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Biotechnological production of recombinant molecules relies heavily on fed-batch processes. However, as the 
cells’ growth, substrate uptake, and production kinetics are often unclear, the fed-batches are frequently operated 
under sub-optimal conditions. Process design is based on simple feed profiles (e.g., constant or exponential), 
operator experience, and basic statistical tools (e.g., response surface methodology), which are unable to harvest 
the full potential of production.

To address this challenge, we propose a general modeling framework, OptFed, which utilizes experimental data 
from non-optimal fed-batch processes to predict an optimal one. In detail, we assume that cell-specific rates 
depend on several state variables and their derivatives.

Using measurements of bioreactor volume, biomass, and product, we fit the kinetic constants of ordinary 
differential equations. A regression model avoids overfitting by reducing the number of parameters. Thereafter, 
OptFed predicts optimal process conditions by solving an optimal control problem using orthogonal collocation 
and nonlinear programming.

In a case study, we apply OptFed to a recombinant protein L fed-batch production process. We determine optimal 
controls for feed rate and reactor temperature to maximize the product-to-biomass yield and successfully validate 
our predictions experimentally. Notably, our framework outperforms RSM in both simulation and experiments, 
capturing an optimum previously missed. We improve the experimental product-to-biomass ratio by 19% and 
showcase OptFed’s potential for enhancing process optimization in biotechnology.
1. Introduction

Biotechnological production processes are the backbone of numerous 
industries, from pharmaceuticals to biofuels. Many of these processes 
are operated as a fed-batch, adding substrate and nutrients continuously 
when the initial batch medium is depleted [1]. This method allows for 
control of key parameters, such as nutrient concentration, and is funda-

mental to achieving high yields and product quality. Consequently, the 
optimization of such processes becomes a critical objective.

Optimizing fed-batch processes is challenging due to the complex-

ity of cellular mechanisms, which are difficult to measure directly and 
can vary significantly based on factors such as product type, microor-

ganism, induction mechanism, and product location. As a result, opti-
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mization often involves a trial-and-error approach [2]. In this context, 
theoretical and mathematical modeling offers a powerful and comple-

mentary alternative. By leveraging simulations and model-based design 
of experiments [3,4], we can reduce our dependence on costly and 
time-consuming trials, and enhance our ability to predict and optimize 
process performance in a more controlled and efficient manner.

In general, there are two distinct paths for optimizing biotechnologi-

cal processes: statistical design of experiments, such as response surface 
methodology (RSM) [5], and the model-based approach [3,4,6,7]. Sta-

tistical methods, including RSM, offer straightforward and accessible 
means of optimization. However, they do not leverage biological knowl-

edge, which could enhance the optimization process [8], and are limited 
to optimizing a predefined set of discrete variables [9]. In contrast, the 
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model-based approach begins by understanding the underlying process, 
representing it accurately without relying on mathematical assumptions 
like the quadratic dependencies used in purely statistical methods [10].

For the model-based approach, empirical models are typically em-

ployed, often formulated as ordinary differential equations (ODEs). For 
instance, Monod’s widely used model for population growth [11] is one 
such example. Product creation in these models is often linked to growth 
rate [4,12,13] or feed rate [14]. These models provide a simple yet 
effective means of understanding and predicting bioprocess behavior, 
particularly when dealing with the often limited and noisy data typi-

cally obtained from bioprocesses.

However, simplicity comes at a cost. The inherent simplifications 
in these empirical models constrain their applicability, limiting their 
ability to describe complex processes comprehensively. These straight-

forward models often fail to account for some phenomena observed 
under constant process conditions on a cellular level. This includes pro-

duction deterioration over time due to metabolic adaptation, or product 
inhibition [15]. Despite their limitations, these models are frequently 
used because formulating more complex models is hindered by sparse 
data, biological variation, and the difficulties in selecting the best avail-

able model equations [16]. Different metrics can be used for model 
selection, e.g., AIC and AICC [17], LASSO [18], and methods based on 
cross-validation [19,20]. Regardless of the used metric, the number of 
possible models can get very large (e.g., over 218 ≈ 2.6 × 105 possible 
models with 18 parameters) which requires defined search strategies 
(e.g., HIPPO) [21,22].

Moreover, decisions in the modeling process can introduce biases 
that influence the outcome [23,24], and using more complex models 
with small datasets may lead to overfitting [25].

The modeling process does not exist in isolation; its primary goal is to 
improve the efficiency of the process (e.g., by maximizing titer/biomass 
or minimizing operational costs). This objective often involves defin-

ing specific targets for each process, frequently utilizing the TRY metric 
(titer, rate, yield) [26]. The choice of optimization algorithms varies de-

pending on the complexity of the model at hand, which is influenced by 
the available data set and its quality. While straightforward maximiza-

tion algorithms suffice for discrete variables [27], optimizing contin-

uous solutions, such as feed and temperature functions, poses mathe-

matical challenges, notably due to the theoretically infinite number of 
control variables [28]. To address these challenges, various mathemat-

ical methods have been developed. For simpler models, Euler-Lagrange 
equation-based approaches can be employed [4]. In contrast, more in-

tricate models, as encountered in our work, require the application of 
optimal control theory [29].

The realm of optimal control problems has been extensively ex-

plored, resulting in a multitude of solution methods [30]. Analytical 
methods, such as those grounded in Pontryagin’s maximum principle 
[29], are well-suited for relatively straightforward problems but may 
not be practical for complex real-life scenarios. In most cases, numeri-

cal solvers become essential. The two primary categories of solvers are 
direct methods and those based on dynamic programming. Direct meth-

ods tackle the optimization and differential equations simultaneously, 
transforming the problem into a set of nonlinear differential equations 
[31]. In contrast, dynamic programming [32,33] relies on the principle 
of optimality within Hamilton-Jacobi-Bellman frameworks, iteratively 
solving the problem. While dynamic programming holds the promise 
of identifying global optima, it tends to be slower than direct methods 
and is often infeasible for high-dimensional problems. As a result, direct 
methods find more frequent applications, particularly in engineering 
contexts, where a wealth of software packages is available for imple-

mentation [34–37].

In this study, we present OptFed, a comprehensive framework us-

ing an ODE model to describe bioprocesses. The framework is divided 
into three stages: define, fit, and optimize. First, we define a general and 
flexible form of the ODE model. Next, its kinetic parameters are fitted 
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to training data and the model size is reduced to avoid overfitting. To 
Computational and Structural Biotechnology Journal 23 (2024) 3651–3661

do this, we developed a heuristic algorithm that starts with the general 
model and removes terms and parameters that do not significantly im-

prove the fit. In the third stage, based on the reduced model, we leverage 
optimal control theory to identify optimal values for control variables. 
In a case study, we apply OptFed to protein L production to maximize 
the product-to-biomass yield. Optimal values for the temperature and 
substrate feed control are predicted. A comparison to RSM highlights the 
improvements of OptFed to typically used statistical methods. Moreover, 
experimental validation results in a 19% improved product-to-biomass 
yield.

2. Methods

2.1. Modeling framework

Our modeling framework comprises three key components:

(I) define,

(II) fit, and

(III) optimize.

In the first stage, we establish a general process model capable of rep-

resenting a wide range of biotechnological (fed-)batch production pro-

cesses. In the second stage, the general model is fitted to specific process 
data, the kinetic parameters are estimated and insignificant terms are re-

moved. In the third stage, the fitted process model is used to optimize 
control variables, ultimately maximizing a freely selectable objective 
function. A graphical overview of the modeling framework is given in 
Fig. 1.

A list of all parameters and their respective symbols and units is given 
in Supplementary Table S1.

2.1.1. Stage I: define

We consider the production of recombinant proteins by E. coli in a 
fed-batch process, described by the following standard system of differ-

ential equations [1]:

𝑋̇ = 𝜇𝑋 − 𝑓
𝑉
𝑋, 𝑋(0) =𝑋0, (1a)

𝑃̇ = 𝜋𝑋 − 𝑓
𝑉
𝑃 , 𝑃 (0) = 0, (1b)

𝐺̇ = −𝛾𝑋 + 𝑓
𝑉
(𝐺f −𝐺), 𝐺(0) = 0 (1c)

𝑉̇ = 𝑓, 𝑉 (0) = 𝑉0, (1d)

where 𝐺, 𝐺f, 𝑃 , and 𝑋 represent substrate concentrations in the re-

actor, substrate concentration in the feed, product, and total biomass, 
respectively, and 𝑉 the current reactor volume. 𝑓 , 𝛾 , 𝜇, and 𝜋 denote 
the feeding rate, substrate uptake rate per biomass, biomass growth rate, 
and specific product formation rate, respectively.

As the product is part of the biomass, we additionally define the 
metabolic active residual biomass (given as dry weight)

𝑋r =𝑋 − 𝑃 . (1e)

This defines the uptake per active residual biomass (𝛾◦) as

𝛾◦ = 𝛾𝑋∕𝑋r. (1f)

To connect the substrate uptake behavior with cellular growth and 
production, we assume that the total uptake can be divided into three 
additive components

𝛾◦ = 𝛾𝜇 + 𝛾𝜋 + 𝛾𝛼, (2)

where 𝛾𝜇 , 𝛾𝜋 , and 𝛾𝛼 denote the specific substrate uptake support-

ing growth, product formation, and cellular maintenance, respectively. 
Here, maintenance summarizes all cellular processes not linked to 

growth or production.
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Fig. 1. Flow chart for OptFed. In this study, we focus on the stages highlighted in blue. Initially, we set up a general model including different inhibition effects 
(define). This model can describe different processes and uses many model parameters. In the second stage, the model is simplified to avoid overfitting and parameters 
are estimated (fit). In the third stage, optimal process control variables are predicted (optimize).
Using biomass-to-substrate yield 𝑌𝑋r
𝐺

and product-to-substrate 𝑌𝑃
𝐺

, we 
can connect glucose consumption to product formation and growth as 
follows:

𝜋 = 𝛾𝜋𝑌𝑃
𝐺

𝑋r∕𝑋, and 𝜇 = 𝜋 + 𝛾𝜇𝑌𝑋r
𝐺

𝑋r∕𝑋. (3)

The factor 𝑋r∕𝑋 accounts for the fact that only the metabolically active 
residual biomass 𝑋r contributes to additional product formation and 
growth.

