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Abstract

Identification of DNA-binding proteins (DBPs) is a crucial task in genome annotation, as it aids in understanding gene regulation, DNA
replication, transcriptional control, and various cellular processes. In this paper, we conduct an unbiased benchmarking of 11 state-
of-the-art computational tools as well as traditional tools such as ScanProsite, BLAST, and HMMER for identifying DBPs. We highlight
the data leakage issue in conventional datasets leading to inflated performance. We introduce new evaluation datasets to support
further development. Through a comprehensive evaluation pipeline, we identify potential limitations in models, feature extraction
techniques, and training methods, and recommend solutions regarding these issues. We show that combining the predictions of the two
best computational tools with BLAST-based prediction significantly enhances DBP identification capability. We provide this consensus
method as user-friendly software. The datasets and software are available at https://github.com/Rafeed-bot/DNA_BP_Benchmarking.
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Introduction
Identification of DNA-binding proteins (DBP) is a fundamental
task in molecular biology. DBPs have a wide range of significant
applications including the development of drugs, antibiotics, and
steroids for various biological effects. They are also extensively
used in biophysical, biochemical and biological studies of DNA
[1]. DBPs bind to DNA through a variety of mechanisms, often
mediated by specific structural motifs that recognize and inter-
act with particular DNA sequences or structures. These inter-
actions are typically governed by a combination of hydrogen
bonds, van der Waals forces and ionic interactions between the
protein’s amino acid residues and the DNA’s nucleotide bases or
phosphate backbone. One of the most well-known motifs is the
helix-turn-helix (HTH) motif commonly found in transcription
factors. The HTH motif consists of two α-helices separated by
a short turn. One helix fits into the major groove of the DNA
allowing specific base pair recognition while the other stabilizes
the interaction [2, 3]. Another common motif is the zinc finger
where a zinc ion stabilizes a loop of amino acids that interacts
with the DNA [4]. Additionally, proteins can bind to DNA in a
sequence-specific manner or in a sequence-independent man-
ner. Sequence-specific interactions involve proteins recognizing
particular nucleotide sequences such as the binding of transcrip-
tion factors to promoter regions to regulate gene expression [5].
Conversely, sequence-independent interactions involve proteins
binding to DNA based on its structure or overall shape such as
the binding of histones to form nucleosomes [6].

Given the importance of DBPs, various experimental methods
have been employed to identify them such as filter binding assays

[7], genetic analysis [8], and chromatin immunoprecipitation on
microarrays [9]. However, these experimental methods are time-
consuming and expensive [10]. Computational tools for DBP iden-
tification are essential due to the vast amount of genomic data
generated by high-throughput sequencing technologies [11]. Our
motivation for this benchmarking study stems from the need to
systematically evaluate and compare the performance of existing
computational tools for DBP identification. With many tools avail-
able, each employing different models, datasets, and features,
there is a lack of systematic study regarding their effectiveness.
Another goal of this study is to evaluate the performance gain of
these tools over simple BLAST search to understand the necessity
of these tools for DBP identification.

Machine learning (ML)-based computational methods have
gained prominence in recent years for DBP identification
leveraging advances in statistical techniques and feature
engineering. These methods can be broadly categorized based
on the models they employ and the features they utilize for
prediction. Traditional ML models such as Support Vector
Machines (SVM) [12–16], Random Forests (RF) [17–19], and nearest
neighbors algorithm [20] have been used for DBP prediction. These
models typically rely on manually curated features extracted
from protein sequences and structures. More recent approaches
employ deep learning architectures such as Convolutional
Neural Networks (CNN) [21, 22], Recurrent Neural Networks
(RNN) [22–24], and pretrained protein large language models (as
feature extractors) [25, 26]. CNNs are adept at capturing spatial
hierarchies in protein sequences, while RNNs effectively model
sequential dependencies. PLMs on the other hand relies on self
attention mechanism [27] (similar to Transformer architecture)
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in order to have a deeper understanding on relative importance
among amino acids of a protein sequence. Although these models
often require large datasets for training and fine-tuning, they
have reported superior performance in capturing the intricate
characteristics of DNA-binding sites.

Features used for prediction can be derived from various
sources. Sequence-based features are obtained directly from
the amino acid sequences of proteins. Common sequence-
based features include amino acid composition [28, 29], dipep-
tide composition [30, 31], physicochemical properties such as
hydrophobicity and charge [12, 32, 33], and PLM embedding
[34, 35]. Given the importance of the three-dimensional conforma-
tion of proteins in DNA binding, structural features provide valu-
able insights. These include secondary structure elements (e.g.
alpha helices, beta sheets), solvent accessibility [36], and binding
site geometries. Position-specific scoring matrices (PSSMs) and
profiles derived from multiple sequence alignments capture
evolutionary conservation signifying functional importance
which can aid in identifying potential DNA-binding regions
[14, 34, 37, 38].

One major issue with these methods is the quality and rep-
resentativeness of the datasets used for training and evaluation.
Existing datasets suffer from bias and data leakage leading to
inflated performance. Another issue is that some tools primarily
focus on various feature extraction techniques from the protein
sequences which may include irrelevant or inappropriate feature
sets not targeted towards DBP prediction resulting in overfitting.
Additionally, the models employed have bias towards specific
characteristics of the protein sequences which causes mispredic-
tions.

In this paper, we introduce novel benchmarking datasets which
are designed to provide a more realistic and unbiased evalua-
tion of DBP prediction tools. We benchmark 11 state-of-the-art
tools analyzing their models, datasets, and feature types and
identify the top-performing tools through rigorous evaluation.
Furthermore, we explore the potential of traditional tools like
BLAST [39], ScanProsite [40], and HMMER [41] for DBP predic-
tion providing insights into their capabilities and limitations.
We show that the two best computational tools (according to
our evaluation) ensembled with BLAST significantly improves
performance. Finally, we analyze the common mistakes made
by the top-performing tools to summarize potential causes and
possible solutions. We provide our curated train-test split and the
ensemble method as user-friendly software via publicly accessible
GitHub repository.

Benchmarked tools
The benchmarked tools can be categorized based on the
models they proposed, the feature representation methods
they employed and the datasets they utilized (Table 1 and
Supplementary Data 8). We discuss each categorization in this
section. We conclude this section by discussing the issues we
faced in running these 11 recent computational tools.

