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Abstract
The field of therapeutic peptides is experiencing a surge, fueled by their advantageous features. These include predictable metabolism, 
enhanced safety profile, high selectivity, and reduced off-target effects compared with small-molecule drugs. Despite progress in 
addressing limitations associated with peptide drugs, a significant bottleneck remains: the absence of a large-scale in silico screening 
method for a given protein target structure. Such methods have proven invaluable in accelerating small-molecule drug discovery. The 
high flexibility of peptide structures and the large diversity of peptide sequences greatly hinder the development of urgently needed 
computational methods. Here, we report a method called MDockPeP2_VS to address these challenges. It integrates molecular docking 
with structural conservation between protein folding and protein–peptide binding. Briefly, we discovered that when the interfacial 
residues are conserved, a sequence fragment derived from a monomeric protein exhibits a high propensity to bind a target protein 
with a similar conformation. This valuable insight significantly reduces the search space for peptide conformations, resulting in a 
substantial reduction in computational time and making in silico peptide screening practical. We applied MDockPeP2_VS to develop 
peptide inhibitors targeting the TEM-1 β-lactamase of Escherichia coli, a key mechanism behind antibiotic resistance in gram-negative 
bacteria. Among the top 10 peptides selected from in silico screening, TF7 (KTYLAQAAATG) showed significant inhibition of 
β-lactamase activity with a Ki value of 1.37 ± 0.37 µM. This fully automated, large-scale structure-based in silico peptide screening 
software is available for free download at https://zougrouptoolkit.missouri.edu/mdockpep2_vs/download.html.
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To address the unmet need for mechanistic studies in signal transduction pathways and peptide lead discovery for therapeutic inter-
vention and probe design, we developed MDockPeP2_VS, a systematic and large-scale structure-based in silico peptide screening 
method. This approach overcomes the challenges of peptide flexibility and sequence diversity. It integrates molecular docking 
with structural conservation between protein folding and protein–peptide binding. MDockPeP2_VS enables the fully automated de-
sign of peptides targeting Escherichia coli β-lactamase, a key factor in antibiotic resistance, and achieves a significant inhibition with 
a Ki value of 1.37 ± 0.37 µM. This tool serves as a fully automated in silico screening method for discovering unreported protein- 
binding peptides and is applicable to any target protein with an available atomic structure.
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Introduction
Peptides, short chains of amino acids typically containing fewer 
than 40 residues, have garnered significant interest as potential 
drug candidates within the pharmaceutical industry. In recent 
years, peptides have experienced notable success due to several 
advantageous features, including their predictable metabolism, 
enhanced safety profile, high selectivity, and low off-target ef-
fects when compared with small-molecule drugs (1–3). Over 
30 noninsulin peptide drugs have been approved since 2000, 
with >170 peptides currently in active clinical development (1). 
While progress has been made in addressing the inherent weak-
nesses of peptide drugs, particularly their pharmacokinetic 
properties (2), one persistent challenge in peptide drug discovery 
remains: the development of large-scale in silico screening 
methods, which have proven invaluable in accelerating small- 
molecule drug discovery (4–6). Surprisingly, to the best of our 
knowledge, no reported large-scale in silico peptide screening 
method exists that can efficiently search for lead peptides target-
ing any protein.

Early efforts in peptide lead discovery were limited to naturally 
occurring peptides (such as human hormones) and natural prod-
uct–derived peptides (such as venoms and toxins) (7, 8). However, 
such peptides are not available for many disease targets. In the 
case of protein–protein interactions (PPIs), it is usually difficult 
to find a PPI fragment as a starting lead if the PPI involves amino 
acids close in space but distal in sequence. Library-based meth-
ods, such as phage, ribosome, and mRNA display (9–11), and 
high-throughput screening of synthetic peptide libraries (12) 
achieved great successes in the discovery of de novo peptide 
leads. In addition to the disadvantages of most experimental 
methods (e.g. costly and time-consuming), a practical limitation 
of these library-based methods is the size of peptide libraries. 
Considering a 10-mer peptide where each position may be occu-
pied by one of the 20 canonical amino acids, the resultant library 
of ∼1013 sequences is significantly larger than the library diversity 
of the widely used phage display methods (∼109) and is close to the 
upper limitation (∼1014) of mRNA display libraries (13). Therefore, 
current experimental library-based methods can only reach the 
whole sequence space for short peptides (normally ≤10-mer) 
and a fraction of possible sequences for medium-size and long 
peptides.

On the other hand, the development of in silico peptide screen-
ing methods is far behind the aforementioned experimental 
methods. A major reason is that peptides are highly flexible, re-
sulting in a huge number of degrees of freedom in the binding 
mode sampling process, making it challenging to efficiently pre-
dict binding modes/affinities of protein–peptide complexes, espe-
cially for cases containing medium-size or long peptides 
(≥10-mer). To date, only a few successful cases have been re-
ported on the de novo sequence design of protein-binding pepti-
des or miniproteins. For example, recent studies by David Baker 
and coworkers successfully designed peptides with constrained 
stable conformations (14), which can be used as starting scaffolds 
for peptide library preparation. They also successfully designed de 
novo miniprotein binders (50–65 amino acids) for diverse protein 
targets using a strategy combining both computational and ex-
perimental methods (15). Other remarkable computational efforts 
were devoted to optimizing or re-designing sequences to achieve 
more potent, selective, or stable protein-binding peptides than 
their known parent peptides (16–19). Although many protein–pep-
tide docking methods have recently been developed, unlike the 
molecular docking methods for in silico small-molecule 

screening, the existing peptide docking methods are impractical 
for large-scale in silico peptide screening mainly due to their 
high computational demand (20).

