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Abstract

Background and 
Aims

Deep learning applied to electrocardiograms (ECG-AI) is an emerging approach for predicting atrial fibrillation or flutter 
(AF). This study introduces an ECG-AI model developed and tested at a tertiary cardiac centre, comparing its performance 
with clinical models and AF polygenic score (PGS).

Methods Electrocardiograms in sinus rhythm from the Montreal Heart Institute were analysed, excluding those from patients with 
pre-existing AF. The primary outcome was incident AF at 5 years. An ECG-AI model was developed by splitting patients 
into non-overlapping data sets: 70% for training, 10% for validation, and 20% for testing. The performance of ECG-AI, clinical 
models, and PGS was assessed in the test data set. The ECG-AI model was externally validated in the Medical Information 
Mart for Intensive Care-IV (MIMIC-IV) hospital data set.

Results A total of 669 782 ECGs from 145 323 patients were included. Mean age was 61 ± 15 years, and 58% were male. The pri
mary outcome was observed in 15% of patients, and the ECG-AI model showed an area under the receiver operating char
acteristic (AUC-ROC) curve of .78. In time-to-event analysis including the first ECG, ECG-AI inference of high risk identified 
26% of the population with a 4.3-fold increased risk of incident AF (95% confidence interval: 4.02–4.57). In a subgroup ana
lysis of 2301 patients, ECG-AI outperformed CHARGE-AF (AUC-ROC = .62) and PGS (AUC-ROC = .59). Adding PGS and 
CHARGE-AF to ECG-AI improved goodness of fit (likelihood ratio test P < .001), with minimal changes to the AUC-ROC 
(.76–.77). In the external validation cohort (mean age 59 ± 18 years, 47% male, median follow-up 1.1 year), ECG-AI model 
performance remained consistent (AUC-ROC = .77).

Conclusions ECG-AI provides an accurate tool to predict new-onset AF in a tertiary cardiac centre, surpassing clinical and PGS.
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Structured Graphical Abstract

centre? How does the performance of ECG-AI compare to clinical prediction models and polygenic scores (AF-PGS)?

ECG-AI demonstrated good performance in predicting incident AF overall and across patient subgroups. While ECG-AI outperformed 

ECG-AI showed consistent performance in an external cohort.

ECG-AI outperforms existing clinical and polygenic risk scores in predicting new-onset AF in a tertiary cardiac centre population. 

AF-related complications.
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An ECG-AI model trained at the MHI (a tertiary cardiac centre) predicts 5-year incident atrial fibrillation or flutter (AF) in an internal independent 
test data set (MHI; AUC-ROC .78) and an external population (MIMIC-IV; AUC-ROC .77). The ECG-AI outperforms existing clinical (CHARGE-AF) 
and polygenic scores (PGS). Adding PGS and CHARGE-AF to ECG-AI improved goodness of fit (likelihood ratio test P < .001), with minimal changes 
to the AUC-ROC (.76–.77). Created with Biorender.com. HR, hazard ratio; MIMIC-IV, Medical Information Mart for Intensive Care-IV; AUC-ROC, 
area under the receiver operating characteristic curve.
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Introduction
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia 
in adults1 and is associated with an increased risk of stroke, heart failure, 
cognitive decline, hospitalizations, and death.2–6 Oral anticoagulation 
(OAC) significantly reduces the risk of stroke in patients with AF.7,8

Early rhythm-control strategies have also been shown to be associated 

with a lower risk of adverse cardiovascular outcomes compared with 
initial rate-control strategies.9 Importantly, it has been estimated that 
in about one-third of patients, AF is asymptomatic, contributing to 
under-detection in a large proportion of patients.10 Early detection of 
AF provides an opportunity to implement measures aimed at the pri
mary prevention of AF-related morbidity and mortality with an early 
initiation of appropriate therapy, including OAC when indicated, and 
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risk factor modification. Improving the ability to identify individuals at 
high risk of developing AF can help define populations in whom more 
intensive AF screening would be cost-effective.11

Simple predictive scores for new-onset AF, such as CHARGE-AF 
(Cohorts for Aging and Research in Genomic Epidemiology–Atrial 
Fibrillation) and HATCH, have been explored for that purpose.12,13

Moreover, the CHA2DS2-VASc score, which was developed to predict 
the risk of stroke in AF patients, has also been shown to predict incident 
AF.14 Recent technological advances in artificial intelligence (AI) have 
enabled the development of novel AF prediction models, which have 
shown promising performances in predicting new-onset AF using single 
or multiple lead sinus rhythm electrocardiograms (ECGs) in primary 
care settings or across diverse hospital network populations.15–20

Furthermore, recent studies suggest a good predictive ability of AF 
polygenic scores (AF-PGS) in a primarily general population, with a pos
sible additive value to clinical AF prediction models.21–25

In this study, an open-weight ECG-AI model is introduced to predict 
incident AF at the Montreal Heart Institute (MHI), Canada. The analysis 
plan and reporting adhere to key quality criteria recently developed for 
clinical AI prediction modelling studies.26–28 This study stands out by ex
ploring innovative risk markers of AF (ECG-AI and AF-PGS) within a ter
tiary cardiac care institution with a high prevalence of heart failure (HF) 
and coronary artery disease (CAD), where AF is more prevalent, is asso
ciated with increased risk for complications, and may be mediated by dis
tinct risk markers compared with the general population.29,30 Moreover, 
unlike most previously published literature on ECG-AI for incident AF 
prediction, the presented ECG-AI model is open-weight (i.e. publicly avail
able) to spur further innovation and improve accessibility in ECG-AI tech
nology, potentially accelerating advancements in AF prediction and 

management strategies. Furthermore, the study evaluates the ECG-AI 
model across diverse populations, including variations in socio-economic 
status, age, and sex, thereby addressing the important issue of bias in AI 
applications.31 A comprehensive assessment of the ECG-AI performance 
using discrimination, calibration, decision curve, and time-to-event ana
lyses and confirming its generalizability in an external cohort was con
ducted. Finally, a novel approach of combining ECG-AI, AF-PGS, and 
traditional clinical prediction in AF risk stratification is assessed.

