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eLife Assessment
The manuscript by Hills, et al. presents data that support multiple conclusions regarding the gene 
expression patterns of cells, especially chemosensory neurons. The evidence is largely solid, with 
transcriptomic analysis combined and validated by spatially resolved expression in tissue sections, 
but is incomplete in other ways with some claims not fully supported. This large-scale single-cell 
transcriptomics dataset is an important resource, alongside a thorough exploration of the molecular 
features of the different cell types within the mouse vomeronasal organ, including expression of 
chemosensory receptors.

Abstract We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) 
from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, 
previously unidentified class of cells that express the vomeronasal receptors (VRs) and a population 
of canonical olfactory sensory neurons in the VNO. High-resolution trajectory and cluster analyses 
reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molec-
ular events that specify the V1r, V2r, and OR lineages from a common stem cell population. The 
expression of vomeronasal and olfactory receptors follow power law distributions, but there is 
high variability in average expression levels between individual receptor and cell types. Substan-
tial co-expression is found between receptors across clades, from different classes, and between 
olfactory and VRs, with nearly half from pairs located on the same chromosome. Interestingly, the 
expression of V2r, but not V1r, genes is associated with various transcription factors, suggesting 
distinct mechanisms of receptor choice associated with the two cell types. We identify association 
between transcription factors, surface axon guidance molecules, and individual VRs, thereby uncov-
ering a molecular code that guides the specification of the vomeronasal circuitry. Our study provides 
a wealth of data on the development and organization of the accessory olfactory system at both 
cellular and molecular levels to enable a deeper understanding of vomeronasal system function.

Introduction
In many terrestrial species, the vomeronasal organ (VNO) is dedicated to the detection of inter- and 
intra-species chemosensory cues (Birch, 1974; Wyatt, 2003; Brennan and Zufall, 2006; Isogai et al., 
2011; He et al., 2008). Detection of these cues triggers innate neuroendocrine responses and elicits 
stereotypic social and reproductive behaviors (Birch, 1974; Wyatt, 2003; Bruce, 1969; Drickamer 
and Assmann, 1981; Halpern and Martínez-Marcos, 2003; Vandenbergh, 1983; Vandenbergh, 
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1989; Clancy et al., 1984; Maruniak et al., 1986; Meredith, 1998; Lonstein and Gammie, 2002; 
Ferguson et al., 2002; Dey et al., 2015). The VNO shares a developmental origin with the main olfac-
tory epithelium (MOE), which detects the odor world at large and allows associative learning to take 
place. Both develop from the olfactory placode during early embryogenesis (Yoshida et al., 1993), 
but the two sensory organs follow different developmental trajectories to establish distinct charac-
teristics in morphology, cellular composition, and molecular features. Single cell atlases of the MOE 
have been generated to reveal astonishing details in its molecular composition and developmental 
trajectories (Olender et al., 2016; Tsukahara et al., 2021; Hanchate et al., 2015; Fletcher et al., 
2017; Wu et al., 2018). Transcriptomic data of the VNO is not extensive (Villamayor et al., 2021; 
Duyck et al., 2017), but single cell analyses have already provided critical information about VNO 
development (Katreddi et al., 2022; Lin et al., 2022). In this study, we generate single cell atlases of 
developing and adult mouse VNO neuroepithelia to answer fundamental questions about the VNO.

The vomeronasal sensory neurons (VSNs) express three families of G-protein-coupled receptors, 
the V1rs, V2rs, and the formyl peptide receptors (Fprs) (Herrada and Dulac, 1997; Ryba and Tirin-
delli, 1997; Rivière et al., 2009; Liberles et al., 2009; Dulac and Axel, 1995; Matsunami and Buck, 
1997; Rodriguez et al., 2002). With more than 400 members, the vomeronasal receptors (VRs) are 
among the fastest evolving genes (Grus and Zhang, 2006; Shi and Zhang, 2007; Silva and Antunes, 
2017; Lane et al., 2004; Kurzweil et al., 2009; Zhang et al., 2004). Signaling pathways in the VNO 
include the Gi2 and Go proteins, and a combination of Trpc2, Girk1, Sk3, and Tmem16a ion channels, 
to transduce activation of the VRs (Liman and Corey, 1996; Yu, 2015; Wu et al., 1996; Dibattista 
et al., 2008; Dibattista et al., 2012; Amjad et al., 2015; Zhang et al., 2010; Yang and Delay, 2010; 
Spehr et al., 2002; Lucas et al., 2003; Kelliher et al., 2006; Berghard and Buck, 1996; Kim et al., 
2012; Kim et al., 2011; Trouillet et al., 2019; Chamero et al., 2011; Menco et al., 2001; Zufall, 
2005; Stowers et al., 2002; Leypold et al., 2002; Liman and Dulac, 2007). The spatially segregated 
expression of Gi2 and Go, as well as the VR genes suggests two major classes of neurons. Our study 
reveals new classes of sensory neurons, including a class of canonical olfactory sensory neurons (OSNs) 
in the VNO. We further determine the developmental trajectories of the separate lineages and the 
transcriptional events that specify these lineages.

Pheromones are highly specific in activating the VSNs (He et  al., 2008; Leinders-Zufall et  al., 
2000; Haga-Yamanaka et al., 2015; He et al., 2010; Boschat et al., 2002; Holy et al., 2000; Nodari 
et al., 2008). Previous studies have shown that VSNs residing in the apical layer of the VNO express 
V1R (Vmn1r) genes in a monoallelic manner (Boschat et al., 2002; Roppolo et al., 2007; Rodriguez 
et al., 1999), whereas the basal VSNs express one or two of the broadly expressed C clade of V2R 
(Vmn2r) genes, plus a unique V2R gene belonging to another clade (Herrada and Dulac, 1997; Ryba 
and Tirindelli, 1997; Rivière et al., 2009; Liberles et al., 2009; Dulac and Axel, 1995; Matsunami 
and Buck, 1997; Martini et al., 2001; Silvotti et al., 2011; Silvotti et al., 2007). Although these 
results suggest that receptor expression in the apical VNO conforms to the ‘one neuron one receptor’ 
pattern as found in the MOE, the mechanisms that control receptor expression are unknown. Here, 
we find substantial co-expression of VRs, and of vomeronasal and odorant receptors. Moreover, our 
analyses indicate that selection of V1R expression likely results from stochastic regulation as in the 
OSNs, but V2R expression likely result from deterministic regulation.

Finally, we address the molecular underpinning of how VSNs establish anatomical connections 
to transmit sensory information. VSNs expressing the same receptor project to dozens of glomeruli 
in the AOB (Rodriguez et al., 1999; Belluscio et al., 1999). Individual stimuli activate broad areas 
in the AOB (Meeks et al., 2010). Moreover, the dendrites of the mitral cells in the AOB innervate 
multiple glomeruli (Del Punta et al., 2002; Wagner et al., 2006; Takami and Graziadei, 1991). This 
multi-glomerular innervation pattern is in stark contrast with the main olfactory system, where OSNs 
expressing the same odorant receptor converge their axons into mostly a single glomerulus in each 
hemisphere of the main olfactory bulb (MOB; Mombaerts et  al., 1996). The anatomical arrange-
ment in the AOB has strong implications as to how species-specific cues are encoded and how the 
information is processed. In the MOB, when the convergent glomerular innervation is experimen-
tally perturbed to become divergent, it does not affect detection or discrimination of odorants but 
diminishes behavioral responses to innately recognized odors (Gronowitz et al., 2021; Qiu et al., 
2020). Thus, stereotypic projection patterns provide a basis for genetically specified connections in 
the neural circuitry to enable innate behaviors. Consistent with this notion, it has been shown that 
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mitral cell dendrites innervate glomeruli containing the same VR type such that the divergent projec-
tion pattern of the VSNs is rendered convergent by the mitral cells (Del Punta et al., 2002). This 
homotypic convergence suggests that rather than using the spatial position of the glomeruli, the 
connection between VSNs and mitral cells in the AOB may rely on molecular cues to enable innate, 
stereotypical responses across different individuals. To a lesser extent, heterotypic convergence, that 
is, axons expressing different receptors innervating the same glomeruli, is also observed (Wagner 
et al., 2006). In either case, expression of the molecular cues is likely genetically specified and tied to 
individual VRs, but little is known about how this specification is determined. Our analyses revealed 
the stereotypic association between transcription factors, axon guidance molecules, and the VRs to 
suggest a molecular code for circuit specification. Whereas this manuscript highlights some of the 
main discoveries, much detailed analyses can be found in the dataset hosted online for readers to 
browse.

Results
Cell types in the VNO
We dissected mouse VNOs from postnatal day 14 (P14) juveniles and P56 adults. Cells were dissoci-
ated in the presence of actinomycin D to prevent procedure-induced transcription. From four adult 
(P56) and four juvenile (P14) mice (equal representation of sexes) we obtained sequence reads from 
34,519 cells. The samples and replicates were integrated for cell clustering. In two-dimensional UMAP 
space, 18 cell clusters can be clearly identified (Figure 1A). These clusters were curated using known 
cell markers (Figure 1B). There was no obvious difference in the presence of cell clusters between 
juvenile and adult VNOs (Figure 1C) or between male and female sexes (Figure 1D). Although there 
were differences in gene expression profiles between the ages (Figure 1—figure supplement 1) and 
sexes (Figure 1—figure supplement 2), the list of significantly differentially expressed genes did not 
appear to be influential for the neuronal lineage and cell type specification, or related to cell adhesion 
molecules, which were the main focuses of this study.