In this study, we introduced a systematic, large-scale 
structure-based in silico peptide screening method, referred to 
as MDockPeP2_VS. The idea behind MDockPeP2_VS was inspired 
by the conservation between peptide–protein binding and protein 
folding. Our previous study revealed that peptides on protein sur-
faces and fragments in monomeric proteins tend to form similar 
conformations when peptides and fragments share similar se-
quences and similar interacting interfaces (21). Therefore, we as-
sume that a sequence fragment extracted from a monomeric 
protein structure is likely to bind a target protein if the predicted 
binding mode of the fragment on the target protein retains most of 
the physicochemical interactions of the same fragment observed 
in the monomeric protein (see Fig. 1). This assumption can dra-
matically reduce the search space for peptide conformations, 
making the computational time affordable. The details of 
MDockPeP2_VS are described in the Materials and methods 
section.

As a proof-of-concept study, MDockPeP2_VS was applied to the 
development of peptide inhibitors targeting the TEM-1 
β-lactamase of Escherichia coli (23), which is one of the most prom-
inent mechanisms of antibiotic resistance in gram-negative bac-
teria (24). Antibiotic resistance is one of the greatest public 
health threats worldwide. β-Lactam antibiotics are the major 
class of antibiotics that contain a β-lactam ring moiety, which 
can be hydrolyzed by β-lactamases in antibiotic-resistant bacteria 
(24). Small-molecule β-lactamase inhibitors, such as clavulanate, 
have been developed and co-administered with β-lactam antibiot-
ics such as amoxicillin to overcome resistance. Augmentin 
(amoxicillin/clavulanate) is considered an essential medicine by 
the World Health Organization and has been widely used to treat 
various bacterial infections (25). However, resistance to small- 
molecule inhibitors has developed due to bacterial mutations, 
so there is an urgent clinical need for new β-lactamase inhibitors 
(26). Therefore, TEM-1 β-lactamase is an ideal target for validating 
MDockPeP2_VS.

Briefly, we developed an automated, large-scale structure- 
based in silico peptide screening method, MDockPeP2_VS, which 
was successfully applied to develop peptide inhibitors targeting 
the TEM-1 β-lactamase, a key factor for antibiotic resistance. 
MDockPeP2_VS could be an attractive complement to valuable ex-
perimental technologies like phage display for rapid peptide 
screening at a much lower cost.

Results
Pipeline of MDockPeP2_VS
Figure 2 shows the flow chart of MDockPeP2_VS. Initially, a new 
peptide library was constructed by extracting fragments from ex-
perimentally determined monomeric protein structures in the 
Protein Data Bank (PDB) (27). The screening library used in the 
study consists of 76,223 nonredundant peptides with sequence 
lengths between 10 and 15 amino acids, and is available for free 
download at https://zougrouptoolkit.missouri.edu/mdockpep2_ 
vs/download.html. Notably, these fragments form alpha helices 
in the monomeric proteins. We assume that candidate peptides 
would also form helical structures on the target protein TEM-1 
when the interfacial residues are conserved (also see Fig. 1).

Based on the above assumption, we treated the peptide back-
bone conformation as rigid during docking, which significantly re-
duced the search space for peptide conformations. This in turn 
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decreased computational time and improved cost-effectiveness. 
The peptide side chains remained fully flexible during the docking 
process.

After the docking processes, peptides in the library were ranked 
using our hybrid scoring function called PepProScore (21), which 
combines the protein–peptide-binding score (Vina_Score) (28) 
and the interface conservation score (PC_Score) (22). The 
PC_Score of a peptide was calculated by comparing the predicted 
protein–peptide interacting interface with the corresponding frag-
ment in the monomeric protein.

Finally, a few dozen peptide candidates were selected from the 
ranking list for synthesis and experimental validation. To further 
increase the hit rate in the final ranking list, we established sev-
eral filtering criteria, such as a threshold for the interface conser-
vation score, the amino acid composition of peptides, and 
consensus of modeled protein–peptide complex structures with 
other computational methods.

Details of each step in MDockPeP2_VS are available in the 
Materials and methods section.

Docking engine Vina_pep vs. Vina
In MDockPeP2_VS, a modified version of AutoDock Vina (28), named 
Vina_pep, was used as the docking engine for the protein–peptide- 
binding mode prediction. AutoDock Vina is a widely used molecular 
docking program for predicting protein-small-molecule-binding 
modes. Despite its numerous successes, AutoDock Vina cannot be 
directly applied to protein–peptide-binding mode prediction, be-
cause it lacks the necessary algorithms and parameters for model-
ing peptide backbone conformations. However, this was not a 
concern for our peptide screening strategy, in which a peptide 
conformer was pregenerated for each entry in the peptide library 
and the backbone conformation was treated as being rigid during 
docking processes. A major concern of applying AutoDock Vina to 