Methods
Study population
In a retrospective cohort, all ECGs in the MHI database acquired between 
2004 and 2022 were considered. Electrocardiograms were excluded if they 
had invalid metadata or waveform (i.e. missing derivations or erroneous sig
nals defined by a maximum voltage > 10 mV) or showed no sinus rhythm 
(see Supplementary data online, Figure S1). Electrocardiograms were also 
excluded if performed within 30 days of cardiac surgery, were acquired 
in patients with pre-existing AF or atrial flutter (using the same definition 
as the outcome, see next section), or were acquired in patients without 
subsequent follow-up at MHI (Figure 1). The remaining ECGs were then 
randomly split by distributing patients into non-overlapping training 
(70%), validation (10%), and test (20%) sets, stratified according to age, 
sex, and outcome ensuring balanced distribution of these variables among 
data sets (see Supplementary data online, Tables S1–S3). In each set, three 
groups were defined (Table 1). The ‘MHI All-Comers’ group included all the 
ECGs in each set. Two subgroups of the ‘MHI All-Comers’ are defined: the 
‘MHI Hospitalized’ group included the ECGs of patients who were hospita
lized at the MHI and the ‘MHI Biobank’ included the subset of patients in the 
MHI hospital biobank, a prospective hospital-based cohort of >20 000 

Figure 1 Electrocardiogram and patient flowchart for the Montreal Heart Institute cohort and the external validation cohort Medical Information 
Mart for Intensive Care-IV (MIMIC-IV). A single ResNet-50 model initialized with random weights was trained using the training set. Hyperparameter 
tuning was performed using the validation set. The best performing model in the validation set was selected based on the lowest loss, and then, this 
model performance was reported on three subgroups within the test set, i.e. ‘MHI All-Comers’, ‘MHI Hospitalized’, and ‘MHI Biobank’. For the latter 
group, after removing patients with missing data, CHARGE-AF and AF-PGS scores were available for 2301 out of the 2370 patients. External validation 
was performed in the MIMIC-IV data set from the Beth Israel Deaconess Medical Center in Boston, USA
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participants of which 16 876 have available genotypic data. Detailed co
morbidities are only reported for the ‘MHI Hospitalized’ group, in whom 
clinical diagnoses were ascertained using International Classification of 
Diseases (ICD) codes (see Supplementary data online, Table S4).

Outcome
The primary outcome, termed ‘incident AF’, included new-onset AF or atrial 
flutter. Incident AF at 5 years was modelled as a binary outcome and was de
termined based on available outpatient and inpatient clinical and 
medico-administrative databases and ECG diagnoses, which incorporated 
ECG acquisitions, hospitalization records, emergency room visits, AF clinic 
visits, and electrophysiology procedures (see Supplementary data online, 
Figure S2). The sensitivity and specificity of this definition of incident AF 
were assessed in 200 randomly selected patients using manual chart reviews 
as a gold standard. The same clinical and administrative databases were used 
as eligible follow-up encounters to establish maximum follow-up time, with 
censoring at the date of last follow-up at MHI, heart transplantation, or death.

Electrocardiogram acquisition
Electrocardiograms were retrieved in XML format using the MUSE 
Cardiology Information System (GE Healthcare, Chicago, IL). Each XML 
file contains data for 12 ECG derivations, with each derivation capturing 
voltage readings over a 10 s period sampled at 250 Hz. Each voltage was 
standardized by removing the mean and scaling to unit variance of the train
ing set population voltages. Since this scaling method is inherently sensitive 
to outliers, ECGs with extreme voltage values (>10 mV) were considered 
to be outliers and discarded from the data set.

Electrocardiogram-based deep learning model
A single ResNet-50 model32 initialized with random weights was trained in 
the training set using four A6000 GPUs (NVIDIA, Santa Clara, CA, USA). 
The model receives a single 12-lead ECG as input, with a duration of 10 s 

per lead at a sampling rate of 250 Hz. Multiple ECG recordings from 
the same patient were independently fed into the training model. 
Hyperparameters were optimized on the validation set using a Bayesian 
grid-search approach. The best performing model in the validation set 
was selected based on the lowest loss, and then, this model performance 
was reported on three subgroups within the internal MHI test set, 
i.e. ‘MHI All-Comers’, ‘MHI Hospitalized’, and ‘MHI Biobank’. Using 
TensorFlow’s GradientTape (version 2.9.1), the gradient of the model’s 
prediction was computed with respect to the input ECG sample, resulting 
in a saliency map that highlights the most influential parts of the ECG signal, 
thereby providing explainability.33,34 The ECG-AI development details are 
provided in the Supplementary data online, Note S1.

Clinical risk models
Four different clinical risk models were tested, including ‘Age & Sex’, 
HATCH, CHA2DS2-VASc, and CHARGE-AF (details in Supplementary 
data online, Tables S5 and S6).12–14 Clinical risk scores were incorporated 
into logistic regression (LR) models, which were fitted using the training 
and validation sets. The CHARGE-AF score was only calculated for patients 
in the MHI biobank cohort at the time of inclusion in the biobank, since 
some components were not available in the other patient subgroups. The 
ECG-AI prediction based on the single ECG closest to inclusion in the 
MHI biobank (and CHARGE-AF calculation) was used to compare the pre
dictions of ECG-AI with those of CHARGE-AF.

Polygenic score calculation in the Montreal 
Heart Institute biobank
The predictive ability of AF-PGS, both alone and in combination with 
ECG-AI and CHARGE-AF, was assessed in the MHI biobank cohort. The 
previously published AF-PGS from Khera et al.35 (PGS catalogue ID 
PGS000016) was converted to GRCh38 genomic build. The MHI biobank 
cohort previously underwent array genotyping on the Illumina Global 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Demographic and clinical characteristics of the development and external validation data sets

MHI All-Comers MHI Hospitalized MHI Biobank MIMIC-IV

ECG 669 782 475 986 104 850 437 323

Patients 145 323 76 680 11 622 109 870

ECG per patient 2.0 (Q1: 1.0, Q3: 5.0) 3.0 (Q1: 2.0, Q3: 8.0) 6.0 (Q1: 3.0, Q3: 12.0) 2.0 (Q1: 1.0, Q3: 4.0)

Patient-level data

Age (years) 61.3 (± 15.2) 64.3 (± 13.7) 63.2 (± 11.6) 59.2 (± 17.9)