Feature representation-based categorization
The feature representation methods can be categorized into three
types: sequence, evolutionary, and structure-based feature rep-
resentation (summarized in Table 1). Sequence-based features
are derived from the original amino acid sequences. Common
techniques include one-hot encoding, physicochemical proper-
ties, amino acid composition and others. Starting with the most

basic approach, PDBP-Fusion and LSTM-CNN_Fusion used one-
hot encoding on the sequence residues, allowing the classifiers to
learn features automatically. More Recent tools such as PB_DBP
and PreDBP-PLMs encoded DNA sequences through pretrained
protein language models (PLM). In contrast, PseAAC and DeepDBP
examined the frequency of single amino acids, dipeptides, and
tripeptides, as well as the distribution of single amino acids. They
also focused on the frequency of non-consecutive amino acids
and their distributions. DNABP and iDNAProt-ES both utilized
physicochemical property features as part of their final feature
vectors. These features categorize each amino acid residue based
on properties such as hydrophobicity, polarity, and polarizabil-
ity; and then calculate the composition, transition, and distri-
bution of these groupings [37, 43]. Additionally, DNABP included
a sequence-based feature generated by DNABR [48], a tool that
predicts DNA-binding residues and their corresponding reliability
indices given a sequence. Sequence-derived features have the
advantage of being straightforward to compute and do not require
evolutionary information, making them faster and more suitable
for large-scale analyses. However, since protein sequence is often
not a good representative of its 3D secondary structure [49, 50],
relying solely on sequence-based features may not capture the
complex patterns associated with DBPs.

Evolutionary features are derived from PSSMs generated by
PSI-BLAST [51]. For instance, Local-DPP and iDNAProt-ES utilized
the average probability of each residue position mutating to one
of the 20 residue types during the evolutionary process. Unique to
Local-DPP is its consideration of local features by segmenting the
PSSM into several sub-PSSMs of the same size before applying any
feature extraction technique. Another commonly used feature set
involved selecting rows in the PSSM corresponding to the same
amino acid type and summing the values in each column (used
by DNABP, StackDPPred, KK-DBP, and PreDBP-PLMs). In DNABP,
these 20 values were combined with physicochemical property
values through some arithmetic operations. Additionally, one
feature set involved the occurrence probabilities for pairs of
the same amino acids separated by a certain distance along the
sequence, while another feature set involved pairs of different
amino acids; both calculated from PSSM matrix [34, 37, 44, 47]. It
is noteworthy that KK-DBP not only utilized conventional PSSMs
with 20 columns but also included features generated by reduced
PSSMs (RPSSMs) calculated as the average square of the sum of
PSSM values from different columns grouped at specific distances.
KK-DBP and PreDBP-PLMs also proposed column-wise variances
derived from the RPSSM as one of its final feature sets. Unique
to iDNAProt-ES, this tool proposed a feature set that considered
the column-wise distribution of values in the PSSM retrieved by
calculating partial sums column-wise. Finally, as a deep learning-
based tool, LSTM-CNN_Fusion used PSSMs as direct input to the
CNN model for automatic feature extraction without employing
any PSSM transformation. Evolutionary features derived from
PSSMs have proven to be highly informative for DBP prediction, as
demonstrated by the superior performance of tools like Local-DPP
and LSTM-CNN_Fusion (discussed later). These features capture
evolutionary conservation patterns that are often associated
with functional regions in proteins. However, processing PSSMs
can be challenging due to their variable length (corresponding
to protein sequence length). Methods like truncating the PSSM
matrix to a fixed size or deriving fixed size summary statistics
feature vector may lead to significant loss of information,
especially for longer sequences. Additionally, the reliance
on PSI-BLAST for PSSM generation can be computationally
intensive.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
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Table 1. Benchmarked tool summary

Tool (publication date) Feature type Computation
model

Dataset (Train + Test) Web server
(YES / NO)

Code availability

Local-DPP [42] (23/06/2016) Evolutionary Classic PDB1075 + PDB186 NO Not available
DNABP [43] (01/12/2016) Sequence +

Evolutionary
Classic PDB14K (97%) + PDB14K (3%) NO Not available

iDNAProt-ES [37] (02/11/2017) Sequence +
Evolutionary +
Structure

Classic PDB1075 + PDB186 YES Not available

StackDPPred [44] (19/07/2018) Evolutionary +
Structure

Classic (stage) PDB1075 + PDB186 YES Available but not
runnable

PseAAC [45] (11/10/2018) Sequence Classic PDB1075 + PDB186 NO Available
DeepDBP [46] (19/03/2020) Sequence Deep Learning PDB1075 + PDB186 NO Partially available (no

feature extraction)
PDBP-Fusion [24] (03/05/2021) Sequence Deep Learning PDB14K + PDB2272 NO Not available
KK-DBP [47] (29/11/2021) Evolutionary Classic PDB1075 + PDB186 NO Not available
LSTM-CNN_Fusion [23]
(02/06/2022)

Sequence +
Evolutionary

Deep Learning PDB14K + PDB2272 NO Available

PB_DBP [35] (04/12/2023) Sequence Deep Learning A custom dataset (80% + 20%) NO Not available
PreDBP-PLMs [34] (08/07/2024) Sequence +

Evolutionary
Deep Learning PDB1075 + PDB186 PDB14K +

PDB2272
NO Available

For structure-based feature representation, the three-dimen-
sional geometry of proteins is leveraged to identify potential
DBPs. iDNAProt-ES proposed a set of structural features extracted
from information provided by SPIDER2 [52] as an SPD file.
These features included the occurrence and composition of
secondary structures, accessible surface area, torsional angles,
and structural probabilities. Secondary structure occurrence
calculated the frequency of three types of structural motifs in
proteins: α-helix (H), β-sheet (E), and random coil (C). Structural
probabilities represented the likelihood of each amino acid
being in H, E, or C conformation. Beyond these basic features,
the matrix in the SPD file was processed similarly to PSSM-
related features. For instance, the average products of values
from both the same and different columns grouped at specific
distances were calculated for torsional angles and structural
probabilities. StackDPPred proposed integrating the Residue-
wise Contact Energy Matrix (RCEM) [53] into its feature set.
The RCEM feature (20 × 20 matrix) approximates the structural
stability of proteins by using predicted residue contact energies
derived from known 3D structures in order to account for
amino acid interactions and intrinsically disordered regions in
proteins. Structure-based features can provide insights into the
spatial arrangement and folding patterns of proteins, which are
crucial for DNA-binding activity. However, obtaining accurate
structural information can be resource-intensive and time-
consuming. Additionally, the inclusion of numerous structural
features derived from predicted models may introduce errors
and increase the feature dimensionality significantly, leading
to overfitting [54]. Incorporating structural features requires
careful consideration to balance the benefit of additional
information against the risk of model complexity and data
quality.

Computational model-based categorization
We discuss two distinct groups of modeling—one group utilized
classic ML models that relied on complex feature extraction
techniques, while the other group employed deep learning models
capable of automatic feature extraction and end-to-end training.
The most commonly used classic ML model was the RF Classifier
[55] used by Local-DPP, DNABP, StackDPPred, PseAAC, and

KK-DBP. iDNAProt-ES exclusively used SVM [56], while PseAAC
used Extra Tree Classifier. StackDPPred proposed a stacking
framework which involved two stages of learning. The base
classifiers included SVM, Logistic Regression [57], KNN [58], and
RF, while the meta-classifier was another SVM with a radial basis
function kernel [59]. Classic ML models like Random Forest and
SVM offer advantages such as interpretability, faster training, and
robustness with small datasets. However, they require fixed-size
feature vectors, which can lead to information loss for variable-
length sequences. Handling heterogeneous features can also
introduce noise if not managed carefully. While simpler than
deep learning models, they may struggle with complex sequence
patterns and dependencies.

