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Abstract 

Research conducted over the past 15þ years has identified hundreds of common germline genetic variants associated with cancer 
risk, but understanding the biological impact of these primarily non-protein coding variants has been challenging. The National 
Cancer Institute sought to better understand and address those challenges by requesting input from the scientific community via a 
survey and a 2-day virtual meeting, which focused on discussions among participants. Here, we discuss challenges identified 
through the survey as important to advancing functional analysis of common cancer risk variants: 1) When is a variant truly charac-
terized; 2) Developing and standardizing databases and computational tools; 3) Optimization and implementation of high- 
throughput assays; 4) Use of model organisms for understanding variant function; 5) Diversity in data and assays; and 6) Creating 
and improving large multidisciplinary collaborations. We define these 6 challenges, describe how success in addressing them may 
look, propose potential solutions, and note issues that span all the challenges. Implementation of these ideas could help develop a 
framework for methodically analyzing common cancer risk variants to understand their function and make effective and efficient 
use of the wealth of existing genomic association data.

On February 7-8, 2023, the National Cancer Institute (NCI) held a vir-
tual meeting, Variation to Biology: Optimizing Functional Analysis of 
Cancer Risk Variants (1), to identify and discuss how to address sci-
entific challenges and opportunities for understanding the path 
from common genetic variation to cancer phenotype. More than 200 
participants attended, representing fields including cancer epidemi-
ology, genetics, bioinformatics, and molecular biology.

Hundreds of common genetic variants that are associated 
with cancer risk have been identified through genomic associa-
tion studies. Because most of these variants have small effect 
sizes and are located in non-protein coding regions of the 
genome, understanding how they impact molecular mechanisms 
and the underlying biology is challenging (2,3). The intent of this 
meeting was to focus on challenges for characterization of these 
primarily non-protein coding variants, conceptualize success in 
addressing these challenges, and brainstorm solutions.

To develop the meeting agenda, NCI solicited input from 
investigators working in this field, including genetic epidemiolo-
gists, molecular biologists, and cancer biologists, about signifi-
cant challenges facing efforts to understand how common 
genetic variants impact cancer development. We received nearly 
40 substantive responses to our survey and grouped these 
responses into 6 topics that were the focus of brief talks (Table 1): 
1) When is a variant truly characterized; 2) Developing and 
standardizing databases and computational tools; 3) 
Optimization and implementation of high-throughput assays; 4) 
Use of model organisms for understanding variant function; 5) 
Diversity in data and assays; and 6) Creating and improving large 

multidisciplinary collaborations. These topics were used to gen-
erate a meeting agenda, featuring brief presentations on each 
topic, followed by small-group breakout sessions for in-depth dis-
cussions. The discussions were structured to define the problem, 
describe how success in addressing the problem would look, and 
brainstorm ideas for achieving success. In this report, we synthe-
size these discussions (summarized in Table 1). The ideas dis-
cussed during this workshop represent activities to facilitate the 
functional analysis of common cancer risk variants and maxi-
mize the value of existing genomic association data.

Topic 1: When is a variant truly 
characterized?
Defining the challenge
Understanding the impact of a genetic variant on cancer risk 
requires collaboration across multiple disciplines and considera-
tion of numerous cancer types and cellular contexts. This com-
plexity leads to the question of whether we consider a variant to 
be sufficiently characterized; in other words, when is there suffi-
cient evidence to ensure that we accurately understand the 
impact, or lack thereof, of a variant on cancer risk?

What does success look like?
Deciding if a variant is sufficiently characterized will require dif-
ferent criteria for different downstream purposes. For example, 
biological and functional information may not necessarily be 
required for developing polygenic risk scores (PRS), where 
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association with a clinical endpoint is the primary outcome of 
interest, although knowing the specific risk-promoting variant 
would add power. However, to understand the biological impact 
of risk variants and contribute to the development of potential 
interventions and treatments, more information is needed. An 
example of a “sufficiently characterized” variant may be exempli-
fied by the rs11655237[A] allele within the locus LINC00673 on 
chromosome 17q24.3, which was identified by genome-wide 
association studies (GWAS) to be associated with an increased 
risk for pancreatic ductal adenocarcinoma (PDAC) [(4,5) and 
reviewed in (6)]. Functional studies determined that the non- 
coding rs11655237[A] allele creates a miR-1231 binding site, 
reducing the ability of LINC00673 to control PTPN11 degradation, 
thereby promoting proliferation and growth of PDAC cells (7).