Male 84 087 (57.9%) 50 114 (65.4%) 7326 (63.0%) 51 627 (47%)

CIMD 3.2 (± 1.4) 3.2 (± 1.3) 3.2 (± 1.4)

MHI Hospitalized 76 680 (52.8%) 76 680 (100.0%) 7919 (68.1%)

Follow-up (years) 3.2 (Q1: .3, Q3: 8.6) 4.0 (Q1: .3, Q3: 9.7) 9.6 (Q1: 4.6, Q3: 13.6) 1.1 (Q1: .03, Q3: 4.7)

5-year incident AF 22 695 (15.6%) 18 492 (24.1%) 2846 (24.5%) 16 610 (15.1%)

ECG-level data

Age (years) 62.8 (± 14.8) 64.2 (± 14.1) 64.0 (± 12.0) 61.2 (± 16.5)

Follow-up (years) 4.2 (Q1: 1.2, Q3: 8.3) 4.3 (Q1: 1.1, Q3: 8.6) 6.6 (Q1: 3.2, Q3: 10.5) 1.7 (Q1: .2, Q3: 4.5)

5-year incident AF 80 183 (12.0%) 70 230 (14.8%) 13 772 (13.1%) 65 301 (14.9%)

Years to incident AF 2.0 (Q1: .1, Q3: 5.6) 1.9 (Q1: .1, Q3: 5.5) 3.3 (Q1: .7, Q3: 7.0) 1.1 (Q1: .1, Q3: 3.3)

‘MHI All-Comers’ group includes all the development set electrocardiograms. ‘MHI Hospitalized’ group includes the electrocardiograms of patients who have been hospitalized at the MHI. 
‘MHI Biobank’ includes the subset of patients in the Montreal Heart Institute hospital biobank. ‘MIMIC-IV’ includes all eligible patients and electrocardiograms of the external validation data 
set. The number of electrocardiograms per patient, follow-up duration, and time to incident atrial fibrillation are provided in quartiles format, indicating the median, 25th percentile (Q1), 
and 75th percentile (Q3). Age and Canadian Index for Multiple Deprivation (CIMD) are presented as mean ± standard deviation.
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Screening Array followed by standard genotypic quality control and 
genome-wide imputation on the TOPMed reference panel. The AF-PGS 
was computed using weights from PGS000016, including 6 502 964 single- 
nucleotide polymorphisms out of 6 730 541 in the original score (97%). The 
raw AF-PGS was standardized using a standard scaler, followed by a logistic 
transformation to convert the values to a range between 0 and 1. The single 
ECG closest to enrolment in the MHI biobank was used to compare 
ECG-AI predictions with AF-PGS predictions.

Statistical analysis, performance metrics, and 
reporting
After ECG-AI training, a LR model was used to integrate ECG-AI probability 
predictions with clinical and polygenic scores. The LR model was fitted on 
the training and validation sets and tested on the test set. Model 
performance was assessed using several metrics in the test set. 
Discrimination performance is reported using the area under the receiver 
operating characteristic (AUC-ROC) curve, the area under the preci
sion–recall curve (PRC), and the diagnostic odds ratio (DOR). The DOR 
is the ratio of the odds of disease in test positives relative to the odds of 
disease in test negatives.36

Calibration was assessed using calibration curves by fitting a spline to the 
calibration data using the UnivariateSpline function from the SciPy Python 
library (version 1.10.1) with a smoothing factor of 1. To quantify the calibra
tion performance, the estimated calibration index (ECI) was computed as 
the root mean squared difference between the mean predicted probabil
ities and the spline-fitted calibration curve.37

Decision analysis curves (DCAs) were constructed by plotting net bene
fit (NB) against various threshold probabilities, considering both discrimin
ation and calibration.38 The NB was computed at different decision 
thresholds as follows, where N is the total number of samples and t is 
the threshold probability:

NB =
TP
N

−
FP
N

􏼒 􏼓
t

1 − t

􏼐 􏼑

In a deployment scenario, a predictive model would be used to guide down
stream intensive AF screening in high-risk populations. Therefore, the NB 
was compared with the default policies of ‘Screen None’ or ‘Screen All’ 
for AF. The ‘Screen None’ NB is 0 given that TP and FP are 0. ‘Screen 
All’ implies no perceived downsides of over-screening. To calculate the 
‘Screen All’ NB, (TP/N) was replaced by the prevalence and (FP/N) by 
(1 − prevalence). For instance, with a 10% AF event rate, ‘Screen All’ implies 
10% correct and 90% incorrect classification at a given threshold. Sensitivity, 
specificity, and DOR were calculated at the event rate threshold in each 
group that maximizes the NB and considered to be an optimal threshold.

Finally, time-to-event analyses were conducted in which time 0 was defined 
as the date of each patient’s first ECG. For the MHI Biobank subset, the ECG 
closest to biobank enrolment was used. This approach was chosen to simulate 
a prospective deployment scenario with the longest possible follow-up and to 
provide a fair comparison with CHARGE-AF, calculated at biobank enrolment. 
An exploratory analysis was also conducted by choosing the ECG generating 
the highest predicted AF probability as time 0. Stratification into high-risk and 
low-risk groups was determined using predictions from the ECG-AI model at 
the chosen optimal classification threshold. Survival curves were estimated 
using the Kaplan–Meier (KM) method. The survival distributions between high- 
risk and low-risk groups were compared using the log-rank test. Hazard ratios 
(HR) between the two groups were calculated by fitting a Cox proportional 
hazards model after verifying proportionality assumptions.

All results are reported on the test set which excludes patients included 
in the training and validation sets. The ECG-AI prediction was reported at 
the ECG level, whereby multiple ECG recordings from the same patient 
were independently fed into the training model. The ECG-AI prediction 
was also reported at the patient level by averaging the model’s probability 
outputs for ECGs grouped according to both their 5-year AF outcome and 
the patient’s identity (see Supplementary data online, Figure S3).

Confidence intervals (CIs) are reported using bootstrapping with 1000 
iterations. For normally distributed data, results are presented as mean ±  
standard deviation. For non-normally distributed data, results are presented 
using quartiles. The DeLong method was used to statistically compare the 
ROC curves of different predictive models.39 To evaluate the improvement 
in the model’s goodness of fit with the addition of new variables to ECG-AI, 
a log-likelihood ratio test (LRT) was conducted.