Fig. 1. Illustration of the key idea of MDockPeP2_VS. A fragment derived from a monomeric protein (A) is highly likely to bind to a target protein (B) with a 
similar conformation when the interfacial residues are conserved (C and D). A) A fragment (residues 230–240, colored red) from a monomeric protein (PDB 
ID: 1coy). B) The binding mode of the peptide TF7 (highlighted in hot pink) on the target protein (TEM-1; PDB ID: 1s0w, chain A) predicted by the docking 
engine implemented in MDockPeP2_VS. TF7 shares the identical sequence with the red fragment displayed in (A). C and D) The two interfaces (A and B) 
are superimposed, and their physicochemical similarity is measured by the program PCalign (22). A PC score of 0 indicates no similarity, while a PC score 
of 1 reflects complete identity. The Cα atoms of conserved residues at the interface are shown as blue and green spheres in (A–C), respectively. Dashed 
lines in (C) indicate the correspondence between each conserved residue pair’s Cα atoms.
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peptide screening was the computational speed, especially for 
medium-sized and long peptides. Testing of AutoDock Vina (default 
settings with exhaustiveness value 8) on the benchmarking PepPro 
dataset (29), which consists of 89 nonredundant protein–peptide 
complexes with peptide sequence lengths ranging from 5 to 29, 
showed an average of 3.6 CPU hours for each docking run on an 
Intel(R) Xeon(R) Processor E5-1650 v3 (3.50 GHz). The demanding 
computational cost of AutoDock Vina on protein–peptide docking 
limits its application to screening large-scale peptide libraries. 
Remarkably, Vina_pep (default settings with exhaustiveness value 
64) took an average of 13 min per core for one protein–peptide dock-
ing, which was about 16 times faster than AutoDock Vina.

In addition to the computational cost, we further evaluated the 
performance of Vina_pep and Vina in predicting protein–peptide- 
binding modes based on the PepPro dataset. Docking modes 
of each complex were compared with the experimentally 
determined complex structure using a criterion referred to as 
the critical ligand root-mean-square deviation (cL-RMSD) (21). 
Specifically, the protein structures were superimposed, and the 
RMSD was calculated for the heavy atoms of all the peptide con-
tact residues and the backbone atoms of the peptide noncontact 
residues. A peptide residue was identified as a contact residue if 
its relative buried surface area was >33.3%. The buried surface 
area was calculated based on the crystal complex structure using 
the program Naccess V2.1.1 (30).

For AutoDock Vina, when considering the top 1, 5, or 10 models 
for each case, the mean cL-RMSD values for the 89 peptides in the 
PepPro dataset were 1.8, 1.5, and 1.5 Å, respectively. The median 

values for the same cases were 3.0, 2.5, and 2.3 Å, respectively. 
Slightly lower cL-RMSD values, indicating a slightly better per-
formance, were achieved with Vina_pep. When considering the 
top 1, 5, or 10 models for each case, the mean cL-RMSD values 
were 1.5, 1.2, and 1.1 Å, respectively. The corresponding median 
values were 2.1, 1.9, and 1.8 Å.

In summary, Vina_pep proved to be ∼16 times faster than its 
original version while maintaining accuracy in predicting pro-
tein–peptide-binding modes. As a result, Vina_pep was selected 
as the docking engine for our in silico screening method, 
MDockPeP2_VS.

In silico screening results for the target protein 
TEM-1
In this study, MDockPeP2_VS was used to discover peptide inhib-
itors for the β-lactamase TEM-1. Figure 3 shows the predefined 
peptide-binding site (docking box) on TEM-1 (PDB ID: 1s0w, chain 
A) (23). For comparison, a small-molecule β-lactamase inhibitor, 
clavulanate (31), is displayed. The binding mode of clavulanate 
on TEM-1 was constructed based on the structure of clavulanate 
bound to a homologous protein, β-lactamase from Mycobacterium 
tuberculosis (PDB ID: 3cg5) (32), which shares 54% sequence simi-
larity with TEM-1. Figure 3 also shows the binding location of 
the β-lactamase inhibitor protein (BLIP, PDB ID: 1s0w, chain B) 
(23), which was produced from Streptomyces clavuligerus. In the 
peptide screening studies, the docking box was set to 36 Å × 30 
Å × 20 Å with the geometric center at (36.9, 25.0, 48.1 Å), which 

Fig. 2. The flow chart of MDockPeP2_VS, which can be briefly divided into three steps. Step 1: protein–peptide docking. Peptides in a newly constructed 
peptide library are docked to a target protein using the program Vina_pep. The peptide library consists of fragments (10–15 amino acids) extracted from 
monomeric protein structures deposited in the PDB. Step 2: interface comparison. For each peptide, the predicted protein–peptide interacting interface is 
compared with the interface of the corresponding sequence fragment in the monomeric protein. Step 3: ranking. Peptides in the library are ranked by a 
hybrid scoring function, which combines protein–peptide docking scores and interface similarity scores. A few dozen peptide candidates are selected for 
synthesis and experimental validation. See the main text for details.
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included the whole binding site of clavulanate and part of the 
binding site of BLIP.

The in silico screening was performed on a high-performance 
computing (HPC) cluster supported by the University of Missouri 
Bioinformatics Consortium (UMBC). A protein–peptide docking 
took an average of 5.3 (±3.2) min using a single core of an 
Intel(R) Xeon(R) CPU E5-2680 v4 (A 2.40 GHz). The screening was 
completed in 8 h using 1,000 compute cores.