Clustering confirmed all previously identified cell types but also revealed some surprises. The 
largest portion of cells belonged to the neuronal lineage, including the globose basal cells (GBC), 
immediate neuronal progenitors (INPs), the immature and mature VSNs, and a population of cells that 
do not co-cluster with either VSN type (see below). There were substantial numbers of sustentacular 
cells (SCs), horizontal basal cells (HBCs), and ms4-expressing microvillus cells (MVs). Cells engaged 
in adaptive immune responses, including microglia and T-cells, were also detected. A population of 
Fpr-1 expressing cells that were distinctive from the VSNs expressing the Fpr family of genes formed 
a separate class. These were likely resident cells mediating innate immune responses. We also identi-
fied the olfactory ensheathing cells (OECs) and a population of lamina propria (LP) cells, which share 
molecular characteristics with what we have found in the MOE (Wu et al., 2022).

To obtain the spatial location of the various cell types, we selected 100 target genes based on the 
scRNA-seq results. Using probes for these genes, we used the Molecular Cartography platform to 
perform spatial molecular imaging (Figure 1E). Based on molecular clouds and DAPI nuclei staining, 
we segmented the cells and quantified gene expression profiles to cluster the cells. We then map 
individual cell clusters onto their spatial locations in VNO slices. Unlike previous studies that relied on 
a few markers to identify cell types, our approach relied on the spatial transcriptome to calculate the 
probability that a cell belongs to a specific class. This analysis revealed that the VSNs and supporting 
cells are located in the pseudostratified neuroepithelium (Figure 1F). The LP cells are located along 
the LP underlying the neuroepithelium as found in the MOE (Figure 1F and G). Surprisingly, however, 
there are few HBCs located along the basal lamina, in direct contrast to the MOE (Figure 1F and 
G). Most of the HBCs are found in the non-neuronal epithelium surrounding the blood vessel, with 
few near the marginal zone. The marginal zone is thought to be the neurogenic region (Takami and 
Graziadei, 1991; Mombaerts et  al., 1996; Gronowitz et  al., 2021). We quantified the distribu-
tion of cell types in various regions of the VNO neuroepithelia (Figure 1—figure supplement 3A) 
and found significantly more GBCs, INPs, and immature VSNs in the marginal zone than in the main 
zone (Figure 1—figure supplement 3B and Figure 1—figure supplement 3C). A previous study 
suggested neurogenic activity in the medial zone (Brann and Firestein, 2010), but we did not find 
evidence in support of that conclusion, which was largely based on BrdU staining of mitotic cells 
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Figure 1. Single cell transcriptomic profile of the whole vomeronasal organ. UMAP visualization of integrated cell-type clusters for whole-VNO single-
cell RNA-seq. (B) Cell-type marker-gene normalized expression across the cell clusters. C. UMAP of cell-type clusters split by age. (D) UMAP of cell-
type clusters split by sex. (E) A representative image of transcript distribution for 9 genes in a VNO slice using the Molecular Cartography platform 
Resolve Biosciences. Insets (a and b) show the magnified image of areas identified in the main panel. Individual cell shapes can be determined from the 

Figure 1 continued on next page
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without lineage-specific information. Based on our transcriptomic analysis, we conclude that neuro-
genic activity is restricted to the marginal zone.

Novel classes of sensory neurons in the VNO
To better understand the developmental trajectory of the VSNs, we segregated the cells in the neuronal 
lineage from the whole dataset (Figure 2A). The neuronal lineage consists of the GBCs, INPs, imma-
ture neurons as determined by the expression of Gap43 and Stmn2 genes (Figure 2—figure supple-
ment 1A and B), and the mature VSNs. Cells expressing Xist, which is expressed in female cells, were 
intermingled with those from males (Figure 2—figure supplement 1C). This observation is consistent 
with our previous studies using bulk sequencing indicating that the cell types are not sexually dimor-
phic (Duyck et al., 2017). It is also consistent with physiological responses of the VSNs to various 
stimuli (He et al., 2008; He et al., 2010; Holy et al., 2000; Tolokh et al., 2013; Arnson et al., 2010). 
For further analyses, therefore, we did not segregate the samples according to sex.

The VSNs are clearly separated into the V1R and V2R clusters as distinguished by the expression of 
Gnai2 and Gnao1, respectively (Figure 2B). Surprisingly, we observed that a portion of the V2R cells 
also expressed Gnai2. These cells were primarily from adult, but not juvenile male mice (Figure 2—
figure supplement 1D). Past studies based on Gnai2 and Gnao1 expression would have identified this 
group of cells as V1R VSNs, but the transcriptome-based classification places them as V2R VSNs. The 
signaling mechanism of this group of cells may be different from the canonical V2R VSNs.

We found a major group of cells that expressed the prototypical VSN markers but formed a cluster 
distinct from the mature V1R and V2R cells (Figures 1A and 2A). Within the cluster, there was an 
apparent segregation among the cells into V1R and V2R groups based on marker gene expres-
sion (Figure 2B). A small group of OR-expressing neurons also belonged to this cluster. These cells 
expressed fewer overall genes and with lower total counts when compared with the mature V1R and 
V2R cells (Figure 2—figure supplement 1E and F). The lower ribosomal gene expression suggests 
that these neurons are less active in protein translation (Figure 2—figure supplement 1G). This group 
of cells are scattered within the epithelium (Figure 2E).

There are 503 differentially expressed genes in this cluster when compared with other mature 
neurons (padj <0.001; FC >1.5; Figure 2F, Figure 2—figure supplement 1H). Gene ontology (GO) 
analysis reveals that differentially expressed genes enriched in this group are associated with odorant 
binding proteins (Figure 2G). Correspondingly, mucin 2 (Muc2), odorant binding protein 2 a (Obp2a), 
Obp2b, and lipocalin 3 (Lcn3) genes, usually enriched in non-neuronal supporting or secretory 
gland cells, are expressed at higher levels in these neurons than the canonical VSNs (Figure 2H and 
Figure 2—figure supplement 2A–D). They also have higher expression of Wnk1, which is involved 
in ion transport, the lncRNA Neat1, the purinergic receptor P2ry14, the zinc finger protein Zfp738, 
and the centrosome and spindle pole associated Cspp1 (Figure 2—figure supplement 2E–I). On the 
other hand, these cells exhibit lower expression of Omp and JunD (Figure 2F and Figure 2—figure 
supplement 2M–N). The lower level of Omp suggests that these cells do not have the full character-
istics of mature VSNs (mVSNs), but they are also distinct from the immature VSNs (iVSNs) as they do 
not express higher levels of immature markers such as Gap43 and Stmn2 (Figure 2—figure supple-
ment 1A and B). The lower expression of Ndua2, Ndua7, Cox6a1, and Cox7a2, which are involved 
in mitochondrial activities, suggest that these cells are less metabolically active than the canonical 
VSNs (Figure 2F and Figure 2—figure supplement 2O–R). To rule out the possibility that these cells 
were immature or senescent, we performed a pseudotime analysis on the neuronal lineage and found 
the cluster to have similar pseudotime values as the mature V1R and V2R linages (Figure 2—figure 

transcript clouds. (F) Spatial location of individual VNO cells color-coded according to cell type prediction based on the spatial transcriptomic analysis. 
(G) Location of cell belonging to HBC, GBC, INP, and LP cell types, respectively. Heat indicates confidence of predicted values. BL: basal lamina; MZ: 
marginal zone.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Age differences in gene expression.

Figure supplement 2. Sex differences in gene expression.

Figure supplement 3. Zonal distribution of cell types in the VNO neuroepithelia.

Figure 1 continued

https://doi.org/10.7554/eLife.97356
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Figure 2. Novel neuronal lineage. (A) UMAP visualization of cell-type clusters for the neuronal lineage. (B) Expression of Gnai2 and Gnao1 in the 
neuronal lineage. (C) Expression of Cnga2 and Gnal in the OSN lineage. (D–E) Location of mOSNs (D) and sVSNs (E) in a VNO slice. Color indicates 
prediction confidence. (F) Heatmap of normalized expression for a select set of mutually differentially expressed genes between sVSNs and mature 
V1Rs, V2Rs, and OSNs. (G) Enriched gene ontology (GO) terms in sVSNs when compared with V1R and V2R VSNs, respectively (GSEA Permutation 

Figure 2 continued on next page
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supplement 3A and B). Taken together, the gene expression profile suggests that this new class of 
neurons may not only sense environmental stimulus, but also may provide proteins to facilitate the 
clearing of the chemicals upon stimulation. We, therefore, name these cells as putative secretory VSNs 
(sVSNs).

We also identify a distinct set of cells expressing the odorant receptors (ORs) that comprise ~2.3% 
of the total neurons (Figure 2A). A previous study has found the expression of ORs in neurons that 
display some typical molecular features of VSNs, while another study detecting ORs in the VNO 
suggested the presence of non-canonical OSNs Lévai et al., 2006; Nakahara et al., 2016. The OR 
expressing cells were shown to project to the AOB, but it was not clear how prevalent OR expression 
was in the VNO, nor whether the cells were VSNs or OSNs. While some OR expressing cells cluster 
with the mature V1R or V2R neuronal lineages, a majority of these cells lacks V1R or V2R markers and 
forms a cluster distinct from the V1R and V2R VSNs (Figure 2C). These cells express Gnal and Cnga2, 
which are the canonical markers of OSNs in the MOE.

Differential gene expression analysis (Figure 2—figure supplement 3C) reveals an enrichment for 
multiple GO terms related to cilium (Figure 2—figure supplement 3D), consistent with the ciliated 
nature of OSNs. We thus mark the cells as canonical OSNs. Spatial mapping reveals that the OSNs are 
mainly in the neuroepithelium, with some cells concentrated in the marginal zone (Figure 2D).