We assume that total substrate uptake as well as substrate uptake 
for product formation follow a non-competitively inhibited Michaelis–

Menten process [14,38]

𝛾◦ = 𝛾◦
max

(𝑇 ) 𝐺

𝐾◦
𝑚 +𝐺

∏
𝑖∈𝑣𝑎𝑟1

1
1 + 𝑖∕𝐾◦

𝑖

, 𝑣𝑎𝑟1 = {𝐺,𝑛,𝑃∕𝑋,𝑋}, (4a)

𝛾𝜋 = 𝛾𝜋
max

(𝑇 ) 𝛾◦ − 𝛾𝛼

𝐾𝜋𝑚 + 𝛾◦ − 𝛾𝛼
∏
𝑖∈𝑣𝑎𝑟1

1
1 + 𝑖∕𝐾𝜋

𝑖

, (4b)

while substrate demand for maintenance is given by [39]

𝛾𝛼 = 𝛾𝛼
min

(𝑇 )
∏
𝑖∈𝑣𝑎𝑟2

(1 + 𝑖∕𝐾𝛼𝑖 ), 𝑣𝑎𝑟2 = {𝛾◦,𝐺, 𝑛,𝑃∕𝑋,𝑋}. (4c)

With these assumptions, 𝛾𝜇 follows according to (2) to

𝛾𝜇 = 𝛾◦ − 𝛾𝜋 − 𝛾𝛼. (4d)

Here, 𝐾◦
𝑚, and 𝐾𝜋𝑚 are Michaelis-Menten constants, while 𝐾◦

𝑖
and 𝐾𝜋

𝑖
are 

inhibition constants, and 𝐾𝛼
𝑖

are activation constants, 𝑛 is the number of 
generations (𝑛 = log2[𝑋𝑉 ∕(𝑋0𝑉0)]). Finally, the minimum uptake rate 
𝛾𝛼

min
, and the maximum uptake rates 𝛾◦

max
and 𝛾𝜋

max
are assumed to be 

temperature (𝑇 ) dependent (excluding enzyme denaturation) [40]

𝛾𝑖𝑗 (𝑇 ) =𝐸
𝑖
0
𝑘𝐵𝑇

ℎ

exp
(
−Δ𝐺𝑖cat

𝑅𝑇

)

1 + exp
[
Δ𝐻𝑖eq

𝑅

(
1
𝑇 𝑖eq

− 1
𝑇

)] , 𝑖 ∈ {𝜇,𝜋,◦},
𝑗 ∈ {max,min}, (4e)

where 𝐸𝑖0 is a (hypothetical) enzyme concentration, Δ𝐺𝑖
cat

, the activa-

tion energy, 𝑇 𝑖
eq

is the temperature where half of the enzymes are in 
an active state (the other half is inactivated by the high temperature), 
and Δ𝐻𝑖

eq
determines how abruptly the reaction rate declines with ris-

ing temperatures. The superscripts ◦, 𝛼, and 𝜋 differentiate variables 
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for substrate uptake, maintenance, and production rate, respectively, 
differentiating the constants for 𝛾◦, 𝛾𝛼 and 𝛾𝜋 . Our model, defined in 
equations (1) and (4), contains 29 free parameters. The substrate yields 
𝑌𝑋r
𝐺

, and 𝑌𝑃
𝐺

can be derived from genome-scale metabolic models [41], 
while the remaining 27 parameters need to be fitted from training data.

Bioreactor volume estimation Generally, change in the bioreactor vol-

ume is affected by five factors, the substrate feed, the base feed (for 
pH control), experimental sampling, the antifoam feed, and gaseous ex-

changes,

𝑓 = 𝑓substrate + 𝑓base + 𝑓sampling + 𝑓antifoam + 𝑓gaseous. (5)

In OptFed, we explicitly model the first three of them. While the sub-

strate feed is kept variable (for optimization), the base feed is calculated 
as

𝑓base =𝑋𝑉 (𝑎𝜇 + 𝑏) (6)

where the parameters 𝑎 and 𝑏 were fitted to the training data. Addition-

ally, we accounted for volume change through experimental sampling 
in OptFed. For simplicity, and due to the fact that antifoam, feed, and 
gaseous exchanges (i.e., evaporation, O2 uptake, and CO2 excretion) are 
either minor or antagonistic contributors to volume change, we did not 
consider them in OptFed. More details on volume calculation are given 
in Supplementary Methods S1.1.

Substrate feed types Although OptFed is not restricted to a certain type 
of substrate feed, it can make sense to enforce them either for compari-

son to the training data or for simplification of experimental implemen-

tation. Here we present two feed types that we refer to throughout the 
manuscript.

An exponential feed is generally very popular as the cells’ internal 
metabolic fluxes are (approximately) constant. It is calculated as

𝑓substrate(𝑡) = 𝑓0 exp(𝜇𝑓 𝑡) (7a)

where 𝜇𝑓 of the unit h−1 is the defining parameter. 𝑓0 is usually derived 
from the properties of the process at hand.

Additionally, we also use a linear feed rate, calculated as

𝑓substrate(𝑡) = 𝜙1 + 𝜙2𝑡 (7b)
where 𝜙1 and 𝜙2 may be varied.
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2.1.2. Stage II: fit

In this step, we use training data to select a model of suitable size 
and fit its kinetic parameters.

Training data OptFed requires process data for different feed rates and 
temperatures. Data from a central composite design [10] commonly 
used for RSM proofed useful (Section 2.4).

Experimental data interpolation and rate calculation The differential 
method [42,43] is used to estimate uptake, growth, and production 
rates by fitting the concentration data and differentiating the fits. We fit 
splines, which are continuous in both their values and first derivatives, 
using SciPy’s UnivariateSpline function [44] onto the experimental 
data points for control and state variables. By inserting these splines into 
equations (1) and (2), we calculate the experimental values for 𝛾◦, 𝛾𝛼 , 
𝛾𝜋 , and 𝛾𝜇 (Supplementary Methods S1.1). The hat notation indicates 
that these variables are derived from the experimental training data and 
are used to estimate the unknown parameters in (4).

Model parameter estimation Model selection is based on a heuristic algo-

rithm. It is inspired by ANOVA [45] and uses cross-validation [19,20]

for hyperparameter selection. By approximating uptake, growth, and 
production rates separately, we deal with three smaller models instead 
of one large, simplifying the estimation. Parameter identification is 
performed using differential evolution [46] with SciPy’s differen-

tial_evolution function [44], utilizing the previously calculated 
𝛾◦, ̂𝛾𝛼 , and 𝛾𝜋 . Each of the three rates is fitted separately.

We assume that the effects of each variable in (4) are independent, 
meaning each effect is a separate term in the equation. Each model term, 
containing one influencing variable and one or more parameters, can be 
removed (if they are deemed insignificant) and the model remains valid. 
In case there is no temperature effect, Eqn. (4e) simplifies to

𝛾𝑖𝑗 (𝑇 ) = 𝑐𝛾𝑖𝑗 𝑖 ∈ {𝜇,𝜋,◦}, 𝑗 ∈ {max,min}. (8)

Each model term of Eqn. (4) is tested. If it does not significantly im-

prove the model fit, it is removed according to the following algorithm:

1. Initial Fit: Fit the model with all currently considered parameters 
by minimizing the sum of quadratic errors over all processes and 
measurement points. Calculate the error residuals and total variance 
for the measurement points (Bounds used in the error minimization 
are shown in Supplementary Table S2).

2. Leave-One-Out Fit: Repeat the fitting process for models, each miss-

ing one parameter.

3. F-Test: Use an 𝐹 -test to determine if the reduction in variance is 
significant (i.e., 𝑝 < 𝛼) and calculate the difference in variance with 
and without the parameter.

4. Remove Insignificant Parameters: Remove the parameter with the 
highest 𝑝-value in the 𝐹 -test.

5. Iterate: Repeat 1 to 4 until only significant terms remain.

Steps 1-5 are performed separately for each fitted rate (𝛾◦ , 𝛾𝛼 , and 𝛾𝜋 ) 
and for 13 levels of 𝛼. The significance level depends on the training 
data (such as the number of processes and measurement points) and is 
computed through cross-validation. The significance level that results in 
the lowest error for the target variable (𝑃

𝑋

) is selected (Supplemental 
Methods S1.2).

As for each iteration of our algorithm (Step 5), a term is removed 
from the model equation, the maximum amount of iterations is defined 
by the maximum amount of removable terms per rate equation plus one 
(i.e., seven).

To compare our heuristic approach to model selection with the cor-

rected Akaike information criterion (AICC) [17], we fit all possible pa-
3654

rameter combinations for 𝛾◦, 𝛾𝛼 , and 𝛾𝜋 . Next, we calculate the AICC
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[Eqn. (14)] for each of the resulting models and selected the one with 
the lowest value.

2.1.3. Stage III: optimize

To optimize

max
𝑓 (𝑡),𝐺f ,𝑇 (𝑡),𝑡end

𝑃
𝑋

=
𝑃 (𝑡end)
𝑋(𝑡end)

(9a)

s. t. Eqn. (1) (9b)

𝑉 ≤ 𝑉max = 2.5 L (9c)

𝑡end ≤ 𝑡max = 12 h (9d)

we use ipopt 3.14.10 [47], which is a general nonlinear programming 
solver. For discretization and numerical differentiation [Eqn. (1)], we 
implemented an orthogonal collocation and optimization algorithm in
casadi 3.3.5 [34] using Python. All required code to reproduce our 
analysis is available at https://github .com /gschloegel /OptFed.

To solve the differential equations in (1), we first scale the time co-

ordinate by setting 𝑡 = 𝑡end𝜏 , using the process’ time 𝑡end as a control 
variable. We then apply orthogonal collocation on 100 finite elements 
[48]. Specifically, we use Gauss–Legendre polynomials of degree one 
with collocation points at 0.5. For the substrate, due to system stiffness, 
we use Gauss–Radau collocation points at 1. Locally, we solve the dif-

ferential equation using the backward Euler method. The controls (feed 
and temperature) are linear on each of the 100 intervals, allowing the 
optimization method to find optima with temperature gradients and un-

conventional feeding strategies.

To avoid rapid variations in the control variables 𝑢 = (𝑓, 𝐺f, 𝑇 , 𝑡end), 
specifically in the feed and temperature profile 𝑓 (𝑡end𝜏), and 𝑇 (𝑡end𝜏), 
we add a regularization term to the objective function in (9a). This mod-

ified objective reads

max
𝑓 (𝑡),𝐺f ,𝑇 (𝑡),𝑡end

𝑃
𝑋

=
𝑃 (𝑡end)
𝑋(𝑡end)

−
length(𝑢)∑
𝑖=1

𝑐𝑖
ℎ

∑
𝑗∈

[
𝑢𝑖(𝑗) − 𝑢𝑖(𝑗 + 1)
𝑢𝑖(𝑗) + 𝑢𝑖(𝑗 + 1)

]2
, (10)

where 𝑐𝑖 is the penalty factor for each control variable 𝑢𝑖 , ℎ is the length 
of the finite elements, and  is the set of all sampling times.

In addition to the general optimization problem in (9), we defined a 
simplified version where all substrate is immediately used and no sub-

strate accumulates, i.e., 𝐺̇ = 0 = −𝛾◦𝑋 + 𝑓

𝑉
(𝐺f − 𝐺). This mirrors the 

standard assumption in fed-batch processes and computationally avoids 
issues posed by stiff differential equations.

2.2. Response surface methodology

To benchmark OptFed, we evaluate its performance against response 
surface methodology (RSM) in process optimization. We calculated RSM 
using the rsm package [49] for R [50].

RSM requires that the control variables remain constant throughout 
the process and uses the process target metric (such as production con-

centration, yield, or productivity) to fit the model. Thus the RSM model 
is represented as:

𝑃
𝑋

= 𝑐 + 𝑐𝑓𝜇𝑓 + 𝑐𝑇 𝑇 + 𝑐𝑓𝑇 𝜇𝑓𝑇 + 𝑐𝑓2𝜇
2
𝑓
+ 𝑐𝑇 2𝑇

2 (11)

where 𝑐, 𝑐𝑓 , 𝑐𝑇 , 𝑐𝑓𝑇 , 𝑐𝑓2 , and 𝑐𝑇 2 are fitted from the data minimizing 
the sum of quadratic errors. 𝜇𝑓 is the growth rate of the exponential 
feed (in 𝑓 = 𝑓0 exp(𝜇𝑓 𝑡)). The same model is calculated with the target 
variables 𝑃 and 𝑋.