In the deep learning group, a combination of CNN [60] and
Long Short-Term Memory networks (LSTM) [61] was utilized by
both PDBP-Fusion and LSTM-CNN_Fusion. Unlike PDBP-Fusion,
which stacked the LSTM layer on top of the CNN layers, LSTM-
CNN_Fusion used these two models in parallel, with CNN extract-
ing features from the PSSMs and LSTM learning information
from the original protein sequences. DeepDBP experimented with
both CNN and Artificial Neural Network (ANN) model. DeepDBP-
ANN utilized sequence composition-based summary statistics
while DeepDBP-CNN automatically learned features from the
raw sequence with the assistance of a trainable embedding
layer and a convolution layer. Regarding the two PLM-related
tools, PB_DBP employed a BiLSTM to process the output of a
pretrained PLM model, while PreDBP-PLMs utilized a CNN for
this purpose. Deep learning models offer several advantages,
such as the ability to automatically learn complex patterns from
raw data, making them well-suited for tasks involving sequence
dependencies and large datasets. Architectures like CNNs excel
at capturing local patterns, while LSTMs are effective at modeling
sequential dependencies. However, these models come with
drawbacks including high computational costs and the need for
large datasets to prevent overfitting. Additionally, deep learning
models are often less interpretable than traditional ML models,
making it challenging to understand the underlying decision-
making process. Finally, pretrained PLM embeddings can be biased
based on the category of protein sequences they were mostly
pretrained on.
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Table 2. Commonly used dataset summary

Dataset Source +ve & -ve Sequence
Number

Max, Min, median
sequence length

Data curation process

PDB1075 Liu et al. [62] 525 & 550 1323, 50, 189 Remove seqs >=25% similarity and irregular chars
PDB186 Lou et al. [36] 93 & 93 1323, 64, 208 Remove seqs >=25% similarity and irregular chars
PDB14K DNABP [43] 7131 & 7131 4911, 47, 327 Remove seqs >= 40% similarity and irregular chars
PDB2272 PDBP-Fusion [24] 1153 & 1119 5184, 51, 325 Remove seqs >= 25% similarity and irregular chars

Dataset-based categorization
The tools can be divided into two groups based on the training
dataset they used (column 4 of Table 1). DNABP, PDBP-Fusion,
LSTM-CNN_Fusion, and PreDBP-PLMs all used PDB14K [43] as
their training dataset. Among these tools, PDBP-Fusion, LSTM-
CNN_Fusion and PreDBP-PLMs utilized PDB2272 [24] as their test
dataset. DNABP took out 203 positive and 203 negative sequences
from PDB14K and used them for independent testing. The remain-
ing seven tools except PB_DBP used PDB1075 as the training
dataset and PDB186 [36] as the test dataset. PB_DBP created a large
dataset consisting of around 42K DBPs and non-DBPs, and split the
dataset into 80% train and 20% test set. But this dataset has not
been made publicly available. Details of the datasets used will be
discussed in Section 3.

Tool benchmarking issues
None of the computational tools that we benchmarked had any
usable software or web server available except for iDNAProt-ES
and StackDPPred. Although iDNAProt-ES has its own web server,
it is not effective as it requires PSSM evolutionary feature and SPD
structural feature files and cannot work with raw sequences as
input. The web server provided by StackDPPred is not accessible
from Singapore. On top of that, none of the tools provided the
trained models that could directly be used for prediction. As
a result, we looked into their provided codebase to train and
test these tools ourselves. Six out of the eleven tools did not
have any code available and we could not retrieve the source
codes even after corresponding with their authors (see the last
column of Table 1). StackDPPred and DeepDBP had end-to-end
running issues which required our attention. The codes provided
by PseAAC, LSTM-CNN_Fusion, and PreDBP-PLMs were runnable.
As mentioned in Supplementary Data 1, some of the tools had
some inconsistencies between the provided code and the paper.
In such cases, we simply followed the code. In some other cases,
the selected features were not clearly indicated and as a result,
we had to rerun the feature selection process. Furthermore, two
feature values of DNABP required running of the DNABR classifier
(predicts DNA-binding residue confidence scores) on the protein
sequence of interest. Since the server of this classifier is currently
not available, we had to run DNABP without using these two
feature values. Finally, we attempted to achieve similar results
as reported in the corresponding tool papers after training on
the mentioned training set and testing on the mentioned test
set, which would ensure correct replicability of the tools. Unfor-
tunately, our achieved performance was much worse than the
reported performance for 2 out of the 11 tools— iDNAProt-ES
(around 40% drop in MCC score) and DeepDBP (over 80% drop
in MCC score) marked in yellow in Supplementary Data 4. Fur-
thermore, since the training and test datasets of PB_DBP were not
available, we could not make sure that it’s reported performance
was reproducible.

Current dataset details and limitations
Among the 11 tools we benchmarked, 2 combinations of training
and test datasets were commonly found—(1) PDB1075 as training
& PDB186 as test, (2) PDB14K as training & PDB2272 as test. Table 2
contains the basic information of the four datasets. PDB1075
and PDB186 were originally curated by Liu et al. [62] and Lou
et al. [36]. DBPs were initially acquired from the Protein Data
Bank (PDB) [63] by mmCIF keyword of ‘DNA binding protein’
through the advanced search interface. To mitigate fragmen-
tary sequences, proteins with fewer than 50 and 60 amino acids
were excluded from PDB1075 and PDB186, respectively. Addition-
ally, proteins containing the residue ‘X’ were omitted to avoid
unknown residues. Subsequently, PISCES [64] and NCBI’s BLAST-
CLUST [51] were employed to eliminate proteins exhibiting more
than 25% identity with any protein within PDB1075 and PDB186,
respectively. Similarly, the non-DBPs were randomly selected from
other proteins in PDB and filtered using the same criteria.

In case of PDB14K, ‘DNA binding’ was used as a keyword to
search the UniProt database to obtain DBPs. Only sequences with
lengths between 50 and 6000 amino acids were retained, and
redundant data were removed using a 40% similarity threshold.
To obtain the non-DBPs, all proteins from the UniProt database
that lacked any implied RNA/DNA-binding functionality were
obtained following a procedure proposed by Cai and Lin [12].
PDB2272 was curated in a similar fashion. Random selection
was performed on the non-DBPs in order to make all these four
datasets have almost equal number of DBPs and non-DBPs.

The primary limitations of these datasets can be categorized
into three main points. Firstly, non-DBPs (negative) vastly out-
number DBPs (positive) in the real world. Consequently, datasets
with approximately equal number of positive and negative sam-
ples do not accurately represent real-life scenario. The random
undersampling of non-DBPs during training for class balancing
eliminates important data points (these data maybe important
for a comprehensive understanding of the full feature space of
negative samples) potentially leading to a less robust model.
The most alarming aspect is that this random undersampling
was also performed in the test sets of these earlier works for
class balancing; this would confound the extrapolation to real-life
performance [65, 66].