Developmental trajectories of the neuronal lineage
The VNO develops from the olfactory pit during the embryonic period and continues to develop 
into postnatal stages (Garrosa et  al., 1998; Suárez, 2011; Katreddi and Forni, 2021). Neurons 
regenerate in adult animals (Giacobini et al., 2000; Martínez-Marcos et al., 2000). Cell types in the 
vomeronasal lineage have been shown to be specified by BMP and Notch signaling (Katreddi et al., 
2022; Naik et al., 2020), and coordinated by transcription factors (TFs) including Bcl11b/Ctip2, C/
EBPγ, ATF5, Gli3, Meis2, and Tfap2e (Enomoto et al., 2011; Lin et al., 2018; Nakano et al., 2019; 
Taroc et al., 2020; Rawson et al., 2010; Chang and Parrilla, 2016). Recent scRNA-seq studies of 
the VNO have helped identify Notch signaling as a specifier of the apical and basal lineages and have 
provided insight into the distinct transcriptional profiles of the basal and apical program (Katreddi 
et al., 2022; Lin et al., 2022). Despite these advances in understanding the role of individual genes in 
VNO development, the transcriptional program that specifies the lineages is not known.

To explore VSN development, we performed pseudotime inference analysis of the V1R and V2R 
lineages for P14 and P56 mice using Slingshot (Figure 3A; Street et al., 2018). We set GBCs as the 
starting cluster and mVSNs as terminal clusters. A minimum spanning tree through the centroids of 
each cluster was calculated using the first fifty principal components and fit with a smooth representa-
tion to assign pseudotime values along the principal curve of each lineage. Cell density plots for both 
the V1R and V2R lineage reveal a higher portion of immature VSNs at P14 than at P56. For the mature 
VSNs, the P14 samples have peaks at an earlier pseudotime than the P56 mice (Figure 3B). This result 
indicates the VSNs in juvenile mice are developmentally less mature than their counterparts in adults, 
but these differences do not distinguish them in obvious ways (Figure 1C).

On the other hand, we have identified dynamic changes in transcriptomes associated with the 
V1R and V2R lineages. There were 2037 significantly differentially expressed genes between V1R and 
V2R lineages (Figure 3C). While V1R and V2R lineages shared some of the genes in the early stages 
of development, most show distinct expression patterns between the two. To determine the tran-
scriptional program associated with the lineages, we examined the expression sequence of individual 
transcription factors and signaling molecules from the gene list.

testing w/ FDR ≤ 0.05). (H) Box plots of normalized expression for Muc2, Obp2a, Obp2b, and Lcn3 across mature sensory neurons (Wilcoxon rank sum 
test, FDR ≤ 0.05).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Neuronal lineage features and differentially expressed genes in sVSNs.

Figure supplement 2. Significantly regulated genes in sVSNs.

Figure supplement 3. sVSN Pseudotime, OSN markers and GO Terms.

Figure 2 continued

https://doi.org/10.7554/eLife.97356
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Figure 3. Molecular cascades separating the neuronal lineages. (A) PCA plot of V1R and V2R pseudotime principal 
curves across cell types. (B) Cell density plots across pseudotime for P14 and P56 mice (Two-sided Kolmogorov-
Smirnov test). (C) Heatmap showing expression in pseudotime for genes that differentially expressed between 
the V1R and V2R lineages. Heat indicates Z-score values. (D) Zoomed in UMAP of cell types early in the neuronal 

Figure 3 continued on next page
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The transcription factor Ascl1 is expressed by a subset of the GBCs that appears to be the earliest 
in developmental stage, whereas Sox2 is expressed by a broader set of GBCs (Figure 3D–F). The 
early INPs are defined by the expression of Sp8, Neurog1, and Neurod1. Neurog1 is mostly restricted 
in the early INPs, whereas Neurod1 and Sp8 are also expressed by the late INPs (Figure 3G–I and 
Figure 3—figure supplement 1A–B). Neurod1 is expressed by iVSNs and iOSNs, but Sp8 is only 
expressed by the iVSNs.

To obtain a refined view of the transition from INPs to the immature sensory neurons, we took 
the subset and re-clustered them (Figure  3J). The late INPs are separated into two clusters that 
share marker genes with the V1R and V2R iVSNs, respectively, indicating that commitment to the 
two lineages begins at the late INP stage. Consistent with previous findings, the homeobox protein 
Meis2 was specific to the V1R lineage (Figure 3K). Concomitant with Meis2, there are a number of 
other genes expressed by the late INPs committed to the V1R fate, including secretin (Sct), Foxj1 
target gene Fam183b, the microRNA Mir100hg, acyl-CoA dehydrogenase Acad10, and Keratin7 
(Krt7; Figure  3L–O and Figure  3—figure supplement 1C). Notably, Bcl11b is exclusively absent 
from INPs committed to the V1R fate. This observation is consistent with the observation by Katreddi 
and colleagues that Bcl11b is lost in basal INPs in Notch knockout (Katreddi et al., 2022). Together 
with the observation that loss of Bcl11b results in increased number of V1R VSNs (Enomoto et al., 
2011), these results indicate that transient downregulation of Bcl11b is required for the V1R lineage 
(Figure 3U).

The transcription factor Tfap2e, which is required to maintain the V2R VSNs (Lin et al., 2018), is 
expressed by the iVSNs but not by the late INPs committing to the V2R fate (Figure 3P). Sp8 is the 
only transcription factor specifically expressed in the late INPs committed to the V2R but not the 
V1R fate (Figure 3I). Emx2 is expressed by all neuronal lineage cells (Figure 3—figure supplement 
1E). Krt8 is also found throughout the V2R lineage, but its expression is diminished in the V1R cells 
(Figure 3—figure supplement 1D).

The OSN lineage is marked by the expression of Olig2, Fezf1, Tshz2, and Nfib (Figure 3Q–T). 
The expression of Olig2 and Fezf1 is exclusive to the OSN fate. Tshz2 is expressed at a late stage 
of the iVSNs, but not in the INPs. There are multiple genes that may not directly be engaged in cell 
fate determination but are clearly markers of the cell types (Figure 3—figure supplement 1F–R). 
Although Notch1 and Dll4 are not identified as significantly differentially expressed, feature plots 
show clear distinction in their expression in the V2R and V1R lineage, respectively, as an earlier study 
showed (Katreddi et al., 2022).

Based on these patterns, we propose a model of molecular cascades that specify the neuronal 
lineages in the VNO (Figure 3V). Ascl1 and Sox2 specify the GBCs. The down regulation of Ascl1, 
Sox2, and subsequent upregulation of Neurog1, Neurod1, and Sox8 commits the cells to the early 
INPs. The VSN and OSN lineages diverge after the early INP stage. The downregulation of Sp8, Nfib, 
and Bcl11b and the expression of Meis2 promote the V1R fate.

The downregulation of Sp8 and the expression of Fezf1, Tshz2, and Olig2 are required for commit-
ment to the OSN lineage. Downregulation of Sp8 is not required for the V2R lineage, which begin 
expressing Tfap2e. Neurod1 is expressed in all INPs. These patterns of expression suggest that both 
the OSN and V1R lineages required the expression of specific transcription factors. The V2R lineage, 
on the other hand, appears to rely on factors inherited from the early INPs. This suggests the possi-
bility that the V2R lineage is a default path for the VSNs.

Receptor expression in the VSNs
We quantified the expression of V1Rs, V2Rs, and ORs to gain insights into how chemosensory cues 
may be encoded by the VNO. For comparison, we also included OR expression from the MOE (Wu 
et al., 2022). Within each class of receptors, the probability of expression of a gene follows a power 

lineage. (E–I) Feature plots for select genes expressed early in the neuronal lineage. (J) UMAP of INP, iVSN, iOSN, 
and mOSN cell types. (K–U) Normalized expression of candidate genes for V1R/V2R/OSN lineage determination. 
(V) A simplified model for lineage determination by transcription factors in VNO sensory neurons.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Genes expressed during INP to immature neuron transition.

Figure 3 continued
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law distribution except for the lower ranked genes (Figure 4—figure supplement 1A). The sharp 
deviation from the power law curve for the lower ranked receptors is likely from technical dropout of 
genes expressed at low levels as they cannot be effectively captured by the scRNA-seq platforms. We 
plotted the relationship between total reads and the number of cells expressing a given receptor, and 
the average reads per cell for the receptors (Figure 4A–H). We observed weak correlations between 
the total reads and the cell number expressing a given V1R or a V2R (Figure 4A and B). This non-
uniform distribution of VR genes is consistent with our observation from bulk sequencing results 
(Duyck et al., 2017).

Most V1Rs and V2Rs are expressed by less than 1500 cells (out of 34,519). Most VRs are expressed 
at less than 100 counts per cell (Figure  4E and F). Several V1Rs, including Vmn1r184, Vmn1r89, 
Vmn1r196, Vmn1r43, and Vmn1r37, are highly expressed in individual cells (Figure 4A). Vmn1r196, 
Vmn1r43, and Vmn1r37 are also expressed at the highest level per cell. Some others, including 
Vmn1r183, Vmn1r81, and Vmn1r13, are expressed in large numbers of cells but have low expression 
in individual cells. Notably, the two highest expressed receptors recognize female pheromone cues. 
Vmn1r89, also known as V1rj2, is one of the receptors that detects female estrus signals. Vmn1r184 is 
one of the receptors for the female identity pheromone (Isogai et al., 2011; Haga-Yamanaka et al., 
2015; Haga-Yamanaka et al., 2014). The functions of Vmn1r196, Vmn1r43, and Vmn1r37, however, 
are unknown. We did not detect the expression of 45 V1Rs, which may be the result of technical 
dropout (Figure 4E).

