, animals were placed on a 38°C heating mat.

2.5 Echocardiography
Cardiac function was evaluated by two-dimensional transthoracic echocar-
diography on sedated mice (2% isoflurane) using a Visual Sonic Ultrasound 
system with a 30 MHz transducer (VisualSonics Inc., Toronto, Canada). 
Hearts were imaged in a parasternal long-axis and short-axis view at 
the level of the papillary muscles to record M-mode measurements and 
determine heart rate, wall thickness, and end-diastolic and end-systolic 
dimensions. Cardiac contractile function was assessed by fractional short-
ening (FS) (defined as the end-diastolic dimension minus the end-systolic 
dimension normalized for the end-diastolic dimension) and ejection frac-
tion (EF) (defined as the stroke volume normalized for the end-diastolic 
volume).

2.6 Euthanasia and tissue collection
After echocardiography, mice were sacrificed by an overdose of isoflurane 
(3–4%), followed by cervical dislocation for tissue collection.

2.7 Tomo-seq
Tomo-seq experiments were performed as described previously.27 In short, 
heart samples were embedded in tissue freezing medium, frozen on dry ice, 
and cryosectioned into 48 slices of 80 µm thickness. Next, ribonucleic acid 
(RNA) was extracted from individual slices, and Illumina sequencing libraries 
were barcoded according to the CEL-seq protocol.28 Paired-end reads ob-
tained by Illumina sequencing were aligned to the transcriptome using 
BWA.29 The 5′ mate of each pair was used for mapping, discarding all reads 
that mapped equally well to multiple loci. The 3′ mate was used for barcode 
information. Read counts were first normalized to total counts per section 
and then renormalized to the median of total reads across sections in order 
to ensure that count numbers roughly corresponded to the number 
of mapped reads. Tomo-seq data analysis was performed in MATLAB 
(MathWorks) using custom-written code. An expression cut-off of >4 reads 
in >1 section was used.

2.8 Isolation of ventricular cardiomyocytes 
from neonatal rats
Neonatal rat cardiomyocytes (NRCM) were isolated by enzymatic dissoci-
ation of 1–2-day-old neonatal rat hearts. In brief, pups were placed on ice 
for 5–10 min for light anaesthesia. After decapitation, hearts were collected, 
and ventricles were separated from atria and cut into small pieces in a ba-
lanced salt solution prior to enzymatic digestion using trypsin (Thermo 
Fisher Scientific, #15400054) under constant stirring at 37°C. The super-
natant, containing intact cardiomyocytes, was collected, centrifuged at 
1500 rpm for 4 min, and resuspended in Ham F10 medium (Thermo 
Fisher Scientific, #11550043) supplemented with 5% FBS, 10% L-glutamine, 
and 10% Pen-Strep. Collected cells were seeded onto uncoated 100 mm 
plastic dishes for 1.5 h at 37°C in 5% CO2 humidified atmosphere. 
Subsequently, the supernatant, which consists mainly of non-adhering cardi-
omyocytes, was collected, and cells were counted and plated on gelatine- 
coated 6-well plates 1 × 106 cells per well. After 24 h, the medium was chan-
ged to Ham F10 supplemented with insulin–transferrin–sodium selenite sup-
plement (Roche), 10% L-glutamine, and 10% Pen-Strep. Cells were used for 
the hypoxia study, small interfering RNA (siRNA)–mediated knock-downs 
and infection with AAV9 virus as described below.

2.9 Hypoxia study
NRCMs were isolated and 1 × 106 cells were plated per well in 6-well 
plates. For hypoxia treatment, cells were placed in a hypoxia chamber 
with 1% O2 and 5% CO2 and incubated for 1, 2, 4, 6, 8, or 24 h. For nor-
moxia treatment, control cells were placed for 24 h in a regular cell culture 
incubator. RNA was isolated after each time point as described below. For 
immunohistochemistry, cells were cultured for 6 h under normoxic or 
hypoxic conditions, fixed, and stained as described below.
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2.10 Promoter analysis
We used rVista 2.0 (https://rvista.dcode.org) to compare the Zeb2 and 
Adcy6 promoter regions between mouse and human and illustrated our 
data as percentage of conservation of a 10.0 kb genomic region upstream 
of transcriptional start site of Zeb2 or Adcy6.

2.11 Measurements and analysis of Ca2+ 

transients
Cardiomyocytes were isolated as described before.30 Cells were subsequently 
incubated in 1:1000 Ca2+-sensitive dye Fluo-4-AM (Thermo Fisher, #F14201) 
in Tyrode solution containing (mM) NaCl (130), KCl (4), CaCl2 (1.8), MgCl2 

(1.2), NaHCO3 (18), HEPES (10), and glucose (10), for 15 min at 37 degrees. 
Cells were placed in Tyrode solution during the recording of the Ca2+ tran-
sients and were paced at 1, 3, and 5 Hz by field stimulation. Recordings were 
made on a custom-built microscope (Cairn Research, Kent, UK) using a 10× 
objective. Blue light was used for excitation, using a 482/35 excitation filter 
(Semrock FF01-482/35-25) and captured using a 514 long-pass emission filter 
(Semrock LP02-514RU-25), with a high-speed camera (Andor Zyla 5.5.CL3, 
Oxford Instruments). Analysis was performed using a custom MATLAB 
script (https://osf.io/86ufe/). Fluorescence signals were normalized to their 
own baseline intensity to allow for comparisons between conditions. Ca2+ 

traces were selected from the data set, and signal noise was filtered to visu-
alize representative Ca2+ transients.