2.3. Model comparison and validation

To evaluate model fit [Eqn. (1)], individual (state) variables (e.g. 𝑃 , 
𝑃∕𝑋, 𝑋) or specific rates (e.g., 𝛾◦, 𝛾𝛼 , and 𝛾𝜋 ), we use the coefficient 

of determination 𝑅2 and its adjusted version 𝑅2

adj
, which are defined as:

https://github.com/gschloegel/OptFed
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𝑅2 = 1 − RSS

TSS
𝑅2

adj
= 1 −

RSS∕𝑑𝑓res

TSS∕𝑑𝑓tot

(12a)

with the residual and total sum of squares (RSS and TSS)

RSS =
∑
𝑝∈

∑
𝑚∈

(
𝑥𝑝(𝑚) − 𝑥𝑝(𝑚)

)2
, TSS =

∑
𝑝∈

∑
𝑚∈

(
𝑥𝑝(𝑚) −

⟨
𝑥
⟩)2
,

(12b)

respectively. Here, 𝑥𝑝(𝑚) and 𝑥𝑝(𝑚) represent the predicted and mea-

sured values respectively, 
⟨
𝑥
⟩

represents the average of the observed 
values,  is the set of all processes, and  is the set of all sampling 
times. 𝑑𝑓res and 𝑑𝑓tot are the residual and total degrees of freedom, 
given by 𝑑𝑓res = #𝑝 − #𝑣 − 1 and 𝑑𝑓tot = #𝑝 − 1, respectively, where 
#𝑝 = || + || represents the number of points and #𝑣 represents the 
number of variables.

Finally, we measure relative errors with respect to the mean of all 
data points:

𝑥err =
𝑥− 𝑥⟨
𝑥
⟩ , ⟨

𝑥
⟩
= 1|| ⋅ || ∑

𝑝∈

∑
𝑚∈
𝑥. (13)

Different models are compared using 𝑅2 and 𝑅2
adj

on the state vari-

ables, focusing on 𝑃∕𝑋. In addition, we perform cross-validation using 
the leave-one-out strategy (predicting one process using all other pro-

cesses) and compare 𝑅2 for this as well. As an alternative metric for the 
goodness of the model, we calculate the corrected Akaike information 
criterion AICC [17]

AICC = #𝑝
(
log

(
RSS

#𝑣

)
+ 1

)
+ 2 #𝑣+ #𝑣(1 + #𝑣)

#𝑝− #𝑣− 3
. (14)

RSM only predicts end points of processes with constant exponential 
feed rates (𝜇𝑓 ) and constant temperatures (𝑇 ). To ensure a fair compar-

ison, here, we restricted OptFed to the same constraints.

In addition, we validate the OptFed framework by applying it to a 
case study and experimentally test the predicted optimal controls.

2.4. Case study

We illustrate our modeling framework by optimizing protein L pro-

duction in a fed-batch fermentation of E. coli, and evaluate its effective-

ness in comparison to RSM [49] in central composite design [10]. Data 
from twelve fermentations with varying specific substrate feed and tem-

perature [51] are used as training input for both methods to predict an 
optimal bioprocess that maximizes the specific process yield 𝑃

𝑋

.

The dataset represents nine conditions (Fig. 2a):

• one center point (four runs),

• four star points (single runs) where either feeding rate or tempera-

ture varied from the center point,

• four factorial points (single runs) where both variables deviated 
from the center point.

Training data Process data (biomass concentration, protein L concen-

tration, and substrate concentration over time) from 12 fed-batch fer-

mentations of E. coli strain BL21 DE3, with varying specific substrate 
feed and temperature [51], are used to fit the general process model.

In short, protein L accumulated intracellularly, and glycerol was the 
sole carbon source. IPTG (isopropyl 𝛽-D-1-thiogalactopyranoside) was 
used to induce the product promoter during the feed phase. The biomass 
concentration at induction varied between 20 g L−1 to 45 g L−1. The con-

trol variables were the exponential feed rate coefficient (𝜇𝑓 ) and the 
temperature (𝑇 ). Each process had a production phase of 12 h. Biomass 
and product concentrations were measured every 2 h, while tempera-

ture and feed rate were measured online. Due to the small reactor size, 
each sampling reduced the reactor volume non-negligibly, which was 
considered in the analysis. Details about the experimental setup and an-
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alytical methods are described in Section 2.4.1.
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2.4.1. Experimental procedures

Experimental data for model fitting and validation in OptFed was 
obtained from 15 bioreactor cultivations. The cultivations were carried 
out in two bioreactor systems having a similar working volume. The 
12 initial cultivations were executed in a DASGIP© Parallel Bioreactor 
System (max. working volume 2 L; Eppendorf, Hamburg, Germany) as 
described in [51]. In contrast to the original paper, where 11 out of 
12 performed processes were used, according to the DoE, we use all 12 
processes as training data. In addition, three validation runs were per-

formed in a Minifors 2 bioreactor system (max. working volume 2.5 L; 
Infors HT, Bottmingen, Switzerland). For all cultivations a defined min-

imal medium according to DeLisa [52] was used, supplemented with an 
initial concentration of 20 g L−1 glycerol as the main carbon source and 
0.02 g L−1 kanamycin as a selection marker. The temperature was set to 
37 °C during batch phase, 35 °C during fed-batch phase and controlled 
at defined levels during induced fed-batch phase in accordance with the 
experimental plan. The pH was monitored with an EasyFerm pH elec-

trode (Hamilton, Reno, NV, USA) and kept constant at 6.7 via addition 
of 12.5% NH4OH. A probe for monitoring dissolved oxygen (dO2) was 
installed (Visiferm DO425, Hamilton, Reno, NV, USA). The dissolved 
oxygen in the cell broth was kept over 40% through continuous stir-
ring (1400 rpm) and aeration of 2 vvm. If needed, pure oxygen was 
added to the air flow. Furthermore, the off-gas was analyzed with re-

spect to O2 and CO2 concentrations via a Bluevary sensor (BlueSens Gas 
analytics, Herten, Germany) for real-time monitoring of the metabolic 
activity of the cells. The process parameters were logged and controlled 
using the bioprocess management system eve© (Infors HT, Bottmingen, 
Switzerland). The expression of recombinant protein L was induced by 
a one-point addition of sterile Isopropyl 𝛽-D-1-thiogalactopyranoside 
(IPTG) to a final concentration of 0.5 mM. After addition of the inducer, 
samples were taken every two hours for further process and product 
analytics.

An E. coli BL21 (DE3) strain transformed with a pET-24a(+) plasmid 
was used for the cultivations (GenBank accession no. AAA67503). The 
plasmid carries the codon-optimized genes coding the 5B (binding) pro-

tein L with a C-terminal His6-tag. The recombinant protein L is expressed 
intracellularly. The cells were harvested and subsequent analytics were 
done. All subsequent analytical steps were realised with samples of 35 
mL cell broth each. The cell broth was centrifuged (10 min, 21 000 
rpm, 4 °C) and the supernatant was separated from the cell pellet and 
aliquoted (1 mL) for anion exchange chromatography. Biomass concen-

tration was quantified by dry cell weight (DCW) in triplicates. Therefore, 
the cell pellet was washed with saline (0.9 wt.% NaCl), centrifuged with 
the same settings and dried at 105 °C for 48 h. In addition, the biomass 
concentration was determined via optical density measurements at 600 
nm wavelength (OD600) in triplicates. Residual glycerol and metabo-

lites in the cell-free supernatant were analyzed by a high performance

liquid chromatography (HPLC) system (UltiMate 3000; Thermo Fisher, 
Waltham, MA) equipped with an Aminex HPX-87 H column (Bio-Rad 
Laboratories, Hercules, CA, USA). HPLC standards with various concen-

trations of protein L (0.063-1.0 g L−1), glycerol (0.781-50 g L−1) and 
acetate (1-10 g L−1) were prepared separately. A sample volume of 10 
mL cell broth was centrifuged (15 min, 14 000 rpm, 4 °C) and the sepa-

rated cell pellet was re-suspended in 40 mL lysis buffer (10 mM EDTA, 
100 mM Tris, pH 7.4) and homogenized subsequently (7 passages, 1200 
bar; PandaPLUS, Gea AG, Germany). After centrifugation of the crude 
cell lysate (20 min, 14 000 rpm, 4 °C), the supernatant was analyzed us-

ing a reversed-phase HPLC method for protein L quantification based on 
a PpL standard calibration curve. The UltiMate 3000 HPLC system was 
equipped with a BioResolve reversed-phase Polyphenyl column (Waters 
Corporation, MA, USA). Further information about the analytical pro-
cedures can be found in [51].
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Fig. 2. Estimation of final product titer and model errors (a) predicted specific yield in OptFed (top) versus RSM (bottom). Both models are constructed using 
data from twelve fermentations, including a center point (circle, four replicates), four factorial points (triangles), and four star points (stars; each single runs). The 
predicted specific product yields 𝑃

𝑋

at the end of the process are shown in shades of gray, with the black cross indicating the optima. Both optima are calculated 
for exponential feed rates at constant temperature throughout the production phase. Model errors, indicating differences between predicted and measured 𝑃

𝑋

, are 
indicated by the color of the markers: red for overestimation, white for accurate prediction, and blue for underestimation. (b) Goodness of fit [𝑅2(fit), and adjusted 
𝑅2(fit)] as well as goodness of fit for leave-one-out cross-validation (CV) [as measured by CV-𝑅2(cross validation)]. Values in brackets refer to the RSM model, values 
in standard print to OptFed.
3. Results

We illustrate our modeling framework by optimizing protein L pro-

duction in a fed-batch fermentation of E. coli, and evaluate its effective-

ness in comparison to RSM [49] in central composite design [10]. Data 
from twelve fermentations with varying specific substrate feed and tem-

perature [51] are used as input for both methods to predict an optimal 
bioprocess that maximizes the specific process yield 𝑃

𝑋

(product per 
biomass ratio at the end of the process).

3.1. Response surface methodology predicts limited optimization potential

RSM utilizes a second-degree polynomial model to forecast the spe-

cific yield 𝑃
𝑋

as a function of the specific feeding rate and temperature 
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(Equation (11)). It predicts an optimal specific yield of 0.16 g g−1 near 
the center point at 𝜇𝑓 = 0.12 h−1 and 𝑇 = 31 ◦C (Fig. 2a). However, 
the predicted yield improvement is small (+1%) yet uncertain (adjusted 
𝑅2 = 0.19; Fig. 2b), and none of the model’s parameters are statistically 
significant (at a 0.95 confidence level, Supplementary Table S3).

3.2. OptFed identifies significant optimization potential at high temperature

3.2.1. Model simplification and parameter estimation

Initially, we mitigate measurement errors of the state variables by 
fitting them with cubic splines (Supplementary Figure S1). Based on 
these splines, we parameterize our general model using the algorithm 
described in the Methods Section 2.1.2. We found that only 12 out of 27 
parameters of the general process model are statistically significant and 
required (𝛼 = 0.2, Supplementary Figure S2), with only a minor drop 
in the explained variance (see Tables 1 and 2). The difference of 𝑅2
and adjusted 𝑅2 is higher for the full model as the degrees of freedom 
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Table 1

List of parameters remaining in the selected model and their fitted values. The increased RSS (residual 
sum of squares) column next to a parameter shows the increase in fitting error (calculated with Equa-

tion (12)) if this parameter would be removed from the reduced model. 𝐾◦
𝑚

is not removed, as removal 
leads to physically impossible negative substrate concentrations. A comprehensive list of all parameters 
of the initially designed model is found in Supplementary Table S1).