We do not observe obvious correlations between expression level and chromosomal locations. 
Both Vmn1r89 and Vmn1r184 are located on Chromosome 7, in a region enriched in V1R genes. Simi-
larly, Vmn1r37 and Vmn1r43 are in a V1R-rich region on Chr. 6. However, Vmn1r183, Vmn1r13, and 
Vmn1r81, which are in the same clusters, are expressed by many cells but at some of the lowest levels.

All V2R genes are detected in the VNO (Figure 4B and F). Vmn2r53, which has been shown to 
mediate intermale aggression through a dedicated circuit, has the highest level of expression and is 
expressed by the second most cells (Itakura et al., 2022). Among the highly expressed V2Rs, Vmn2r1 
and Vmn2r7 are co-receptors for other V2Rs. Vmn2r59 has been shown to detect predator signals 
(Isogai et al., 2011). Vmn2r115, a receptor for ESP22 that is secreted by juveniles (Ferrero et al., 
2013), is expressed by the highest number of cells. However, Vmn2r116 (V2rp5), which recognizes 
ESP1 and induces lordosis behavior in females, is a close homolog of Vmn2r115 but not among the 
highly expressed genes (Ferrero et al., 2013; Haga et al., 2010). Notably, Vmn2r114, close homolog 
of Vmn2r115 and Vmn2r116, is also expressed by large numbers of cells. Vmn2r88, a hemoglobin 
receptor (Osakada et al., 2022), was not identified as a highly expressed gene. The functions of other 
highly expressed receptors are not known.

In contrast to the VR genes, total counts for ORs in the VNO exhibit a tight relationship with the 
number of cells (Figure 4C and G). Except for Olfr124, most of the OR genes align well with the linear 
regression curve. This relationship is different from the VR genes and is also distinct from the single 
cell data from the MOE, which exhibits a similar distribution as the VRs (Wu et al., 2022; Figure 4D 
and H). Out of the 686 OR genes detected in the VNO, only 80 are expressed by more than 10 copies 
per cells, indicating that a majority of the ORs do not contribute to meaningful signaling of chemo-
sensory cues.

To comprehensively survey receptor expression, we also included VR and OR pseudogenes in 
our analysis (Figure  4—figure supplement 1B–G). We did not detect a significant expression of 
pseudogene V1Rs (Figure 4—figure supplement 1E), but Vmn2r-ps87 has the highest count/cell in 
the V2R population (Figure 4—figure supplement 1F).Olfr709-ps1, and Olfr1372-ps1 are the two 
highest expressed genes in terms of total count and total number of cells in the VNO (Figure 4—
figure supplement 1D).

We next examined transcription factors associated with individual receptor types. In the MOE, ORs 
are monoallelically expressed (Chess et al., 1994). The unique expression of an OR gene is medi-
ated by chromosomal repression and de-repression, coordinated by transcription factors and genes 
involved in epigenetic modification (Monahan et  al., 2019; Dalton et  al., 2013; Clowney et  al., 
2012; Lyons et al., 2013; Monahan and Lomvardas, 2015; Lomvardas et al., 2006). Monoallelic 
V1R gene expression is also observed (Rodriguez et al., 1999). Epigenetic modification takes place 
at V1R gene clusters (Rodriguez, 2013), but the repression of receptor genes appears to permit tran-
scriptional stability rather than receptor choice (Dietschi et al., 2022). How VR genes are selected is 

https://doi.org/10.7554/eLife.97356
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Figure 4. Receptor expression in the VNO. (A-D) Expression level of individual receptor (total raw counts) plot against the number of cells expressing 
the receptor for V1R (A), V2R (B), VNO-Olfr (C), and MOE-Olfr (D). (E-H) Ranked distribution of average expression per cell for the four receptor classes. 
Inset pie charts show the number of cells expressing a receptor at the specified range. (I and J) Heatmaps showing the Pearson correlation coefficient of 
transcription factor expression among the V1Rs (I) or V2Rs (J). (K) A simplified model of transcription factor selection in mVSNs.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure 4 continued on next page

https://doi.org/10.7554/eLife.97356
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not known. To explore our dataset for clues of transcriptional activities associated with VR expression, 
we plotted the cross-correlation between VRs and their TF profiles. We observed correlations among 
receptors (Figure  4I and J). We did not find an obvious association between TF profiles and VR 
sequence similarity of pairs (Figure 4—figure supplement 2A).

There is a high correlation among a large portion of V1Rs (Figure 4I). By analyzing the correlation 
between individual TFs with the VRs, we found that V1R expression is overwhelmingly associated with 
Meis2 (Figure 4—figure supplement 2B). The few receptor types that do not show high correlation 
with Meis2 are associated with Egr1 or Fos. It is not clear whether these prototypical immediate 
early genes are involved in specifying receptor choice. This result indicates that once the V1R lineage 
is specified by Meis2, receptor choice is not determined by specific combinations of transcription 
factors. This scenario is similar to receptor choice by the OSNs in the MOE.

Different from the V1Rs, we observed islands of high similarity of TF expression among the V2Rs, 
indicating that receptors in these islands share the same set of TFs (Figure 4J). We identify correlation 
between individual TFs with V2Rs (Figure 4—figure supplement 2C). Whereas Tfap2e is involved in 
specifying the V2R fate, it is only associated with the expression of a subset of V2Rs. Pou2f1 and Atf5 
are more strongly associated with other subsets of receptors. Unlike the V1Rs, there is a disparate set 
of TFs associated with the V2Rs, suggesting that the V2R choice may be determined by combinations 
of TFs. Based on the prevalence of individual transcription factors in association with the VRs, we 
propose a model of transcriptional cascade that may be involved in receptor choice (Figure 4K). For 
the V2Rs, Tfap2e+ cells can be further specified by Ikzf4, Tcf4, and Trps1. In Ikzf4-negative cells, Batf3, 
Atf5, Pbx2, and Pou2f1 can specify receptor types, respectively. In the Tfap2e- cells, receptors can be 
specified by Pou2f1, Rlf, and Batf3.

Co-expression of chemosensory receptors
We next investigated co-expression of receptors in individual cells. Since we applied SoupX to limit 
ambient RNA contamination and Scrublet to remove doublet cells, we set a stringent criterion in 
counting receptors expressed by single cells (Young and Behjati, 2020). V1R and V2R genes on 
average constitute ~2% of total reads per cell, and the ORs constitute less than 1% of the total reads 
per cell (Figure 5—figure supplement 1A–C). On average, the V2Rs have significantly more than one 
receptor per cell (Figure 5—figure supplement 1B). Using Shannon Index to measure uniqueness 
of receptor expression in individual cells, we found that the mature VSN and OSNs have relatively 
high specificity, but many cells show significantly higher index values, indicating that they expressed 
multiple receptors (Figure 5A). In support of this observation, there are significant representations 
of the second and third highest expressed receptors in all three types of neurons (Figure 5—figure 
supplement 1D–G).

To further reduce contributions of spurious, random low-level expression, we only consider those 
receptors with at least 10 raw counts per cell and are found in at least five cells to evaluate co- expres-
sion among receptors. We split cells into groups according to cell-type, age, and neuronal lineage 
and plot the percentage of cells expressing zero, one, two, and three or more species (Figure 5B–C). 
This analysis shows that receptor expression specificity increases as the lineages progressed from 
progenitors into mature neurons. Immature neurons have more cells co- expressing receptors than 
mature cells. More co-expressions are observed in the younger animals than the older ones. This line 
of evidence indicates that the co-expression we have found is not from experimental artifacts but 
reflects real biological events. Contamination would not be selectively enriched in immature cells and 
not present in the INP cells.

We performed Fisher’s exact test using contingency tables for every pairing of expressed receptor 
genes. For the pairs that pass the test, we generated Circos plots to show the genomic loci for all 
significant V1R, V2R, and interclass pairs (Figure 5D–F). This analysis showed that 47.7% of co-ex-
pressed receptors are co-localized on the same chromosome.

We found a few sets of co-expressed VRs that would have strong implications for how pheromone 
signals are detected. Vmn1r85 (V1rj3) and Vmn1r86 are two receptors located next to each other on 

Figure supplement 1. Receptor distribution in the VNO.

Figure supplement 2. Co-expression between vomeronasal receptors and transcription factors.

Figure 4 continued

https://doi.org/10.7554/eLife.97356
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Figure 5. Co-expression among VNO receptor classes. (A) Shannon Indices showing the specificity of receptor expression. High values indicate 
more co-expressions. (B–C) Prevalence and level of receptor co-expression by age and cell- type for the V1R (B) and V2R (C) lineages, respectively. 
(D–F) Circos plot of genomic loci for significantly co-expressed receptor pairs in the V1R (D) V2R, (E) and across-type populations (F). (G–K) Detection of 

Figure 5 continued on next page
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Chr. 7, sharing a high level of homology, and belonging to the V1rj clade. They have a high level of 
co-expression but are not co-expressed with Vmn1r89 (V1rj2), located ~100 Kb away, even though 
both Vmn1r85 and Vmn1r89 receptors are activated by sulfated estrogen and carry information about 
the estrus status of mature female mice (Haga-Yamanaka et al., 2015; Nodari et al., 2008; Haga-
Yamanaka et al., 2014; Figure 5D). Another set of receptors that recognize female-specific phero-
mone cues are the V1re clade receptors. We found that Vmn1r185 (V1re12), which recognizes female 
identity pheromones, was co-expressed with its close homolog Vmn1r184 gene, which is about 350 kb 
away on Chr 7. They are not co-expressed with Vmn1r69 (V1re9), which also recognizes female pher-
omones, but is located 16 Mb apart on Chr. 7 (Haga-Yamanaka et al., 2015; Haga-Yamanaka et al., 
2014; Fu et al., 2015; Lee et al., 2019; Figure 5D).