Along with information on molecular mechanisms, data on 
interactions with environmental exposures, and how variants 
interact with each other, including how tumor mutations and 
germline variants interact, should be considered. Incorporating 
data from populations with a variety of genetic ancestries is 
highly important; although the biological mechanisms may be 

similar, the specific variants underlying these mechanisms may 
vary across racial and ethnic groups. Ideally, genetic (including 
family history of cancer), functional, and clinical information 
will be incorporated into variant analysis to create a clear picture 
of a variant’s role in carcinogenesis.

Potential solutions
A consensus on sufficient variant characterization will require 
multiple independent lines of evidence that indicate the same 
conclusion (eg, in silico, epigenetic, functional assay data) and 
well-annotated, well-documented databases to capture and 
manipulate this information. Pipelines or standard processes to 
follow for characterization could be developed (8,9). Researchers 
could convene expert curation panels similar to those used by 
ClinGen (10) to develop and apply criteria to decide when a can-
cer risk variant is sufficiently characterized. Aspects of the var-
iant curation guidelines adopted by the American College of 
Medical Genetics and Genomics could be incorporated, such as 
requiring data from multiple computational prediction pro-
grams, evaluating the strength of data from a range of sources 

Table 1. Action items for advancing functional analysis of cancer risk variants

Discussion topics

Action item Details

Define  
sufficient  

characterization

Databases and  
computational  

tools

High- 
throughput  

assays
Model  

organisms

Diversity  
in data  

and assays Collaborations

Develop guidelines and/ 
or standard for suffi-
cient characterization 
of a genetic locus, 
based on intended pur-
pose

Engage a small group of 
investigators to mine data 
and use benchmarks to 
adjudicate sources of data 
to identify a set of “truth” 
loci/variants. 

Identify consensus inter-
mediate molecular pheno-
types. 

x x

Develop and provide 
opportunities for cross- 
disciplinary training

Create opportunities to train 
across fields such as 
molecular biology, bioin-
formatics, epidemiology, 
genetics, etc. 

Promote opportunities for 
both early stage and mid- 
career investigators. 

x x x

Encourage development 
of standards for in sil-
ico data curation and 
for high throughput 
assays

Develop standards for con-
ducting research and 
reporting data/results. 

Work with existing data-
bases to develop stand-
ards. 

x x x x

Build or connect data 
portals

All information/annotations 
for a locus should be easily 
integrated. 

Include published data from 
small studies that are not 
in larger databases. 

Connect data from various 
collaborative consortia. 

x x x x x

Increase data, resources, 
and annotations rele-
vant to underrepre-
sented groups

Develop best practices for 
engaging under-repre-
sented groups. 

Ensure that new data gener-
ating efforts include all 
groups/ancestries. 

x x x x x

Encourage creation of 
collaborative groups

Develop and encourage data 
jamborees or other activ-
ities focused on a specific 
project.

x x x
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(eg, population data, computational and predictive data, func-
tional assay data), and ensuring that potential risk variants have 
been evaluated in multiple ancestral groups (11). Common data 
and reporting standards could facilitate larger collaborations, 
and buy-in from journal editors could help develop evidence 
requirements and reporting standards. Although standard 
reporting guidelines exist for specific study types (eg, 
STrengthening the Reporting of OBservational studies in 
Epidemiology (STROBE) for cohort and case-control studies, 
Minimum Information for Publication of Quantitative Real-Time 
PCR Experiments (MIQE) for studies that use qPCR data) (12), 
research on non-coding variants encompasses multiple disci-
plines and data types, and reporting guidelines will need to con-
sider this.