Name Unit Value increased RSS

Parameters (fitted using training data)

𝑐𝛾◦
max

maximal uptake rate g g−1 h−1 0.49

𝑐𝛾𝛼
min

maintenance requirement without growth g g−1 h−1 2.4 × 10−5

𝐸𝜋0 hypothetical enzyme concentration 8.8 × 10−9
𝐾◦
𝑚

dependence on substrate concentration g 1.0 × 10−3
𝐾𝛼
𝑔

growth dependent maintenance g g−1 h−1 1.0 × 10−4 142%

𝐾𝜋
𝑚

production dependence on available substrate g g−1 h−1 0.62 188%

𝐾◦
𝐺

substrate inhibition g L−1 89 119%

𝐾𝛼
𝑃

increase caused by product g L−1 0.11 37%

𝐾𝜋
𝑛

inhibition for higher no. of generations 1.5 50%

Δ𝐺𝜋
cat

catalytic activation energy J mol−1 5.2 × 104 ⎫⎪⎬⎪⎭
38%

Δ𝐻𝜋
eq

enthalpic (conversion of active to inactive enzyme) J mol−1 4.8 × 106

𝑇 𝜋
eq

temperature where half the enzyme is active K 310

𝐸𝜋0 hypothetical enzyme concentration K 8.8 × 10−9

Constants (from literature)

𝑌𝑋r

𝐺

biomass yield per substrate g g−1 0.627

𝑌𝑃
𝐺

product yield per substrate g g−1 0.652

𝑘𝐵 Boltzmann constant J K−1 1.38 × 10−23
𝑅 Gas constant J mol−1 K−1 8.314

ℎ Plank constant J h 2.39 × 10−30
Table 2

Overview of the goodness of fit of the kinetic functions. The 
values of the parameters of the reduced OptFed are given in Ta-

ble 1.

reduced OptFed full OptFed

𝛾◦ 𝛾𝛼 𝛾𝜋 𝛾◦ 𝛾𝛼 𝛾𝜋

𝑅2 0.54 0.68 0.70 0.58 0.74 0.73

adjusted 𝑅2 0.52 0.67 0.68 0.24 0.71 0.70

# of parameters 3 3 6 9 9 9

are higher. The effect is especially pronounced for 𝛾◦ as only 3 out of 
12 processes are used for estimation (for other processes the substrate 
concentration is below the limit of quantification). Further reducing the 
model would increase the fitting error by at least one-third (Supplemen-

tary Figure S3). Thus, with the parameter values listed in Table 1, the 
reduced model reads:

𝛾◦ = 𝑐𝛾◦max

𝐺

𝐾◦
𝑚 +𝐺

𝐾◦
𝐺

𝐾◦
𝐺
+𝐺

(15a)

𝛾𝛼 = 𝑐𝛾𝛼
min

(1 + 𝛾◦ 𝐾𝛼𝑔 ) (1 + 𝑃∕𝑋 𝐾
𝛼
𝑃
) (15b)

𝛾𝜋 = 𝛾𝜋
max

(𝑇 ) 𝛾◦ − 𝛾𝛼

𝐾𝜋𝑚 + 𝛾◦ − 𝛾𝛼
1

1 + 𝑛 𝐾𝜋𝑛
(15c)

𝛾𝜇 = 𝛾◦ − 𝛾𝜋 − 𝛾𝛼 (15d)

with

𝛾𝜋
max

(𝑇 ) =𝐸𝜋0
𝑘𝐵𝑇

ℎ

exp
(
−Δ𝐺𝜋cat

𝑅𝑇

)
1 + exp

(Δ𝐻𝜋eq

𝑅

(
𝑇 𝜋

eq
−1 − 𝑇 −1

)) . (15e)

In the reduced OptFed process model (15), the substrate uptake rate 
𝛾◦ follows Michaelis-Menten kinetics with self-inhibition by the sub-

strate. The substrate-to-maintenance flux 𝛾𝛼 increases multilinearly with 
the substrate uptake rate 𝛾◦, and the product-to-biomass yield 𝑃∕𝑋. 
While both fluxes are temperature-independent, the product formation 
rate 𝜋 is modeled as a temperature-dependent Michaelis-Menten-like 
kinetic with non-competitive inhibition by the number of generations 𝑛
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after induction. Supplementary Figure S3 illustrates the quality of our 
model’s fit on rates. Despite some noise and occasional large errors in 
individual data points, the overall trend is well-predicted.

We compare the measurement data for product and biomass with the 
model predictions and validate these predictions using cross-validation. 
The adjusted 𝑅2 values remain above 0.52 for 𝑃 , 𝑃∕𝑋, and 𝑋, both with 
and without cross-validation (Fig. 2b and Supplementary Figures S4 and 
S5). Thus, we conclude that the model is a reliable choice, especially 
compared to RSM.

Additionally, we compare our heuristic model selection algorithm 
(Section 2.1.2) with model selection based on the AICC. The selected 
kinetic parameters are almost identical for both methods, only AICC in-

cludes terms for 𝐺 in 𝛾𝛼 and 𝛾𝜋 . With our heuristic algorithm, these 
variables were removed in the last step of our elimination as they do not 
improve the model fit significantly (𝑝-values of 0.25 and 0.30). While 
optimal feed rates are different (about ±22%), temperature optimum is 
similar (±0.03 ◦C). Using the model optimum for one model and testing 
it with the other misses the optimal 𝑃

𝑋

by less than 0.6%.

3.2.2. Process model optimization

Using the model develop above, we apply the optimization algorithm 
described in Methods Section 2.1.3 to determine the optimal feeding 
strategy and temperature settings. Additionally, we consider the follow-

ing constraints:

• The initial biomass matches the mean value of the center point runs 
of the experimental data, 𝑋0 = 30 g L−1.

• The initial bioreactor volume is set at 1.3 L, with no maximum vol-

ume constraint.

• The feed glycerol concentration is fixed at 390 g L−1.

• Sampling of 35 mL reduces the current reactor volume at 𝑡 =
2, 4, 6, 8, and 10 h.

• A linear regression model (Supplementary Figure S6) approximates 
the base addition as

𝑓base =𝑋𝑉 × 10−7 × (13900𝜇 − 1.1 h−1).

Fig. 3 illustrates the predicted optimal fed-batch process for protein 
L production. At 35.8 ◦C and after 12 h, we predict a biomass concen-
tration of 52 g L−1 and a product concentration of 9.6 g L−1, resulting in 



Computational and Structural Biotechnology Journal 23 (2024) 3651–3661G. Schlögel, R. Lück, S. Kittler et al.

Fig. 3. Predicted optimal process with OptFed. The red dashed-dotted lines represent OptFed’s prediction for the reference process, while grey lines show the 
predicted optimal behavior at 𝑇 = 35.8C. Black dashed lines indicate the optimal process with approximated linear feed rate. The simplification of the feed profile 
has a negligible impact on the process (grey full and black dashed lines). After 12 h, a 37.4% improvement in specific product yield is predicted. For reference, 
measurements from the training data are shown (red circles, center point, same initial biomass).
an optimal product yield of 0.19 g g−1. This represents a 37.1% increase 
compared to the reference process.

Increasing the temperature is key for optimized performance (Fig. 3). 
According to the model, maximum production rate 𝛾𝜋

max
increases with 

temperature up to the optimal temperature of 35.8 ◦C and decreases 
sharply for higher temperatures (Supplementary Figure S3). Optimiz-

ing the feed but keeping the temperature at 31 ◦C increases the specific 
product yield by just 0.3%. Conversely, keeping the feed constant and 
raising only the temperature boosts the maximally obtainable specific 
product yield by 37.0%. A summary of optimization results can be found 
in Supplementary Table S4.

Fig. 2a compares the predictions of RSM and OptFed. Under iden-

tical process constraints (constant exponential feed rate and constant 
temperature), OptFed identifies an optimum at elevated temperatures 
that RSM misses.

Unlike the training data’s fermentations, which used an exponential 
feed, we find that an almost linearly increasing feed rate is best to max-

imize the product-to-biomass yield (Fig. 3D). Therefore, we decided to 
approximate the predicted optimal feed function with a simple linear 
equation (Supplementary Figure S6)

𝑓opt = 0.022 g h−1 + 0.0053 g h−2 𝑡. (16)

This adjustment changes the final product and biomass concentrations 
and the product-to-biomass yield 𝑃

𝑋

by less than 0.1%, but significantly 
eases practical implementation (Fig. 4). Generally, variations of the feed 
function have little influence as long as the initial and final biomass 
concentrations remain constant.

Our model’s predictions are validated by experimentally running the 
optimal fermentation process with the simplified linear feed (Fig. 4). 
Additionally, an intermediate process at 33.5 ◦C (halfway between the 
temperature of the center point and the optimum) is carried out.

For the first 6.5 h, the processes closely matched the predictions 
(Fig. 4). The optimal process at 36 ◦C achieved a 19% increase in spe-
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cific product yield (compared to the predicted 21%), while the process at 
33.5 ◦C achieved a 5% increase (compared to the predicted 18%). Data 
points beyond 6.5 h are affected by unstable temperatures and therefore 
not considered.

4. Discussion

Recent years have seen a surge in research on biotechnological pro-

cess parameterization and optimization strategies [21,53–55]. However, 
studies usually focus on one of the two aspects. Here, we developed a 
comprehensive modeling framework, OptFed, to strategically combine 
them.

OptFed employs a general phenomenological process model fitted 
with experimental time series data from multiple fermentations. The al-

gorithm discards parameters with insufficient statistical power to mini-

mize overfitting, simplify the model, and increase the model’s reliability. 
Using this parameterized model, we applied nonlinear optimization to 
predict a fermentation profile for optimal specific protein L yield in E. 
coli, resulting in a near-linear feed at an elevated temperature of 35.8 ◦C. 
This approach predicted a 37% increase in specific product yield com-

pared to the training data, significantly outperforming the standard 
RSM, which only predicted a 1% improvement. However, during the 
experimental validation of the optimized process, we encountered is-
sues with temperature stability shortly after 6.5 h and decided not to 
use data collected thereafter. This instability is due to an undersized 
cooling capacity of the bioreactor.

Despite this, at 6.5 h the specific protein yield was up by 19%, close 
to the predicted 21% at that time. The primary increase in specific prod-

uct yield is attributed to the elevated temperature, accounting for over 
99% of the improvement. According to OptFed, product concentration 
increases approximately linearly with temperature up to the optimum. 
This dependence is completely missed by RSM, highlighting the advan-

tage of our approach.

Compared to RSM, our process equations constrain the possible so-

lution space to more realistic outcomes. In fact, combining mechanistic 

modeling with purely statistical approaches has already previously been 
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Fig. 4. Validation of the predicted optimal fermentation. Panels A to C compare experimental data (circles) with model predictions (lines). Corresponding feed 
rates, substrate uptake rates, growth rates, and product formation rates are illustrated in Supplementary Figure S9. Panel D shows the temperature profile of the 
fermentations. For 𝑡 > 6.5 h temperatures are unstable and the data is not considered. (opaque region in panels A to D). A comparison of optimal predicted and 
experimentally achieved controls is given in Supplementary Figure S7.
shown to perform better than pure RSM [54]. For example, RSM may 
predict negative values of the target metric (Fig. 2), an effect that cannot 
be observed with OptFed. Moreover, our process equations implicitly 
ensure mass balance due to the calculation of the substrate-to-growth 
rate (𝛾𝜇) from the difference of substrate uptake and the other substrate 
draining fluxes (Equation (2)).

Maintenance flux, as we use it throughout the manuscript, is de-

fined as a catchall-term for several metabolic effects. It comprises (1) the 
(non-)growth associated maintenance [56], (2) all non-optimal growth 
and production due to byproduct formation [57], and (3) any overflow 
metabolism during high substrate uptake rates [58]. Consequently, our 
yields are derived from a metabolomic model, excluding maintenance 
requirements, which differs from experimental yields where mainte-

nance is included. Maintenance accounts for more than half of the up-

take at the end of production (Supplementary Figure S8), leading to 
seemingly higher-than-usual yields (𝑌𝑋r

𝐺

, 𝑌𝑃
𝐺

) in Table 1.