Data analysis and visualization were performed using Python (version 
3.8) with the following libraries: scikit-learn (version 1.3.2), lifelines (version 
0.27.8), matplotlib (version 3.7.5), and seaborn (version 0.13.2).

Subgroup analyses
The study aimed to ensure that ECG-AI performance remained consistent 
across diverse patient populations. For this purpose, pre-defined subgroup ana
lyses were performed by stratifying the testing data set by sex (male and female), 
age (<65 and ≥65 years), and socio-economic status. The latter was assessed 
using the Canadian Index for Multiple Deprivation (CIMD), a measure of socio- 
economic conditions based on the 2021 Canadian Census of Population micro
data and derived using patient postal codes.40 The composite summary score 
ranges from 1 to 5, with 1 representing the least deprived and 5 representing 
the most deprived. Furthermore, the performance of ECG-AI was tested in 
subgroups with and without the two most common cardiac conditions, name
ly, HF and CAD, defined using ICD codes in the ‘MHI Hospitalized’ subgroup of 
the test data set (see Supplementary data online, Table S4).

External validation
To investigate the generalizability of the ECG-AI model outside the MHI, an 
external validation analysis was performed using the Medical Information Mart 
for Intensive Care (MIMIC)-IV, a large de-identified data set of patients admit
ted to the emergency department or an intensive care unit at the Beth Israel 
Deaconess Medical Center in Boston, USA.41–43 Similar ECG inclusion/exclu
sion criteria from the MHI data set were used. Electrocardiogram voltages 
were standardized using a standard scaler, adjusting for the external validation 
set by removing the mean and scaling to unit variance. Incident AF at 5 years 
(the primary outcome) was modelled as a binary outcome and determined 
based on ECG and hospitalization diagnoses. Performance of ECG-AI in 
this external data set was also assessed using AUC-ROC, PRC, calibration, 
DCA, and time-to-event analyses as described above.

Results
Description of the Montreal Heart 
Institute study population
A total of 669 782 ECGs (47% of the screened ECGs) acquired from 145  
323 patients met the inclusion criteria (Figure 1). In the ‘MHI All-Comers’ 
group, the mean age was 61 ± 15 years and 58% of the patients were 
male. Each patient had a median of two ECGs [first quartile (Q1): 1, third 
quartile (Q3): 5]. The 5-year incident AF outcome was observed in 12.0% 
of ECGs and 15.6% of patients. In a validation study where all available med
ical records were manually retrieved and reviewed for a randomly selected 
subset of 200 patients, the specificity and sensitivity for classifying the pri
mary AF outcome were 100% and 91% (95% CI: 83.9–98.6), respectively 
(see Supplementary data online, Table S7). The median time to incident AF 
was 2 years (Q1: .1, Q3: 5.6). The ‘MHI Hospitalized’ group included 71% 
of the ECGs and 53% of the patients from the ‘MHI All-Comers’ group 
(Table 1). Clinical characteristics for the ‘MHI Hospitalized’ group were 
comparable among the training, validation, and test sets (Table 2). The 
MHI cohort had a prevalence of CAD of 71.4% and HF of 13.4%.

Performance results for each of the pre-defined prediction models in 
the test set are summarized in Supplementary data online, Table S8, and 
further described below.
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Atrial fibrillation prediction in MHI 
All-Comers using ECG-based deep 
learning, age, and sex
The ECG-AI model demonstrated good discriminative ability in the test 
set to identify incident AF with significantly better performance com
pared with the Age & Sex LR model, with a higher AUC-ROC curve 
of .75 (95% CI: .745–.753) vs. .63 (95% CI: .627–.636; P < .001) and im
proved precision–recall area of .31 (95% CI: .30–.32) vs. .17 (95% CI: 
.168–.176) (Figure 2). The ECG-AI model also exhibited the best cali
bration with an ECI of .086. Adding age and sex to the ECG-AI model 
as a post-training LR model yielded a similar AUC-ROC (.75) and did 
not provide an overall better fit (LRT statistic < 0, P = 1). At the patient 
level, the ECG-AI model showed the highest AUC-ROC of .78 (95% CI: 
.768–.783) and precision–recall area of .42 (95% CI: .41–.44).

By means of the DCA, ECG-AI model consistently showed the high
est NB across a range of threshold probabilities, with significant im
provement over the Age & Sex model, with the highest separation 
observed at a probability threshold corresponding to the event rate 
(i.e. 12% at the ECG level and 15% at the patient level). Using a classi
fication threshold of 12%, the ECG-AI model showed a sensitivity of 
66%, a specificity of 75%, and a negative predictive value of 93% at 

the patient level. Supplementary data online, Table S9, provides the clas
sification metrics at the patient level for various thresholds.

Subgroup analyses are shown in Figure 3. The ECG-AI demonstrated 
better discrimination performance in female patients (AUC-ROC .77), 
compared with male patients (AUC-ROC .735; DeLong P < .001). The 
model did not show significant differences in discrimination perform
ance across other subgroups, including age, CIMD, follow-up duration, 
and time interval to AF diagnosis (Figure 3).

Time-to-event analysis results showed that patients with a high-risk 
ECG, as predicted by ECG-AI with a threshold probability of ≥12%, had 
significantly lower incident-free probabilities compared with those hav
ing a low-risk ECG with a HR of 4.29 (95% CI: 4.02–4.57; P < .001) at an 
extended follow-up of up to 15 years (Figure 4). In sensitivity analyses, 
KM curves were plotted after removing cases where AF was diagnosed 
within 30 days (see Supplementary data online, Figure S4) and within 1 
year (see Supplementary data online, Figure S5) from the index ECG. 
The model also demonstrated consistent discrimination performance 
after excluding ECGs with a time to AF diagnosis of <1 year 
(Figure 3), which could represent pre-existing paroxysmal AF rather 
than true incident AF. Time-to-event subgroup analyses showed con
sistent results when stratifying for age and sex (see Supplementary 
data online, Figure S6).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Detailed patient comorbidities for MHI Hospitalized group (overall, training, validation, and test subgroups) 
and the external validation cohort (MIMIC-IV)