Topic 2: Standardizing computational tools 
and databases
Defining the challenge
The location of common cancer risk variants in non-protein cod-
ing regions means that extensive annotation of loci is needed to 
inform characterization approaches. A wealth of annotation data 
has been generated, but curating the data to make them accessi-
ble and usable to all investigators has been challenging. Multiple 
data types are needed to define the function of cancer risk var-
iants, and although a great deal of data exist, they are often 
stored in separate databases; connecting and integrating these 
data to generate a unified description of a given locus is challeng-
ing. Analysis of germline cancer risk variants requires data from 
a broad set of potentially involved tissues, and the types of data 
available varies greatly across tissue types. In addition, few 
standards exist for assessing the accuracy and reliability of func-
tional annotations. Another complicating issue is the lack of col-
laborative resources (eg, computational tools and databases) to 
allow investigators to easily integrate different types of data and/ 
or annotations.

What does success look like?
Ideally, connected or federated databases, with data broadly 
available through controlled access, would allow investigators 
with different levels and areas of expertise to easily find and inte-
grate all data related to a given locus or variant. For any given 
locus, a defined set of annotations should be available, such as 
allele frequencies in multiple populations; inter- or intragenic 
locations (eg, coding vs non-coding regions); filterable expression 
data for multiple contexts (including by ancestry, cell state, tis-
sue of origin); chromatin state (eg, open/closed) for multiple con-
texts; and regulatory annotations (eg, transcription factor 
binding sites, promoters, enhancers). A well-characterized locus 
(eg, LINC00673 as discussed above) could be used as a template 
for standardizing and optimizing the usability and accuracy of 
functional annotations, supported by laboratory assay data. 
Artificial intelligence-based and large-scale computational 
approaches could help analyze data (13), and these tools and 
their outputs should be broadly shared across the community.

Potential solutions
A primary focus for improving computational tools and data-
bases for cancer research should be the connection or integration 
of the many different sources of data. Action items for achieving 
this goal include connecting or consolidating existing databases; 
although most atlases focus on coding variants, efforts such as 
the Atlas of Variant Effects, which strives to develop 

comprehensive variant effect maps that characterize the func-
tion of single nucleotide changes in a gene or functional element 
of interest (14,15), could serve as an example for developing 
resources for cancer-relevant variants. Agreed-upon standards 
for reporting meta-data and results, which could be modeled on 
those used by the Cancer Genome Atlas (TCGA) (16) or the 
Genotype-Tissue Expression (GTEx) project (17), for example, will 
help to ensure these disparate sources of data are interoperable 
and can be easily integrated. Although not strictly a matter of 
tools and databases, enhancing cross-training of and collabora-
tion among bioinformaticists who can manipulate the data and 
molecular and cancer biologists who can interpret the data will 
help to ensure that all data are used widely and appropriately.

An initial step could include working with NCI’s Cancer 
Research Data Commons (CRDC) (18), which has initially focused 
on tumor genomic data, to incorporate and annotate more data 
relevant to germline risk variant analysis. NIH’s Common Fund 
Data Ecosystem is working to create a federated genomic data 
ecosystem (currently focused on Common Fund datasets) to 
ensure interoperability of a range of data (19). cBioPortal for 
Cancer Genomics (20) is another example of a data consolidation 
and visualization tool, although inclusion and annotation of 
germline variants will require additional data security considera-
tions. Inclusion of cancer data in the Association to Function 
Knowledge Portal (21), which aggregates datasets and bioinfor-
matic methods for several diseases, could also be a way to reach 
more scientists interested in exploring the germline basis of can-
cer risk.