The top 10 peptide candidate outputs from MDockPeP2_VS are 
reported in Table 1. The sequence lengths of candidate peptides 
range from 10 to 14. Their sequence locations in original mono-
meric proteins are also listed in the table. Here, we focused on 
the peptides with PC_scores (interface similarity score) >0.5, 
which were subsequently synthesized for the β-lactamase activity 
assay.

Experimental validation results
Top 10 ranked peptides were synthesized and purified. Four of 
these 10 peptides have low solubility (see Table 1), and we there-
fore focused on the remaining 6 peptides. Because these peptides 
were designed to bind to the substrate-binding pocket of TEM-1, 
the interactions of TEM-1:peptide were evaluated using 
β-lactamase activity assay. The peptides were preincubated with 
purified recombinant TEM-1 at room temperature to allow 

binding before mixing with substrate, nitrocefin. The enzymatic 
activity was measured by monitoring the colorimetric change of 
nitrocefin with TEM-1 in the absence and presence of the peptide 
candidates. Three of the 6 soluble peptides changed the 
β-lactamase activity of TEM-1 at the peptide screening concentra-
tion of 100 µM. TF7 (KTYLAQAAATG, fragment 230–240 from PDB 
ID: 1coy, chain A) showed significant inhibition of the β-lactamase 
activity, while TF3 and TF6 increased the β-lactamase activity of 
TEM-1. Dose–response inhibition analysis was then performed 
on TF7, and its inhibition constant (Ki) was calculated as 1.37 ±  
0.37 µM (Fig. 4A). It is approximately two orders of magnitude 
more potent than the reported TEM-1 β-lactamase peptide inhibi-
tor, RRGHYY-NH2 (Ki = 136 μM), which was discovered by phage 
display (34).

Clavulanate, a Food and Drug Administration–approved small 
molecule, effectively inhibits the β-lactamase activity of TEM-1 
by forming a covalent bond with S70 of TEM-1 upon hydrolysis 
of the β-lactam ring (31). Superimposing the clavulanate-bound 
TEM-1 structure and the TF7-bound TEM-1 structure suggests 
that our peptide targets the same drug-binding pocket (Fig. 4B). 
Lineweaver–Burk plots confirm that TF7 competitively inhibits 
TEM-1, as evidenced by the convergence of Y-intercepts across 
various peptide concentrations (Fig. 4C). These findings align 
with our predicted model that TF7 binds to the substrate binding 
pocket and thus inhibits TEM-1 activity.

In experimental validation, we noticed that a 30-min incuba-
tion is necessary to observe the peptides’ inhibitory effect on 
TEM-1, as very weak inhibitory effects were observed without in-
cubation. Given that the peptide sequences in our peptide library 
were extracted from helical fragments in monomeric proteins (see 
the “Construction of the peptide library” section), these peptides 
may only adopt helical structures after binding to a target protein 
through the induced fit mechanism. This mechanism shifts the 
peptides from more coiled structures in solution to helical struc-
tures upon binding. Future studies could focus on optimizing 
the sequence of the hit peptide to stabilize the helical conform-
ation in solution.

Modeled complex structure of TF7 with TEM-1
Figure 4D presents the details of TF7 interacting with TEM-1, as 
predicted by MDockPeP2_VS. Specifically, K1 at the N-terminal 
of TF7 binds to the crevice formed by two negatively charged res-
idues, E104 and E239. Y3 of TF7 binds to the pocket between E239 
and M270. Two hydrophobic residues of TF7, L4, and A7, are fully 
embedded in the active site of TEM-1, surrounded by residues 
S70, S130, N132, N170, S235, A237, and R243. A5 and A8 of TF7 

Fig. 3. The predefined binding site on β-lactamase TEM-1. TEM-1 is 
represented in the surface model, colored tan (PDB ID: 1s0w, chain A). As 
shown in the left panel, the docking box is shaded purple and 
encompasses the binding site of a small-molecule drug, clavulanate 
(displayed in the stick and ball model and colored green), and a portion of 
the binding site of the BLIP (shown in the ribbon model and colored gray). 
The two loops of BLIP binding in the TEM-1 active site are highlighted in 
blue. The right panel shows an example of a screened peptide bound to 
TEM-1.

Table 1. The 10 peptide candidates selected from the MDockPeP2_VS screening for TEM-1.

Peptide ID Sequence Length Fragments in PDBa PepProScore PC_Score L-RMSDb (Å)

TF1c GGWAEFTALYG 11 4cimA_142-152 −12.95 0.55 9.98
TF2c YAWDGMLGAVASGQ 14 4dz1A_75-88 −12.89 0.55 5.61
TF3 ARDATCRRWG 10 3ofkA_148-157 −12.71 0.50 9.0
TF4 EYGDAWHDAG 10 1yr2A_530-539 −12.41 0.52 5.86
TF5c ASYGVFSTGI 10 2ocaA_403-412 −12.40 0.50 5.16
TF6 AKYFEQASYG 10 2be9A_276-285 −12.29 0.53 11.08
TF7 KTYLAQAAATG 11 1coyA_230-240 −12.12 0.55 3.1
TF8 ASRAEVDAAAKGAA 14 4mrsA_462-475 −12.11 0.50 14.37
TF9 RDSVGAASVN 10 4bocA_936-945 −12.09 0.54 5.85
TF10c ESYHGMLACVIAG 13 5tpiA_216-228 −12.08 0.59 4.8

aThe corresponding sequence fragment in a monomeric protein, written in the following format: PDB ID, chain ID, and the sequence numbers of the start and end 
residues.
bComparison of protein–peptide-binding modes predicted by AlphaFold-Multimer and MDockPeP2_VS.
cPeptides that have low solubility were excluded from assay experiments.
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primarily interact with Y105 and V216, respectively. Residue T10 
near the C-terminal of TF7 forms a hydrogen bond with N274 of 
TEM-1.