Secondly, data leakage is prevalent between the training and
test datasets described above. When CD-HIT [67] is applied at
40% similarity threshold, 85 out of the 93 DBPs in PDB186 test set
exhibit >40% similarity to one or more DBPs in the corresponding
training dataset PDB1075. Similarly, 1007 out of 1153 DBPs in
PDB2272 test set exhibit >40% similarity to one or more DBPs
in the corresponding training dataset PDB14K. Wang et al. [68]
described the occurrence of highly similar data across training
and test datasets as ‘data doppelgangers’. These high numbers
of data doppelgangers result in models being repeatedly tested
on data that are highly similar to what they encountered dur-
ing training, leading to inflated performance. The fact that ML

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
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Figure 1. Benchmarking dataset BTD development pipeline.

models have a tendency of overfitting to sequence type train-
ing data makes matters even worse [69]. The primary and sec-
ondary structure of proteins belonging to the same species can be
quite different depending on their biological function [70] further
emphasizing the need for non-redundant test data with respect
to the training set.

Finally, sequences appearing in both the positive and negative
sets cause ambiguity during training. PDB14K contains 74
sequences labeled as both positive and negative, while one
sequence labeled as positive in PDB1075 appears as negative in
PDB14K.

These limitations emphasizes the necessity for a new bench-
marking dataset—one with minimized similarity between train-
ing and test datasets to more accurately evaluate the perfor-
mance of various models under conditions where negative sam-
ples outnumber positive ones with no ambiguity.

Benchmarking dataset development
To address the shortcomings of current datasets, we constructed
a new dataset named BTD. To construct the positive set, we
first extracted DBPs from UniProtKB [71] selecting only those
manually annotated with a review score of 5 (top subfigure of
Fig. 1). Sequences containing non-amino acid characters includ-
ing ambiguous ones and those with lengths outside the range of
50–3000 amino acids were excluded. CD-HIT was applied with
a similarity threshold of 40% to reduce redundancy within the
extracted DBPs. To further prevent redundancy between training
and test DBPs, we filtered out sequences similar to those found in
commonly used training dataset (PDB14K and PDB1075) DBPs at
40% similarity threshold. This filtering step ensures the elimina-
tion of potential data leakage between the training datasets and
BTD. Without this precaution, the test data in BTD would maintain
internal non-redundancy but might still overlap with the training
datasets, compromising the integrity of the evaluation process.
The output refined dataset constitutes the positive component of
BTD containing 16 384 sequences.

To compile a negative set (bottom subfigure of Fig. 1), we first
identified all possible DBPs from UniProtKB by filtering with key-
words indicative of RNA/DNA-binding functionality as described
in [12]. Concurrently, the full Swiss-Prot database was also down-
loaded. The set of non-DBPs was obtained by excluding the pos-
sible DBPs from the Swiss-Prot database. Note that sequences
containing non-amino acid characters and outside the length

range of 50–3000 amino acids were not included. CD-HIT was then
applied to the potential non-DBPs to remove redundancy with
40% similarity threshold. To avoid data doppelgangers between
training and test sets, we further filtered out sequences similar
to those in commonly used training dataset non-DBPs at 40%
similarity threshold. Finally, non-DBPs with over 40% similarity
to at least one DBP of BTD positive set were removed. This step
addressed the ambiguity in protein databases, where non-DBPs
were not explicitly labeled. By filtering out potential non-DBP
sequences with high similarity to known DBPs, we ensure our
non-DBP set accurately represents negative examples, minimizing
mislabeling. Though it may limit predictions for functionally dif-
ferent yet similar sequences, this trade-off is necessary to ensure
reliable benchmarking. This yielded the negative component of
BTD comprising 40 734 sequences.

In addition to BTD, we developed two new datasets, EBTD and
HBTD to investigate the impact of high and low similarity between
training and test datasets on model performance, respectively.
While BTD positive and negative sequences have less than 40%
similarity compared to the corresponding training sequences,
EBTD is the complete opposite in this regard. EBTD creation steps
are the same as BTD creation steps except for the boxes in purple
as shown in Fig. 1. In case of EBTD, we used CD-HIT to retain
only those sequences that have over 40% similarity to at least
one sequence of the same class from the training set (we made
sure that we do not have the same sequence in training and in
EBTD). The resulting EBTD contains 2,305 positive samples and
1963 negative samples. HBTD, on the other hand, is a subset of
BTD, with a modification applied during the step marked in purple
in Fig. 1. Specifically, CD-HIT was used with a 30% similarity
threshold instead of the 40% (used for BTD). This adjustment
aims to increase the difficulty of predictions, thereby providing a
more rigorous evaluation of model robustness. The HBTD dataset
consists of 16,003 positive samples and 38 618 negative samples.

Due to emerging needs in the evaluation process, we expanded
BTD into two new datasets: BTD-Combo (used in Subsection 5.3)
and a proposed train-test dataset (used in Subsection 5.4). BTD-
Combo is designed for five-fold cross-validation and comprises
non-redundant PDB1075, PDB14K, and BTD. The non-redundancy
of PDB1075 and PDB14K was achieved by merging these two
datasets and applying CD-HIT with a 40% similarity threshold
separately for positive and negative samples (Supplementary Fig.
S1). This approach ensures minimum data leakage during cross
validation using BTD-Combo. BTD-Combo contains 22 332 DBPs

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
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Figure 2. Proposed evaluation pipeline for benchmarking analysis.

and 44 405 non-DBPs. The train-test dataset was constructed
from BTD-Combo. We split BTD-Combo into 80% train and 20%
test ensuring stratification by class labels and by length per-
centile groups (Supplementary Fig. S1). The training set has 17
857 positive and 35 428 negative sequences while the test set has
4475 positive and 8977 negative sequences. This train-test dataset
ensures that model performance is evaluated more reliably by
minimizing variability due to differences in sequence lengths and
class distribution.

Tool evaluation
Figure 2 illustrates our tool evaluation pipeline. We start by train-
ing the tool models on their respective training datasets from
the paper and testing on BTD. The five best tools selected from
the this step are then trained on a merged, unbiased training set
and tested on BTD, EBTD and HBTD. EBTD testing is performed
to show the inflated performance when the training and test
datasets are similar, whereas HBTD testing is designed to evaluate
the robustness of tools on an even less familiar test dataset.
The three best tools selected based on the BTD performance are
then five-fold cross-validated on the BTD-Combo dataset (created
by merging existing training sets with BTD) using two different
class balancing techniques. The goal of this step is to check the
influence of training set quality on test performance. The two
tools with superior cross-validation performance are then trained
and tested based on a length-balanced train-test split created
from BTD-Combo. We also benchmark popular bioinformatics
tools such as BLAST, ScanProsite, and HMMER on the same train-
test split after some simple modifications. Finally, we perform
error analysis of the two selected tools based on their test predic-
tions. As evaluation metric, we use sensitivity (true positive rate),
specificity (true negative rate), and MCC (Matthews Correlation
Coefficient) score (see Supplementary Data 2 for more details of
these metrics). We consider DBPs as positive and non-DBPs as
negative samples for all cases. The best tools have been chosen

Table 3. Performance of ten tools on BTD after training on their
respective original training data

Tool Sensitivity Specificity MCC

Local-DPP 0.4237 0.6365 0.0561
DNABP 0.5454 0.6217 0.1528
iDNAProt-ES 0.4043 0.5994 0.0036
StackDPPred 0.5306 0.5286 0.058
PseAAC 0.3333 0.4 −0.2469
DeepDBP 0.5623 0.1654 −0.2869
PDBP-Fusion 0.4612 0.6682 0.1213
KK-DBP 0.4287 0.62 0.0451
LSTM-CNN_Fusion 0.4841 0.6213 0.0970
PreDBP-PLMs 0.1195 0.9593 0.1463

based on MCC score in each step of evaluation [72] unless a tool
is highly biased towards a particular class (denoted by a large
difference between sensitivity and specificity).