On Chr. 7 there are two other major clusters of V1R genes that show co-expression. One cluster 
includes Vmn1r55-Vmn1r64, 10 genes belonging to the V1rd clade and located within a 600  Kb 
region. Another one includes Vmn1r167, Vmn1r168, and Vmn1r169, which appear to be specifically 
paired with Vmn1r175, Vmn1r177, and Vmn1r176, respectively. These receptor pairs are arranged in 
a 300 Kb region with a head-head orientation. Outside of Chr. 7, several small clusters on Chr. 6 and 
one large cluster on Chr. 3 exhibit significant co-expression of V1Rs.

The V2R neurons coordinately express one common V2R and one specific receptor (Akiyoshi 
et al., 2018; Ishii and Mombaerts, 2011). Our co-expression analysis confirms the broad association 
of Vmn2r1-7, which are located on Chr. 3, with other receptors across various chromosomal locations 
(Figure 5E). In addition, we also identified co-expression patterns among the specifically expressed 
V2Rs. Among these receptor genes, intra-chromosomal co-expressions are observed for receptors 
residing on Chr. 7, Chr. 17, and Chr. 5. There is also inter-chromosomal co-expression between one 
locus on Chr. 17 with a cluster on Chr. 7 (Figure 5E).

Lastly, we have observed co-expression of receptors across different classes of receptors 
(Figure 5F). Notably, Vmn2r1-3 are co-expressed with several Vmn1r receptors on Chr. 3. Vmn2r7 is 
co-expressed with a group of Vmn1r genes on Chr. 13. The odorant receptor Olfr344 is co- expressed 
with several V1R and V2R genes.

In past studies, VR expression was examined using in situ hybridization, immunostaining, or genetic 
labeling. The traditional histological methods were not sensitive enough to quantitatively measure 
signal strength. Moreover, pairwise double in situ is too laborious to capture co- expression of two 
or more receptors. To verify co-expression of VR genes by individual VSNs, we selected 30 VR genes 
based on scRNA-seq data and used Molecular Cartography to examine their expression patterns in 
situ.

Given the high incidents of co-expression between receptors in the Vmn1r55-64 cluster on Chr. 7 
(Figure 5D), we included five probes for this set of genes and confirmed colocalization of pairs in the 
VSNs (Figure 5G), Interestingly, we did not find cells expressing more than two receptor genes for 
this set. We also confirmed the co-expression between Vmn1r85 and Vmn1r86 as indicated by single 
cell data (Figure 5D and G).

We confirmed the co-expression among genes from the V2R genes (Figure 5H; Silvotti et al., 
2011; Francia et al., 2015). Consistent with previous reports (Silvotti et al., 2011; Silvotti et al., 
2007), Vmn2r2, Vmn2r3, Vmn2r6, and Vmn2r7 are comingled in several cells, but Vmn2r1 is not co-ex-
pressed with these four broadly expressed V2Rs (Figure 5H). Outside of the Vmn2r1-7 group, we find 
that Vmn2r81 is co-expressed with Vmn2r20 or Vmn2r24 but without any of the Vmn2r1-7 transcripts 
(Figure 5H). We detected more incidents of co-expression between Fpr3 and Fpr-rs4, and between 
Fpr3, Fpr-rs3, Fpr-rs4 with V1Rs than with V2Rs (Figure 5I and J). We also found co-expressions that 
are not predicted by the single cell analysis (Figure 5K). The discrepancy likely can be attributed to 
the relatively low-level expression of one of the receptor genes. This type of co-expression may not 
pass the strict criteria we set for the single cell analysis.

receptor gene co-expression using Molecular Cartography. Individual dots represent single molecules. Colors represent different receptor genes. DAPI 
stain is shown as gray. Scale bar: 10 µm.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Receptor expression statistics.

Figure 5 continued
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A surface molecule code for individual receptor types
VSNs expressing a given receptor type project to the AOB to innervate glomeruli distributed in quasi-
stereotypical positions (Rodriguez et al., 1999; Belluscio et al., 1999; Haga et al., 2010). The high 
number of glomeruli innervated by a given VSN type raises the question about mechanisms that 
specify the projection patterns and the connection between the VSNs and the mitral cells. For a 
genetically specified circuit that transmits pheromone and other information to trigger innate behav-
ioral and endocrine responses, there must be molecules that instruct specific connections among 
neurons. Several studies have revealed the requirement of Kirrel2, Kirrel3, Neuropilin2 (Nrp2), Epha5, 
and Robo/Slit in vomeronasal axon targeting to the AOB (Brignall et al., 2018; Prince et al., 2013; 
Knöll et al., 2001; Walz et al., 2002; Cloutier et al., 2002; Knöll et al., 2003; Prince et al., 2009). 
However, how individual guidance molecules or their combinations specify connectivity of individual 
VSN types is completely unknown. Here, we leverage the unbiased dataset to identify surface mole-
cules that may serve as code for circuit specification.

We identified 307 putative axon guidance (AG) molecules, including known cell surface molecules 
involved in transcellular interactions and some involved in modulating axon growth. Using this panel, 
we calculated pairwise similarity between two VR genes, and the similarity in their guidance molecule 
expression. Analysis of the relationship indicates the there is a general increase in guidance molecule 
similarity associated with VR similarity (Figure 6A). Consistent with this observation, when we plotted 
the similarity of surface molecule expression among cells expressing different receptors, we found 
islands of similarity among the receptor pairs (Figure 6B). We then conducted correlation analysis 
between the guidance molecules with the V1Rs (Figure 6C) and V2Rs (Figure 6D). Consistent with 
previous reporting, we found that Kirrel2 was associated with nearly half of the V1Rs and Kirrel3 was 
mainly associated with V2Rs that project to the caudal AOB (Brignall et al., 2018; Prince et al., 2013). 
Robo2 is associated with nearly all V2Rs. We found that Teneurin (Tenm2 and Tenm4) and protocad-
herin (Pcdh9, Pcdh10, and Pcdh17) genes were associated with specific receptors (Lee et al., 2008; 
Alkelai et al., 2016). Epha5, Pdch10, Tenm2, Nrp2 are also strongly associated with V1Rs with partial 
overlap with each other. Pcdh9, Tenm4, Cntn4, EphrinA3, Pchd17, as well as Kirrel2 and Kirrel3 all 
show association with specific V2Rs. Numerous guidance molecules that are not broadly expressed 
are also associated with individual VRs.

Based on these associations, and supported by existing literature, we propose a model of the 
specification of separate groups of VRs. In this model, Robo2 separates the rostral vs. caudal AOB. 
Robo2 +V2 R neurons project to the caudal AOB, whereas Robo2- V1R cells project to the rostral AOB 
(Knöll et al., 2003; Prince et al., 2009; Cloutier et al., 2004). Among V1Rs, Kirrel2 expression distin-
guishes between two groups of cells (Brignall et al., 2018; Wang et al., 2021). The Kirrel2 +popula-
tion can be further separated into Epha5 +and Epha5- population (Prince et al., 2013; Wang et al., 
2021). The Epha5 +population can be separated further by Pcdh10 expression. In the Kirrel2- cells, 
Epha5, Pcdh10, Tenm4, and Tenm2 mark separate groups. Ncam1, Epha5, and Cntn4 may contribute 
to specifying small sets of cells. For the V2Rs, Pcdh9, Cntn4, Tenm4, Tenm2, and Pcdh17 have a 
decreasing range of expression, which may be used to specify increasingly refined connection. 
Notably, even though Kirrel2 and Pcdh10 are mostly detected in the V1Rs, they are also expressed by 
small sets of the V2Rs.

Transcriptional regulation of receptor and axon guidance cues
The specification of a vomeronasal circuit needs to be tied to receptor expression. We next address 
whether a transcriptional code is associated with both VR and AG molecule expression. We calcu-
lated pairwise similarity among the receptors according to their expression of TF and AG genes 
(Figure 7A). The result shows that V1R and V2R are distinctively separated. Besides a small group of 
broadly expressed V2Rs, all VR types are unique in their gene expression. Fpr types are more similar in 
their expression profile with the V1Rs, but the OR types are intermingled with both VR types.

To further determine the TF/AG associations that are specific to individual receptor types, we 
applied stringent criteria to calculate the Jaccard Index for each pair of TF/AG (Figure 7B), which 
reflect the statistical probability of co-expression within the same cell. The analysis reveals unique 
combinations for every receptor type (Figure 7C–G). Even though the only TF associated with V1R 
expression is Meis2, other TFs are involved in specifying AG gene expression. For example, cells 
expressing V1Rs with high sequence homology and in chromosomal proximity share a similar set of 

https://doi.org/10.7554/eLife.97356
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Figure 6. Axon guidance molecules associated with receptor genes. (A) Distribution density plot showing relationship between similarity of axon 
guidance (AG) gene expression profiles and receptor sequence similarity. The distribution of receptor similarity (x-mean and x-median) remains constant 
over the range of AG similarity. The AG similarity (y-mean and y-median) as a function of receptor similarity shows a strong correlation at the dense part 
of the curve. (B) Heatmap showing the Pearson correlation coefficient among VRs in their AG expression. (C and D) Heatmaps showing the V1R-AG 

Figure 6 continued on next page
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TF and AG genes, but the expression patterns are distinct from each other (Figure 7D). For broadly 
expressed V2Rs, Vmn2r3 and Vmn2r7, which are co-expressed by the same set of cells, share nearly 
identical TF/AGs (Figure 7E). In contrast, Vmn2r1, which does not co-express with either Vmn2r3 or 
Vmn2r7, lacks the expression of Pou2f1 and Tenm2 despite sharing all other genes. Other V2R types 
also show distinct TF/AG associations (Figure 7F–G).