To validate the predicted molecular interactions between TEM-1 
and TF7, mutations were introduced to TEM-1 both within and out-
side of the predicted TF7 interacting sites. The binding affinities of 
TF7 to the wild type (WT) and mutant TEM-1 were measured by mi-
croscale thermophoresis (MST). The dissociation constant (Kd) of 
TF7 binding to TEM-1 was 0.96 ± 0.26 µM, comparable with the 
measured Ki. Single-point mutations E104A and M270R, designed 
to disrupt the TF7 interaction, exhibited weaker affinities compared 
with WT, as expected (Fig. 5C and D, P < 0.01, Student’s t test). 
Interestingly, M270R also introduced another weaker binding site 
for TF7, as a biphasic binding curve was observed (Fig. 5D). The 
N52A mutation was designed to serve as a negative control because 
N52 resides on the surface of TEM-1 distal from the substrate- 
binding site. Indeed, its affinity to TF7 was similar to that of WT 
(Fig. 5B, P = 0.30, Student’s t test). The locations of mutated residues 
(E104, M270, and N52) are displayed in Fig. 4B and D.

The above mutational analyses (E104A and M270R) show mod-
erate changes (2- to 5-fold) in binding affinities (Fig. 5), indicating 
the advantages of peptides over small molecules in combating re-
sistance caused by mutations: (i) peptides often have extended 

interaction interfaces (i.e. interaction sites) compared with small 
molecules (as shown in Fig. 4B), and (ii) their flexibility allows 
them to effectively bind to target pockets, acting like sticky 
patches that “glue” to the pockets. Together, these features 
make peptides less sensitive to point mutations in target proteins 
and less susceptible to resistance in bacteria.

Consensus of binding modes modeled by 
MDockPeP2_VS and AlphaFold-Multimer
We further modeled the binding modes of these 10 selected pep-
tides on TEM-1 using the AlphaFold-Multimer program (35) with 
default settings. This program has demonstrated promise in pre-
dicting protein–peptide interactions in recent studies (36–38). 
Notably, the binding modes of TF7 on TEM-1, as modeled by 
AlphaFold-Multimer and MDockPeP2_VS, exhibited remarkable 
similarity, with a L-RMSD of 3.1 Å. L-RMSD was calculated based 
on the backbone atoms of the peptide between the two predicted 
binding modes after optimal superimposition of the protein struc-
tures. The L-RMSD values for the remaining nine peptides are 
summarized in Table 1.

Furthermore, the binding modes of TF10, as predicted by both 
methods, also displayed similarity (L-RMSD = 4.8 Å). However, 

Fig. 4. Experimental and modeling results of the peptide TF7 for the target protein, TEM-1. A) Inhibition curve of TF7 for the β-lactamase activity of 
TEM-1. B) The location of TF7 (colored magenta) bound to TEM-1. For comparison, the β-lactamase inhibitor, clavulanate (displayed in the stick and ball 
representation), is also displayed. Clavulanate is covalently attached to S70 of TEM-1. C) Lineweaver–Burk double reciprocal plot analysis depicting the 
TEM-1 inhibition kinetics by peptide TF7. A competitive inhibition mechanism was observed, as the 1/Vmax (Y-intercept) was unaffected under various 
peptide concentrations. D and E) Details of the interaction between TF7 and TEM-1. In (D), the peptide sidechains are shown in stick representation. 
TEM-1 is shown in surface representation with Coulombic surface coloring. Red regions are overall negatively charged, blue regions are overall positively 
charged, and white regions are hydrophobic. Figures presenting protein/peptide structures were prepared with UCSF Chimera (33).
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due to its poor solubility issue, we were unable to test its 
β-lactamase activity. Interestingly, L-RMSD values for the remain-
ing peptides are >5 Å, indicating that distinct binding modes were 
predicted by AlphaFold-Multimer and MDockPeP2_VS. Notably, 
peptides with large L-RMSD values (TF3, TF4, TF6, TF8, and TF9) 
did not exhibit significant inhibition of the β-lactamase activity. 
Therefore, the consensus of protein–peptide-binding modes pre-
dicted by both MDockPeP2_VS and AlphaFold-Multimer can serve 
as a filtering criterion to further enhance the hit rate of our in sil-
ico screening method.

Discussion
The peptide library used in this study consists of alpha-helical 
fragments with sequence lengths ranging from 10 to 15. The con-
structed peptide library can be significantly extended by including 
fragments with other types of secondary structures or fragments 
from modeled protein structures (e.g. from the AlphaFold protein 
structure database (39)), as well as short peptides (<10 amino 
acids) or long peptides (>15 amino acids).

Similar to the in silico screening methods for small molecules 
(4–6, 40), the scoring function used in our in silico peptide screen-
ing method is imperfect. In other words, MDockPeP2_VS seeks to 
identify an enriched subset of the potential peptide candidates 
for a given target protein. Applying reasonable and automated 

filters to the peptide ranking list can improve the hit rate. 
Furthermore, we observed that the consensus of the protein– 
peptide complex structures modeled by both MDockPeP2_VS 
and AlphaFold-Multimer would enhance the hit rate in peptide 
in silico screening. It is worth noting that AlphaFold-Multimer is 
computationally expensive and cannot be directly applied to 
large-scale peptide screening studies.