Training on proposed dataset
We first trained each of the ten tools using the dataset specified
in its respective paper. PB_DBP was excluded because its training
dataset was not available. This approach ensured that we could
replicate the original trained models as closely as possible thereby
reproducing the capabilities of each tool. We removed sequences
labeled as both positive and negative from these datasets to
remove ambiguity. DNABP, Local-DPP, StackDPPred, PDBP-Fusion,
LSTM-CNN_Fusion, and PreDBP-PLMs performed the best on the
benchmark test set BTD based on MCC score (Table 3). However,
the predictions of PreDBP-PLMs were highly biased, exhibiting
high specificity but low sensitivity. Therefore, we excluded this
tool from further experiments. Conversely, iDNAProt-ES, PseAAC,
and DeepDBP showed the worst performance. The possible rea-
sons of their performance issue and potential solutions are dis-
cussed in detail in Section 7.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
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Table 4. Performance of six tools trained on the merged unbiased training dataset and tested on BTD, HBTD, and EBTD separately

Tool Sensitivity Specificity MCC

BTD HBTD EBTD BTD HBTD EBTD BTD HBTD EBTD

Local-DPP 0.5168 0.5103 0.9701 0.6642 0.6512 0.9277 0.168 0.1503 0.9007
DNABP 0.5422 0.537 0.9492 0.6125 0.6044 0.8492 0.1412 0.1297 0.8068
StackDPPred 0.4273 0.4187 0.9653 0.6152 0.5972 0.9358 0.0393 0.0148 0.9029
PDBP-Fusion 0.4989 0.4932 0.9445 0.6409 0.6316 0.8293 0.1291 0.1158 0.7837
LSTM-CNN_Fusion 0.5023 0.4962 0.9575 0.6491 0.6365 0.893 0.14 0.1231 0.8553
PB_DBP 0.4092 0.4016 0.9562 0.7093 0.6931 0.9032 0.1089 0.0914 0.8631

Training on merged unbiased dataset
The PDB14K training dataset contains approximately 14 times
more samples than PDB1075, which may influence the perfor-
mance of the corresponding tools due to differences in data distri-
bution and scale. To address this variation in training conditions,
we merged PDB14K & PDB1075 and re-evaluated the performance
of the top five tools and PB_DBP after training on this new, uni-
fied dataset. This approach minimizes discrepancies arising from
differences in the size and composition of the original training
sets. As shown in Table 4, the average MCC score of the six tools
on EBTD is around 0.85 while the score is only around 0.1 on
BTD, demonstrating that high similarity between the training and
test sets significantly inflates model performance. Such similarity
issue is present in the respective original training and test positive
samples (DBPs) described in detail in Section 3. We show compar-
ison of the original paper-reported true positive rate (sensitivity)
with BTD and EBTD sensitivity in Supplementary Data 5. BTD
sensitivity degrades more than 40% on average compared to
reported sensitivity, while EBTD sensitivity is within 13% of the
reported sensitivity on average. This indicates that the reported
performances (Supplementary Data 4) in the original papers are
largely inflated and unreliable. We also evaluated the tools on a
more challenging test dataset HBTD featuring even less similarity
between train and test sequences. The results show that the
performance metrics of all six tools dropped slightly. Based on the
models’ performance on BTD, we selected the top three tools—
Local-DPP, DNABP, and LSTM-CNN_Fusion for the next stage of
evaluation.

Evaluation after training dataset improvement
Here we explore whether using a more representative training
dataset can improve the performance of the top three tools
selected in the previous subsection. We implemented five-fold
cross-validation on BTD-Combo dataset (described in Section 4).
The results in Table 5 indicate a significant improvement in
performance for Local-DPP and LSTM-CNN_Fusion, with the new
average MCC score exceeding 0.4 suggesting the importance
of a more representative training dataset. We also observe
the poor performance of DNABP (negative MCC score). DNABP
was originally developed based on PDB14K, and certain model
parameters can be highly sensitive. With the drastic change in
training data, re-tuning of model parameters is often necessary.
Furthermore, the features used during this cross-validation
were pre-selected based on PDB14K training data used in
the corresponding paper, which may cause the performance
degradation.

In order to assess the impact of class balancing on model
performance, we designed two different class balancing scenarios.
We shall discuss their effect on the performance of Local-DPP and

LSTM-CNN_Fusion. When training on the original training splits
without any balancing, specificity is much higher than sensitivity
as the number of non-DBPs is 2X compared to DBPs biasing
the model towards negative class prediction. When the major-
ity negative class is randomly undersampled to balance both
classes, the sensitivity for both tools increases significantly while
decreasing specificity marking a more balanced performance in
terms of the two classes. Since a large majority of the protein
sequences in the real world are non-DBP (negative class), high
true negative rate (specificity) maybe preferred by the scientific
community. When the minority positive class is oversampled by
repeating each positive sample more than once for class bal-
ancing, sensitivity increases in Local-DPP, while there is a slight
decrease in specificity. This effect seems to be more desirable.
Such is not the case for LSTM-CNN_Fusion where there is a large
increase in sensitivity and a significant decrease in specificity.
Repetitive oversampling makes duplicates of the same samples
of the minority class, causing over parameterized deep learning
tools such as LSTM-CNN_Fusion to overfit on the minority class,
hence such bias is seen towards the minority positive class. Note
that throughout the analysis above, the over- and under-sampling
were performed only on the training set and not on the test set.

Comparing against traditional tools on the
proposed train-test dataset
We now compare Local-DPP and LSTM-CNN_Fusion against
traditional tools such as BLAST, ScanProsite, and HMMER using
our proposed train-test dataset described in Section 4. BLAST
and HMMER are both homology detection tools, with BLAST
using local alignment-based sequence similarity searching and
HMMER employing HMM-based statistical modeling. ScanProsite
on the other hand detects homologous regions by finding specific
motifs or conserved patterns associated with protein functions.
We employed simple repetitive oversampling on the minority
positive samples for class balancing during Local-DPP and LSTM-
CNN_Fusion model training. Note that we did not perform
oversampling on the test set.