Furthermore, we estimate uptake rates during production based on 
experimental data. As uptake can be significantly reduced during pro-

duction [59] this avoids possible overfeeding in the predicted optimum. 
In the case study, we observe a reduced uptake rate, but uptake is not a 
limiting factor for optimization.

The mathematical problems in our procedure, such as model identi-

fication and calibration, are difficult to solve because models often have 
too many interrelated parameters and lack sufficient high-quality train-

ing data. This can cause optimization algorithms to be unstable and not 
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converge, presenting significant challenges [60]. Our model, for exam-
ple, requires high-quality time course data. Random (relative) errors 
for biomass and product concentrations should be in the range of 3% 
and 15%, respectively, to reliably identify the correct optimum (Sup-

plementary Figure S10). However, these experimental uncertainties are 
manageable with current process monitoring technology [61].

Compared to the center point of the training data, almost all of the 
improvement in our case study originates from the increase in tempera-

ture. However, due to different product formation kinetics, this may be 
different for other products. Therefore, we cannot derive a general rule 
which feed profiles and temperatures are more advantageous in other 
setups. For example, [62] find a high influence of the feeding strategy 
on the production of inclusion bodies. This is most likely to a difference 
in product and process setup.

In Section 2.1.3, we optimize for the product-to-biomass yield (𝑃
𝑋

), 
a rather unconventional metric, compared to the titer, productivity, and 
(product-to-substrate) yield commonly used [63]. However, in this case 
study, the maximization of 𝑃

𝑋

is of critical importance for the ease of 
downstream processing. This strategy bears the risk of converging to a 
process that yields excellent 𝑃

𝑋

but very low amounts of product over-

all, which is also unfavorable. Here, we mitigated the risk by comparing 
our optimal 𝑃

𝑋

process to an optimal 𝑃𝑉 process (Supplementary Fig-

ure S11). Volume can be easily scaled by scaling batch volume and feed 
rate. The reachable biomass concentration depends on the reactor de-

sign (cooling capabilities, oxygen supply). A biomass limit of 60 g L−1
(reached in training processes) could increase the product by 16%.
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While our optimum is stable for changes in feeding strategy, we see 
a sharp drop in productivity when the temperature is raised above the 
optimum. This means, the optimal temperature is a good first guess, but 
more data is required when we move from screening to the design of 
the production setup. Based on the existing data, we applied a Monte 
Carlo estimation [64–66] (Supplementary Figure S12). We observe that 
we can guarantee (at a significance level of 0.05) a production rate 
within 10% of the optimum by reducing the temperature from 35.8 ◦C

to 34.9 ◦C.

OptFed focuses on the model selection. Based on this further im-

provements are possible. Sensitivity analyses [67] could help to make 
the optimum more stable considering the uncertainties in parameter fit-

ting. We also limit ourselves by using existing data. Model-based design 
of experiment [68] could provide better training data or can be used to 
plan additional experiments to improve the model.

5. Conclusion

In this study, we presented OptFed, a phenomenological model-

based bioprocess optimization framework that (also) allows us to seam-

lessly integrate preexisting biological and process knowledge. Unlike 
other tools, we emphasized the parameterization of process equations 
using experimental bioprocess data. To prevent overfitting, OptFed em-

ploys a multi-step fitting strategy that retains only the terms that signif-

icantly reduce model error, discarding others.

This approach addresses key challenges in industrial process design 
by eliminating the reliance on trial-and-error methods and standard, 
predefined feeding strategies. We demonstrated that OptFed not only 
accurately describes the training data but also predicts optimized pro-

cess controls. Experimental validation shows a 19% increase in specific 
protein L yield compared to the control.

While effective, OptFed’s performance depends on the quality of the 
training data. Future work will explore expanding the model to ad-

dress more complex biological phenomena, incorporate multi-objective 
optimization, and validate its application across a broader range of bio-

processes and products.

We are confident that OptFed is a valuable tool for bioprocess opti-

mization and will benefit the industry in the future.

CRediT authorship contribution statement

Guido Schlögel: Writing – review & editing, Writing – original draft, 
Visualization, Software, Methodology, Investigation, Conceptualization.

Rüdiger Lück: Writing – review & editing, Investigation. Stefan Kittler:

Writing – review & editing, Investigation. Oliver Spadiut: Writing – 
review & editing, Funding acquisition. Julian Kopp: Writing – review & 
editing, Investigation. Jürgen Zanghellini: Writing – review & editing, 
Writing – original draft, Supervision, Methodology, Conceptualization.

Mathias Gotsmy: Writing – review & editing, Writing – original draft, 
Supervision, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no competing interests.

Acknowledgements

The authors thank the European Union’s Horizon Europe Research 
and Innovation Programme for their funding facilitating this study 
through the Enviromed project (Grant agreement No. 101057844).

Appendix A. Supplementary material

Supplementary material related to this article can be found online at 
3660

https://doi .org /10 .1016 /j .csbj .2024 .09 .024.
Computational and Structural Biotechnology Journal 23 (2024) 3651–3661

Data availability

All code required to reproduce our analysis, as well as all training and 
validation data, is available at https://github .com /gschloegel /OptFed/.

References

[1] Lim Henry C, Shin Hwa Sung. Fed-batch cultures: principles and applications of 
semi-batch bioreactors. Cambridge University Press; 2013.

[2] Rodrigues Maria Isabel, Iemma Antonio Francisco. Experimental design and process 
optimization. Boca Raton: CRC Press. ISBN 978-0-429-16186-5, December 2014.

[3] Modak JM, Lim HC, Tayeb YJ. General characteristics of optimal feed rate profiles for 
various fed-batch fermentation processes. Biotechnol Bioeng 1986;28(9):1396–407.

[4] Maurer Michael, Kühleitner Manfred, Gasser Brigitte, Mattanovich Diethard. Versa-

tile modeling and optimization of fed batch processes for the production of secreted 
heterologous proteins with pichia pastoris. Microb Cell Fact 2006;5(1):1–10.

[5] Steinberg David M, Bursztyn Dizza. Response surface methodology in biotechnology. 
Qual Eng March 2010;22(2):78–87. https://doi .org /10 .1080 /08982110903510388. 
Publisher: Taylor & Francis.

[6] de Oliveira Rafael D, Le Roux Galo AC, Mahadevan Radhakrishnan. Nonlinear pro-

gramming reformulation of dynamic flux balance analysis models. Comput Chem 
Eng 2023;170:108101.

[7] Klamt Steffen, Mahadevan Radhakrishnan, Hädicke Oliver. When do two-stage pro-

cesses outperform one-stage processes? Biotechnol J 2018;13(2):1700539.

[8] Mermoud Grégory. Model-based optimization. In: Mermoud Gregory, editor. 
Stochastic reactive distributed robotic systems: design, modeling and optimiza-

tion. Springer tracts in advanced robotics. Cham: Springer International Publishing. 
ISBN 978-3-319-02609-1, 2014. p. 175–9.

[9] Carvalho João CM, Vitolo Michele, Sato Sunao, Aquarone Eugênio. Ethanol produc-

tion by Saccharomyces cerevisiae grown in sugarcane blackstrap molasses through 
a fed-batch process. Appl Biochem Biotechnol September 2003;110(3):151–64. 
https://doi .org /10 .1385 /ABAB :110 :3 :151.

[10] Khuri André I, Mukhopadhyay Siuli. Response surface methodology. WIREs: Comput 
Stat 2010;2(2):128–49. https://doi .org /10 .1002 /wics .73.

[11] Monod Jacques. The growth of bacterial cultures. Annu Rev Microbiol October 
1949;3(1):371–94. Publisher: Annual Reviews.

[12] Lopes Marta B, Martins Gabriel, Calado Cecília RC. Kinetic modeling of 
plasmid bioproduction in Escherichia coli DH5𝛼 cultures over different 
carbon-source compositions. J Biotechnol September 2014;186:38–48. https://

doi .org /10 .1016 /j .jbiotec .2014 .06 .022. https://www .sciencedirect .com /science /
article /pii /S0168165614003137.

[13] Klumpp Stefan, Zhang Zhongge, Hwa Terence. Growth rate-dependent global effects 
on gene expression in bacteria. Cell December 2009;139(7):1366–75. https://doi .
org /10 .1016 /j .cell .2009 .12 .001. ISSN 0092-8674, 1097-4172. https://www .cell .
com /cell /abstract /S0092 -8674(09 )01505 -0.

[14] Kager Julian, Bartlechner Johanna, Herwig Christoph, Jakubek Stefan. Direct control 
of recombinant protein production rates in E. coli fed-batch processes by nonlinear 
feedback linearization. Chem Eng Res Des June 2022;182:290–304. https://doi .org /
10 .1016 /j .cherd .2022 .03 .043. https://www .sciencedirect .com /science /article /pii /
S0263876222001460.

[15] Weber Jan, Hoffmann Frank, Rinas Ursula. Metabolic adaptation of Escherichia 
coli during temperature-induced recombinant protein production: 2. Redirection of 
metabolic fluxes. Biotechnol Bioeng 2002;80(3):320–30. https://doi .org /10 .1002 /
bit .10380.

[16] Jannasch Holger W, Egli Thomas. Microbial growth kinetics: a historical perspec-

tive. Antonie Van Leeuwenhoek September 1993;63(3):213–24. https://doi .org /10 .
1007 /BF00871219.

[17] Hurvich Clifford M, Tsai Chih-Ling. Regression and time series model selection 
in small samples. Biometrika June 1989;76(2):297–307. https://doi .org /10 .1093 /
biomet /76 .2 .297.

[18] Lee Jason D, Sun Dennis L, Sun Yuekai, Taylor Jonathan E. Exact post-selection in-

ference, with application to the lasso. Ann Stat June 2016;44(3):907–27. https://

doi .org /10 .1214 /15 -AOS1371. ISSN 0090-5364, 2168-8966, Publisher: Institute 
of Mathematical Statistics. https://projecteuclid .org /journals /annals -of -statistics /
volume -44 /issue -3 /Exact -post -selection -inference -with -application -to -the -lasso /10 .
1214 /15 -AOS1371 .full.

[19] Zhang Yongli, Yang Yuhong. Cross-validation for selecting a model selection 
procedure. J Econom July 2015;187(1):95–112. https://doi .org /10 .1016 /
j .jeconom .2015 .02 .006. https://www .sciencedirect .com /science /article /pii /
S0304407615000305.

[20] Yates Luke A, Aandahl Zach, Richards Shane A, Brook Barry W. Cross valida-

tion for model selection: a review with examples from ecology. Ecol Monogr 
2023;93(1):e1557. https://doi .org /10 .1002 /ecm .1557.