2.12 RNA isolation and quantitative 
real-time PCR
RNA was isolated using TRIzol reagent (Invitrogen) and reverse tran-
scribed into complementary DNA (cDNA) using iScript cDNA Synthesis 
Kit (Bio-Rad, #1708891) according to the manufacturer’s instructions. 
Quantitative real-time PCR (qPCR) was performed using iQ SYBR Green 
Supermix (Bio-Rad, #170-8885) on the CFX96 Real-Time PCR instrument 
(Bio-Rad). Transcript levels were normalized for endogenous loading. 
Primer sequences are provided in Supplementary material online, Table S5.

2.13 RNA Sequencing
Total RNA was extracted from remote zones of hearts using TRIzol re-
agent (Invitrogen). RNA sequencing (RNA-seq) libraries were prepared 
using the TruSeq Stranded Total RNA Library Prep Kit (Illumina) with 
Invitrogen according to the manufacturer’s instructions. Next, strand- 
specific single-end 75 bp reads were generated on an Illumina NextSeq 
500. Reads were aligned and quantified against the Gencode.M4 gtf list 
for annotated genes using the STAR workflow. Heart libraries were se-
quenced with a minimum of 14 million reads [16.2 ± 1.9 (mean ± SD)]. 
Differential expression was analysed using DESeq v1.2211 using per condi-
tion dispersion estimates.

2.14 Gene ontology and pathway analysis
To identify whether gene groups shared similar biological functions, differ-
entially expressed gene groups were analysed using Kyoto Encyclopedia of 
Genes and Genomes pathway and Gene Ontology biological processe 
database using DAVID7. Significant enrichment of genes was shown, and 
P values were corrected for multiple testing using the Benjamini–Hochberg 
method.

2.15 Western blot analysis
Heart tissue lysates were collected in RIPA buffer [50 mM Tris-HCl pH 7.5, 
150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate (Sigma-Aldrich), 1% 
Triton X-100 (Sigma-Aldrich), protease inhibitor (Roche)], and protein 
concentration was determined using a Bradford assay (Bio-Rad). Samples 
were boiled in 4× Laemmli buffer, including 2% β-mercaptoethanol for 
5 min at 99°C. SDS-PAGE and Western Blot were performed using 
Mini-PROTEAN Tetra Vertical Electrophoresis Cell with Mini Trans-Blot 
(Bio-Rad). Membranes were blocked in 3–5% non-fat dry milk and 

incubated overnight at 4°C with primary antibodies (see Supplementary 
material online, Table S6). On the next day, blots were incubated with 
the corresponding peroxidase-conjugated AffiniPure secondary antibodies 
(Jackson ImmunoResearch) for 45 min and proteins were visualized using 
ECL solution (Bio-Rad, #170-5061) on the ImageQuant LAS4000 imaging 
system. Western blots were quantified using Fiji software.

2.16 Immunofluorescence staining
Immunofluorescence imaging was performed on paraffin-embedded heart 
sections and fixed in vitro cultures. Paraffin-embedded heart sections were 
deparaffinized and re-hydrated in an alcohol gradient. Sections were sub-
sequently boiled in boiling ethylenediaminetetraacetic acid buffer pH 9 
for 20 min for antigen retrieval, blocked with 0.05% BSA, and incubated 
with primary antibodies (see Supplementary material online, Table S5) 
overnight at 4°C. On the next day, sections were washed and incubated 
with the corresponding Alexa Fluor secondary antibodies (Thermo 
Fisher Scientific) for 1 h followed by 4′,6-diamidino-2-phenylindole 
(DAPI) 1:5000 (Invitrogen, #D3571) for 10 min at room temperature 
(RT). Sections were finally mounted with ProLong Gold Antifade 
Mountant (Invitrogen, #P36934) for imaging. Fluorescein isothiocyanate– 
labelled wheat germ agglutinin (Sigma-Aldrich, #L4895) was used to visu-
alize and quantify cardiomyocyte cross-sectional area with ImageJ soft-
ware. For in vitro cultures, cells were fixed with 4% paraformaldehyde, 
quenched with NH4Cl, permeabilized, blocked with 1% fish gelatine (gel-
atine from cold-water fish skin, Sigma-Aldrich, #G7765), and incubated 
with primary antibodies (see Supplementary material online, Table S5) 
for 25 min at RT. Cells were then incubated with the corresponding 
Alexa Fluor secondary antibodies (Thermo Fisher Scientific) for 20 min 
at RT. Cells were finally washed and sealed with mounting medium 
(ProLong Gold Antifade Mountant with DAPI, Invitrogen, #P36935). 
Imaging was performed using the Leica TCS SPE confocal microscope.