Discussion
Single cell RNA-seq analysis provides an unprecedented opportunity to identify cell types and deter-
mine genes associated with individual cells, but it is not without pitfalls. At the current state of the 
art, the depth of sequencing only allows sampling of transcripts that are expressed at relatively high 
levels. Sequencing dropouts and potential contamination also can complicate the analysis. Using the 
current state-of-the-art tools, and applying conservative criteria, we provide an in-depth look at the 
molecular and cellular organization of the mouse VNO. The analyses reveal new cell types, specific 
co-expression of receptors, and transcriptional regulation of lineage specification. Moreover, our anal-
yses uncover specific associations between transcription factors, surface guidance molecules, and 
individual receptor types that may determine the wiring specificity in the vomeronasal circuitry.

The molecular distinction between the sVSNs and the classic VSNs indicates that they may serve a 
specific function. They are different from the solitary chemosensory cells that are trigeminal in nature 
(Ogura et al., 2010). We speculate that these cells may secrete olfactory binding proteins and mucins 
in response to VNO activation. The VNO is a semi-blind tubular structure. Chemical cues are actively 
transported into the VNO and can only be cleared by active transport systems, which are thought 
to be carried out by the lipocalin family of proteins, or by degradation (Ogura et al., 2010; Mere-
dith et al., 1980; Wysocki et al., 1985; Miyawaki et al., 1994). These proteins are important to 
protect the integrity of neuroepithelia. They are generally produced by the SCs or the Bowman’s 
gland (Miyawaki et al., 1994). It is plausible that the sVSNs can produce specific lipocalin proteins 
based on the ligand detected by the VRs they express. These cells may also convey chemosensory 
information to the AOB, but we do not know if they project to the central brain. We also have identi-
fied a class of canonical OSNs in the VNO. Previous reports show that these neurons project to AOB. 
It is plausible that the OSNs can detect a set of volatile odors that carry species-specific information 
and directly convey it to brain areas that regulate innate responses. Our list of these ORs could direct 
effort to identify these odors to reveal their ethological relevance.

The co-expression of multiple VRs in individual VSNs is intriguing, as a previous analysis of the 
MOE detected minimal co-expression of ORs (Hanchate et al., 2015). Importantly, there is a higher 
propensity for VR co-expression between certain receptor pairs. Notably, there is co-expression of 
receptors sharing common ligands, or that are similar in their sequences. These observations indicate 
that co- expressed receptors may serve redundant function detecting the cues. For example, the V1rj 
receptors are cognate receptors for sulfates estrogen and estrus signals. Their co-expression indicates 
that the neurons detect the same class of molecules redundantly. Moreover, co- expression of similarly 
tuned receptors makes it plausible for heterotypic convergence, when these neurons converge into 
glomeruli that express one or the other receptors.

How specificity of neuronal connections in the olfactory system is determined remains unknown. 
In the main olfactory system, glomerular positions are coarsely specified along the anterior- poste-
rior and dorsal-ventral axes by gradients of axon guidance molecules whereas the sorting of axons 
according to the odorant receptors is mediated by homophilic attraction and heterotypic repulsion 
using a different set of guidance molecules (Mori and Sakano, 2011). Spontaneous neural activities 
determine the expression of both sets of molecules. It is not known whether VSNs utilize the same 
mechanism. Given the multi-glomerular innervation patterns by the VSNs, it is exceedingly difficult to 
determine the contribution of individual guidance molecules to specifying VSN innervation.

We have identified guidance molecules associated with individual VRs that potentially constitute 
a code set that specifies VSN axon projections and their connection with postsynaptic cells. Each 

(C) and V2R-AG (D) associations. Heat shows average expression level for AG genes for a given receptor type. (E) A simplified model of hierarchical 
distribution of AG in the mVSNs.

Figure 6 continued
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Figure 7. Transcriptional determinants of axon guidance molecules for individual receptor types. (A) Correlation heatmap between receptor types 
calculated from co-expressed AG and TF genes. Receptor types are color-coded. (B) 3-D heatmap showing the Jaccard Indices between AG and TF 
genes for each of the VRs in the dataset. (C–G) Heatmaps showing Jaccard Indices of TF-AG associations for V1R (C and D) and V2R types (E–G). The 
lists of TF and AG genes here are abridged from the full list to enhance visualization. (C) These receptors share Meis2 expression but different AG 

Figure 7 continued on next page
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receptor type has a unique combination of guidance molecules expressed, which provides a basis for 
axon segregation and convergence. There are a few molecules that are shared broadly by various VSN 
types. These can be used to instruct general spatial locations of the VSN axons. For example, Robo2 
separates the anterior vs. posterior AOB. Knockout of Robo2 causes mistargeting of V2R neurons 
to the rostral AOB. Our models also indicate that Kirrel2 and Kirrel3 are expressed by nearly half of 
the VR types in partially overlapping patterns. Deletion of Kirrel2 or Kirrel3 leads to disorganization 
of glomeruli in the posterior AOB. Protocadherins and tenurins add new dimensions to this code. 
We also identified several guidance molecules that are more specifically associated with individual 
VRs. They could provide additional cues to separate axons that share broadly expressed guidance 
molecules.

We have identified lineage relationships among cells in the VNO and a dynamic transcriptional 
cascade that likely specifies cell types during development. While our model agrees with that of 
Katreddi et al., 2022 on the main transcription factors that specify the lineage, it adds more details 
on both the induction and suppression of genes in specifying the cell fate. For example, we confirm 
Meis2 and Tfap2e as transcription factors that maintain the V1R and V2R fate, but we also found that 
the down regulation of Neurog1, but not Neurod1, is associated with a transition from early INPs to 
late INPs. The downregulation of Sp8, Nfib, and Bcl11b is likely important for committing to the V1R 
lineage for late INPs. On the other hand, downregulation of Sp8 and upregulation of Fezf1, Olig2, and 
Tshz2 likely set up commitment to the OSN fate. We also find that in all three lineages, the expression 
of Tshz2 is associated with transition to the immature neuronal fate from the late INPs.

We observed a striking difference between V1R and V2R VSNs in the transcription factors asso-
ciated with receptor choice. There is no overt association between V1R with specific transcription 
factors. This observation is reminiscent of OSNs in the olfactory epithelium, where OR expression is 
stochastic and mediated by de-repression of epigenetically silenced OR loci (Monahan et al., 2019; 
Dalton et al., 2013; Clowney et al., 2012; Lyons et al., 2013; Monahan and Lomvardas, 2015; 
Lomvardas et  al., 2006). The absence of specific transcription factors with individual V1R choice 
suggests that a similar mechanism may operate in the V1R VSNs. Monoallelic expression of V1Rb2 
supports this notion (Rodriguez et al., 1999). On the other hand, we observed that for individual 
V1R types, there are specific associations between transcription factors with guidance molecules. 
This observation implies that the expression of guidance molecules is determined by combinations 
of transcription factors even though these transcription factors may not determine V1R expression. 
This is also reminiscent of the OSNs, where the expression of guidance molecules is determined by 
spontaneous neural activities (Imai et al., 2006; Nakashima et al., 2013; Serizawa et al., 2006). That 
is, once the receptor choice is made, the specific receptor being expressed determines the guidance 
molecules to specify their projection patterns.

In direct contrast, V2R VSNs likely use combinations of transcription factors to specify receptor 
expression as well as guidance molecules. Some of the transcription factors that we observe to be 
associated with V2R expression are also associated with guidance molecule expression. For example, 
Pou2f1, Atf5, and Zfp268 are involved in both processes.

Materials and methods

genes. Note that Vmn1r185 and vmn1r69 both recognize female identify pheromones. (D) Similarity and distinction of AG/TF expression for three V1R 
types that are located in the same genomic location and with high sequence homology. (E and F) Shared TFs and AG genes for broadly (E) and uniquely 
(F) expressed V2R types. (G), distinct TFs and AGGs for uniquely expressed V2R types.