[21] Sánchez Benjamín J, Soto Daniela C, Jorquera Héctor, Gelmi Claudio A, Pérez-

Correa José R. HIPPO: an iterative reparametrization method for identification and 
calibration of dynamic bioreactor models of complex processes. Ind Eng Chem Res 
December 2014;53(48):18514–25. https://doi .org /10 .1021 /ie501298b. Publisher: 

American Chemical Society.

https://doi.org/10.1016/j.csbj.2024.09.024
https://github.com/gschloegel/OptFed/
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib384E5A05E7FEE636B7DDAE9BA8E71EFBs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib384E5A05E7FEE636B7DDAE9BA8E71EFBs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibAA4676737F386EE48B3135AB00CC09BBs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibAA4676737F386EE48B3135AB00CC09BBs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib054F0DCD1BD027943CC50D039FF4130Cs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib054F0DCD1BD027943CC50D039FF4130Cs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib60BAB59883BDCBDEA7FFB55A80025FB0s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib60BAB59883BDCBDEA7FFB55A80025FB0s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib60BAB59883BDCBDEA7FFB55A80025FB0s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibB0D19BD142F766153D80A48FEAFF3CE0s1
https://doi.org/10.1080/08982110903510388
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibB0D19BD142F766153D80A48FEAFF3CE0s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibB0D19BD142F766153D80A48FEAFF3CE0s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibB4A54FB9786F06139419A42E1FA46608s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibB4A54FB9786F06139419A42E1FA46608s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibB4A54FB9786F06139419A42E1FA46608s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib576EE22A864EBB102CF527BD1D690E81s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib576EE22A864EBB102CF527BD1D690E81s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibD88A0FB1C2295E306508A0BC7235996Bs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibD88A0FB1C2295E306508A0BC7235996Bs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibD88A0FB1C2295E306508A0BC7235996Bs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibD88A0FB1C2295E306508A0BC7235996Bs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibC5E79D7FD7C9A24BB869843CD4335971s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibC5E79D7FD7C9A24BB869843CD4335971s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibC5E79D7FD7C9A24BB869843CD4335971s1
https://doi.org/10.1385/ABAB:110:3:151
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibC5E79D7FD7C9A24BB869843CD4335971s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib1FCA9ECAA0292102A92064B92D957CCFs1
https://doi.org/10.1002/wics.73
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib1FCA9ECAA0292102A92064B92D957CCFs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib3978E303B42622A3667EEFB34A769541s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib3978E303B42622A3667EEFB34A769541s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6614F194D9C5169FD50568DF433AC0D3s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6614F194D9C5169FD50568DF433AC0D3s1
https://doi.org/10.1016/j.jbiotec.2014.06.022
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6614F194D9C5169FD50568DF433AC0D3s1
https://doi.org/10.1016/j.jbiotec.2014.06.022
https://www.sciencedirect.com/science/article/pii/S0168165614003137
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6614F194D9C5169FD50568DF433AC0D3s1
https://www.sciencedirect.com/science/article/pii/S0168165614003137
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6614F194D9C5169FD50568DF433AC0D3s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibF6A8AD3DC3F7BA6C801F06B286218EE2s1
https://doi.org/10.1016/j.cell.2009.12.001
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibF6A8AD3DC3F7BA6C801F06B286218EE2s1
https://doi.org/10.1016/j.cell.2009.12.001
https://www.cell.com/cell/abstract/S0092-8674(09)01505-0
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibF6A8AD3DC3F7BA6C801F06B286218EE2s1
https://www.cell.com/cell/abstract/S0092-8674(09)01505-0
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibF6A8AD3DC3F7BA6C801F06B286218EE2s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE4619B9D4D8A44C0DD3D82EF43349DA5s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE4619B9D4D8A44C0DD3D82EF43349DA5s1
https://doi.org/10.1016/j.cherd.2022.03.043
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE4619B9D4D8A44C0DD3D82EF43349DA5s1
https://doi.org/10.1016/j.cherd.2022.03.043
https://www.sciencedirect.com/science/article/pii/S0263876222001460
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE4619B9D4D8A44C0DD3D82EF43349DA5s1
https://www.sciencedirect.com/science/article/pii/S0263876222001460
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE4619B9D4D8A44C0DD3D82EF43349DA5s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8AC0FA5F498209F32E7CED21C1A27227s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8AC0FA5F498209F32E7CED21C1A27227s1
https://doi.org/10.1002/bit.10380
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8AC0FA5F498209F32E7CED21C1A27227s1
https://doi.org/10.1002/bit.10380
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8AC0FA5F498209F32E7CED21C1A27227s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE807223C9EBEFAAF6F839BA76746B32Fs1
https://doi.org/10.1007/BF00871219
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE807223C9EBEFAAF6F839BA76746B32Fs1
https://doi.org/10.1007/BF00871219
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE807223C9EBEFAAF6F839BA76746B32Fs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibFA6CC99B49236380F7BCBFFB3B6C6C5Es1
https://doi.org/10.1093/biomet/76.2.297
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibFA6CC99B49236380F7BCBFFB3B6C6C5Es1
https://doi.org/10.1093/biomet/76.2.297
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibFA6CC99B49236380F7BCBFFB3B6C6C5Es1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib987F7589AA66E04021625970271B263Fs1
https://doi.org/10.1214/15-AOS1371
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib987F7589AA66E04021625970271B263Fs1
https://doi.org/10.1214/15-AOS1371
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib987F7589AA66E04021625970271B263Fs1
https://projecteuclid.org/journals/annals-of-statistics/volume-44/issue-3/Exact-post-selection-inference-with-application-to-the-lasso/10.1214/15-AOS1371.full
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib987F7589AA66E04021625970271B263Fs1
https://projecteuclid.org/journals/annals-of-statistics/volume-44/issue-3/Exact-post-selection-inference-with-application-to-the-lasso/10.1214/15-AOS1371.full
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib987F7589AA66E04021625970271B263Fs1
https://projecteuclid.org/journals/annals-of-statistics/volume-44/issue-3/Exact-post-selection-inference-with-application-to-the-lasso/10.1214/15-AOS1371.full
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib987F7589AA66E04021625970271B263Fs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib7B3AB801697811A265CC6EF1EF25CB2Fs1
https://doi.org/10.1016/j.jeconom.2015.02.006
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib7B3AB801697811A265CC6EF1EF25CB2Fs1
https://doi.org/10.1016/j.jeconom.2015.02.006
https://www.sciencedirect.com/science/article/pii/S0304407615000305
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib7B3AB801697811A265CC6EF1EF25CB2Fs1
https://www.sciencedirect.com/science/article/pii/S0304407615000305
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib7B3AB801697811A265CC6EF1EF25CB2Fs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6C6738DBAEDCB3F742EB7786C51173A4s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6C6738DBAEDCB3F742EB7786C51173A4s1
https://doi.org/10.1002/ecm.1557
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6C6738DBAEDCB3F742EB7786C51173A4s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib04FA866098B117BC3A90C34AE0536AD6s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib04FA866098B117BC3A90C34AE0536AD6s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib04FA866098B117BC3A90C34AE0536AD6s1
https://doi.org/10.1021/ie501298b
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib04FA866098B117BC3A90C34AE0536AD6s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib04FA866098B117BC3A90C34AE0536AD6s1


Computational and Structural Biotechnology Journal 23 (2024) 3651–3661G. Schlögel, R. Lück, S. Kittler et al.

[22] Jaqaman Khuloud, Danuser Gaudenz. Linking data to models: data regression. Nat 
Rev Mol Cell Biol November 2006;7(11):813–9. https://doi .org /10 .1038 /nrm2030. 
https://www .nature .com /articles /nrm2030. Publisher: Nature Publishing Group.

[23] Varma Sudhir, Simon Richard. Bias in error estimation when using cross-validation 
for model selection. BMC Bioinform February 2006;7(1):91. https://doi .org /10 .
1186 /1471 -2105 -7 -91.

[24] Gigerenzer Gerd, Homo Henry Brighton. Heuristicus: why biased minds make better 
inferences. Top Cogn Sci 2009;1(1):107–43. https://doi .org /10 .1111 /j .1756 -8765 .
2008 .01006 .x.

[25] Hawkins Douglas M. The problem of overfitting. J Chem Inf Comput Sci January 
2004;44(1):1–12. https://doi .org /10 .1021 /ci0342472. Publisher: American Chemi-

cal Society.

[26] Nielsen Jens, Keasling Jay D. Engineering cellular metabolism. Cell 
2016;164(6):1185–97.

[27] Nocedal Jorge, Wright Stephen J. Numerical optimization. 2nd ed edition. Springer 
series in operations research. New York: Springer. ISBN 978-0-387-30303-1, 2006. 
OCLC: ocm68629100.

[28] Kalise Dante, Kunisch Karl, Rao Zhiping. Hamilton-Jacobi-Bellman equations: nu-

merical methods and applications in optimal control. De Gruyter. ISBN 978-3-11-

054359-9, August 2018. Publication Title: Hamilton-Jacobi-Bellman Equations.

[29] Liberzon Daniel. Calculus of variations and optimal control theory. Princeton Uni-

versity Press. ISBN 978-0-691-15187-8, 2012.

[30] Srinivasan B, Palanki S, Bonvin D. Dynamic optimization of batch pro-

cesses: I. Characterization of the nominal solution. Comput Chem Eng January 
2003;27(1):1–26. https://doi .org /10 .1016 /S0098 -1354(02 )00116 -3. https://www .
sciencedirect .com /science /article /pii /S0098135402001163.

[31] Vassiliadis VS, Sargent RWH, Pantelides CC. Solution of a class of multistage dynamic 
optimization problems. 1. Problems without path constraints. Ind Eng Chem Res 
September 1994;33(9):2111–22. https://doi .org /10 .1021 /ie00033a014. Publisher: 
American Chemical Society.

[32] Bellman Richard E. Dynamic programming. Princeton University Press. ISBN 978-1-

4008-3538-6, August 2021. Publication Title: Dynamic Programming.

[33] Bojkov Bojan, Luus Rein. Time-optimal control by iterative dynamic program-

ming. Ind Eng Chem Res June 1994;33(6):1486–92. https://doi .org /10 .1021 /
ie00030a008. Publisher: American Chemical Society.

[34] Andersson Joel AE, Gillis Joris, Horn Greg, Rawlings James B, Diehl Moritz. CasADi: 
a software framework for nonlinear optimization and optimal control. Math Program 
Comput March 2019;11(1):1–36. https://doi .org /10 .1007 /s12532 -018 -0139 -4.

[35] Beal Logan DR, Hill Daniel C, Martin R Abraham, Hedengren John D. GEKKO 
optimization suite. Processes August 2018;6(8):106. https://doi .org /10 .3390 /
pr6080106. https://www .mdpi .com /2227 -9717 /6 /8 /106. Number: 8 Publisher: 
Multidisciplinary Digital Publishing Institute.

[36] Hart William E, Watson Jean-Paul, Woodruff David L. Pyomo: modeling and solving 
mathematical programs in Python. Math Program Comput August 2011;3(3):219. 
https://doi .org /10 .1007 /s12532 -011 -0026 -8.

[37] Yang Jingyi, Yang Yuebao, Li Mingtao. OptControl.jl: an interpreter for optimal 
control problem. http://arxiv .org /abs /2207 .13229. arXiv :2207 .13229 [math], July 
2022.

[38] Michaelis Leonor, Menten Maud Leonora. Die Kinetik der Invertinwirkung. 
Biochem Z 1913;49:333–69. http://publikationen .ub .uni -frankfurt .de /frontdoor /
index /index /docId /17273.

[39] van Bodegom Peter. Microbial maintenance: a critical review on its quantification. 
Microb Ecol May 2007;53(4):513–23. https://doi .org /10 .1007 /s00248 -006 -9049 -5.

[40] Daniel Roy M, Danson Michael J, Eisenthal Robert, Lee Charles K, Peterson Michelle 
E. The effect of temperature on enzyme activity: new insights and their impli-

cations. Extremophiles January 2008;12(1):51–9. https://doi .org /10 .1007 /s00792 -
007 -0089 -7.

[41] Monk Jonathan M, Koza Anna, Campodonico Miguel A, Machado Daniel, 
Seoane Jose Miguel, Palsson Bernhard O, et al. Multi-omics quantification of species 
variation of escherichia coli links molecular features with strain phenotypes. Cell 
Syst 2016;3(3):238–51.

[42] Froment Gilbert F, Bischoff Kenneth B, De Wilde Juray. Chemical reactor analysis 
and design, vol. 2. New York: Wiley; 1990.