Overall Training Validation Test MIMIC-IV

Number of patients 76 680 53 724 7685 15 271 109 870

Heart failure 10 260 
(13.4%)

7214 
(13.4%)

999 
(13.0%)

2047 
(13.4%)

15 273 
(13.9%)

Coronary artery disease 54 725 
(71.4%)

38 362 
(71.4%)

5455 
(71.0%)

10 908 
(71.4%)

25 643 
(23.3%)

Chronic obstructive pulmonary disease 8952 
(11.7%)

6285 
(11.7%)

892 
(11.6%)

1775 
(11.6%)

10 479 
(9.5%)

Hypertension 48 285 
(63.0%)

33 777 
(62.9%)

4805 
(62.5%)

9703 
(63.5%)

60 705 
(55.3%)

Diabetes 20 682 
(27.0%)

14 507 
(27.0%)

2086 
(27.1%)

4089 
(26.8%)

25 630 
(23.3%)

Stroke 847 
(1.1%)

594 
(1.1%)

82 
(1.1%)

171 
(1.1%)

4589 
(4.2%)

Dyslipidaemia 50 978 
(66.5%)

35 688 
(66.4%)

5167 
(67.2%)

10 123 
(66.3%)

44 440 
(40.4%)

Obesity 20 621 
(26.9%)

14 520 
(27.0%)

2059 
(26.8%)

4042 
(26.5%)

15 003 
(13.7%)

Chronic kidney disease 10 360 
(13.5%)

7290 
(13.6%)

1049 
(13.6%)

2021 
(13.2%)

15 750 
(14.3%)

Sleep apnoea 4482 
(5.8%)

3122 
(5.8%)

458 
(6.0%)

902 
(5.9%)

11 101 
(10.1%)

Hyperthyroidism 358 
(.5%)

255 
(.5%)

32 
(.4%)

71 
(.5%)

1064 
(1.0%)

Vascular disease 8169 
(10.7%)

5694 
(10.6%)

829 
(10.8%)

1646 
(10.8%)

8021 
(7.3%)

MIMIC-IV, Medical Information Mart for Intensive Care-IV.
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Saliency maps highlighted the P-wave area as having the highest influ
ence on the model’s prediction (Figure 5). Signal artefacts and ectopic 
beats appeared to contribute less to the model’s prediction (see 
Supplementary data online, Figures S7–S9).

Atrial fibrillation prediction in MHI 
Hospitalized patients using ECG-based 
deep learning, HATCH, and 
CHA2DS2-VASc
The ECG-AI model was then compared with the traditional clinical risk 
scores to predict incident AF in the MHI Hospitalized cohort, where 
clinical data for each patient were adjudicated. The ECG-AI model 

achieved an AUC-ROC of .73 (95% CI: .725–.735), indicating superior 
discrimination compared with the CHA2DS2-VASc (AUC-ROC = .55, 
95% CI: .548–.558) and HATCH (AUC-ROC = .52, 95% CI: 
.515–.524) models (see Supplementary data online, Figure S10). 
Similarly, the PRC revealed that the ECG-AI model had the highest pre
cision–recall area of .34 (95% CI: .33–.35), outperforming the clinical 
models. Adding CHA2DS2-VASc or HATCH clinical scores to 
ECG-AI after training did not provide an overall better fit on the test 
set (LRT statistic < 0, P = 1). A sensitivity analysis was also performed, 
restricting cases to those with a follow-up duration of over 1 year, 
which did not significantly impact the discrimination performance of 
clinical risk models and ECG-AI (see Supplementary data online, 
Table S10). The ECG-AI model performance was similar in different 

A B

C D

Figure 2 MHI All-Comers test set (29 065 patients, 135 544 ECG) performance assessment of the four models: (i) Age & Sex logistic regression, (ii) 
Electrocardiogram-based deep learning (ECG-AI), (iii) ECG-AI + Age & Sex, and (iv) ECG-AI patient level. ECG-AI and ECG-AI + Age & Sex overlap in 
A, B, and D. (A) The receiver operating characteristic curve, plotting the true positive rate against the false positive rate for each model, with the area under 
the curve indicating discriminatory power and reported in the legend. (B) The precision–recall curve, plotting precision against recall, with the area under the 
curve reported in the legend. (C) The calibration curve, showing the relationship between predicted and observed 5-year AF risk; the slope and intercept 
are calculated using linear regression, and the curve is plotted using a univariate spline with smoothing factor of 1. The estimated calibration index (ECI, 
reported in the legend) is the root mean squared difference between the mean predicted probabilities and the spline-fitted calibration curve. (D) The de
cision curve analysis, plotting net benefit against threshold probability. The ‘Screen All’ line is different for patient-level and ECG-level curve.
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subgroups including in cases with actionable AF, i.e. where OAC would 
be recommended based on the CHA2DS2-VASc score, with an 
ECG-level AUC-ROC of .728 (95% CI: .722–.734) (see 
Supplementary data online, Figure S11). Discrimination performance 
was reduced in patients with a history of HF (AUC-ROC of .69, 95% 
CI: .68–.70) compared with the overall results, while performance was 
better in patients with a history of CAD, with an AUC-ROC of .75 
(95% CI: .746–.758) (see Supplementary data online, Figure S11). The 
time-to-event analysis also showed that ECG-AI prediction was asso
ciated with a long-term hazard of developing AF in the ‘MHI 
Hospitalized’ group (HR 3.0, 95% CI: 2.79–3.22; P < .001), in patients 
with history of CAD (HR 3.49, 95% CI: 3.09–3.95; P < .001) and HF 
(HR 4.41, 95% CI: 2.74–7.10; P < .001) (Figure 4A–D), and in patients 
without documented diagnoses of HF or CAD (see Supplementary 
data online, Figure S12).