Figure 7 continued

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Strain, strain background (Mus 
musculus; 2 females, 2 males) C57BL/6 In-house breeding

Strain, strain background (Mus 
musculus; 4 males, 4 females) CD-1 In-house breeding

https://doi.org/10.7554/eLife.97356
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Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Commercial assay or kit
Chromium Next GEM Single Cell 3’ 
GEM, Library and Gel Bead Kit v3.1 10 X Genomics 1000120

Commercial assay or kit
ChromiumSingle Cell 3’ GEM, Library 
& Gel Bead Kit v3.0 10 X Genomics 1000075

Commercial assay or kit DNase I (RNase free) NEB M0303

Commercial assay or kit Papain Calbiochem 5125

Commercial assay or kit DAPI
Thermo Fisher 
Scientific 62247

Commercial assay or kit L-cysteine Calbiochem 243005

Commercial assay or kit BSA Sigma-Aldrich A8806

Commercial assay or kit Frozen section media Leica 3801481

Commercial assay or kit DRAQ5 Invitrogen 65-0880-96

Commercial assay or kit HBSS VWR VWRL0121-0500

Commercial assay or kit PBS Gibco 10010023

Commercial assay or kit Urethane Sigma-Aldrich U2500

Commercial assay or kit NovaSeq S1 Illumina 20012865

software, algorithm Fiji ImageJ Goldstein et al., 2018 https://imagej.net/software/fiji/

Software, algorithm QuPath v0.4.3 Bankhead et al., 2017 https://qupath.github.io

Software, algorithm Seurat Hao et al., 2021 https://satijalab.org/seurat/

Software, algorithm kallisto | bustools Melsted et al., 2019 https://www.kallistobus.tools

Software, algorithm DropletUtils Lun et al., 2019

https://bioconductor.org/​
packages/release/bioc/html/​
DropletUtils.html

Software, algorithm Illustrator Adobe https://www.adobe.com/illustrator

Software, algorithm SoupX
Young and Behjati, 
2020

https://cran.r-project.org/web/​
packages/SoupX/index.html

Software, algorithm clustree
Zappia and Oshlack, 
2018

https://cran.r-project.org/web/​
packages/clustree/index.html

Software, algorithm ggplot2 Wickham et al., 2016
https://cran.r-project.org/web/​
packages/ggplot2/index.html

Software, algorithm glmGamPoi
Ahlmann-Eltze and 
Huber, 2021

https://bioconductor.org/​
packages/release/bioc/html/​
glmGamPoi.html

Software, algorithm vegan Oksanen et al., 2019
https://cran.r-project.org/web/​
packages/vegan/index.html

Software, algorithm Scrublet v0.2.3 Wolock et al., 2019
https://github.com/swolock/​
scrublet

Software, algorithm reticulate Ushey et al., 2017
https://cran.r-project.org/web/​
packages/reticulate/index.html

Software, algorithm GeneOverlap Shen, 2019

https://bioconductor.org/​
packages/release/bioc/html/​
GeneOverlap.html

Software, algorithm circlize Gu et al., 2014
https://cran.r-project.org/web/​
packages/circlize/index.html
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Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Software, algorithm Slingshot Street et al., 2018

https://www.bioconductor.org/​
packages/release/bioc/html/​
slingshot.html

Software, algorithm tradeSeq
Van den Berge et al., 
2020

https://www.bioconductor.org/​
packages/release/bioc/html/​
tradeSeq.html

Software, algorithm msigdbr Dolgalev, 2020

https://cran.r-project.org/web/​
packages/msigdbr/vignettes/​
msigdbr-intro.html

Software, algorithm fgsea
Korotkevich et al., 
2021

https://bioconductor.org/​
packages/release/bioc/html/fgsea.​
html

Software, algorithm Molecular Cartography  � Resolve Biosciences https://resolvebiosciences.com/

 Continued

Resource availability
Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled 
by C. Ron Yu (https://www.ryu@stowers.org).

Data and code availability
All RNA-seq data are available from the NCBI GEO server (GSE252365). All original data generated 
in this study will be available for download at Stowers original data repository upon publication. No 
custom generated computer code was used for analysis.

An HTML file containing relevant figures and statistics from the study, as well as tables showing 
co-expression and differential expression results, can be accessed at the following URL: https://​
ronyulab.github.io/VNO-Atlas/.

Experimental model and subject details
Wildtype CD1 postnatal day 14 (P14) pups and adults (P56) were used for the experiment. Both sexes 
were randomly assigned to the experiment. All animals were maintained in Stowers LASF with a 14:10 
light cycle and provided with food and water ad libitum. Experimental protocols were approved by 
the Institutional Animal Care and Use Committee (IACUC) (#2022–151) at Stowers Institute and in 
compliance with the NIH Guide for Care and Use of Animals.

Methods
scRNA library preparation and sequencing
Mice VNOs were dissected in cold oxygenated ACSF following Ma et al., 2011. Dissected epithe-
liums were dissociated in papain solution (20 mg/mL papain and 3 mg/mL L-cysteine in HBSS) with 
RNase-free DNase I (10unit) at 37 °C for 15–20 mins. 0.01% BSA in PBS was added to the digestion 
solution before filtering with 70 µm and 30 µm filters (pluriSelect).

Dissociated cells were washed twice in 0.01% BSA with final volume 1  mL, followed by Draq5 
(25 µM) and DAPI (0.5 µg/mL) staining 5 min on ice. Draq5+/DAPI- cells (live/nucleated cells) were 
sorted on BD Influx cytometer (BD Bioscience) with 100 µm nozzle. Dissociated sorted cells were 
assessed for concentration and viability via Luna-FL cell counter (Logos Biosystems). Cells deemed to 
be at least 90% viable were loaded on a Chromium Single Cell Controller (10 x Genomics), based on 
live cell concentration. Libraries were prepared using the Chromium Next GEM Single Cell 3' Reagent 
Kits v3.1 (10X Genomics) according to manufacturer’s directions. Resulting cDNA and short fragment 
libraries were checked for quality and quantity using a 2100 Bioanalyzer (Agilent Technologies) and 
Qubit Fluorometer (Thermo Fisher Scientific). With cells captured estimated at ~5500–8000 cells per 
sample, libraries were pooled and sequenced to a depth necessary to achieve at least 40,000 mean 
reads per cell on an Illumina NovaSeq 6000 instrument utilizing RTA and instrument software versions 
current at the time of processing with the following paired read lengths: 28*8*91 bp.
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scRNA-Seq pre-processing and QC-filtering
Gene-by-cell barcode count matrices were generated from raw FASTQ files using the kallisto|bustools 
(v0.48.0|v0.41.0; Bray et al., 2016; Melsted et al., 2019; Melsted et al., 2021) workflow with the 
Mus musculus genome assembly GRCm39 (mm39) and GTF gene annotation files retrieved from 
ENSEMBL release 104 (Howe et al., 2021). All downstream QC-filtering and analysis was performed 
in an R environment (v4.0.3) (R Development Core Team, 2013). Empty droplets were estimated 
and filtered from the data using the barcodeRanks function of the DropletUtils package (v1.10.3; 
Regev, 2019; Lun et  al., 2019) with the lower bound of UMI-counts set to 100. The count data 
was then imported into R (v4.0.3) using the Seurat package (v4.3.0; Hao et al., 2021) and ambient 
RNA contamination was automatically estimated with the autoEstCont function and removed with 
the adjustCounts function from the SoupX package (v1.5.2; Young and Behjati, 2020). Cell barcodes 
representing multiplets were identified and removed with Scrublet (v0.2.3; Wolock et al., 2019) inter-
facing with Python using reticulate (v1.30; Ushey et al., 2017; Kevin and Tang, 2023). Cell barcodes 
expressing <750 genes, >2.5 standard deviations above the mean number of genes or counts, or >5% 
of reads originating from mitochondrial genes were removed from the downstream analysis.

scRNA-Seq integration and clustering
To cluster cells from multiple samples, raw gene counts for each sample were normalized with the 
SCTransform function (v0.3.2; Hafemeister and Satija, 2019) using the glmGamPoi method from the 
glmGamPoi package (v1.6.0; Ahlmann-Eltze and Huber, 2021), samples were then integrated using 
the Seurat integration pipeline. After principal component analysis (PCA) the dimensionality of the 
whole integrated VNO dataset was estimated to be 25 based on visual identification of an ‘elbow’ 
using the output from the ElbowPlot function. The shared nearest neighbor graph was constructed 
with the FindNeighbors function. Then, using the FindClusters function, an optimal resolution of 0.7 
was chosen for the discovery of broad cell types in the VNO by running the clustree function from the 
clustree package (v0.30; Zappia and Oshlack, 2018) to evaluate cluster-level mean expression for a 
curated list of VNO cell-type marker-genes in a range of resolutions between 0 and 1, with intervals 
of 0.1; optimal resolution was considered the lowest resolution at which the expression of Neurod1 
and Ascl1 diverge into two clusters, as these genes are unique marker-genes for immediate neural 
progenitors (INPs) and GBCs respectively. At 0.7 resolution 31 clusters were observed.

Differential gene expression analysis and cell labeling
Clusters were assigned to cell-types using a list of marker-genes: Omp was used to broadly mark 
mature neurons, Gnai2, Gng13, and Meis2 marked the V1R subtype, Gnao1, Robo2, and Tfap2e 
marked the V2R subtype, Gnal and Cnga2 marked OSNs, Gap43, Stmn2, Bcl11b, and Lhx2 marked 
immature neurons, Neurod1 and Neurog1 marked INPs, Ascl1 and Ccnd1 marked GBCs, Krt5 and 
Krt14 marked HBCs, Sox9 and Hepacam2 marked MVs, Fezf2 and Sox2 marked SCs, S100b and Plp1 
marked OECs, Cd34 and Cdh5 marked Endothelial cells, Acta2, Col1a2, and Mgp marked LP cells, 
Dock2 marked immune cells, Cx3cr1 and Ctss marked Microglia, and Il7r and Trbc2 marked T-cells. 
First, we ran the FindAllMarkers function on the clustered normalized counts, limited to genes present 
in ≥50% of each cluster’s cells with an absolute value log2 fold-change ≥0.5; additionally, we ran the 
FeaturePlot function to plot expression of the marker-genes in 2D UMAP space. Clusters were then 
manually assigned to one cell-type both by visually ascertaining marker-gene expression overlap with 
cluster identity and by statistically validating significant marker-gene enrichment within cluster.

Neuronal lineage
Cells labeled as GBC, INP, iVSN, iOSN, mVSN, mOSN, or sVSN were subset from the integrated whole 
VNO dataset, split by animal sample, then re-integrated and re-clustered, as described above. The 
FindNeighbors function was run using 12 PCs and the FindClusters function was run with a resolution 
of 6.0 which resulted in 84 clusters. Clusters were assigned to cell-types as described previously, while 
a further distinction between early and late INPs was inferred from the expression of Ascl1, Neurod1, 
Neurog1, and Gap43 in 2D UMAP space.