[43] Bardow André, Marquardt Wolfgang. Incremental and simultaneous identifi-

cation of reaction kinetics: methods and comparison. Chem Eng Sci July 
2004;59(13):2673–84. https://doi .org /10 .1016 /j .ces .2004 .03 .023. https://www .
sciencedirect .com /science /article /pii /S0009250904002015.

[44] Virtanen Pauli, Gommers Ralf, Oliphant Travis E, Haberland Matt, Reddy Tyler, 
Cournapeau David, et al. SciPy 1.0: fundamental algorithms for scientific comput-

ing in Python. Nat Methods 2020;17:261–72. https://doi .org /10 .1038 /s41592 -019 -
0686 -2.

[45] Rutherford Andrew. Introducing Anova and Ancova: a GLM approach. Intro-

ducing statistical methods. London: SAGE Publications Ltd. ISBN 978-0-7619-

5160-5, 2001. https://search .ebscohost .com /login .aspx ?direct =true &db =nlebk &
AN =251737 &site =ehost -live.

[46] Storn Rainer, Price Kenneth. Differential evolution – a simple and efficient heuris-

tic for global optimization over continuous spaces. J Glob Optim December 
1997;11(4):341–59. https://doi .org /10 .1023 /A :1008202821328.

[47] Wächter Andreas, Biegler Lorenz T. On the implementation of an interior-point filter 
line-search algorithm for large-scale nonlinear programming. Math Program March 
2006;106(1):25–57. https://doi .org /10 .1007 /s10107 -004 -0559 -y.

[48] Biegler Lorenz T. Nonlinear programming: concepts, algorithms, and applications to 
chemical processes. Society for Industrial and Applied Mathematics; January 2010. 
ISBN 978-0-89871-702-0, 978-0-89871-938-3. http://epubs .siam .org /doi /book /10 .
1137 /1 .9780898719383.

[49] Lenth Russell V. Response-surface methods in R, using rsm. J Stat Softw 
2010;32:1–17. https://doi .org /10 .18637 /jss .v032 .i07.

[50] R Core Team. R: a language and environment for statistical computing. Vienna, Aus-

tria: R Foundation for Statistical Computing; 2023. https://www .R -project .org/.

[51] Kittler Stefan, Ebner Julian, Besleaga Mihail, Larsbrink Johan, Darnhofer Bar-

bara, Birner-Gruenberger Ruth, et al. Recombinant protein L: production, purifi-

cation and characterization of a universal binding ligand. J Biotechnol November 
2022;359:108–15. https://doi .org /10 .1016 /j .jbiotec .2022 .10 .002. https://www .
sciencedirect .com /science /article /pii /S0168165622002371.

[52] DeLisa Matthew P, Li Jincai, Rao Govind, Weigand William A, Bentley William 
E. Monitoring GFP-operon fusion protein expression during high cell density 
cultivation of Escherichia coli using an on-line optical sensor. Biotechnol Bio-

eng 1999;65(1):54–64. https://doi .org /10 .1002 /(SICI )1097 -0290(19991005 )65 :
1<54 ::AID -BIT7 >3 .0 .CO ;2 -R.

[53] Bauer Jasmin, Klamt Steffen. Optmsp: a toolbox for designing optimal multi-stage 
(bio) processes. J Biotechnol 2024;383:94–102.

[54] Pinto José, de Azevedo Cristiana Rodrigues, Oliveira Rui, von Stosch Moritz. A 
bootstrap-aggregated hybrid semi-parametric modeling framework for bioprocess 
development. Bioprocess Biosyst Eng 2019;42:1853–65.

[55] Raj Kaushik, Venayak Naveen, Mahadevan Radhakrishnan. Novel two-stage 
processes for optimal chemical production in microbes. Metab Eng Novem-

ber 2020;62:186–97. https://doi .org /10 .1016 /j .ymben .2020 .08 .006. https://www .
sciencedirect .com /science /article /pii /S1096717620301269.

[56] Coltman Benjamin Luke, Rebnegger Corinna, Gasser Brigitte, Zanghellini Jürgen. 
Characterising the metabolic rewiring of extremely slow growing komagataella phaf-

fii. Microb Biotechnol 2024;17(1):e14386.

[57] Aristidou Aristos A, San Ka-Yiu, Bennett George N. Improvement of biomass yield 
and recombinant gene expression in escherichia coli by using fructose as the primary 
carbon source. Biotechnol Prog 1999;15(1):140–5.

[58] Xu Bo, Jahic Mehmedalija, Enfors Sven-Olof. Modeling of overflow metabolism in 
batch and fed-batch cultures of escherichiacoli. Biotechnol Prog 1999;15(1):81–90.

[59] Müller Don Fabian, Wibbing Daniel, Herwig Christoph, Kager Julian. Simultaneous 
real-time estimation of maximum substrate uptake capacity and yield coefficient in 
induced microbial cultures. Comput Chem Eng May 2023;173:108203. https://doi .
org /10 .1016 /j .compchemeng .2023 .108203. Publisher: Pergamon. https://www .
sciencedirect .com /science /article /pii /S0098135423000728.

[60] Abt Vinzenz, Barz Tilman, Cruz-Bournazou Mariano Nicolas, Herwig Christoph, 
Kroll Paul, Möller Johannes, et al. Model-based tools for optimal experiments in 
bioprocess engineering. Curr Opin Chem Eng 2018;22:244–52.

[61] Kager Julian, Herwig Christoph. Monte Carlo-based error propagation for a more 
reliable regression analysis across specific rates in bioprocesses. Bioengineer-

ing November 2021;8(11):160. https://doi .org /10 .3390 /bioengineering8110160. 
https://www .mdpi .com /2306 -5354 /8 /11 /160. Publisher: Multidisciplinary Digital 
Publishing Institute.

[62] Slouka Christoph, Kopp Julian, Strohmer Daniel, Kager Julian, Spadiut Oliver, 
Herwig Christoph. Monitoring and control strategies for inclusion body 
production in E. coli based on glycerol consumption. J Biotechnol April 
2019;296:75–82. https://doi .org /10 .1016 /j .jbiotec .2019 .03 .014. https://

www .sciencedirect .com /science /article /pii /S0168165619300951.

[63] Zhuang Kai, Yang Laurence, Cluett William R, Mahadevan Radhakrishnan. Dy-

namic strain scanning optimization: an efficient strain design strategy for balanced 
yield, titer, and productivity. dyssco strategy for strain design. BMC Biotechnol 
2013;13:1–15.

[64] Buckland ST. Monte Carlo confidence intervals. Biometrics 1984;40(3):811–7. 
https://doi .org /10 .2307 /2530926. https://www .jstor .org /stable /2530926. Pub-

lisher: International Biometric Society.

[65] Krausch Niels, Barz Tilman, Sawatzki Annina, Gruber Mathis, Kamel Sarah, 
Neubauer Peter, et al. Simulations for the analysis of non-linear param-

eter confidence intervals in optimal experimental design. Front Bioeng 
Biotechnol May 2019;7. https://doi .org /10 .3389 /fbioe .2019 .00122. https://

www .frontiersin .org /journals /bioengineering -and -biotechnology /articles /10 .
3389 /fbioe .2019 .00122 /full. Publisher: Frontiers.

[66] Preacher Kristopher J, Selig James P. Advantages of Monte Carlo confidence intervals 
for indirect effects. Commun Methods Meas April 2012;6(2):77–98. https://doi .org /
10 .1080 /19312458 .2012 .679848. Publisher: Routledge.

[67] Schenkendorf René, Xie Xiangzhong, Rehbein Moritz, Scholl Stephan, Krewer Ul-

rike. The impact of global sensitivities and design measures in model-based 
optimal experimental design. Processes April 2018;6(4):27. https://doi .org /10 .
3390 /pr6040027. https://www .mdpi .com /2227 -9717 /6 /4 /27. Number: 4. Pub-

lisher: Multidisciplinary Digital Publishing Institute.

[68] Franceschini Gaia, Macchietto Sandro. Model-based design of experi-

ments for parameter precision: state of the art. Chem Eng Sci October 
2008;63(19):4846–72. https://doi .org /10 .1016 /j .ces .2007 .11 .034. https://