Topic 3: High-throughput assays
Defining the challenge
Assays to understand the function of common variants must 
contend with the lack of knowledge concerning their precise 
molecular effects and the genes they may modulate. Because 
these variants have small effects and likely work in combination 
with others to promote carcinogenesis, diverse data types are 
needed to fully understand their impact on cancer risk. 
Multiplexed assays of variant effects (MAVEs) can generate large- 
scale functional data for all possible variants at a locus (22), but 
interpretation of these data requires a complex workflow, includ-
ing choosing reliable, consistent assays; specialized knowledge to 
understand assay results; and considering the results in the con-
text of other results (23,24). Curated, interoperable datasets are 
necessary; a near-complete understanding of a variant’s biologi-
cal impact will incorporate information ranging from DNA 
sequence changes to effects on processes including transcription, 
transcript stability, and protein properties, among others. 
Accurate integration of all these types of data underscores the 
need for “gold standards” that ensure that the data reported from 
an assay provide an accurate picture of variant action. Standards 
or agreements on how best to integrate the multiple levels of 
data are needed, including attention to context (eg, gene by gene 
interactions, cell type in which the assay is conducted, and 
appropriate use of organoids and other higher-level model sys-
tems), to accurately understand the molecular changes that lead 
to the cancer risk phenotype.

What does success look like?
Successfully addressing these challenges will result in confi-
dence that the data from assays are reported accurately and can 
be built on by other groups to answer subsequent questions aris-
ing on the path to understanding the phenotype. The results of 
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assays should be easily findable and understandable—given a 
specific variant, it should be straightforward to find assay results 
describing its effects and the gene(s) it impacts. Investigators 
also should have access to sufficient information to combine 
data from different assays and/or laboratories and compare 
effects of a variant across different assays and cellular and 
organismal contexts. Similar to what was discussed for computa-
tional data, establishing an integrated repository of data from 
high-throughput multiplexed assays would help this area of 
research. Ideally, a single portal could be created, through which 
current knowledge can be easily accessed and gaps in knowledge 
identified. This portal would have, for a given variant, informa-
tion on genes the variant may affect, intermediate phenotypes, 
data on positive and negative controls, and the ability to compare 
the data across different assays and cell types, as well as infor-
mation on cell lines and other reagents. This portal should be 
usable by investigators who may not be experts in bioinfor-
matics.

Potential solutions
A collaborative framework that standardizes the generation of 
data and reporting of results from high-throughput assays in a 
methodical way could help to ensure accurate assessment and 
broad use of the data. An important first step would be defining 
categories across the universe of cancer genetic data (eg, mecha-
nisms, genetic changes, cascades). This process could follow the 
example of TCGA, which published reports defining, in a uniform 
way, genomic changes occurring in multiple cancer types [eg, 
(16,25)]. Although Clinical Interpretation of Variants in Cancer 
(ClinVar) and ClinGen largely focus on variants found in protein- 
coding regions, the standards these groups use to define variant 
function also could be considered. Development of functional 
standards and tools would need to be led by interested research-
ers and experts in standards development, perhaps reaching a 
point at which these standards could help guide editorial deci-
sions for publication.

Use of high-throughput data could be facilitated by coordinat-
ing data from many research groups and sources in a user- 
friendly database. The database could be arranged around spe-
cific variants, or around specific genes or pathways, keeping in 
mind that for many common cancer risk variants, the target 
gene is unknown. Data on cell lines or organoids used in certain 
assays should be included, along with guidelines for conducting 
the assays. The Multiplexed Assays of Variant Effect database 
(MAVEdb) (26) provides a useful example of a database that con-
solidates the results of multiplex assays of variants effects, pro-
viding researchers with a way to store processed MAVE datasets 
and associated metadata in a standardized and searchable for-
mat. MAVEdb also has a web interface that allows researchers to 
easily access and analyze the data.

Topic 4: Model organisms
Defining the challenge
Model organisms have been instrumental in helping investigators 
move beyond a basic understanding of molecular mechanism to 
determine how rare, high-penetrance genetic variants impact 
carcinogenesis (27). Challenges for analyzing common genetic 
variants in models include their noncoding nature and small 
effect sizes that imply that these variants act in combination 
with other variants and over the lifespan. Although computa-
tional and in vitro assay approaches can generate a great deal of 
information about a variant, completing the trajectory from 

genetic variation to cancer will require testing in systems that 
can approximate tissue of origin, differentiation state, cell-cell 
interactions, and the impact of the immune system, among other 
issues. Diverse expertise will also be needed to design and inter-
pret experiments using model organisms, because cancer arises 
in and affects multiple tissue types.