2.17 siRNA experiments
siRNA trilencers purchased from OriGene were used to knock down 
ZEB2 (#SR511798), HIF1α (#SR510711), and AC6 (#SR511901). A 
scrambled siRNA was used as a non-targeting control (#SR30002). 
Knock-down was performed at a final concentration of 10 nM using 
Lipofectamine 2000 (Thermo Fisher Scientific, #11668027) for 24 h. 
Next, medium was refreshed for an additional 8 h, and cells were harvested 
for analysis. Cells were subjected to hypoxia (1% O2 and 5% CO2) for 6 h 
before collection.

2.18 Human heart samples
Approval for studies on human tissue samples was obtained from the 
Medical Ethics Committee of the University Medical Center Utrecht, 
The Netherlands (12#387). Written informed consent was obtained or 
in certain cases waived by the ethics committee when obtaining informed 
consent was not possible due to death of the patient. In this study, we used 
tissue from the LV-free wall of patients with end-stage HF secondary to 
IHD. Tissue was obtained during heart transplantation or upon autopsy. 
RNA was isolated as previously described, and gene expression values ob-
tained by qPCR were plotted for correlation analysis.

2.19 MicroRNA target prediction
For the identification of putative microRNAs targeting Zeb2, we used the 
target prediction tools miRBase (http://www.mirbase.org) and TargetScan 
(http://www.targetscan.org/vert_72/).

2.20 Luciferase assay
HEK293T cells were transfected using Lipofectamine (Thermo Fisher 
Scientific, #11668027) with pMIR-reporter plasmid containing the 3′ un-
translated region (3′UTR) of ZEB2 (25 ng/well), pCMV plasmid containing 
miR-208a (at different concentrations), and Renilla. After 48 h, luciferase 
activity was measured using the Dual-Luciferase® Reporter Assay 
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System (Promega). Relative luciferase activity was normalized to Renilla 
expression.

2.21 Anti-miR injection in mice
For the baseline study, adult C56BL/6J mice (Charles Rivers) were injected 
with anti-miR-control or anti-miR-208a (25 mg/kg) subcutaneously for 
three consecutive days. Animals were sacrificed 3, 7, or 14 days after the 
last injection, and cardiac tissues were collected for baseline analysis. For 
the IR study, adult mice received sham or IR surgery which was followed 
by subcutaneous anti-miR injections for three consecutive days and used 
for functional and molecular analysis 14 days later.

2.22 Statistical and reproducibility
The number of samples (n) used in each experiment is shown in the figures 
and indicates biological replicates. Results are presented as the mean ±  
standard error of the mean (SEM). Statistical analyses were performed 
using PRISM (GraphPad Software Inc. version 6). Two groups were stat-
istically compared using Student’s t-test. Multiple groups were statistically 
compared using ordinary one-way ANOVA or two-way ANOVA. 
Outliers were defined by Grubbs’ test (alpha = 0.05). Data are repre-
sented as mean ± SEM. Differences were considered statistically signifi-
cant at P < 0.05. In the figures, asterisks indicate statistical significance 
(*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001) which is also indi-
cated in the individual figures. All representative images of the hearts or 
cells were selected from at least three independent experiments with 
similar results, unless indicated differently in the figure legend.

3. Results
3.1 Hif1α induces Zeb2 expression in hypoxic 
cardiomyocytes
In an effort to define novel mechanisms that underlie cardiac remodelling 
after ischaemic injury, we generated a spatial gene expression atlas of the 
infarcted mouse heart using Tomo-seq.27,31 By sequencing consecutive 
sections, we were able to obtain local gene expression profiles spanning 
from the infarct to the remote area (Figure 1A and B). Local expression 
cues enabled us to trace the expression of critical factors involved in spe-
cific aspects of cardiac remodelling. Considering the importance of Hif1α 
during cardiac ischaemia, we screened for the top 100 genes that showed 
the highest correlation with Hif1α expression across the infarcted heart 
(Figure 1C, Supplementary material online, Figure S1A and B). As expected, 
these genes were functionally linked to response to wounding and 
hypoxia (Figure 1D), confirming a link between the genes and Hif1α. 
Next to known Hif1α interactors, such as Egr1, Adam10, and Abcg2,32–34

we identified Zeb2 as one of the top Hif1α co-regulated transcription fac-
tors (Figure 1E). By qPCR analysis, we could further validate a strong cor-
relation between Hif1α and Zeb2 expression in infarcted areas of hypoxic 
hearts at several time points after injury (Figure 1F). A positive correlation 
was also observed in single cardiomyocytes isolated from injured mouse 
hearts (Figure 1G) and in human ischaemic hearts (Figure 1H). To address 
the possible regulation of Zeb2 by HIF1α in cardiomyocytes, we performed 
siRNA-mediated knock-down of endogenous Hif1α in primary NRCM sub-
jected to normoxia or hypoxia for 6 h (see Supplementary material online, 
Figure S2A). This led to a reduction in the expression of Hif1α (Figure 1I), known 
as HIF1α target genes (see Supplementary material online, Figure S2B and C), 
and a decrease in Zeb2 transcript levels (Figure 1J). When examining 
the Zeb2 promoter region, we identified five conserved hypoxia- 
responsive elements (HREs), which could potentially explain the observed 
HIF1α-dependent Zeb2 expression (Figure 1K, Supplementary material 
online, Figure S2D–F).