In this study, the protein structure was treated as rigid during 
the docking processes. Vina_pep allows sidechain flexibility of 
protein residues near the binding site; however, this would signifi-
cantly increase the computational cost. Another way to partially 
consider protein flexibility is to use multiple protein conforma-
tions, which can be generated by computational methods like mo-
lecular dynamics simulations (41).

For peptides, sidechains were treated as fully flexible, and 
backbones were treated as rigid during dockings. As described in 
Fig. 1, the key idea of MDockPeP2_VS was to find peptides that 
share similar interactions with a target protein as the identical se-
quence fragments in monomeric proteins that interact with their 
surrounding amino acids. We assume that the backbone confor-
mations of the candidate peptides on a target protein are close 
to the conformations of the corresponding sequence fragments 
in monomeric proteins. This assumption significantly reduces 
the complexity of peptide docking and enables the execution of 
large-scale peptide in silico screening.

Fig. 5. MST-binding curves of TEM-1 and mutants titrated with different concentrations of peptide TF7. A) TEM-1. B) TEM-1 N52A. C) TEM-1 E104A. D) 
TEM-1 M270R. The change in MST signal was fitted (black lines) to yield Kd values. The biphasic binding curve for TEM-1 M270R was analyzed as described 
in the Materials and methods section. Representative curves from three experiments are shown, with averages ± SD indicated. *M270R contains two 
TF7-binding sites. The Kd value of the site with stronger affinity is shown in (D), while the weaker affinity is 14.77 ± 12.96 µM.
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In this study, TEM-1 was employed as the proof-of-concept 
system for our newly developed in silico peptide screening method, 
MDockPeP2_VS. It is noteworthy that other clinically important and 
emerging β-lactamases include New Delhi metallo-β-lactamase 
(NDM), Klebsiella pneumoniae carbapenemases (KPC), and CTX-M 
β-lactamases. The NDM β-lactamases feature an active site with 
two zinc atoms forming a zinc cluster. However, the current version 
of MDockPeP2_VS lacks parameters for ions such as zinc, rendering 
it unsuitable for direct application to NDM β-lactamases. On the 
other hand, KPC and CTX-M β-lactamases share ∼40% of sequence 
identity and 60% sequence similarity with TEM-1. TEM-1, KPC, and 
CTX-M also share similar 3D structures. Therefore, our in silico pep-
tide screening method should also work for KPC and CTX-M types of 
β-lactamases, which will be the focus of our future studies.

In summary, we have developed the first large-scale, structure- 
based in silico peptide screening method. As a proof-of-concept 
study, we used the MDockPeP2_VS program based on this method 
to screen a peptide library constructed from helical fragments 
found in monomeric protein structures to target TEM-1, the 
β-lactamase of E. coli responsible for antibiotic resistance. The 
β-lactam-binding pocket of TEM-1 is not involved in any PPIs 
where the interfacial amino acids are closely positioned both in 
space and in sequences (as seen in the BLIP example in Fig. 3, 
left panel). Thus, there is no straightforward “parent template” 
available for designing peptide inhibitors. Our entire in silico pep-
tide screening process was automated, and no manual examin-
ation was conducted. Out of the six peptides that were assayed, 
TF7 exhibited the most significant inhibition of β-lactamase activ-
ity, ∼100-fold more potent than the TEM-1 peptide inhibitor se-
lected through phage display (34). MDockPeP2_VS is a useful 
tool applicable to any target protein with an available atomic 
structure, serving as a valuable resource for efficiently discovering 
peptide leads.

Materials and methods
Construction of the peptide library
A peptide library was constructed based on the sequence frag-
ments in monomeric protein structures deposited in the PDB 
(27). In this proof-of-concept study, we focused on the fragments 
that form alpha helices in the monomeric proteins. First, a non-
redundant protein dataset consisting of 26,517 proteins was gen-
erated based on a protein database provided by MODELLER (42) 
(pdb95.pir.gz, updated on 2018 June 14). The program, UCLUST 
(43), was employed to remove redundant proteins with a sequence 
similarity cutoff of 30%. Then, helical fragments were identified 
by using the secondary-structure information stored in their 
PDB files. A helical fragment together with two adjacent residues 
at each terminus was selected as an entry of the peptide library. A 
total of 76,223 peptides with sequence lengths ranging from 10 to 
15 were generated in this step. The number of peptides increased 
to about 1.6 × 105 when the maximum length of peptide sequence 
was set to 30. Finally, each entry in the peptide library consists of 
three elements: a peptide sequence, a peptide conformer, and a 
fragment–protein pair. The construction of the peptide conformer 
and the fragment–protein pair is described as follows.

The peptide conformer for each entry in the peptide library was 
constructed by MODELLER using the corresponding fragment 
structure in the monomeric protein as the template. The model 
refinement level was set to “refine.fast” to ensure that the modeled 
peptide conformation was close to the template structure. 
Sidechains that were missing in some peptides were added in 

the modeling process. The peptide conformers will be used to 
predict their binding modes with a given protein target in the in 
silico screening process, as described in the “in silico screening” 
section.