www .sciencedirect .com /science /article /pii /S0009250907008871.
3661

http://refhub.elsevier.com/S2001-0370(24)00313-1/bib5173C4B74DE1A2E29EE128D8C065D369s1
https://doi.org/10.1038/nrm2030
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib5173C4B74DE1A2E29EE128D8C065D369s1
https://www.nature.com/articles/nrm2030
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib5173C4B74DE1A2E29EE128D8C065D369s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib45B7686CB87881FCE125191BA3560BECs1
https://doi.org/10.1186/1471-2105-7-91
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib45B7686CB87881FCE125191BA3560BECs1
https://doi.org/10.1186/1471-2105-7-91
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib45B7686CB87881FCE125191BA3560BECs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6803D2162A2245776F52EA4B8D75636Es1
https://doi.org/10.1111/j.1756-8765.2008.01006.x
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6803D2162A2245776F52EA4B8D75636Es1
https://doi.org/10.1111/j.1756-8765.2008.01006.x
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6803D2162A2245776F52EA4B8D75636Es1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib09F0CBAF11BAB461271FA62EA038876Bs1
https://doi.org/10.1021/ci0342472
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib09F0CBAF11BAB461271FA62EA038876Bs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib09F0CBAF11BAB461271FA62EA038876Bs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib11DE4B9C0CBEAC058E831F6843DEC0C1s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib11DE4B9C0CBEAC058E831F6843DEC0C1s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib300E3CAC8A05383B41B16A61A60C0534s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib300E3CAC8A05383B41B16A61A60C0534s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib300E3CAC8A05383B41B16A61A60C0534s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE1F4982CA3C21494745365C53E307B03s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE1F4982CA3C21494745365C53E307B03s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE1F4982CA3C21494745365C53E307B03s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibBB9A1A3D3A7F250167A57E9C4CABD583s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibBB9A1A3D3A7F250167A57E9C4CABD583s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibA688C8041A9A448257F43441B03D0242s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibA688C8041A9A448257F43441B03D0242s1
https://doi.org/10.1016/S0098-1354(02)00116-3
https://www.sciencedirect.com/science/article/pii/S0098135402001163
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibA688C8041A9A448257F43441B03D0242s1
https://www.sciencedirect.com/science/article/pii/S0098135402001163
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibA688C8041A9A448257F43441B03D0242s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibCF6ECCCE56E3129DC0C97535A92F3FBCs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibCF6ECCCE56E3129DC0C97535A92F3FBCs1
https://doi.org/10.1021/ie00033a014
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibCF6ECCCE56E3129DC0C97535A92F3FBCs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibCF6ECCCE56E3129DC0C97535A92F3FBCs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib671839CC8557549F2EF5A5B8F4E6AAFBs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib671839CC8557549F2EF5A5B8F4E6AAFBs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE4605EAB1A40C5213A95181BDD7F4E93s1
https://doi.org/10.1021/ie00030a008
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE4605EAB1A40C5213A95181BDD7F4E93s1
https://doi.org/10.1021/ie00030a008
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE4605EAB1A40C5213A95181BDD7F4E93s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib9E7EB82C441899CCCA3DB54640EB3EABs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib9E7EB82C441899CCCA3DB54640EB3EABs1
https://doi.org/10.1007/s12532-018-0139-4
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib9E7EB82C441899CCCA3DB54640EB3EABs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib3D44C74ED7040A0DEB422D8ECD03EC97s1
https://doi.org/10.3390/pr6080106
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib3D44C74ED7040A0DEB422D8ECD03EC97s1
https://doi.org/10.3390/pr6080106
https://www.mdpi.com/2227-9717/6/8/106
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib3D44C74ED7040A0DEB422D8ECD03EC97s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib3D44C74ED7040A0DEB422D8ECD03EC97s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib5089EDF6954BF90347B9C9DA3259ABA4s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib5089EDF6954BF90347B9C9DA3259ABA4s1
https://doi.org/10.1007/s12532-011-0026-8
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib5089EDF6954BF90347B9C9DA3259ABA4s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib00AB46C881A4996305E531AD30417977s1
http://arxiv.org/abs/2207.13229
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib00AB46C881A4996305E531AD30417977s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib00AB46C881A4996305E531AD30417977s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibB1BDECEB2A82EEBBC4AAB8C967CBEAF4s1
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/17273
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibB1BDECEB2A82EEBBC4AAB8C967CBEAF4s1
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/17273
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibB1BDECEB2A82EEBBC4AAB8C967CBEAF4s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib81C8167E43CF4C3BF2DF283D3A51F7DCs1
https://doi.org/10.1007/s00248-006-9049-5
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib81C8167E43CF4C3BF2DF283D3A51F7DCs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib69B2AA1F977105D846F9D4A006C07BFFs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib69B2AA1F977105D846F9D4A006C07BFFs1
https://doi.org/10.1007/s00792-007-0089-7
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib69B2AA1F977105D846F9D4A006C07BFFs1
https://doi.org/10.1007/s00792-007-0089-7
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib69B2AA1F977105D846F9D4A006C07BFFs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib16B08E9D67556E3686CC19DAB78277B7s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib16B08E9D67556E3686CC19DAB78277B7s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib16B08E9D67556E3686CC19DAB78277B7s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib16B08E9D67556E3686CC19DAB78277B7s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib9B1E9541711B0060EA1CB8E4254D3964s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib9B1E9541711B0060EA1CB8E4254D3964s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib917120D03C23147124484A542E09DBD0s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib917120D03C23147124484A542E09DBD0s1
https://doi.org/10.1016/j.ces.2004.03.023
https://www.sciencedirect.com/science/article/pii/S0009250904002015
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib917120D03C23147124484A542E09DBD0s1
https://www.sciencedirect.com/science/article/pii/S0009250904002015
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib917120D03C23147124484A542E09DBD0s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib4FABE4A7D99B7E45A1C48F5F16DBBEBFs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib4FABE4A7D99B7E45A1C48F5F16DBBEBFs1
https://doi.org/10.1038/s41592-019-0686-2
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib4FABE4A7D99B7E45A1C48F5F16DBBEBFs1
https://doi.org/10.1038/s41592-019-0686-2
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib4FABE4A7D99B7E45A1C48F5F16DBBEBFs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib1CE9749E0DCC8B7F48073B43840FF4F6s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib1CE9749E0DCC8B7F48073B43840FF4F6s1
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=251737&site=ehost-live
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib1CE9749E0DCC8B7F48073B43840FF4F6s1
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=251737&site=ehost-live
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib1CE9749E0DCC8B7F48073B43840FF4F6s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8BF74A70E3A4F1C98754AB3123C2F815s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8BF74A70E3A4F1C98754AB3123C2F815s1
https://doi.org/10.1023/A:1008202821328
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8BF74A70E3A4F1C98754AB3123C2F815s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6E5D732B56F949E9BF14E56762797F30s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6E5D732B56F949E9BF14E56762797F30s1
https://doi.org/10.1007/s10107-004-0559-y
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6E5D732B56F949E9BF14E56762797F30s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8A78ABD3F94320129DF4414FBDE0F2B6s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8A78ABD3F94320129DF4414FBDE0F2B6s1
http://epubs.siam.org/doi/book/10.1137/1.9780898719383
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8A78ABD3F94320129DF4414FBDE0F2B6s1
http://epubs.siam.org/doi/book/10.1137/1.9780898719383
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8A78ABD3F94320129DF4414FBDE0F2B6s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE10E98A2328AE5D199DEBF89B91B3C64s1
https://doi.org/10.18637/jss.v032.i07
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibE10E98A2328AE5D199DEBF89B91B3C64s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib1E387A1BB8FB0EE5C1DC0549833AB873s1
https://www.R-project.org/
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib1E387A1BB8FB0EE5C1DC0549833AB873s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibF81E3516A4CA8B8D255F967815C8A075s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibF81E3516A4CA8B8D255F967815C8A075s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibF81E3516A4CA8B8D255F967815C8A075s1
https://doi.org/10.1016/j.jbiotec.2022.10.002
https://www.sciencedirect.com/science/article/pii/S0168165622002371
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibF81E3516A4CA8B8D255F967815C8A075s1
https://www.sciencedirect.com/science/article/pii/S0168165622002371
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibF81E3516A4CA8B8D255F967815C8A075s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib109F5281078F20CDF158965EBCEDDA1Bs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib109F5281078F20CDF158965EBCEDDA1Bs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib109F5281078F20CDF158965EBCEDDA1Bs1
https://doi.org/10.1002/(SICI)1097-0290(19991005)65:1<54::AID-BIT7>3.0.CO;2-R
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib109F5281078F20CDF158965EBCEDDA1Bs1
https://doi.org/10.1002/(SICI)1097-0290(19991005)65:1<54::AID-BIT7>3.0.CO;2-R
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib109F5281078F20CDF158965EBCEDDA1Bs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibDB92670C479191C165D0B4839789FBEEs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibDB92670C479191C165D0B4839789FBEEs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib11F1194BE3EEEE17D9C6B419331FF7A8s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib11F1194BE3EEEE17D9C6B419331FF7A8s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib11F1194BE3EEEE17D9C6B419331FF7A8s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib9B60257D242735448D15D585B2DF8745s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib9B60257D242735448D15D585B2DF8745s1
https://doi.org/10.1016/j.ymben.2020.08.006
https://www.sciencedirect.com/science/article/pii/S1096717620301269
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib9B60257D242735448D15D585B2DF8745s1
https://www.sciencedirect.com/science/article/pii/S1096717620301269
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib9B60257D242735448D15D585B2DF8745s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibDD020C34016C41DE8909F79803444BD6s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibDD020C34016C41DE8909F79803444BD6s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibDD020C34016C41DE8909F79803444BD6s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib3B855E80ED6F460B94DD6CB2807B0D1Fs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib3B855E80ED6F460B94DD6CB2807B0D1Fs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib3B855E80ED6F460B94DD6CB2807B0D1Fs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib28BC28720804FED153862915AEBF4A26s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib28BC28720804FED153862915AEBF4A26s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6E62FF7395312A01FC40C6B1CA786E26s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6E62FF7395312A01FC40C6B1CA786E26s1
https://doi.org/10.1016/j.compchemeng.2023.108203
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6E62FF7395312A01FC40C6B1CA786E26s1
https://doi.org/10.1016/j.compchemeng.2023.108203
https://www.sciencedirect.com/science/article/pii/S0098135423000728
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6E62FF7395312A01FC40C6B1CA786E26s1
https://www.sciencedirect.com/science/article/pii/S0098135423000728
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6E62FF7395312A01FC40C6B1CA786E26s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6CF4C420A07069B39FBECB51F88D2758s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6CF4C420A07069B39FBECB51F88D2758s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib6CF4C420A07069B39FBECB51F88D2758s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibC1C741985D2A5E9C9ED4A5AFA7708239s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibC1C741985D2A5E9C9ED4A5AFA7708239s1
https://doi.org/10.3390/bioengineering8110160
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibC1C741985D2A5E9C9ED4A5AFA7708239s1
https://www.mdpi.com/2306-5354/8/11/160
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibC1C741985D2A5E9C9ED4A5AFA7708239s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibC1C741985D2A5E9C9ED4A5AFA7708239s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibCA900F63ED491248F92F93891E9B01DEs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibCA900F63ED491248F92F93891E9B01DEs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibCA900F63ED491248F92F93891E9B01DEs1
https://doi.org/10.1016/j.jbiotec.2019.03.014
https://www.sciencedirect.com/science/article/pii/S0168165619300951
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibCA900F63ED491248F92F93891E9B01DEs1
https://www.sciencedirect.com/science/article/pii/S0168165619300951
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibCA900F63ED491248F92F93891E9B01DEs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibA53A18DF81B177D2827D2E1ECCC2E959s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibA53A18DF81B177D2827D2E1ECCC2E959s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibA53A18DF81B177D2827D2E1ECCC2E959s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibA53A18DF81B177D2827D2E1ECCC2E959s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib3B5E1FDE3D537D0439AA45F3A3926136s1
https://doi.org/10.2307/2530926
https://www.jstor.org/stable/2530926
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib3B5E1FDE3D537D0439AA45F3A3926136s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib3B5E1FDE3D537D0439AA45F3A3926136s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibEBD0E96469A2EC3D9C3398CED718D37Fs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibEBD0E96469A2EC3D9C3398CED718D37Fs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibEBD0E96469A2EC3D9C3398CED718D37Fs1
https://doi.org/10.3389/fbioe.2019.00122
https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2019.00122/full
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibEBD0E96469A2EC3D9C3398CED718D37Fs1
https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2019.00122/full
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibEBD0E96469A2EC3D9C3398CED718D37Fs1
https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2019.00122/full
http://refhub.elsevier.com/S2001-0370(24)00313-1/bibEBD0E96469A2EC3D9C3398CED718D37Fs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8596D3F769A3C6CB9F134F045B785A7Bs1
https://doi.org/10.1080/19312458.2012.679848
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8596D3F769A3C6CB9F134F045B785A7Bs1
https://doi.org/10.1080/19312458.2012.679848
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8596D3F769A3C6CB9F134F045B785A7Bs1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8A0F1839E2EBAD7F821101CF99FF510As1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8A0F1839E2EBAD7F821101CF99FF510As1
https://doi.org/10.3390/pr6040027
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8A0F1839E2EBAD7F821101CF99FF510As1
https://doi.org/10.3390/pr6040027
https://www.mdpi.com/2227-9717/6/4/27
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8A0F1839E2EBAD7F821101CF99FF510As1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib8A0F1839E2EBAD7F821101CF99FF510As1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib694A64B2D1D10E77039053F33597FDE8s1
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib694A64B2D1D10E77039053F33597FDE8s1
https://doi.org/10.1016/j.ces.2007.11.034
https://www.sciencedirect.com/science/article/pii/S0009250907008871
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib694A64B2D1D10E77039053F33597FDE8s1
https://www.sciencedirect.com/science/article/pii/S0009250907008871
http://refhub.elsevier.com/S2001-0370(24)00313-1/bib694A64B2D1D10E77039053F33597FDE8s1

	Optimizing bioprocessing efficiency with OptFed: Dynamic nonlinear modeling improves product-to-biomass yield
	1 Introduction
	2 Methods
	2.1 Modeling framework
	2.1.1 Stage I: define
	Bioreactor volume estimation
	Substrate feed types

	2.1.2 Stage II: fit
	Training data
	Experimental data interpolation and rate calculation
	Model parameter estimation

	2.1.3 Stage III: optimize

	2.2 Response surface methodology
	2.3 Model comparison and validation
	2.4 Case study
	2.4.1 Experimental procedures


	3 Results
	3.1 Response surface methodology predicts limited optimization potential
	3.2 OptFed identifies significant optimization potential at high temperature
	3.2.1 Model simplification and parameter estimation
	3.2.2 Process model optimization


	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary material
	Data availability
	References