Western Blot analysis shows increased ZEB2 expression in NRCMs sub-
jected to hypoxia compared to normoxia for indicated time points 
(Figure 2A and B). Immunofluorescent staining of ZEB2 in NRCMs showed 
an induction of ZEB2 protein after 6 h of hypoxia (Figure 2C). Since 

embryonic and neonatal hearts are more hypoxic than adult hearts,35

we also checked the expression of Zeb2 during different developmental 
stages. High expression levels of Zeb2 were observed in embryonic and 
postnatal mouse hearts on mRNA (Figure 2D) and protein (Figure 2E) le-
vels, followed by a significant decrease in adult hearts and an induction 3 
days after ischaemic injury (Figure 2D). Altogether, these data strongly sug-
gest a HIF1α-mediated Zeb2 induction in cardiomyocytes during hypoxia.

3.2 Cardiomyocyte-specific ZEB2 
overexpression protects from IR-induced 
pathological hypertrophy and contractile 
dysfunction
To study the in vivo effects of ZEB2 induction in cardiomyocytes, we gen-
erated cardiomyocyte-specific ZEB2-overexpressing mice (Zeb2 cTg) as 
described previously22 and subjected them to IR injury. Functional and mo-
lecular analysis 14 days after surgery confirmed the upregulation of ZEB2 at 
mRNA and protein levels in Zeb2 cTg mice compared to their wild-type 
(WT) littermates (Zeb2 WT) (Figure 3A–D). Echocardiographical measure-
ments showed an improvement in function and a better maintained cardiac 
morphology in Zeb2 cTg mice (Figure 3E–G, Supplementary material 
online, Figure S3A–C and Table S1). Additionally, heart weight to tibia length 
(HW/TL) ratio indicated a reduction in pathological hypertrophy in Zeb2 
cTg mice post-IR compared to WT controls (Figure 3H). This was con-
firmed by a reduction in the surface area of cardiomyocytes located at bor-
der zone and remote areas of the injured hearts (Figure 3I and J ).

Calcineurin is a phosphatase that upon increased levels of cytosolic Ca2+ 

dephosphorylates nuclear factor of activated T cells (NFAT), which in turn 
translocates to the nucleus to activate a hypertrophic gene programme.36,37

While several NFAT isoforms have been detected in the heart,38,39 NFATc3 
plays a dominant role in cardiac hypertrophic signalling.40 In line with the 
pro-hypertrophic role of the calcineurin/NFAT signalling pathway, we ob-
served significantly higher levels of NFATc3 phosphorylation (p-NFATc3) 
in Zeb2 cTg post-IR hearts compared to the Zeb2 WT group with no in-
crease in total NFATc3 (t-NFATc3) (Figure 3K–M), implying less calcineurin 
activity upon increased ZEB2 levels. This effect was not observed when com-
paring the sham groups of both genotypes (see Supplementary material 
online, Figure S3D–F).

Since calcineurin is activated during an intracellular increase in Ca2+,41,42

we next examined whether the Ca2+-handling machinery was affected 
in Zeb2-overexpressing hearts. Phospholamban (PLN) is a key regulator 
of cardiac contractility that modulates Ca2+ sequestration in the sarco-
plasmic reticulum (SR) via sarco/endoplasmic reticulum Ca2+ (SERCA2a). 
Phosphorylation of PLN relieves the inhibitory effect of PLN on 
SERCA2a, which leads to a faster relaxation and an increase in contrac-
tion.43,44 This can occur either through beta-adrenergic stimulation and en-
hanced cyclic adenosine monophosphate (cAMP)–dependent protein 
kinase A activity at serine-16 (S16) or the activation of the Ca2+/calmodulin- 
dependent CamKII at threonine-17 (T17).

45,46

Cardiomyocyte-specific 
overexpression of ZEB2 increased PLN phosphorylation at both S16 
and T17 (Figure 3N–Q), likely contributing to the enhanced cardiac con-
tractility observed in these mice after injury. This increase in phosphor-
ylation of PLN was also seen, although not significantly, in sham hearts 
from Zeb2 cTg mice, further exemplifying the role of ZEB2 in mediating 
these effects (see Supplementary material online, Figure S3G–J). 
Together, these data indicate that ZEB2 overexpression in cardiomyo-
cytes prevents cardiac dysfunction and cardiomyocyte hypertrophy 
post-ischaemic injury.

