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Abstract
Motivation: High confidence structure prediction models have become available for nearly all protein sequences. More than 200 million 
AlphaFold2 models are now publicly available. We observe that there can be significant variability in the prediction confidence as judged by 
plDDT scores across a protein family. We have explored whether the predictions with lower plDDT in a family can be improved by the use of 
higher plDDT templates from the family as template structures in AlphaFold2.
Results: Our work shows that about one-third of the time structures with a low plDDT can be “rescued,” moved from low to reasonable confi-
dence. We also find that surprisingly in many cases we get a higher plDDT model when we switch off the multiple sequence alignment (MSA) 
option in AlphaFold2 and solely rely on a high-quality template. However, we find the best overall strategy is to make predictions both with and 
without the MSA information and select the model with the highest average plDDT. We also find that using high plDDT models as templates 
can increase the speed of AlphaFold2 as implemented in ColabFold. Additionally, we try to demonstrate that as well as having increased overall 
plDDT, the models are likely to have higher quality structures as judged by two metrics.
Availability and implementation: We have implemented our pipeline in NextFlow and it is available in GitHub: https://github.com/ 
FranceCosta/AF2Fix.

1 Introduction
The introduction of AlphaFold2 (AF2) enabled the rapid and 
accurate modelling of protein structures (Jumper et al. 2021) 
and has made huge contributions to diverse areas of molecu-
lar biology. The AlphaFold Protein Structure Database 
(AFDB) (Varadi et al. 2022, 2024) is a huge collection of pre-
calculated AF2-derived structure models, now containing 
over 200 million proteins. Also 600 million models calculated 
with ESMfold on metagenomic-derived protein sequences 
have been made available in the ESM Metagenomic Atlas 
(Lin et al. 2023). These collections mean that researchers can 
simply download high confidence models rather than predict-
ing their own. A major strength of these structure predictions 
is that they come with reliable confidence metrics such as 
the predicted local difference distance test (plDDT) measure. 
The plDDT is a prediction from the Deep Learning model 
that predicts the lDDT score (Mariani et al. 2013), a 
superposition-free score that evaluates local distance differen-
ces of all atoms in a model. The lDDT score is particularly 
useful because unlike superposition-based methods it is gen-
erally unaffected by large scale domain orientation errors.

Pfam is a collection of Hidden Markov models which are 
statistical models used to classify protein sequences into 
domains and families (Mistry et al. 2021). They are built 
based on multiple sequence alignments (MSAs) and manually 
curated. While browsing AFDB, we noticed that different 
proteins from the same protein family can have very different 

mean plDDT scores which prompted us to more systemati-
cally explore plDDT across protein families. Indeed, some 
protein families present significant variability among 
AlphaFold2 model plDDT. Figure 1 illustrates two example 
plDDT distributions across protein families. Figure 1A shows 
the well behaved domain family Big_1 (Pfam:PF02369) 
where the distribution of plDDT values is rather narrow. In  
Fig. 1B, we see a much broader distribution of plDDT values 
for the Trp_oprn_chp domain family (Pfam:PF09534). We 
show two exemplar structure predictions from this family in  
Fig. 1C to illustrate the differences that can be observed 
across a protein family.

Given the variability of plDDT across families we were in-
terested to explore whether we could rescue the lower plDDT 
predictions using structural templates from higher plDDT 
models in the family. AlphaFold2 accepts protein structure 
templates along with evolutionary information provided as 
MSAs to perform structure predictions. Templates are usu-
ally derived from the PDB database (Berman et al. 2000) thus 
helping improve AlphaFold2 predictions with experimentally 
resolved structures, where available. Nevertheless, it has been 
shown that AlphaFold-derived templates can be used in com-
bination with PDB ones, provided they have a high plDDT 
(Zhao et al. 2023). In this context, PAthreader was developed 
to improve AlphaFold2 template selection by looking for dis-
tant homologous proteins in both the PDB and the AFDB 
(Zhao et al. 2023).
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We hypothesized that AlphaFold2 models with poor confi-
dence predictions (plDDT lower than 70) within a protein 
family could be improved by using AlphaFold-derived high 
confidence models (plDDT higher or equal than 70) from the 
same family as templates. To test this, we developed a proof- 
of-concept workflow based on the use of ColabFold (Mirdita 
et al. 2022), which provides a versatile installation of 
AlphaFold. Because the plDDT values are only predictions of 
modelling quality, we attempt to carry out independent vali-
dations of the plDDT improvements that we observe. We 
have applied AF2Rank (Roney and Ovchinnikov 2022), a re-
cently published method which implements AlphaFold2 to 
directly evaluate the quality of a protein model. AF2Rank 
consists of providing AlphaFold2 with the primary sequence 
of a given protein model and its structure as template after 
masking its side chains. A composite score is then derived 
which considers measures of AlphaFold2 confidence and the 
structural similarity between the structure predicted with this 
method and the input model. AF2Rank was shown to be pre-
dictive of model quality (Roney and Ovchinnikov 2022). In 
addition to AF2Rank, we considered the more classical 
MolProbity score which is widely adopted to assess protein 
model quality (Williams et al. 2018). It takes into account 
many variables including backbone dihedral angles, heavy 
atoms clashes and side chain rotamers to compose a score 
that can be interpreted similarly to experimental protein 
structure resolution, where lower values indicate 
higher quality.