What does success look like?
Developing ways in which to model the impact of low- 
penetrance variants in systems that recapitulate real-life condi-
tions will require consolidation and integration of data from 
computational and in vitro assay/MAVE approaches. Ideally, 
these models will allow for testing combinations of variants, per-
haps based on contributions of specific variants to PRS, pleio-
tropy, or clinical relevance. This work will require large-scale 
collaborations, which will be aided and enhanced by developing 
standards and guidelines that are used across research groups to 
ensure that all data are comparable and can be integrated. For 
example, a standardized report could include descriptions of 
model development, assay details similar to those suggested for 
MAVEs, and standard reporting of results, for example, normaliz-
ing signals to an agreed-upon reference, among other details.

Potential solutions
Although each cancer type or variant will require slightly differ-
ent approaches for characterization, researchers could consider 
creating guidelines for suggesting which models are most appro-
priate for the molecular mechanism or cancer type under study, 
and also pipelines and standards for reagents (eg, cell lines) and 
reporting results [such as that outlined in (8)]. Given that cancer 
develops slowly, researchers could define molecular events or 
intermediate phenotypes for model organisms that indicate the 
likelihood that a variant contributes to carcinogenesis.

Initial efforts to create this framework could focus on a locus 
with existing functional information (ie, LINC00673), variants 
with pleiotropic or stronger effects, or variants considered critical 
to characterize. This exercise could be used to develop standards 
for reagents (eg, cell lines), for reporting the results of experi-
ments in model organisms (for example, normalizing signals to a 
common reference) and to develop guidelines for suggesting 
which models are most appropriate for the molecular mecha-
nism or cancer type under study.

A comprehensive approach to analyzing function will include 
induced pluripotent stem cells (iPSCs) that can capture naturally 
occurring genetic variation and differentiate into multiple tissue 
types; organoids that include tumor microenvironment; and 
mouse models that recapitulate elements of cellular context (eg, 
tissue specificity), particularly the presence of an intact immune 
system. Although mostly used for genetic mapping or for the 
study of rare coding variants, researchers studying common can-
cer risk variants should also consider the utility of mouse models 
available through the Collaborative Cross and Diversity Outbred 
populations (28) as well as the Mouse Models of Human Cancers 
database (29) to study variant mechanisms on a complex yet 
defined genetic background. The advent of CRISPR-based 
approaches for engineering genetic variation into organisms will 
be helpful for exploring the effects of common cancer risk var-
iants. CRISPR-based techniques can be used to create small alter-
ations targeted to specific cell types (30), which are then 
introduced into mice and can lead to tumor development. 
Although this approach examines variant effects in a somatic 
rather than germline context, it could provide critical insight into 
variant function in vivo.
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Topic 5: Diversity in data and assays
Defining the challenge
Although vast quantities of genomic data exist, these data are 
not representative of the world’s populations; currently, more 
than 80% of existing GWAS data were generated from individuals 
of European ancestry (31,32). The recent publication of a new 
human pangenome reference (33) represents a significant 
advance in inclusion of other ancestry groups, but further efforts 
are needed to increase diversity of other types of data (eg, expres-
sion data) and resources. For example, data in TCGA and GTEx 
are derived mainly from people of European ancestry, as are 70% 
of the cancer cell lines in the Catalogue Of Somatic Mutations In 
Cancer (COSMIC) (34), and immortalized cell lines in general are 
of limited ancestral diversity (35).