For a fragment–protein pair, which consists of the structure of a 
helical fragment and its surrounding protein residues, three adja-
cent residues at each terminus of the fragment were removed. 
The fragment–protein interacting interface was compared with 
the predicted interacting interface between the peptide and the 
target protein by calculating interface similarity, as illustrated 
in Fig. 1. This library is accessible for free download at https:// 
zougrouptoolkit.missouri.edu/mdockpep2_vs/download.html.

Protein–peptide docking engine
A modified version of AutoDock Vina (28), named Vina_pep, was 
used as the docking engine for predicting protein–peptide com-
plex structures. This was because the original version of 
AutoDock Vina was too slow to run a large-scale peptide screening 
study. The computational time of AutoDock Vina mainly depends 
on two parameters: the exhaustiveness value and the number of 
steps (N ) of the binding mode sampling algorithm (i.e. the iterated 
local search [ILS] global optimizer (44)). The exhaustiveness value 
determines the number of independent runs, in which different 
binding locations and orientations of a peptide on a target protein 
can be used as the starting points for the ILS global optimizer. The 
number of searching steps, N, is calculated as 210 × (50 + m + 10n)/ 
2, where m is the number of movable atoms of a ligand and n is the 
number of degrees of freedom, including six degrees of transla-
tional and rotational freedom and the number of torsional angles 
(i.e. rotatable bonds) in the ligand. Interestingly, we discovered 
that increasing the exhaustiveness value (i.e. allowing for more in-
dependent runs) and decreasing the number of searching steps N 
in each independent run significantly accelerates AutoDock Vina 
without compromising its accuracy in predicting protein–peptide 
complex structures.

Specifically, in Vina_pep, the exhaustiveness value was in-
creased from the default value of 8 to 64, and the number of 
searching steps N was decreased from the default value of 
210 × (50 + m + 10n)/2 to (m + 10n). Both AutoDock Vina and 
Vina_pep were evaluated on the PepPro dataset. For each docking, 
the protein structure was extracted from the crystal structure of 
the protein–peptide complex and treated as a rigid body during 
docking. The peptide structure was also taken from the crystal 
complex structure, but the sidechain conformations were rebuilt 
using the Rotamers tool implemented in the UCSF Chimera (33). 
Peptide sidechains were treated as being fully flexible, and back-
bone atoms were treated as being rigid. The center of the search-
ing box was set at the geometry center of the co-bound peptide in 
the crystal complex structure. The box size in each dimension was 
set at 1.5 times the size of the co-bound peptide structure in the 
corresponding dimension. The exhaustiveness value was set to 8 
and 64 for AutoDock Vina and Vina_pep, respectively. Other pa-
rameters were set to default.

Peptide ranking
After docking, a hybrid scoring function, PepProScore, was em-
ployed to rank the peptides in the library. PepProScore is defined 
as the sum of Vina_Score and w × PC_Score, where Vina_Score is 
the binding score of a predicted binding mode calculated with 
the scoring function implemented in Vina_pep (same as the scor-
ing function in AutoDock Vina). PC_Score is the similarity score 
between a predicted protein–peptide interacting interface and 
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the interface of the corresponding sequence fragment in the 
monomeric protein (22). The values of PC_Score range from 0 to 
1, where 0 means no similarity and 1 indicates identical interfa-
ces. The contributions of these two scores, the binding score and 
the similarity score, are balanced by the weight w, which is set 
to −9 based on our previous studies on the protein–peptide com-
plex structure prediction (21).

For each peptide in the library, PepProScore was calculated for 
the top 10 binding modes generated by Vina_pep. The binding 
mode with the best PepProScore (i.e. the most negative score) 
was kept for each peptide in the library and then ranked according 
to PepProScore.

Peptide candidate selection
Several automated filters were applied to the peptide ranking list 
to improve the hit rate in this study. First, peptides with many ex-
posed hydrophobic residues in their predicted binding modes 
were discarded because our scoring function did not explicitly in-
clude the contribution from solvation. Specifically, peptides were 
removed from the ranking list if more than half of their residues 
were hydrophobic and if more than half of the hydrophobic resi-
dues (i.e. Ala, Val, Leu, Ile, Pro, Phe, Met, and Trp) were exposed 
in the predicted binding mode. A peptide residue was defined as 
an exposed residue if its relative buried surface area was 
>66.7%. The calculation was based on the predicted protein– 
peptide complex structure using the program Naccess V2.1.1 (30).

Second, because our peptide synthesis was usually problemat-
ic if a peptide contained more than three consecutive hydrophobic 
residues, such peptides were removed from the ranking list. Third, 
peptide sequences containing proline were also discarded be-
cause proline tends to destabilize the alpha-helix structure. It is 
noteworthy that these two filters can be applied to the peptide li-
brary before in silico screening to save computational time.

After applying these three filtering criteria to the protein target 
TEM-1, the first 10 peptides with a PC_score of ≥0.5 in the ranking 
list were selected for synthesis and assays.