Atrial fibrillation prediction in MHI 
Biobank patients using ECG-based deep 
learning, AF-PGS, and CHARGE-AF
A single ECG per patient, acquired closest to patient enrolment in the 
MHI Biobank, was used to compare ECG-AI predictions with AF-PGS 
and CHARGE-AF predictions in the MHI Biobank group. A total of 

2301 patients with complete AF-PGS data and CHARGE-AF score 
were included from the test set. The AF-PGS and CHARGE-AF models 
showed poorer discrimination performances, with respective AUC- 
ROC of .59 (95% CI: .57–.63; DeLong P < .001) and .62 (95% CI: 
.60–.65; DeLong P < .001) compared with ECG-AI (AUC-ROC of .76, 
95% CI: .74–.79) (see Supplementary data online, Figure S13). While 
the addition of AF-PGS and/or CHARGE-AF to ECG-AI as a post- 
training set yielded similar AUC-ROC compared with ECG-AI, this add
ition improved the calibration performance with a reduction of ECI from 
.157 (95% CI: .125–.198) using ‘ECG-AI alone’ to .095 (95% CI: 
.052–.147) using ‘ECG-AI + AF-PGS’ and .079 (95% CI: .046–.116) using 
‘ECG-AI + AF-PGS + CHARGE-AF’ (see Supplementary data online, 
Figure S13). The LRT further confirmed that the more complex models 
provided a significantly better overall fit (P = .0002 for ‘ECG-AI +  
AF-PGS’; P < .0001 for ‘ECG-AI + AF-PGS + CHARGE-AF’), compared 
to ‘ECG-AI alone’. The DCA, which is influenced by both discrimination 
and calibration, also showed an improved NB in models that add AF-PGS 
and/or CHARGE-AF to ECG-AI (see Supplementary data online, 
Figure S13). Time-to-event analyses in the MHI Biobank group showed 
superior HR when ECG-AI was used to stratify patients into high-risk 
and low-risk groups [HR 4.51 (95% CI: 3.76–5.40); P < .001] compared 
with AF-PGS [HR 1.85 (95% CI: 1.44–2.36); P < .001] and 
CHARGE-AF [HR 2.50 (95% CI: 1.81–3.46); P < .001] (Figure 6).

A B C

D E F

Figure 3 Electrocardiogram-based deep learning (ECG-AI) discrimination performance metrics overall and in subgroups of the MHI All-Comers test 
set (29 065 patients, 135 544 ECG) at the ECG level (A–C) and patient level (D–F). (A and D) The diagnostic odds ratio which is calculated as (sensitivity/ 
(1 − sensitivity))/(specificity/(1 − specificity)) at an optimal threshold of 12% for ECG level and 15% for patient level. (B and E) The receiver operating 
characteristic area under the curve (ROC AUC). (C and F) The precision–recall curve area under the curve (PRC AUC). The dashed lines represent 
prevalence, indicating the proportion of true positive cases within the population, important for interpreting precision–recall curve which is sensitive to 
class imbalance. Confidence intervals for all metrics were derived from 1000 bootstrap iterations. CIMD, Canadian Index for Multiple Deprivation; FU, 
follow-up)

Prediction of atrial fibrillation using deep learning                                                                                                                                          4927

http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehae595#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehae595#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehae595#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehae595#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehae595#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehae595#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehae595#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehae595#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehae595#supplementary-data


External validation of the ECG-based deep 
learning model in the Medical Information 
Mart for Intensive Care-IV data set
A total of 437 323 ECGs recorded in 109 870 patients from the 
MIMIC-IV data set were used to externally validate the ECG-AI mod
el. Patients were aged 59 ± 18 years, 47% were males, and median 
follow-up was 1.1 years (Q1: .03, Q3: 4.7) (Table 1). The 5-year 
incidence of AF was 15.1%. As shown in Figure 7, ECG-AI demon
strated good discrimination, calibration, and net clinical benefit. 
Time-to-event analyses demonstrated that the 32% of patients with 
ECG-AI predicted high AF risk had a 4.6-fold increased hazard (95% 
CI 4.45–4.74) of developing AF during long-term follow-up 
(P < .001), with consistent results when excluding ECGs with time 
to AF < 1 year (Figure 8).

Discussion
The development of an ECG-based deep learning model (ECG-AI) de
signed to predict 5-year incident AF risk at an academic cardiac centre 
was presented. The study aimed to adhere to key quality criteria re
cently developed for clinical AI prediction modelling studies.26–28 The 
ECG-AI demonstrated superior discrimination and calibration per
formance compared with both clinical and polygenic scores 
(Structured Graphical Abstract). Recent studies reported on the develop
ment of incident AF prediction models using 12-lead ECG during nor
mal sinus rhythm in a diverse hospital network population.15–19 To our 
knowledge, this study represents the first attempt to predict incident 
AF in a cardiac care centre using an ECG-AI model and comparing it 
to both clinical and polygenic scores. A multifaceted performance as
sessment was conducted, evaluating discrimination, calibration, and 

A B

C D

Figure 4 Incident atrial fibrillation–free probability: Kaplan-Meier curves using electrocardiogram-based deep learning (ECG-AI) to stratify patients at 
classification threshold of 12%. Index electrocardiograms with calculated time to atrial fibrillation diagnosis of 0 were removed. Hazard ratios (HR) were 
calculated by fitting a Cox proportional hazards model. P-values are calculated using the log-rank test. (A) KM curves of patients in the ‘MHI All-Comers’ 
group. Only the first electrocardiogram of each patient was used. (B) KM curves of patients in the ‘MHI Hospitalized’ group. Only the first electrocar
diogram of each patient was used. (C ) KM curves of patients with a prior history of CAD. Only the first electrocardiogram acquired after the earliest 
record of coronary artery disease diagnosis was used. (D) KM curves of patients with a prior history of heart failure. Only the first electrocardiogram 
acquired after the earliest record of heart failure diagnosis was used
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NB using decision curve analysis to comprehensively assess the predict
ive capabilities of the models.27 This is crucial since solely reporting 
AUC-ROC can be overly optimistic in the setting of imbalanced data 
with a relatively small event rate,44 and the NB better reflects the impact 
of clinical implementation. Reassuringly, the ECG-AI model demonstrated 
good performance in an independent external validation cohort 
(MIMIC-IV), supporting the generalizability of the model across different 
clinical settings. Importantly, while most published ECG-AI models remain 
proprietary, this study not only shares the open weights of the model but 
also provides the complete code for replicating the validation using the 
MIMIC-IV data set. This comprehensive approach promotes transparency 
and reproducibility, allowing researchers to independently validate our 
findings. Furthermore, our open-source code enables other investigators 
to retrain and fine-tune the model on their own data sets, facilitating adap
tation to diverse clinical contexts. By establishing this robust, accessible 
baseline, the aim is to accelerate future research and improvement in 
ECG-based AF risk prediction across various healthcare settings.