To use BLAST for DBP identification, we used the positive subset
of the new training dataset as the protein database. Each test
sample was queried against this database using BLAST search. If
the output list of training DBPs contained a sequence with over
35% identity to the query sequence and an E-value score smaller
than a pre-defined threshold (smaller E-value denotes higher
similarity) was found for the sequence, the query test sequence
was considered positive. Otherwise, it was predicted as negative.
Supplementary Data 6 shows BLAST performance in identifying
DBPs for different E-value thresholds. We see a decrease in sensi-
tivity and an increase in specificity as we decrease the E-value
threshold from 0.01 to 0.000001. We obtained the highest MCC

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
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Table 5. Five-fold cross-validation performance on original and on balanced BTD-Combo dataset

Tool Imbalanced Balanced via Majority Class
Undersampling

Balanced via Minority Class
Oversampling

Sensitivity Specificity MCC Sensitivity Specificity MCC Sensitivity Specificity MCC

Local-DPP 0.4541 0.9119 0.4234 0.7148 0.7364 0.4319 0.5283 0.8756 0.4345
DNABP 0.1034 0.7637 −0.1591 0.3136 0.5017 −0.1757 0.1716 0.6631 −0.1733
LSTM-CNN_Fusion 0.4809 0.8766 0.3935 0.6626 0.7659 0.4209 0.7409 0.6956 0.415

Table 6. Comparing the best computational tools with
traditional tools on the proposed train-test dataset

Tool Sensitivity Specificity MCC

Local-DPP 0.5846 0.8501 0.4493
LSTM-CNN_Fusion 0.6974 0.7456 0.4257
BLAST 0.5824 0.8147 0.4020
HMMER 0.8346 0.6038 0.4146
ScanProsite 0.5806 0.7918 0.3723

score of 0.402 at a 0.01 threshold (although the MCC scores for
the different thresholds are similar). Table 6 shows BLAST perfor-
mance for the E-value threshold of 0.01. Although the sensitivity
of Local-DPP is similar to BLAST, its specificity is better than
BLAST. The MCC score of BLAST is slightly smaller compared
to both Local-DPP and LSTM-CNN_Fusion. In order to further
investigate the perfomance of BLAST, we performed five-fold cross
validation on BTD-Combo dataset proposed in Subsection 5.3. We
saw similar performance for each of the five folds (Supplementary
Data 7), which ensures the consistency of BLAST performance.

Our use of HMMER for DBP identification is highly similar to
that of BLAST. Specifically, we employed jackhmmer, an iterative
search tool that identifies sequence similarities against a protein
database. The output of jackhmmer provides hits for each query
sequence based on homologous matches in the database. In our
approach, we used the positive subset of the train set as the
database, and all test sequences were queried against it. If a
query sequence had no matches, it was marked as non-DBP.
For matched sequences, the lowest E-value of the matching pair
was obtained. If the E-value was below the predefined threshold,
the sequence was classified as positive (DBP); otherwise, it was
considered negative. Supplementary Data 9 shows jackhmmer
performance in identifying DBPs for different E-value thresholds.
We obtained the highest MCC score of 0.4146 at 0.0001 threshold
shown in Table 6. Although HMMER’s MCC score is slightly higher
than that of BLAST, its specificity is much lower. Since there
are far more negative samples compared to positive ones in real
world, we prioritize a tool’s ability to accurately identify non-
DBPs. Therefore, we chose to proceed with BLAST for further
experiments.

To use ScanProsite for DBP prediction, we simply provided the
test sequences to its web server using default settings. ScanProsite
compares the submitted sequences against the PROSITE database
which utilizes motifs from protein sequences found in UniProtKB,
PDB and some other protein databases. For each test sequence, we
obtained the motif significance scores for possible DNA-binding
motifs identified by ScanProsite. A higher significance score sug-
gests a greater likelihood that the match represents a DNA-
binding motif. If more than one such motif was detected, we

would assign the highest motif score to the test sequence. In
cases where there was no detectable motifs, we simply assigned
0. This assigned score was used for classification based on a pre-
defined threshold. ScanProsite achieved the highest MCC score of
0.3723 on test data when we classified a protein as DBP whenever
we obtained a positive motif score (last row of Table 6), meaning
we were using a classification threshold of 0. ScanProsite’s motif
database includes sequences from the Swiss-Prot database, which
is also the source of our test data. Hence, there is obvious data
leakage from the training to the test dataset. Nevertheless, the
two computational tools outperform ScanProsite in terms of MCC
score. As we increase the classification threshold to higher values
for ScanProsite, the sensitivity keeps going down, while the speci-
ficity keeps going up significantly (see Supplementary Data 3).

Combining BLAST with the best tools
The top three rows of Table 6 show the best methods according
to our evaluation. Let us now consider the prediction of these
three methods on our proposed test set described in the previous
subsection. Although Local-DPP and LSTM-CNN_Fusion have a
considerable amount of overlap in their true positive predictions
(%), this overlap is small between these two tools and BLAST
(see Venn diagram of Fig. 3 and Supplementary Fig. S2). Moti-
vated by this discovery, we combined the predictions made by
BLAST, Local-DPP, and LSTM-CNN_Fusion through majority vot-
ing, achieving sensitivity, specificity, and MCC of 0.6545, 0.8479, and
0.5079, respectively, on the proposed test set. This MCC score is
significantly higher compared to the best MCC score of 0.4493
achieved by Local-DPP. In fact, this voting system achieves sim-
ilar high specificity as Local-DPP while achieving a much higher
sensitivity. The specificity did not increase, because the overlap
of true negative predictions (%) among these three methods is
considerably large (Supplementary Fig. S3).

Error analysis
Having identified the best two tools, we proceed to analyze the
common mistakes and common correct predictions made by
them on the test set described in Supplementary Fig. S1. Our
aim is to uncover general patterns and challenges inherent in
DBP prediction. We discuss the relevant analyses in detail in this
section.

Sequence length analysis
Figure 4 shows error distributions across different length ranges
segmented by every 10th percentile of both positive and negative
sequences. In case of positive test sequences, shorter sequences
exhibit the highest error rates. This error rate consistently
decreased with increasing sequence length. Conversely, for
negative test sequences, the error rates increased with sequence
length. These findings suggest that the selected tools tend to

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
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Figure 3. Venn diagram of true positive sequences (%) predicted by BLAST
and the two best performing tools.

overfit based on the length of training sequences, leading to
biased predictions that may obscure the true biological features
relevant for classification. The possible reasons of such bias is
discussed in the second paragraph of Section 7.