2 Methods
We selected all Pfam (version 35.0) protein families that 
showed a clear bimodal domain plDDT distribution in the 

AFDB with at least 100 models (AFDB, version 4) (Mistry 
et al. 2021, Varadi et al. 2022). Distributions with one peak 
of high plDDT (average domain plDDT greater or equal to 
70) and one peak of medium (average domain plDDT greater 
or equal to 50 and less than 70) or low (average domain 
plDDT less than 50) plDDT structures were selected. Fifty 
domain families with the most balanced distributions of low 
and high plDDT structures were extracted from this set (see 
Supplementary Fig. S1 for the plDDT distributions while the 
entire list of bimodal distributed domains is available in the 
supplementary table). For each set, a maximum of 30 pro-
teins evenly divided between the low, medium, or high 
plDDT sets were chosen, prioritizing complete proteins for a 
total of 1460 entries. Fragment proteins, which are missing 
regions outside the domain of interest, were de-prioritized. 
Peak detection was performed on a 1–100 binned 0–1 nor-
malized distribution of protein domain plDDTs for each do-
main under analysis using the function find_peaks with 
parameters height¼0.03 and distance¼ 19 from the Python 
module SciPy (version 1.11.2) (Virtanen et al. 2020). The 
plDDT distributions for each Pfam domain were generated 
using the code available at https://github.com/matthiasblum/ 
pfam-alphafold.

Because we do not have access to the precise methodology 
used to predict the models in AFDB, we moved to using the 
ColabFold software (version 1.5.2) for our experiments so 
that all of our results were comparable. For each protein fam-
ily, an initial structure prediction was performed with 
ColabFold for each family member using default parameters 
and relaxation without the use of templates (Mirdita et al. 
2022). MSAs were generated with MMSeqs2 (Steinegger and 
S€oding 2017) on the 02/2022 release of the UniRef30 data-
base (UniProt Consortium 2018) and on the ColabFold 

Figure 1. Distributions of the mean plDDT values taken from AFDB models for protein domains from Pfam families (A) Big_1 PF02369 and (B) family 
Trp_oprn_chp PF09534. Note that the mean plDDT values here are not for the whole protein length but rather the domain extent (grey regions are 
excluded). (C) Examples of AlphaFold2 models for family PF09534: low domain plDDT, UniProtKB: A0A426UPE9 and high domain plDDT, 
UniProtKB: U1LSP8.
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environmental database. All confident structures (plDDT 
equal or greater than 70) were then selected from the pool of 
generated models to be used as templates for the next 
AlphaFold2 runs. Structure prediction with ColabFold was 
then run using default parameters with templates generated 
by the previous run using either a single sequence or the MSA 
as input and relaxation.

It should be noted that while we considered only the do-
main plDDT for the selection of the proteins from the AFDB, 
we later on considered the overall structure plDDT. This has 
been done to make sure that this remodelling methodology 
was not detrimental to the protein regions outside the domain 
of interest.

A comparison with AlphaFold3 (Abramson et al. 2024) 
was run via its dedicated web server (https://alphafoldserver. 
com/about).