3.3 Cardiac overexpression of ZEB2 alters 
the expression of Ca2+-handling genes in the 
heart
To examine the role of ZEB2 in injured cardiomyocytes in more detail, 
we performed RNA-seq on cardiac tissue from Zeb2 WT and Zeb2 cTg 
mice subjected to IR (Figure 4A). Pathway analysis of the top 200 
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Figure 1 Zeb2 is induced by HIF1α in hypoxic cardiomyocytes. (A) Study design. (B) Tomo-seq on infarcted mouse heart. (C ) Spatial expression traces of 
Hif1α and similarly regulated genes in mouse hearts 14 days post-injury. (D) Gene Ontology analysis showing enriched pathways of Hif1α co-regulated genes. 
(E) Spatial expression traces of Hif1α and Zeb2 in the infarcted mouse heart. (F ) qPCR analysis of Hif1α and Zeb2 expression levels in mouse hearts collected at 
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significantly upregulated genes was linked to Ca2+ signalling and car-
diac muscle contraction, further suggesting a role for ZEB2 in regulat-
ing these processes (Figure 4B and C ). The expression of the top 
upregulated genes was confirmed by qPCR in a larger sample set (n  
= 7–8) (Figure 4D–I).

To address the consequences of the observed increase in expression of 
cardiac contractility-related genes, we used our existing RNA-seq data of 
WT sham vs. WT IR hearts to check how expression of these genes is al-
tered upon injury. We observed that the expression of various genes re-
lated to cardiomyocyte contractility is reduced upon ischaemic injury 
(see Supplementary material online, Figure S4A), which correlates with a 
decline in cardiac function.47–51 This decrease was restored upon ZEB2 

overexpression in the ischaemic heart (see Supplementary material online, 
Figure S4B), suggesting a ZEB2-mediated rescue of contractility-related genes 
after ischaemic injury.

Among the top upregulated genes in Zeb2 cTg hearts post-injury, we 
identified adenylate cyclase 6 (Adcy6) (see Supplementary material 
online, Figure S4A–C). ADCY6 is a membrane-associated enzyme that cat-
alyses the formation of cAMP. cAMP is crucial for intracellular signal trans-
duction pathways and is responsible for phosphorylation of several 
proteins important in Ca2+ homeostasis and cardiac contraction.52 To de-
termine whether ZEB2 can transcriptionally regulate ADCY6, we analysed 
the 10 kb proximal promoter region of Adcy6, by which we identified three 
conserved ZEB2 binding motifs (see Supplementary material online, 
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Figure S4D and E). Additionally, we made use of existing ChIP-seq data 
(https://www.encodeproject.org/targets/ZEB2-human/) and confirmed 
that these ZEB2 binding motifs are located in enhancer regions of Adcy6 
(see Supplementary material online, Figure S4F and G). These data indicate 
that ZEB2 could play a role in the transcriptional regulation of ADCY6 in 
the heart, potentially contributing to the cardioprotective effects of ZEB2 
overexpression after injury.

3.4 ZEB2 improves Ca2+ handling in 
cardiomyocytes after injury
Given the observed changes in contractility and Ca2+-handling genes, we 
next measured Ca2+ levels in adult cardiomyocytes isolated from Zeb2 
WT and Zeb2 cTg mice post-IR. Isolated cardiomyocytes were incubated 
with the Ca2+-sensitive dye Fluo-4-AM, after which changes in signal 
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intensity, indicative of Ca2+ transients, were measured at different pacing 
frequencies (1, 3, and 5 Hz) (Figure 5A–C). Zeb2-overexpressing cardiomyo-
cytes showed increased transient amplitudes at all frequencies (Figure 5D–F). 
While no differences were seen in rising time, longer decay times were ob-
served in cells from Zeb2 cTg mice at 1 and 3 Hz (Figure 5G–I). Interestingly, 
when correcting the decay time for the total amount of Ca2+ represented by 
the amplitude, Ca2+ is removed more efficiently from the cytosol at a physio-
logical pacing frequency of 5 Hz, as seen by a shorter corrected decay time 
(Figure 5J). These data demonstrate that cardiomyocytes isolated from Zeb2 
cTg hearts cycle an increased amount of Ca2+ and have improved Ca2+ re-
uptake after IR injury, which can potentially contribute to the enhanced car-
diac contractility and relaxation measured in vivo.

3.5 Genetic deletion of ZEB2 from 
cardiomyocytes causes a mild decline of 
cardiac function post-ischaemic injury but 
does not alter Ca2+ signalling
To investigate whether ZEB2 deletion would negatively impact cardiac 
Ca2+ handling, we generated cardiomyocyte-specific Zeb2 knockout 
mice (Zeb2 cKO), as described previously,22 and subjected them to IR in-
jury (see Supplementary material online, Figure S5A). Loss of ZEB2 from 
cardiomyocytes was confirmed by qPCR and immunofluorescence (see 
Supplementary material online, Figure S5B and C) and did not affect the 
gross morphology and function of the heart at baseline.22 However, after 
IR, Zeb2 cKO mice displayed a decrease in EF and FS compared to Zeb2 
fl/fl WT littermates (see Supplementary material online, Figure S5D–G

and Table S2), indicating augmented cardiac remodelling in the absence 
of ZEB2. While a trending increase was observed for cardiomyocytes’ 
surface area and levels of phosphorylated NFATc3 and PLN (see 
Supplementary material online, Figure S5H–Q), this did not reach statistical 
significance. Additionally, Adcy6 expression remained unchanged in Zeb2 
cKO post-injury (see Supplementary material online, Figure S5R). Taken to-
gether, these data indicate that ZEB2 deletion from cardiomyocytes does 
not have a pronounced effect on cardiac function and Ca2+ handling 14 
days post-IR.