Differential gene expression analysis was performed between the novel sVSN cluster and the 
mature V1R, V2R, and OSN clusters, independently, running the FindMarkers function with the logfc.

https://doi.org/10.7554/eLife.97356
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threshold and ​min.​pct parameters set to 0 to accommodate downstream gene set enrichment analysis 
(GSEA).

Gene set enrichment analysis
Gene ontology (GO) terms from the biological process, molecular function, and cellular compartment 
categories along with their associated gene sets were retrieved with the msigdbr function from the 
msigdbr package (v7.5.1; Dolgalev, 2020). Ranked Wald test differential expression results between 
sVSNs and V1R/V2R mVSNs, respectively, were input into the stats parameter of the fgsea function 
from the fgsea package (v1.20.0; Korotkevich et al., 2021; Subramanian et al., 2005) along with the 
GO term gene sets. The top significant GO terms were plotted using the ggplot function from the 
ggplot2 package.

Sex and age differences
To examine broad differences in gene expression between male and female mice and between P14 
and P56 mice, we ran the FindMarkers function on the normalized count data using all cells in the 
neuronal lineage, all genes present in the data, and no threshold on log2 fold-change.

Significant differential gene expression results (padj ≤0.05) from the male/female and the P14/P56 
test were used for GSEA, and the results were plotted using the ggplot function from the ggplot2 
package.

Immediate neural progenitors and immature vomeronasal sensory neurons
Cells previously identified as early and late INP, iVSN, iOSN, or mOSN, were subset from the neuronal 
dataset, split and reintegrated, as above, using 15 PCs and a resolution of 2.5, resulting in 30 clusters. 
Differential gene expression analysis was performed with the FindMarkers function between two clus-
ters showing either V1R or V2R like properties but previously identified uniformly as early INPs in the 
whole neuronal lineage dataset. The FeaturePlot function, from the Seurat package, was used to show 
normalized expressions for genes of interest.

Trajectory inference and differential gene expression analysis
V1R/V2R lineage determination
To explore transcriptional differences over pseudotime between V1R and V2R VSNs, we subset GBCs, 
early and late INPs, V1R and V2R iVSNs, and mVSNs from the neuronal dataset, split the data by 
sample and reintegrated, then performed PCA. Trajectory inference analysis was performed with the 
Slingshot function from the Slingshot package (v1.8.0; Street et al., 2018) using the first 12 PCs and 
cell type labels from the neuronal dataset, with an input starting cluster of GBCs and two input end 
clusters for V1R and V2R mVSNs. To determine the nknots parameter for the fitGAM function from 
the tradeSeq package (v1.4.0; Van den Berge et al., 2020), we ran the evaluateK function with the 
raw count matrix, and the pseudotime and cell weight values output from Slingshot. We then ran the 
fitGAM with nknots = 5. We then ran the patternTest function to test for differences in gene expres-
sion patterns over pseudotime between the V1R and V2R lineages.

Pseudotime analysis of sVSNs
To determine whether sVSNs represent an immature version of canonical VSNs, we performed trajec-
tory inference analysis on the neuronal lineage with only cells belonging to the OSN lineage removed. 
Using the Slingshot function, we input the first 5 PCs and set the starting cluster to GBCs and three 
end-clusters to V1R mVSNs, V2R mVSNs, and sVSNs, respectively. Pseudotime values were assigned 
to cells based on their lineage membership and were subsequently plotted with the FeaturePlot 
function.

Gene co-expression analysis
VR co-expression
To investigate cell-level diversity of VR species across all cells in the neuronal dataset we calculated the 
Shannon diversity index for the raw gene counts for all Vmn1r, Vmn2r, Olfr, and Fpr genes using the 
diversity function from the vegan R package (v2.6–4) (Oksanen et al., 2019) with default parameters. 

https://doi.org/10.7554/eLife.97356


 Tools and resources﻿﻿﻿﻿﻿﻿ Developmental Biology

Hills et al. eLife 2024;13:RP97356. DOI: https://doi.org/10.7554/eLife.97356 � 24 of 33

To determine what proportion of cells in the neuronal lineage had one, two, or three or more receptor 
species, we set a threshold of  ≥10  raw counts for a receptor to be considered ‘present’. To test 
whether co-expressing VR species were significant, using the same raw-count threshold of ≥10, we 
gathered a list of all cell barcodes where a receptor was observed, for all receptors. Using the lists of 
cell barcodes associated with the receptors, we ran the newGOM function from the GeneOverlap R 
package (v1.26.0; Shen, 2019), which calculates p-values using Fisher’s exact test on a contingency 
table. p-Values were then corrected for multiple testing using the Benjamini-Hochberg procedure.

Using the circlize R package (v0.4.15; Gu et al., 2014), we plotted all co-expressed receptor pairs 
on circos plots showing each receptors genetic location and the number of cells expressing the pair, 
for all significant pairings (padj ≤0.05).

VR co-expression with axon guidance (AG) and transcription factor (TF) 
genes
To ascertain VR co-expression with AG genes expressed at the plasma membrane, and with DNA 
binding TF genes, respectively, we used the Mouse Genome Informatics database to find all genes 
associated with the biological process gene ontology (GO) term ‘axon guidance’, or with the molec-
ular function GO term ‘DNA-binding transcription factor activity’. For the axon guidance gene set, we 
subset genes that were expressed at the plasma membrane. We set the VR raw count threshold to ≥10 
counts and the AG and TF gene raw count threshold to ≥3. Then, using the cell barcodes associated 
with each VR and the cell barcodes associated with candidate AG and TF genes, we ran the newGOM 
function to find significant co-expression (padj ≤0.05) for all VRxAG and VRxTF pairs.

VR-specific co-expression of AG and TF genes
To test whether AGs and TFs co-expressed for a given VR, we gathered all cell-barcodes where there 
was significant VRxAG or VRxTF co- expression. Then, using the same contingency table scheme as 
above, we looked for significant co-expression (padj ≤0.05) between all AGs and TFs previously found 
to co-express with a given VR.

Spatial transcriptomics
Samples
VNO tissues were dissected from 7 to 8 weeks old C57BL/6 J mice. Briefly, mice were anesthetized 
with urethane at a dose of 2000 mg/kg body weight. Following general anesthesia, mice heads were 
decapitated, and the lower jaw was removed by cutting the mandible bone with scissors. The ridged 
upper palate tissue was peeled off to expose the nasal cavity. A surgical blade was inserted between 
the two upper incisors to expose the VNO. The whole VNO was carefully extracted by holding onto 
the tail bone and slowly lifting it up from the nasal cavity.

The dissected VNO was immediately transferred to cold 1  X PBS on ice, and subsequently 
embedded in frozen section media (Leica Surgipath FSC 22, Ref # 3801481) and frozen on liquid 
nitrogen. Frozen samples were sectioned at 10 µm thickness using the Thermo Scientific CryoStar 
NX70 cryostat. VNO sections were placed within capture area of cold slides that were provided by 
Resolve Biosciences. Slides were sent to Resolve Biosciences on dry ice for spatial transcriptomics 
analysis. Resolve Molecular Cartography protocols remain proprietary and were not disclosed. The 
probe design, tissue processing, imaging, spot segmentation, and image preprocessing were all 
performed using the Resolve Biosciences platform. Names and ENSEMBL IDs for genes probed are 
available in this study’s public repository at https://ronyulab.github.io/VNO-Atlas/.

Analysis
Regions of interest in the VNO were selected on brightfield images provided by Resolve Biosciences 
using Fiji ImageJ (Goldstein et al., 2018). Cell segmentation on final images was performed in QuPath 
v0.4.3 (Bankhead et al., 2017). Detected gene transcripts were then assigned to the segmented cells, 
thereby creating a gene-count matrix for each sample. To predict cell types, count matrices for all 
samples were imported into R then normalized using the SCTransform function with the glmGamPoi 
method. The samples were then integrated using the Seurat integration pipeline. Both the integrated 
whole VNO scRNA-seq dataset and the integrated Resolve molecular cartography dataset were 

https://doi.org/10.7554/eLife.97356
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renormalized with SCTransform with the default method using ncells = 3000, then RunPCA was called 
on the renormalized data. Using the whole VNO scRNA-seq dataset as a reference and the molecular 
cartography dataset as a query, we ran the FindTransferAnchors function, then we ran the Transfer-
Data function to create a table of prediction score values for each cell in the spatial dataset. Cells were 
then labeled by type using the maximum prediction score for each cell.

Images showing co-localization of VRs were obtained in ImageJ using genexyz Polylux (v1.9.0) tool 
plugin from Resolve Biosciences.

Region of neurogenesis
To test the hypothesis that neurogenesis occurs in the marginal zone of the VNO we first set a minimum 
cell-type prediction-score threshold of ≥ 0.3; all cells below the threshold were labeled ‘unknown’. 
Then we used the simple features R package, sf (v1.0.16) to delineate regions of interest in the VNO. 
We excluded the non-neuronal region of the VNO from the analysis. Using the intersectional boundary 
between neural and non-neuronal epithelia as the center, we quantified the cells falling within a 750-
pixel radius as in the marginal zones. Those fall out of the 750-pixel but within a 1500-pixel radius 
were quantified as in the intermediate zones. All remaining cells were classified as occurring in the 
‘main zone’. Plots displaying the results were created using the function, ggplot, from the R package 
ggplot2 (Wickham et al., 2016).
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