The AF2Rank method (Roney and Ovchinnikov 2022) 
was run via a custom Python script to validate protein struc-
tures generated with the use of templates (https://github.com/ 
FranceCosta/AF2Rank). To further validate protein model 
quality, the MolProbity score was calculated using a local im-
plementation of the MolProbity suite, which is available on 
GitHub (https://github.com/rlabduke/MolProbity).

The code has been integrated in a Nextflow pipeline (ver-
sion 23.04.1) (Di Tommaso et al. 2017) and is publicly avail-
able (https://github.com/FranceCosta/AF2Fix) along with its 
documentation and installation instructions. Results of the 
computation are available online: https://doi.org/10.5281/zen 
odo.13960775.

Wilcoxon signed-rank tests were performed with the wil-
coxon function from the Python module SciPy (version 
1.11.2). Pearson correlation was calculated using the pear-
sonr function from the same module.

The computations were carried out on a high performance 
computing cluster using NVIDIA A100 GPUs for running 
colabfold and AF2Rank and result in an estimated 271 kg of 
CO2 emitted for the structure recovery and validation 
pipeline.

The complete workflow can be seen in Fig. 2 and is sum-
marized as follows:

1) 50 Pfam (Mistry et al. 2021) protein domains with bi-
modal plDDT showing one peak below the 70 confi-
dence threshold and one above it are selected. Data are 
gathered from the AFDB (Varadi et al. 2022). (1b) 10 
proteins with low (plDDT < 70), medium (70 plDDT ≤ 

90), and high (plDDT ≥ 90) confidence are selected 
from each distribution. 

2) ColabFold is run without templates on the selected pro-
teins (Mirdita et al. 2022). 

3) All proteins showing an average plDDT ≥ 70 are se-
lected from the first run to be used as templates within 
each protein family for the subsequent runs. ColabFold 
is run again using the templates derived from the previ-
ous run combined with (4a) MSAs or (4b) single se-
quence. (4c) Best Pick proteins are selected as the 
proteins with the highest plDDT between runs with tem-
plates (UniProtKB: A0A7K3DYW7 shown). 

4) Structure quality of the proteins before and after the 
adoption of templates is analysed by means of two dif-
ferent metrics: (i) MolProbity score (Williams et al. 
2018), (ii) AF2Rank composite score (Roney and 
Ovchinnikov 2022). 

5) Results are finally collected and saved in .csv format. 

3 Results and discussion
A total of 1460 proteins from 50 different protein families 
were selected from the AFDB depending on their plDDT dis-
tributions, as described in the methods section. They were 
remodelled with ColabFold, resulting in 729 structures with 
low plDDT (average plDDT lower than 70). To improve 
these predictions, we selected all structures with high plDDT 
(above or equal to 70) from within each protein family to be 
used as templates. Templates were thus used to remodel the 
low plDDT predictions. In particular, they were provided to 
ColabFold in combination with the single sequence of the 
protein to remodel or with its MSA, which had been previ-
ously generated.

We observed a statistically significant improvement 
(Wilcoxon paired, one-sided; P<0.001) of the average 
plDDT for the set of 729 (out of 1460 proteins) low confi-
dence protein structures in either single sequence and MSA 
modes. In particular, the use of templates coupled with a sin-
gle sequence input led to an increase of the plDDT on average 
coupled to a marked variability (4.2 ± 15.5). In particular, it 
provoked a strong decrease of the plDDT for a subset of pro-
teins, as illustrated in Fig. 3A and B. The adoption of tem-
plates in combination with the MSA induced a more modest 
improvement of the plDDT (3.5 ± 7.1) with most of the pro-
teins exhibiting only a marginal increase in plDDT while only 
very few proteins had a decrease in plDDT. This data suggest 

Figure 2. Schematic representation of the Nextflow-powered workflow (Di Tommaso et al. 2017) adopted in this analysis. The scheme was designed 
with the online draw.io app (https://www.drawio.com/).
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that templates have a stronger influence on the plDDT when 
combined with a single sequence input (Wilcoxon paired, 
one-sided; P< 0.001). When a MSA is used instead, the tem-
plates contribute less or are even ignored completely in some 
cases. Based on our findings, we introduced an additional cat-
egory called “best pick.” This category comprises the same 
proteins found in the previously mentioned classes. However, 
for each protein, we selected the structural model that 
achieved the highest plDDT score, regardless of whether it 
came from the template-MSA or the template-single sequence 
approach. “Best pick” benefits from structures which in-
crease plDDT by the use of templates in the single sequence 
mode and removes the structure predictions that decreased in 
plDDT score replacing them with the MSA-based models. 
When considering the “best pick” models, the average 
plDDT increase is higher than the previous classes (8.7 ± 
10.9). The relationship between plDDT before and after the 
introduction of templates can be observed in Fig. 3B. This 
plot highlights how for some proteins the use of templates 
with a single sequence can be deleterious, further supporting 