3.6 Zeb2 is post-transcriptionally regulated 
by microRNA-208a
Based on the cardioprotective effects of ZEB2 in cardiomyocytes, we 
aimed to explore ways to increase cardiac Zeb2 expression. As 
microRNAs are known to function as post-transcriptional regulators, 
we screened for microRNAs that could potentially target Zeb2. Using 
miRBase and TargetScan as target prediction tools, we identified two 
potential binding sites for microRNA-208a (miR-208a) in the Zeb2 3′ 
UTR (see Supplementary material online, Figure S6A). miR-208a is lo-
cated within an intron of the α-myosin heavy chain (αMHC) gene, mak-
ing it the sole cardiomyocyte-specific microRNA.53 When looking at 
the expression of both transcripts in the IR timeline, we observed 
an inverted correlation between Zeb2 and miR-208a, indicating a possible 
regulation of Zeb2 by miR-208a (see Supplementary material online, 
Figure S6B). To confirm this regulation, we generated a 
luciferase reporter carrying the sequence of the Zeb2 3′UTR in which 
we mutated the predicted first, second, or both seed regions of 
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miR-208a (see Supplementary material online, Figure S6C). 
Dose-dependent overexpression of miR-208a in human embryonic kid-
ney (HEK-293) cells resulted in a lowering of the luciferase reporter ac-
tivity (see Supplementary material online, Figure S6D and E), indicating 
direct binding between miR-208a and Zeb2. This interaction was lost 
when the first or both binding sides were mutated, but no effects 

were observed when we only disrupted the second binding site (see 
Supplementary material online, Figure S6E), indicating that miR-208a is 
able to bind and regulate Zeb2 via the first binding site.

To evaluate if this interaction also takes place in vivo, we used anti-miRs 
to target and inhibit miR-208a expression in the heart.54 Anti-miRs are a 
class of chemically engineered oligonucleotides perfectly complementary 
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to the selected microRNA and are therefore used for silencing purposes. 
C57BL/6J mice were injected with anti-miR-208a (anti-208a) or anti-miR- 
control (anti-control) (25 mg/kg) for three consecutive days, and tissue was 
collected for molecular analysis 3, 7, or 14 days after the first injection (see 
Supplementary material online, Figure S6F). We were able to efficiently inhibit 
miR-208a levels in the heart at the different time points, while no significant 
effects on Zeb2 expression were observed (see Supplementary material 
online, Figure S6G). Additionally, anti-miR-208a treatment did not induce any 
gross morphological and histological changes, suggesting that anti-miR target-
ing of Zeb2 was not effective under baseline conditions (see Supplementary 
material online, Figure S6H–K).

3.7 miR-208a inhibition increases ZEB2 
levels and improves cardiac function post-IR
Since stress conditions are known to alter the biogenesis and function of 
microRNAs,55,56 we next investigated whether the therapeutic inhibition 
of miR-208a would increase the expression of Zeb2 after ischaemic injury. 
To do so, we subjected adult C57BL/6J mice to sham or IR surgeries fol-
lowed by the systemic delivery of anti-control or anti-208a (25 mg/kg) 
for three consecutive days. Functional and molecular analyses were per-
formed 14 days after the first injection (Figure 6A). We observed that 
anti-208a treatment efficiently inhibited miR-208a, which consequently in-
creased Zeb2 expression (Figure 6B–D). This correlated with a rescue from 
cardiac dysfunction (Figure 6E–G, Supplementary material online, Table S3) 
and cardiomyocyte hypertrophy post-IR (Figure 6H–J). In contrast to Zeb2 
cTg mice, we did not observe an increase in phosphorylated NFATc3 levels 
after anti-208a treatment (Figure 6K–M), indicating that miR-208a regulates 
the hypertrophic response in an NFAT-independent manner.54 However, 
similar to Zeb2 cTg, anti-208a-treated mice showed an increase in phos-
phorylated forms of PLN (Figure 6N–Q) and in the expression of Adcy6 
mRNA (Figure 6R).

Altogether, our data show that ZEB2 is regulated transcriptionally by 
HIF1α and post-transcriptionally by miR-208a in the ischaemic heart. An in-
crease in ZEB2 expression in cardiomyocytes improves Ca2+ homeostasis, re-
duces hypertrophy, and prevents cardiac dysfunction in an Adcy6-mediated 
mechanism (Figure 7).