E-ratio analysis
Before analyzing the E-ratio plots in Fig. 5, let us discuss how the
E-ratio was generated. The first step was to create two databases
named TrainDB+ and TrainDB- containing positive and negative
training sequences, respectively. In order to get the E-ratio of a sin-
gle positive test sample, we performed BLAST search on TrainDB-
using the positive test sample as the query and obtained the mean
of the lowest 5% E-values (lower E-value indicates higher align-
ment) denoted as E-opposite. We then performed BLAST search on
TrainDB+ using the same positive test sample as query sequence
and obtained the mean of the lowest 5% E-values denoted as E-
same. The E-ratio of this positive test sample is the ratio of E-
opposite and E-same. This process was repeated for all common
correct and common mistake positive test samples to generate the
left sub-figure box plots in Fig. 5. A higher E-ratio indicates that
the positive test sample is more similar to the positive training
samples compared to the negative training samples. Similarly, for
each negative test sample, we calculated the E-ratio by performing
BLAST searches on TrainDB+ to obtain E-opposite and on TrainDB-
to obtain E-same. A higher E-ratio indicates that the negative test
sample is more similar to the negative training samples compared
to the positive training samples. All E-ratios have been log-scaled
for better visualization.

We performed a one-sided Wilcoxon rank-sum test [73], reveal-
ing that the E-ratios of correctly classified samples were signif-
icantly higher than those of misclassified samples for both the
positive and negative classes (P-value of 1.77×10−85 and 0.0005 for
the positive and negative classes, respectively). This significance
analysis indicates that misclassified samples are relatively more
similar to training samples of the opposite class compared to
the correctly classified samples. This phenomenon is significantly
more pronounced in DBPs (positive) compared to non-DBPs (neg-
ative).

Motif score analysis
Ideally, ScanProsite should not provide any DNA-binding motif
as output for non-DBPs, while for DBPs, it should provide one
or more motifs with high motif significance scores. Our hypoth-
esis was that mistaken non-DBPs would be assigned relatively
high motif scores, while mistaken DBPs would be assigned rela-
tively low motif scores by ScanProsite. Fig. 6 shows a summary
of the log-scaled maximum motif score for each test sequence
(for sequences with no predicted motifs, a log-scaled score of
0 was assigned). Positive (DBP) common correct samples have
significantly higher motif scores compared to positive common
mistakes (one-sided Wilcoxon rank-sum test P-value of 4.01 ×
10−140), while negative common correct samples had much lower
motif scores compared to negative common mistakes (one-sided
Wilcoxon rank-sum test P-value of 1.54 × 10−106), proving our
hypothesis. This means that mistaken non-DBPs have some local
patterns which have close resemblance to DNA-binding motifs
stored in ScanProsite database, making them harder to predict as
non-DBPs.

BLAST-only true positive analysis
We examined why 16% of DBPs (652 sequences) were identified
only by BLAST and not by the other two tools, as shown in Fig. 3.
First, we explored why Local-DPP and LSTM-CNN_Fusion failed to
correctly classify these sequences by conducting the three error
analyses mentioned in the previous three subsections. Plots from
the top row of Supplementary Fig. S4 indicates that the error
pattern of these DBPs for all three analyses are very similar to the
commonly mistaken DBPs (positive sequences) by the two tools
and hence, they failed to correctly identify these 16% sequences.

Next, to understand why BLAST could identify these DBPs
(652 sequences), we investigated how BLAST matches sequences
through local alignment. We hypothesized that these sequences
were correctly identified due to significant local similarity
with known positive sequences from the database. To test
this hypothesis, we performed BLAST searches for these 652
sequences (query) against positive training sequences (database),
retaining the match with the lowest E-value for each sequence.
We then used the Smith-Waterman algorithm [74] to compute the
highest local alignment scores for these matches. For comparison,
we repeated the same process with two additional sets: the full
set of positive sequences correctly and incorrectly predicted by
BLAST. Plot from the bottom row of Supplementary Fig. S4 shows
that the alignment scores of the 652 sequences closely match
those of the correctly predicted positives (high alignemnt score)
and are distinct from the misclassified ones (low alignemnt score),
indicating that local alignment plays a crucial role in BLAST’s
predictive success.

Discussion and recommendations
Local-DPP and LSTM-CNN_Fusion are the two best tools accord-
ing to our benchmarking. Both of these tools used evolutionary
features generated from PSSM transformation, highlighting the
importance of such features. LSTM-CNN_Fusion truncates the
PSSM matrix to a fixed size, while Local-DPP calculates sum-
mary statistics for a Random Forest model. Such processing may
lead to significant loss of information. Instead, these variable-
size feature matrices might be more smartly processed utilizing
recent variable-size graph learning algorithms [75, 76]. Addition-
ally, instead of using BLAST for PSSM generation, software such as

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae634#supplementary-data
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Figure 4. Error rate for positive (left) and negative (right) sequences of different length ranges.

Figure 5. E-ratio plot for positive (left) and negative (right) test samples.

HHblits might be used for obtaining profile HMMs (more general-
ized form of PSSMs) from sequences [77]. Such measures might
help reduce the E-ratio bias described in Subsection 6.2.

For the two recent deep learning-based tools named PDBP-
Fusion and LSTM-CNN_Fusion, a notable issue is the need to
select a fixed maximum length (700) for input sequences to fit
within the neural network’s architecture. This constraint might
result in the loss of crucial information, as sequences exceeding
the predetermined length are truncated. Furthermore, these tools
take a residue-based encoding scheme when using the LSTM
model, meaning that the LSTM has to go through 700 time steps
before making a prediction. The models were originally trained
on only around 14K training samples while needing to learn
sequential patterns over a path of length 700. Such a model
might cause sub-optimal learning and overfitting [78, 79]. In such
cases, smart window-based encoding schemes [80] and atten-
tion mechanisms [81, 82] might help in reducing the length bias
described in Subsection 6.1. This length bias also exists in Random
Forest-based Local-DPP, probably because the size of the sub-
PSSMs it uses as its features depend on the protein sequence
length.

The latest tools, PB_DBP and PreDBP-PLMs, highlight the trend
of performing bioinformatics prediction tasks with the help of
PLMs [83–86]. While promising, they tend to have high specificity
and very low sensitivity, leading to the misclassification of many
actual DBPs. Vast majority of the sequences used for PLM pre-
training consists of non-DBPs. Since these models are not fine-
tuned on DBP identification specific training data in PB_DBP and
PreDBP-PLMs, they may generate embeddings that fail to carry
DBP-specific features. Future work should focus on refining these
pretrained PLMs to reduce biases and improve generalization.

DeepDBP, PseAAC, and iDNAProt-ES are the three tools showing
the worst performance during our benchmarking. Both DeepDBP
and PseAAC relied solely on sequence-derived summary statistics,
which shows the necessity of more informative novel sequence-
derived features and perhaps also inclusion of evolutionary and
structural features. While exploring ways to incorporate struc-
tural insights, we considered using AlphaFold [87], which tackles a
key challenge in molecular biology: predicting protein structures
from sequence data, a task traditionally reliant on costly and
time-intensive methods like X-ray crystallography or NMR
spectroscopy [88]. By leveraging ML, AlphaFold offers rapid
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Figure 6. ScanProsite assigned motif score plot for positive (left) and negative (right) test samples.

and accurate predictions, greatly advancing structural biology.
Structural insights from AlphaFold can enhance DBP prediction
by capturing subtle structural motifs and spatial interactions that
are difficult to infer from sequence data alone. However, despite
its potential, AlphaFold’s large runtime and computational cost
(exceeding one hour per sequence on T4 GPU) may make it
challenging to use for large-scale studies and to deploy for
real world use. On the other hand, iDNAProt-ES used all three
types of features (sequence, evolutionary and structural), but
still demonstrated poor performance. This particular method
derived many different features from the PSSMs and from the
torsion angles of the structural features, and might have suffered
from errors in the determination (by third-party tools) of these
features and from a severely increased curse of dimensionality.
Using irrelevant and/or error-containing features might lead to
overfitting [54, 89].