Synthesis of short peptides
All the peptides selected from in silico screening were synthesized 
in solid phase, using Sieber amide resin and standard Fmoc pep-
tide chemistry with a Tetras multiple peptide synthesizer (pur-
chased from Occam Design). Piperazine was used for Fmoc 
deprotection and HBTU/DIEA for coupling at each cycle. The per-
manent protection groups chosen for the amino acid sidechains 
were tBu (Tyr, Ser, and Thr), OtBu (Glu and Asp), Trt (Cys, His, 
Glu, and Asn), Boc (Trp and Lys), and Pbf (Arg). Capping was per-
formed at the end of each cycle. After final Fmoc deprotection 
of the N-terminal amine, the peptides were cleaved from the 
resin and the side chain protection groups were removed in a 
single reaction with TFA, TA, phenol, water, EDT, and TIS 
(87.5:2.5:2.5:2.5:2.5:2.5) for 2 h at room temperature (25 °C). 
Precipitation and multiple washings with diethyl ether produced 
the final crudes. The final products were characterized and, 
when necessary, purified using MS-assisted HPLC (Beckmann 
Coulter Gold System HPLC coupled to a Thermofisher Ion trap 
Mass spec). Reverse phase C18 and C4 columns (from Waters 
and Thermo Fisher) were used for analyses and purification of 
the peptides.

Protein expression and purification
The E. coli TEM-1 β-lactamase was a gift from Niels Geijsen 
(Addgene plasmid #62729; http://n2t.net/addgene:62729; RRID: 
Addgene_62729). The recombinant protein was expressed in 

BL21 (DE3) cells. The expression was induced with 1 mM isopropyl 
β-D-1-thiogalacto-pyranoside at an optical density of 600 nm of 
1.0. The cells were harvested after 24 h of incubation at 4 °C, re-
suspended in lysis buffer (30 mM Tris, 500 mM NaCl, 1.25% gly-
cerol, 2 mM BME, and pH 7.2), and lysed by sonication at an 
amplitude of 50%, 5 s on and 15 s off on ice for 5 min (Sonics 
VC505). The TEM-1 protein was then purified using His-tag affinity 
chromatography with a Nickel column. Fractions containing 
TEM-1 were further purified by size exclusion chromatography 
(HiLoad 16/60 Superdex 200pg, Cytiva). The final protein was buf-
fer exchanged and stored in a buffer containing 30 mM Tris-HCl 
(pH 7.2), 1 mM MgCl2, 140 mM KCl, 10 mM NaCl, and 2 mM 
dithiothreitol.

β-Lactamase activity assay
Km of nitrocefin hydrolysis by TEM-1 was determined by mixing 
5 nM of TEM-1 with 4, 5, 6, 7, 8, and 9 μM of nitrocefin (APExBIO), 
and monitoring the OD at 520 nm using a microplate reader 
(BioTek Synergy 2 SLFP Multimode Reader). Peptide screening 
was performed with 5 nM TEM-1 mixed with 100 μM of each pep-
tide. The peptide was preincubated with TEM-1 at 37 °C for 30 min 
prior to mixing with nitrocefin. In the dose–response assessment, 
TEM-1 was preincubated with peptide TF7 at various concentra-
tions at 37 °C for 30 min. Nitrocefin was then rapidly mixed with 
the TEM-1: peptide solution to measure the absorbance change 
at 520 nm. The final concentrations of TEM-1 and nitrocefin in 
the mixture were 5 nM and 10 μM, respectively. The final peptide 
concentrations were 100, 50, 25, 12.5, 6.25, 3.12, 1.56, 0.78, 0.39, 
and 0.19 μM. The Vmax was calculated by fitting the linear range 
of the kinetic data, and the IC50 was calculated by fitting the 
DoseResp function in Origin 7.0. The inhibition constant, Ki, which 
denotes the concentration of the inhibitor required to achieve 
half-maximal inhibition of the enzyme in the presence of a sub-
strate, was determined by Ki = (IC50 − E/2)/(S/Km + 1) (45). In this 
equation, E is the enzyme concentration, S is the substrate con-
centration, Km is the Michaelis constant, and IC50 is the concentra-
tion of the inhibitor that reduces enzyme activity by 50%.

To evaluate the peptide inhibition mode, a Lineweaver–Burk 
double reciprocal plot was obtained. Briefly, 4 nM TEM-1 was pre-
incubated with the peptide at various concentrations (0.9, 1.8, 3.6, 
5.4, and 7.2 μM) at 37 °C for 30 min. Subsequently, different con-
centrations (4, 5, 6, 7, 8, and 9 μM) of nitrocefin were rapidly mixed 
with the TEM-1 and peptide solution to measure the absorbance at 
520 nm.

MST assay
To fluorescently label TEM-1 and its mutant proteins, 200 nM pro-
tein with the His-tag was incubated with 100 nM His-tag labeling 
dye (His-Tag labeling kit Red-tris-NTA 2nd generation, Monolith, 
NanoTemper) at room temperature for 30 min. After incubation, 
the sample was centrifuged for 10 min at 4 °C at 15,000×g. The la-
beled TEM-1 protein (50 nM) was then incubated with a serial 
dilution of peptide ranging from 450 to 0.027 µM for 30 min 
at 37 °C before being loaded onto a NanoTemper Monolith. The 
data were analyzed using MO.Affinity Analysis (NanoTemper). 
Three independent replicates were carried out to measure the dis-
sociation constant Kd, which represents the equilibrium constant 
for the dissociation of the inhibitor from its binding site on the en-
zyme. For M270R, which exhibited a biphasic binding curve, the Kd 

value was determined by excluding data points for the low- 
affinity binding mode during the analysis of the high-affinity bind-
ing mode, and vice versa (46).
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