4. Discussion
In this study, we describe a key role for transcription factor ZEB2 as a 
downstream effector of HIF1α signalling that regulates cardiac Ca2+ hand-
ling and remodelling during ischaemic injury. Using Tomo-seq, we identified 
ZEB2 as a direct HIF1α target gene in the ischaemic heart (Figure 1). 
Transgenic and therapeutic induction of ZEB2 expression in cardiomyo-
cytes resulted in an improvement of contractility which coincided with a 
reduction in hypertrophic remodelling in response to stress (Figures 3
and 6). These data point to a cardioprotective role of ZEB2 via the regu-
lation of key Ca2+ handling and hypertrophic signalling pathways within 
the cardiomyocyte.

Maintaining the right and flexible balance between oxygen demand and 
availability requires a tight regulation on the molecular level.57 Hypoxia- 
inducible factors 1 (HIF1) proteins are the central regulators of hypoxia 
responses. However, only HIF1α is affected by oxygen levels as it is rapidly 
degraded under homeostatic conditions. In response to hypoxia, HIF1α is 
stabilized and is translocated to the nucleus where it binds to HRE on 
DNA and activates the transcription of hypoxia-responsive genes.58

Studies using loss- and gain-of-function models have underlined the im-
portance of HIF1α in the heart. Targeted HIF1α inactivation in mice has 
been reported to cause embryonic lethality due to abnormal vascular de-
velopment and hypertrophy of the developing heart.59,60 This has been 
further supported by the altered vascularization, energy availability, Ca2+ 

flux, and contractility following cardiomyocyte-specific HIF1α deletion.61

On the contrary, several reports showed that the prolonged induction 
of HIF1α increases the mechanical load on the heart and leads to HF.62–64

Further studies were also able to link hypoxia and HIF1α to cardiac 

regeneration.14–17 This has mainly been attributed to a reduction in mito-
chondrial reactive oxygen species,65 decreased oxidative DNA damage, 
and cardiomyocyte proliferation.14,17 The role of HIF1α in the heart is 
therefore broad, which we aimed to understand better by analysing its 
downstream effectors their cardioprotective potential. While the HIF1α/ 
ZEB2 axis was previously described in podocytes and in cells undergoing 
EMT,66,67 this is the first study reporting the relevance of this interaction 
in cardiac biology (see Supplementary material online, Figure S2).

Ca2+ is a key signalling molecule in cardiomyocytes, regulating both cardi-
omyocyte function and morphology. Under baseline conditions, intracellular 
levels of Ca2+ are tightly regulated through the preservation of a Ca2+ gradi-
ent across endoplasmic or sarcoplasmic reticulum membranes created by 
Ca2+ channels, ATPase pumps, transporters, and exchangers operating in 
synergy with Ca2+-binding proteins.50 In cardiomyocytes, a balanced flow 
of Ca2+ into and out of the cell controls excitation-contraction (EC) coup-
ling68 and hence cardiac contraction (systole) and relaxation (diastole).
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Figure 7 Model depicting the function of ZEB2 in the ischaemic heart. 
Upon cardiac ischaemia, ZEB2 is transcriptionally regulated by HIF1α and 
post-transcriptionally by miR-208a, resulting in transcriptional activation 
of Adcy6, which will trigger cardioprotective signalling by improving 
Ca2+ homeostasis, preventing cardiomyocyte hypertrophy and enhancing 
cardiac contractility.
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During HF, one of the most profound cellular changes is an increase in sys-
tolic Ca2+ levels and prolongation of the Ca2+ transient during diastole, leading 
to defects in EC coupling, cardiac dysfunction, and HF.50 EC coupling is regu-
lated by many pathways, including β-adrenergic signalling which, when acti-
vated by β-receptor agonists, initiates the production of cAMP by Adcy6. 
This subsequently results in the phosphorylation of multiple downstream tar-
gets in cardiomyocytes, such as PLN, which collectively generate an increase 
in the frequency and force of contraction.69 Alterations in Ca2+ transporting 
or binding proteins can further attribute to hypertrophy, sarcomeric disor-
ganization, and myofibrillar disarray, which affects the gross physiological 
state of the heart such as ventricular dilation and wall thinning.50,70