Electrocardiogram-based deep learning 
outperforms clinical models in predicting 
5-year incident atrial fibrillation
Atrial fibrillation clinical risk scores are a combination of established AF 
risk factors. In a recent meta-analysis, CHARGE-AF achieved a 
C-statistic of .71 (95% CI: .66–.76), HATCH .67 (95% CI: .61–.73), 
and CHA2DS2-VASc .69 (95% CI: .64–.74).45 Further, the CHARGE- 
AF score performance has been consistently reported in the .7–.8 range 
across both ambulatory and general healthcare populations.12,16,46–48 In 
our study, the performance of these three clinical models was lower 
than previously reported. This discrepancy could be attributed to sev
eral factors. First, classification bias may arise from inconsistencies in 

how AF is recorded across different settings, potentially leading to under
reporting or misclassification of AF cases. The 91% sensitivity of our AF 
outcome adjudication validation study indicated a modest risk of classifica
tion bias (see Supplementary data online, Table S7), which could have also 
negatively impacted the performance of ECG-AI. There was no significant 
change in the discrimination performance of clinical risk models in the sen
sitivity analysis restricting cases to those with a follow-up duration of over 1 
year, suggesting that short-term follow-up bias had a negligible impact on 
our findings (see Supplementary data online, Table S10). Second, the popu
lation in our study, drawn from a cardiac care centre, is significantly 
different from the primarily general population included in the 
meta-analysis.45 Clinical risk models may perform less well in a cardiac cen
tre patient population owing to the higher prevalence of cardiovascular co
morbidities. Consistent with our findings, a recent study by Marston et al.49

reported that the CHARGE-AF clinical score achieved a C-index of .65 in 
predicting incident AF among patients with cardiovascular conditions.

Our findings indicate that the ECG-AI model outperforms traditional 
clinical risk models, CHA2DS2-VASc, HATCH, and CHARGE-AF, 
across various performance metrics. Saliency maps revealed that the 
P-wave area had the most significant impact on ECG-AI’s prediction 
of AF risk, which is similar to the finding of Khurshid et al.16 The patho
physiological plausibility of the predictive ability of ECG-AI can thus be 
attributed to the assumption of an underlying ECG signature indicative 
of significant atrial myopathy, which represents a vulnerable substrate 
for AF. In fact, Verbrugge et al.50 recently found that a higher deep 
learning probability of paroxysmal AF is associated with greater atrial 
myopathy on echocardiography and invasive haemodynamic testing.

The ECG-AI model maintained good performance across different 
demographic groups, including age, sex, and socio-economic status 
(CIMD). This confirmation is important since current deep learning mod
els have limited explainability and, therefore, carry the potential to reflect 

Figure 5 Saliency maps for two electrocardiogram derivations, II and V1, which visualize the importance of different segments of the electrocardio
gram signals in predicting atrial fibrillation using electrocardiogram-based deep learning (ECG-AI). The saliency maps were generated using 
TensorFlow’s GradientTape to compute the gradient of the model’s prediction with respect to the input electrocardiogram sample, providing explain
ability. The maps show regions of low to high saliency, indicated by the colour gradient from light (low saliency) to dark (high saliency). The derivations II 
and V1 are shown, with notable high saliency around the P-wave that the model found most relevant for predicting atrial fibrillation
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and perpetuate health disparities.31,51 Of interest, ECG-AI showed sig
nificantly better discrimination performance in females compared with 
males. This better performance in females was also observed in a prior 
study for clinical AF prediction.48 Accurate prediction of AF in females 
is of clinical interest since female AF patients are at increased risk for ad
verse outcomes including stroke and death compared with males.52 The 
ECG-AI also maintained consistent performance in survival analysis when 
selecting the single ECG with the highest AF probability per patient (see 
Supplementary data online, Figure S14).

Electrocardiogram-based deep learning 
outperforms AF-PGS in predicting 5-year 
incident atrial fibrillation
Genetic variation has been shown to play an important role in deter
mining long-term AF risk. In the MHI Biobank cohort, AF-PGS showed 
poor discrimination performances compared with ECG-AI. The lower 
performance of AF-PGS in our study compared with prior AF-PGS 

studies can be attributed to differences in the clinical setting, where 
our study involved patients seen in a tertiary cardiac institute while 
prior studies have mostly considered application of AF-PGS in the gen
eral population. In this study, the first attempt to combine ECG-AI with 
AF-PGS to predict AF risk is reported. Interestingly, while this combin
ation did not significantly enhance discrimination performance, it did 
improve calibration performance, resulting in an overall better fit and 
NB for the combined model compared with ECG-AI and with greater 
benefit than when only the CHARGE-AF was added. This finding sug
gests that AF-PGS potentially provides additional predictive value be
yond ECG-AI in assessing AF risk in a cardiac care centre population.

Electrocardiogram-based deep learning 
prediction is associated with long-term 
atrial fibrillation risk
The time-to-event analysis demonstrated a sustained separation of the 
KM incidence-free survival curves for up to 15 years after the index 

A B

C D

Figure 6 Incident atrial fibrillation–free probability: Kaplan-Meier curves using different models to stratify patients in the MHI Biobank group. Index 
electrocardiograms with calculated time to AF diagnosis equal to 0 days were removed. Hazard ratios were calculated by fitting a Cox proportional 
hazards model. P-values are calculated using the log-rank test. (A) Electrocardiogram-based deep learning (ECG-AI) model. Classification threshold =  
12%. (B) AF-polygenic score (AF-PGS) model. Classification threshold = top decile (10%) of PGS. (C ) CHARGE-AF score. Classification threshold =  
21% based on the decision curve analysis. (D) ECG-AI + AF-PGS + CHARGE-AF model. AF-PGS and CHARGE-AF are added to ECG-AI post-training 
using a logistic regression. Classification threshold = 21% based on the decision curve analysis
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ECG. This finding further supports the potential of ECG-AI to stratify 
AF risk. Additionally, these results are consistent with those of a previ
ous study evaluating AF prediction using ECG-AI, thereby strengthening 
the overall body of evidence.17 The ECG-AI model maintained its ability 
to discriminate between high- and low-risk populations for new-onset 
AF after further stratifying the time-to-event analysis by age and sex 
groups, two established risk factors for AF. The model’s superiority 
over age and sex alone was most evident in younger age groups and fe
male patients, aligning with the findings of Raghunath et al.17 Finally, 
stratifying patient using ECG-AI was associated with a higher HR of in
cident AF compared with AF-PGS and CHARGE-AF further affirming 
the advantage of ECG-AI (Figure 6).