the introduction of “best pick” proteins. The dotted region of 
the graph in the top left demarcates the “rescued proteins.” 
These proteins showed an improvement of their plDDT 
above the confidence threshold of 70 when templates were 
used. Two hundred and forty-five out of 729 entries fall into 
this category.

We additionally investigated whether the improvement in 
plDDT occurs in disordered regions (Supplementary Figs S4 
and S5), finding that it mostly interests regions predicted to 
be ordered by IUpred2A (M�esz�aros et al. 2018).

The sequence identity with the template plays an important 
role in determining the model improvement, with the highest 
plDDT increase being associated with high protein-template 
sequence similarity both when using a MSA (Fig. 3C) or a 
single sequence (Fig. 3D). In particular, when the sequence 
similarity with the template falls below 30% sequence iden-
tity, either there is no plDDT improvement when a MSA is 
used or the confidence decreases when a single sequence is 
adopted. Moreover, the identity with the template is a stron-
ger driver of confidence increment for the single sequence 

A B

C D

Figure 3. (A) Protein plDDT generated by running ColabFold with MSA and no template, with template and MSA or with template and single sequence 
(N¼1460). (B) Scatter plot showing the plDDT variation in the presence or absence of a template. Note that the “No template” condition modelling was 
done solely with the MSA option. Rescued proteins are those proteins for which the plDDT increased above 70 after the use of templates. As a positive 
control, templates were also used to remodel proteins which already exhibited a plDDT above or equal 70 without the use of templates. A plDDT 
improvement was expected for this set of proteins because the templates adopted coincided with the proteins to be modelled. Indeed, it has already 
been shown that AlphaFold2 is overly confident when it finds a perfect match between the sequence to model and the provided template (Roney and 
Ovchinnikov 2022). This explains why in the right hand region of the plot all the observations fall above the identity line (dotted black line). A high plDDT 
variability is found for proteins modelled in the presence of a template and single sequence: low plDDT values are observed when the template is too 
distant from the protein to be modelled. In these cases, the use of a MSA is preferable. (C) plDDT increment in proteins modelled with a template and 
MSA or with templates and single sequence (D) correlates with the sequence identity with the closest template used (N¼ 729). 95% confidence interval 
is shown in the trend lines. Sequence identity was calculated with PairwiseAligner from the Biopython module using BLOSUM62 as substitution matrix 
and global alignment option.
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mode (r¼0.59, P<0.001) compared to the MSA mode 
(r¼ 0.5, P<0.001).

When comparing ColabFold results with those from the 
AlphaFold database, we found a good agreement in the 
plDDTs derived from the two methods (r¼0.63, P<0.001). 
In addition to this, we observed a significant correlation be-
tween MSA depth and plDDT when no templates are used 
(r¼ 0.12, P< 0.001), indicating that MSA size is a possible 
cause for AlphaFold2 generating models with low plDDT for 
some family members in the first place (Supplementary 
Fig. S2).

We investigated whether AlphaFold3 alone was capable of 
improving the plDDT by running it on a subset of 20 ran-
domly selected rescued proteins finding no statistically signif-
icant plDDT improvement compared to our baseline 
(Supplementary Fig. S6). In addition to this, we tested the use 
of multiple ColabFold runs with different seeds producing a 
total of 50 different models per protein on a subset of 50 

randomly selected rescued proteins. No statistically signifi-
cant improvement was detected as well (Supplementary 
Fig. S7).

In order to assess the protein structure quality after remod-
elling with templates, we adopted two different methods: (i) 
score using AF2Rank, (ii) Molprobity score. Both measures 
demonstrated that Best Pick models correspond to high- 
quality structures (Wilcoxon paired, one-sided; P<0.001), as 
illustrated in Fig. 4. These two validation studies showed that 
structures associated with an increase in AlphaFold2 confi-
dence are effectively subject to an improvement in model 
quality. These methods cannot provide an absolutely unbi-
ased way to determine structure quality, for which experi-
mentally derived models would represent the best option. 
These metrics can nonetheless serve as an indication of model 
improvement. Therefore, the plDDT is a good metric of pro-
tein quality in this context and can thus be adopted to iden-
tify better models.