ADCY6 overexpression in mice has been previously linked to improved 
cardiac function due to increased cAMP production, resulting in increased 
phosphorylation of the Ca2+ regulatory protein PLN and subsequent 
activation of SERCA2a.71–74 This has been further confirmed in a pig HF 
model, in which intracoronary delivery of an adenovirus encoding ADCY6 
resulted in improved LV function and prevented pathological remodelling 
due to increased cAMP production.75 Thus, the beneficial outcomes of 
ADCY6 in preclinical studies are promising and are currently under investiga-
tion in clinical trials on HF patients.47,76,77 In the current study, we observed 
an increase in phosphorylation of PLN in Zeb2-overexpressing hearts, indi-
cating a relieve of its inhibitory effect on the Ca2+ pump SERCA2a, and con-
sequently an increased Ca2+ uptake in the SR (Figure 3). Additionally, we 
observed that cardiomyocytes isolated from Zeb2 cTg mice post-IR displayed 
an increase in Ca2+ transient amplitude and a shorter decay time at higher fre-
quencies, further supporting an improved Ca2+ reuptake in those cells 
(Figure 5). Our data suggest that the observed increase in PLN phosphoryl-
ation and improvement in Ca2+ handling occurs at least partially via the tran-
scriptional regulation of Adcy6 by ZEB2. This is supported by the presence of 
several conserved ZEB2 binding sites upstream of the transcriptional start 
site of ADCY6 and the upregulation of ADCY6 in cardiac tissue from 
ZEB2 Tg mice (see Supplementary material online, Figure S4). However, 
as RNA-seq indicated that ZEB2 overexpression in cardiomyocytes re-
stored the expression of numerous genes related to Ca2+ homeostasis 
during ischaemic injury, additional mechanisms might at play to establish 
the cardioprotective effect.

An increase in intracellular Ca2+ concentration also results in the activation 
of calcineurin–NFAT signalling, which is one of the main drivers of pathologic-
al cardiac hypertrophy.36,78 Ca2+ overload in cardiomyocytes leads to activa-
tion of Ca2+/calmodulin-dependent phosphatase calcineurin. This results in 
the dephosphorylation of NFAT, its subsequent translocation to the nucleus, 
and activation of a hypertrophic gene programme.36,37,78,79 We observed 

increased levels of phosphorylated NFAT in ZEB2-overexpressing mice, 
which might be a direct consequence of improved Ca2+ handling. This reduc-
tion in calcineurin–NFAT signalling likely underlies the reduction in hyper-
trophy and maintained cardiac function in these hearts after ischaemic 
injury (Figure 3, Supplementary material online, Figure S3). Next to the 
herein described roles of ZEB2 in regulating Ca2+ homeostasis and myo-
cyte function, we recently reported an additional cell non-autonomous 
function of ZEB2 in the injured heart.22 Genetic overexpression or 
AAV9-mediated delivery of ZEB2 to the injured heart triggered an in-
crease in vessel density, diminished scar formation, and preserved cardiac 
function.22 Thus, ZEB2, on the one hand, contributes to creating a per-
missive environment for cardiac repair by enhancing angiogenesis and, 
on the other hand, controls the contractile function of cardiomyocytes, 
thereby preventing pathological remodelling.

Genetic deletion or therapeutic inhibition of miR-208a has been previ-
ously associated with enhanced cardiac function in a model of pressure 
overload in mice.53,54 In the context of ischaemic injury, we could show 
that anti-miR-mediated targeting of miR-208a increases ZEB2 expression 
and ameliorates cardiac hypertrophy and dysfunction (see Supplementary 
material online, Figure S6, and Figure 6). We delivered anti-208a to thera-
peutically increase Zeb2 levels in injured cardiomyocytes. However, 
this intervention did not fully recapitulate the protective effects we ob-
served in the Zeb2 cTg mice post-IR as we did not observe an increase 
in phosphorylated NFATc3 levels after anti-208a treatment (Figure 6). 
MicroRNAs are modulators of gene expression and have multiple target 
genes.80–82 Based on target-predicting tools, miR-208a is predicated on 
regulating several phosphatases that could be involved in NFAT depho-
sphorylation which might explain our results. These observations are in 
line with our previous report in which we showed that miR-208a regulates 
the hypertrophic response in an NFAT-independent manner.54

Our study provides novel insights into the intricate molecular mechan-
isms governing cardiac responses to ischaemic injury. We demonstrate 
that ZEB2 is a key downstream regulator of HIF1α signalling, orchestrating 
cardiac Ca2+ handling and remodelling processes through transcriptional 
regulation of key genes like Adcy6. Additionally, our findings on the therapeut-
ic targeting of miR-208a, which modulates ZEB2 expression, offer further 
avenues for exploring potential interventions to enhance cardiac function 
and mitigate hypertrophic responses in IHD (Figure 7). Subsequent inves-
tigations will focus on unveiling the downstream transcriptional network 
of ZEB2 to achieve a deeper molecular understanding of cardiac disease 
and cardioprotection, which will facilitate the development of targeted 
therapies.  

Translational perspective
Our findings hold significant promise for advancing our understanding and treatment of ischaemia-induced HF and beyond. Intracellular calcium over-
load is a critical factor in cardiac dysfunction, yet effective therapies targeting this pathway remain elusive. Identifying ZEB2 as a regulator of contractility 
and calcium-handling components represents a vital step forward. By elucidating the molecular mechanisms underlying ZEB2’s protective effects, this 
research opens new avenues for therapeutic intervention. Targeting ZEB2 or its downstream pathways may offer novel strategies to mitigate HF pro-
gression and improve patient outcomes. Further translational and clinical studies are needed to validate these findings and assess the potential of 
ZEB2-targeted therapies in clinical settings.
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