All tools utilizing classic ML models require one single feature
vector per protein sequence. As a result, heterogeneous features
of different scales and different inter-sample differences are con-
catenated together leading to inaccurate model behavior [90, 91].
Instead, each heterogeneous feature type might be encoded in
different branches of a learnable network as suggested in [92].
Tools such as StackDPPred stack various ML models in multi-
ple stages, which may introduce additional complexity without
substantial benefit. Proper ablation studies should be conducted
before implementing stacking strategies to ensure they are jus-
tified [93, 94]. There are tools such as HMMER and ScanProsite
that provide potential DNA-binding motif locations along with sig-
nificance scores in the protein sequences. These locations might
be given special importance during DBP prediction. Furthermore,
tools like DNABR [48], DRNApred [95], and HybridDBRpred [96]
might detect whether a residue of a protein is DNA-binding or
not. Such residue-level predictions might assist in modeling the
overall behavior of the entire protein sequence, thereby reducing
the motif significance bias described in Subsection 6.3.

Our evaluation showed moderate performance gain of the two
best computational tools over traditional BLAST in terms of MCC.

However, many DBPs predicted by them were not predicted by
BLAST. The ability to predict DBPs missed by BLAST adds value
to these new tools. Indeed, combining these three tools through
simple means such as majority voting achieved significantly bet-
ter performance (Subsection 5.5). This simple ensemble approach
achieved 65% sensitivity and 85% specificity on our proposed test
set. From the literature [22], it can be estimated that there are 9X
more non-DBPs (negative class) compared to DBPs (positive class)
in real-life. Thus, every DBP correctly identified by this ensemble
approach would be accompanied by about two false positives. This
might be good enough for practical use, though there is scope for
further improvement.

Researchers should avoid data leakage between training and
test set through proper similarity threshold-based filtering. Test
set should be representative of the real world in terms of sample
number, heterogeneity and class imbalance. We have provided
our developed training and test fasta files via GitHub. Researchers
can perform cross-validation on the training set to develop their
models, while the test set can be used for final validation. Note
that both the training and test data we have provided contain
significantly more non-DBPs compared to DBPs. All the recent
tools we benchmarked have recommended using random under-
sampling for class balancing the training set. However, as shown
in Table 5, this balancing approach negatively impacts the true
negative rate (specificity). Random undersampling of the majority
class can potentially introduce gaps in the feature space making
the trained model less robust in such areas [97, 98]. Instead,
clustering-based undersampling might be performed to ensure
that sampling covers the entire majority class feature space [99].
Alternatively, oversampling of the minority class might be prefer-
able.

One prominent issue is the lack of usability of these developed
tools. Although some of the tools provide their own web server,
these servers are rarely maintained after publication; as they
are not commercial software. The best practice would be to
provide the codes along with the trained model via free public
repositories such as GitHub, GitLab, or Zenodo such that it is
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possible to run these tools with minimal effort on raw sequences.
We have provided Local-DPP, LSTM-CNN_Fusion, BLAST, and
majority voting-based ensembling scheme for DBP identification
via GitHub, which can be followed as an example by future
researchers.

In our benchmarking approach, we show that many existing
works on DBP identification have not been thoughtfully tested.
A more thoughtfully designed evaluation is then presented and
these existing works are then tested accordingly, revealing that
their previously reported performance is exaggerated due to the
effects of data doppelgangers in their test sets and using insuf-
ficiently representative training and test datasets. By retraining
on a more representative training dataset, two of these previ-
ously reported methods are ‘rescued’ in terms of performance,
though they did not perform significantly better than BLAST.
The true value of the retrained methods is then demonstrated
by showing that their predicted sets of DBPs are distinct from
those identified by BLAST; and thus, a simple majority vote among
these two retrained methods and BLAST yields superior perfor-
mance. Poor evaluation design can be observed in many other
protein class prediction problems, and similarly, many methods
proposed for these problems may have reported seemingly exag-
gerated performance (likely for similar reasons of data doppel-
gangers and non-representative training/test datasets). The same
benchmarking strategy should be readily applicable to studying
these problems. Examples of such problems include (but are
not restricted to)—(a) protein function prediction [100], (b) sub-
cellular localization prediction [101], (c) protein–protein interac-
tion prediction [102], and (d) post translational modification site
prediction [103].

Conclusion
We benchmarked 11 state-of-the-art computational DBP identifi-
cation tools in this paper. We began by categorizing and analyzing
these tools based on their models, datasets and types of features
used. By scrutinizing the conventional datasets commonly used
by these tools, we identified significant limitations, particularly
issues related to data leakage leading to inflated performance.
To address these issues, we developed two new benchmarking
datasets: BTD and EBTD. We demonstrated the inflated perfor-
mance using EBTD. BTD, designed to mitigate the adverse effects
of data leakage, provides a more realistic and unbiased evaluation
of different DBP prediction tools, serving as a valuable reference
for future tool development and evaluation. Using BTD, we re-
evaluated the 11 tools, selected the best 2 tools, and assessed
their effectiveness against traditional methods in predicting DBPs
through simple adjustments. We showed the significant perfor-
mance gain of the two tools combined with traditional BLAST
search. Additionally, we provided a high-quality train-test dataset
for future development based on BTD and available popular train-
ing datasets. This dataset along with the top-performing meth-
ods (Local-DPP, LSTM-CNN_Fusion, BLAST) and their ensemble
classifier are publicly available at https://github.com/Rafeed-bot/
DNA_BP_Benchmarking. These methods are directly applicable
on raw protein sequences for DBP identification. Beyond tool
evaluation, we analyzed the mistakes made by top-performing
tools, providing insights for improvement of DBP prediction tools
and explored the reasons why BLAST outperformed these tools on
certain positive samples. Finally, we discussed possible limitations
of current models, feature extraction methods, and data balanc-
ing techniques, and offered potential solutions for future research
efforts in this field.

Key Points

• We designed a comprehensive evaluation pipeline that
systematically evaluates 11 recent machine learning
(ML)-based DBP identification tools.

• We analyzed the test prediction mistakes made by top-
performing tools identifying their potential limitations
in terms of model architecture, feature extraction, and
class balancing.

• We showed that although the best of these tools do
not convincingly outperform BLAST, they still provide
substantial value when integrated together with BLAST
into a simple majority-voting ensemble.

• We provide recommendations on more robust develop-
ment and evaluation and better usability of future tools.

• We provide the two best-performing ML-based tools,
BLAST and the ensemble method as user-friendly soft-
ware, as well as our proposed datasets, publicly available
via GitHub.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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