A B

C D

Figure 4. (A) Violin plot showing the distribution of MolProbity scores in different conditions (N¼ 728). (B) Scatter plot showing the distribution of 
MolProbity scores in the conditions “No Template” and “Best Pick.” Best Pick models have higher quality as shown by the lower MolProbity scores 
compared to No Template ones and confirmed by statistical analysis (Wilcoxon paired, one-sided; P-value: 2.61e−45). The dotted black line represents 
the identity line. (C) Violin plot showing the distribution of AF2Rank composite scores in different conditions (N¼ 728). (B) Scatter plot showing the 
distribution of AF2Rank composite scores in the conditions “No Template” and “Best Pick.” In this case, the higher quality Best Pick models is less 
evident from the distribution but it is nonetheless statistically significant (Wilcoxon paired, one-sided; P-value: 5.18e−19). The dotted black line 
represents the identity line. Average value and standard deviation are reported on top for (A) and (C).
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We are interested in improving the efficiency of our com-
putations and so we investigated the running time of 
ColabFold with and without template structure. We found 
that the use of templates does lead to faster calculation of the 
structural models. We found that using both template and 
MSA took 37.8% less time than just using an MSA, whereas, 
using templates without MSA took 60.6% less time 
(Supplementary Fig. S3A). Therefore, rather surprisingly run-
ning the Best Pick option of running ColabFold with both the 
MSA switched on and off took almost the same amount of 
time as running the predictions without templates. These 
results can be explained by our observation that structure 
models also converge more rapidly when templates are used 
(Supplementary Fig. S3B).

We have shown that it is effectively possible to improve 
low confidence models using AlphaFold2 generated templates 
from the same family and that increased plDDT can be used 
to infer structure model improvement. Overall, the increase 
of the plDDT is dependent on the similarity with the tem-
plates adopted, suggesting that more refinement in the selec-
tion of the templates might further improve the quality of the 
rescued protein models. Nevertheless, the reason why some 
proteins are predicted with low plDDT in the first place 
remains uncertain. We have found only a very weak correla-
tion between MSA depth and plDDT which suggests that 
other factors, such as the quality of the alignments, may be 
playing a role. The poor performance of AlphaFold in the 
first place is therefore likely due to the low quality and depth 
of the MSAs, which can widely differ for different proteins 
with only one domain in common.

Finally, it is worth noting that our analysis was biased to-
wards ordered protein domains. First, we used Pfam families 
as input which are strongly biased against disordered regions 
of proteins (Mistry et al. 2021). Second, by excluding those 
families which did not show any high confidence candidates 
we likely avoid disordered proteins. Disordered proteins are 
unlikely to benefit from template-based remodelling.

4 Conclusions
Protein models generated by AlphaFold2 exhibit a heteroge-
neity of confidence as measured with the plDDT metrics. 
This is especially true within some protein domain families. 
Here, we have shown that a portion of these proteins can be 
effectively rescued by coupling protein modelling with high 
plDDT templates obtained from within the same protein fam-
ily. In particular, selecting the proteins with the highest 
plDDT out of the single sequence mode and the MSA mode 
yielded the best results in terms of validation metrics. We 
were surprised to find that some proteins only exhibited a 
strong increase in plDDT when the template was adopted in 
combination with a single sequence, indicating that the use of 
the MSA might mask the structural information provided by 
a template.

The main cause of AlphaFold failure is likely the low qual-
ity and low depth of MSAs in the first place. For this reason, 
the use of templates may be especially valuable when 
using AlphaFold2 on proteins from organisms with little rep-
resentation in the sequence databases, or perhaps rapidly 
evolving taxa such as bacteriophage. The recently created Big 
Fantastic Virus Database (BFVD) (Kim et al. 2024) could be 
particularly useful in this context to provide templates for 
phage structure prediction.

We also note that using templates where available is suit-
able for large scale modelling as their adoption can improve 
computation efficiency. This in turn could reduce the carbon 
footprint of the calculations.
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