What does success look like?
Successfully addressing lack of diversity in data will be achieved 
through investing in efforts to build trust, educate, and involve 
all participants (including researchers and other stakeholders, as 
discussed below) in biomedical research activities to ensure that 
all groups benefit. The All of Us program represents a useful 
example for expanding research participation (36), as does the 
Participant Engagement and Cancer Genome Sequencing 
Network (PE-CGS), which aims to promote direct engagement of 
diverse and underrepresented cancer patients and survivors as 
participants in cancer research (https://epi.grants.cancer.gov/ 
events/pe-cgs/). Researchers working in the field of functional 
analysis should articulate the value of diversity, not only for var-
iant discovery, but also to ensure that characterization considers 
a variety of contexts, endogenous and exogenous factors, envi-
ronmental exposures, and lifestyle differences. If successful, 
sample and data distributions that reflect global populations will 
be generated. This will include but is not limited to variant allele 
frequencies from a diverse set of populations; expression data 
from diverse groups; reference controls for functional character-
ization that include population-specific or population-enriched 
variants; methods for characterizing admixture; and acknowl-
edgment of the importance of diversity in functional character-
ization work. Researchers must determine whether standard 
models (ie, tissue culture systems and organoids; normal and 
tumor tissue samples) accurately reflect the ancestry of all popu-
lation groups.

Potential solutions
A first step toward improving the diversity of data will be to 
assess the diversity of existing resources; for example, epidemio-
logic cohorts, research consortia, and patient-focused data col-
lections could be surveyed to determine whether their data are 
representative of a range of ancestries. Development of diversity- 
focused genomic resources, such as “diversity GTEx” or “diversity 
TCGA” would help to provide the data needed to ensure all 
groups are represented. Importantly, when considering whether 
a variant is sufficiently characterized, investigators must be sure 
that functional analyses have included variants from all ances-
tries. Because results from this work are translated to screening 
tools and potential therapies, ensuring that these are built on 
data representing a variety of genetic ancestries will improve 
their relevance for all groups, potentially addressing current dis-
parities (37,38). Researchers should consider working with PE- 
CGS and All of Us to learn how to engage with groups that have 
been traditionally under-represented in this research.

Topic 6: Large multidisciplinary 
collaborations
Defining the challenge
Multidisciplinary efforts will be crucial for optimal functional 
characterization of common cancer risk variants, especially 
because no 1 laboratory will have all the expertise needed for 
generating, analyzing, and integrating the many different data 
types needed to understand variant function. Assembling effec-
tive collaborations focused on cancer can be difficult because of 
its relative rarity and the heterogeneity of the disease, including 
differences in both genetic and environmental risk factors. 
During the discussions of each of the challenges, the need for 
multidisciplinary collaborations was evident.

What does success look like?
NCI’s Genetic Associations and Mechanisms in Cancer initiative 
(39) provides an example of an effort that brought together 
genetic epidemiologists, biologists, and clinical scientists to iden-
tify cancer risk variants, determine their biological function, and 
understand their potential clinical impact. This and formal col-
laborations such as the International Common Disease Alliance 
(ICDA) (40) and the Impact of Genomic Variation on Function 
Consortium (IGVF) (41) could serve as models for collaborative 
efforts. ICDA and IGVF could provide partnership opportunities, 
as well as examples of ways to engage investigators and develop 
clear goals and structures for collaborative projects.

All collaborative efforts should include free and open sharing 
of data. Participants should develop and employ standards for 
generating and reporting data from computational analyses, 
high-throughput assays, and model organisms, as discussed pre-
viously. Additionally, agreeing on a definition of “sufficient” var-
iant characterization will help to define and refine the goals of 
the group.

Inclusion must be a priority. From the start, collaborative 
efforts should work actively to include smaller institutions, jun-
ior faculty, trainees, and underrepresented researchers, to 
ensure diversity of both data and ideas. Opportunities for train-
ing in various disciplines or to learn new approaches can provide 
an incentive for participation, along with opportunities for publi-
cations, grants, and greater exposure and visibility (especially for 
more junior investigators). The National Cancer Plan specifically 
calls for engaging every person (https://nationalcancerplan.can-
cer.gov/goals/engage-every-person) and optimizing the work-
force (https://nationalcancerplan.cancer.gov/goals/optimize-the- 
workforce) and includes activities and resources for achieving 
broad inclusion in collaborative efforts. As a specific example of 
fostering advancement of junior researchers, NCI’s Human 
Tumor Atlas Network (https://humantumoratlas.org/) and PE- 
CGS encourage junior investigators to develop and run consortia 
meetings, providing additional experience and networking oppor-
tunities. Travel to other groups to learn new techniques could be 
sponsored or intensive workshops or jamborees and hackathons 
(42) could be held to help encourage collegiality and novel 
approaches to problems.