Limitations and future directions
The results should be interpreted in the context of our study design, 
which was retrospective and confined to a single tertiary cardiac refer
ral centre. In Canada, coronary angiography is largely performed in aca
demic centres like MHI, while HF care is more widely distributed, 
contributing to the higher relative prevalence of CAD in the MHI popu
lation. External validation was conducted with the MIMIC-IV cohort, 
which includes patients admitted to the emergency department or an 
intensive care unit, a population that differs from the MHI cohort and 
has a short median follow-up of 1.1 years. Despite these differences, 
the consistent performance of ECG-AI in patients without CAD and 
in the MIMIC-IV cohort is reassuring for its generalizability. Although 

A B

C D

Figure 7 Performance assessment of electrocardiogram-based deep learning (ECG-AI) in the Medical Information Mart for Intensive Care-IV 
(MIMIC-IV) external validation data set (109 870 patients, 437 323 ECG). (A) The receiver operating characteristic curve, plotting the true positive 
rate against the false positive rate for each model, with the area under the curve indicating discriminatory power (reported in legend). (B) The preci
sion–recall curve, plotting precision against recall with the area under the curve reported in legend. (C ) The calibration curve, showing the relationship 
between predicted and observed 5-year atrial fibrillation risk; the slope and intercept are calculated using linear regression, and the curve is plotted using 
a univariate spline with smoothing factor of 1. The estimated calibration index (ECI, reported in legend) is the root mean squared difference between 
the mean predicted probabilities and the spline-fitted calibration curve. (D) The decision curve analysis, plotting net benefit against threshold probability.
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the AF classification bias was mitigated by using multiple sources and 
conducting a validation study against manual adjudication, a residual 
classification bias may be present and may have negatively impacted 
ECG-AI performance. The 5-year AF incidence in our cohort is higher 
than in general healthcare-related data sets.16,48 This discrepancy can 
be attributed to our study population consisting of cardiac patients, 
who have a higher risk of developing AF and who may have undergone 
more intensive monitoring leading to more frequent detection of AF 
compared with general healthcare-related data sets. Furthermore, in 
a retrospective analysis, it is challenging to distinguish between the de
tection of pre-existing paroxysmal AF and the prediction of truly inci
dent AF, despite purposefully excluding patients with known AF at 
baseline. It cannot be excluded that some sinus rhythm ECG recorded 
after AF diagnosis may have been included. Reassuringly, the sensitivity 
analysis excluding ECG with a time to AF diagnosis of <1 year (to min
imize inclusion of patients with pre-existing paroxysmal AF) showed 
consistent results with the overall All-Comers cohort (Figure 3; 
Supplementary data online, Figure S5). Furthermore, this retrospective 

study did not account for right censoring when modelling AF as a binary 
outcome. Despite consistent results from sensitivity analyses with 
follow-up restrictions, future studies could incorporate time-to-event 
analysis in prospective cohorts where right censoring can be properly 
accounted for. The study did not assess performance bias related to 
ethnicity, as such data were not available in the entire population and 
the MHI Biobank subgroup (where genetic ancestry could have been 
inferred) is predominantly of European ancestry. Another limitation 
of this study is that new-onset AF and atrial flutter were analysed in 
a combined manner, which may affect the granularity and specificity 
of the results. Future work could consider separating these conditions, 
which can be beneficial in specific clinical scenarios, such as predicting 
new-onset AF in patients referred for atrial flutter ablation procedure.

Our study leverages a ResNet-50 architecture for ECG-AI predic
tion of incident AF, building upon previous seminal works that uti
lized less complex convolutional neural network structures.15–17

Importantly, while most published ECG-AI models remain proprietary, 
the open weights of the MHI ECG-AI model were shared. This 

A

B

Figure 8 Incident-free atrial fibrillation probability: Kaplan–Meier curves using electrocardiogram-based deep learning (ECG-AI) to stratify patients in 
the Medical Information Mart for Intensive Care-IV (MIMIC-IV) external validation cohort. Electrocardiograms with calculated time to atrial fibrillation 
diagnosis equal to 0 days were removed. Hazard ratios (HR) were calculated by fitting a Cox proportional hazards model. P-values are calculated using 
the log-rank test. (A) ECG-AI model. Classification threshold = 12%. (B) ECG-AI model when excluding ECGs with time to AF < 1 year.
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open-weight approach promotes transparency and establishes a robust 
baseline for future research. As the field of AI rapidly evolves, with re
cent advancements suggesting that more complex models could en
hance predictive performance, our open-weight ResNet-50 model 
serves as a valuable benchmark. Researchers can now use this model 
to validate its performance in diverse populations and directly compare 
new, potentially more sophisticated architectures against our model, 
accelerating progress in the field.

While adding clinical and genetic prediction to ECG-AI improved 
performance in the MHI Biobank subgroup, further analysis is war
ranted to ensure the generalizability of this observation in diverse po
pulations. Future developments also hold the promise of training a 
deep learning model end to end with all these modalities combined.53

Furthermore, the added clinical gain of ECG-AI remains uncertain be
yond net clinical benefit modelling, and the cost-effectiveness remains 
unexplored. Finally, inherent challenges with ECG-AI persist, such as 
workflow integration and the acceptance of AI by both clinicians and 
patients in the medical field.54

Conclusion
Our study contributes to the growing body of evidence demonstrating 
that deep learning applied to a resting 12-lead ECG during sinus rhythm 
can effectively predict the risk of new-onset AF with high performance 
in a tertiary cardiac care centre population. This prediction outper
forms existing clinical and polygenic scores. Our study demonstrates 
the potential of ECG-AI models to significantly enhance AF prediction 
in a cardiac care setting, paving the way for tailored strategies for early 
detection of AF to prevent adverse outcomes.
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