Potential solutions
Initial activities for building these collaborations should include 
investigating the feasibility of partnerships with existing efforts 
or building on lessons learned to establish new collaborations. A 
comprehensive survey of existing cancer-risk variants would 
help to focus and define the scope of a new collaboration, with 
special attention to ensuring that the survey includes data from 
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diverse populations. Examples from ICDA and IGVF could be 
used to develop experimental and data submission standards 
adapted to the cancer risk context. The crowdsourced ClinVar 
(43), cBioPortal for Cancer Genomics (20), ENCODE (44), and NCI’s 
Cancer Research Data Commons (18) could provide models for 
data curation. Examples of collaborations that could be leveraged 
for standards development include organizations such as the 
Global Alliance for Genomics and Health (45), the Variant 
Interpretation for Cancer Consortium (46), and the Cancer 
Genomics Consortium (47). Although many of these groups focus 
on tumor mutations or rare variants with large effect sizes, the 
standards they describe could be adapted to common, germline 
variants.

Summary
This meeting convened a wide range of stakeholders to identify 
challenges in moving from identification of common, primarily 
non-coding, germline cancer risk variants to cancer phenotype. 
Participants were given the opportunity to brainstorm about 
what success in meeting those challenges would look like, and 
then were asked to discuss ways to achieve that success.

Based on the meeting discussions, key action items for 
advancing this field were identified: 1) create guidelines for suffi-
cient variant characterization; 2) develop standards for in silico 
data curation and functional assays; 3) create interconnected 
data portals; 4) enhance data generation and annotation from 
under-represented groups; 5) create opportunities for cross- 
disciplinary training and research; and 6) encourage develop-
ment of collaborative research groups. These items are 

summarized in Table 1, along with details for achieving these 
actions. The robust participation in this meeting and response to 
a post-meeting survey to assess interest in working to further 
develop the ideas discussed indicate significant interest from the 
research community in this area. We plan to convene smaller, 
focused working groups to develop detailed ways to realize action 
items.

Many of these action items pertain to more than 1 topic, 
underscoring the interdependence and interconnectedness of the 
6 discussion topics. Taken together, these topics may define a 
framework for consistent, comprehensive characterization of 
risk variants (Figure 1). Understanding whether a variant is suffi-
ciently characterized will require annotation of newly identified 
risk variants in silico, followed by high-throughput assays to 
begin to develop a functional understanding of and potential role 
for the variant in cancer risk, and testing variants in cells or 
model organisms to get closer to a “real-life” setting. This infor-
mation can then be considered regarding whether our knowledge 
of a risk variant is “fit for purpose”; for example, confirming an 
association may be sufficient for use in PRS, but additional func-
tional knowledge may be needed for possible therapeutic devel-
opment. A common thread through all these activities is the 
need for diversity not only in source data, but also in the cells 
and model organisms used to test hypotheses and functions and 
in investigators working in this field. This interdependence also 
emphasizes the desirability of large, multidisciplinary collabora-
tions to advance our understanding of the function of germline 
cancer risk variants.

Navigating the path from common genetic variant discovery 
to cancer phenotype will be challenging but, ultimately, 

Multidisciplinary 
Collaborations

1. Define 
Sufficient

Characterization

2. Databases
and

Computational 
Tools

3. High-
throughput

Assays

4. Model 
Organisms

5. Diversity in 
Data and 
Assays

Figure 1. Framework for addressing challenges and opportunities to optimize functional analysis of germline cancer risk variants: The topics discussed 
during this meeting are connected and interdependent, forming a framework for variant characterization. The need for multidisciplinary collaboration 
is an overarching need that affects all topics. The goal of this framework is to promote efficient and consistent functional characterization of cancer 
risk variants.
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rewarding by helping us develop a better understanding of how 
genetic variation affects risk, perhaps leading to the discovery of 
novel carcinogenesis mechanisms, insights into cancer cell vul-
nerabilities, and potentially new risk mitigation and treatment 
options.
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