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Abstract 

Background: The association between ultra-processed food (UPF) intake and markers of biological ageing has been scarcely 
investigated, despite the evident adverse health effects associated with UPF. This study aimed to test the association between 
UPF intake and biological ageing, and evaluate how much of this association is accounted for by overall diet quality. 
Methods: This cross-sectional study assessed 16 055 participants aged 20–79 years (51% women, 46 ± 0.3 years) from the 
National Health and Nutrition Examination Survey (NHANES) 2003–2010. Dietary UPF intake was assessed using the Nova 
system. Values were expressed as % of total energy intake and were denominated as a continuous variable and in quintiles. 
Diet quality was assessed with the American Heart Association 2020 and the Healthy Eating Index 2015. Biological ageing 
was assessed using the PhenoAge algorithm. 
Results: For each 10% of energy intake accounted for by UPF, participants were 0.21 (95%CI 0.16–0.26) years biologically 
older in terms of PhenoAge. As compared to participants in the lowest UPF quintile (≤39%), those in the highest UPF 
quintile (68–100%) were 0.86 (95% CI 0.55, 1.16) years older (P-for-trend across quintiles ≤0.001). Adherence to a healthy 
diet moderately attenuated the relationship between UPF and PhenoAge (adjusted β = 0.14 per 10% increment of UPF). 
Conclusions: Adults with higher UPF tended to be biologically older. This association is partly independent of diet quality, 
suggesting that food processing may contribute to biological ageing acceleration. Our findings point to a compelling reason 
to target UPF consumption to promote healthier ageing. 
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Key Points 
• Ultra-processed food (UPF) consumption is associated with signs of accelerated biological ageing. 
• Adherence to a healthy diet explained only part of the association of UPF intake with older biological age. 
• Other properties of UPF related to processing may contribute to an acceleration of biological processes of ageing. 
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Introduction 
Life expectancy is increasing globally, with the population 
above 60 years projected to double from 2015 to 2050, 
reaching nearly 2.1 billion [1]. The global demographic shift 
towards an ageing population poses economic and societal 
challenges [2], in part because gains in lifespan are not being 
matched by gains in healthy years of life [3]. Understanding 
how dietary choices impact the ageing process may pave 
the way to promoting longevity and reducing the burden of 
age-related illnesses. 

The emerging field of geroscience proposes that one strat-
egy to increase healthy years of life or ‘healthspan’ is to 
intervene in the biological processes of ageing [4]. Biological 
ageing refers to the gradual accumulation of molecular and 
cellular damage over time, which leads to the decline in phys-
iological function and increased vulnerability to diseases. 
The Geroscience Hypothesis is premised on evidence that a 
number of molecular changes (called ‘hallmarks’) are char-
acteristic of ageing across mammalian species and mediate 
ageing-related risk for many different chronic diseases [5, 
6]. In laboratory animals, interventions to slow or reverse 
the accumulation of ageing hallmarks can extend healthspan 
[7]. Translation of these therapies to treat human ageing is 
a key frontier in geroscience [8, 9]. In parallel, it may be 
possible to identify environments and behaviours that affect 
ageing biology, offering more immediate opportunities for 
intervention [10]. 

Diet is a key environmental/behavioural pathway with 
potential to affect healthy ageing [11]. People with healthier 
dietary patterns tend to exhibit a slower pace of biological 
ageing as compared to those with less healthy diets [12–15]. 
Healthy diet indices used in previous research mostly focus 
on the consumption of whole, plant-based foods, which 
results in high intake of fibre, and limited consumption of 
saturated fat, sodium and added sugar [16]. Although the 
importance of specific nutrients and food groups for health 
outcomes is indisputable, the impact of food processing on 
health is emerging as a dietary feature potentially relevant to 
healthy longevity. 

Industrial food processing involves physical, chemical 
and biological processes used by food manufacturers to alter 
foods from their natural state before consumption or meal 
preparation. Based on the extent and purpose of these pro-
cesses, the Nova classification system categorises foods and 
beverages into four groups: unprocessed or minimally foods, 
processed culinary ingredients, processed foods and ultra-
processed foods (UPFs) [17]. UPFs are defined as industrial 
formulations of several ingredients including oils, fats and 
starch that typically contain cosmetic additives and/or 
substances of rare culinary use opposed to little (if any) 
whole foods [17]. UPFs account for >50% of energy intake 
in the usual diet of US and British populations [18], with 
a steady increase observed in Asian, African Middle Eastern 
and Latin-American countries [19]. Multiple studies found 
strong associations between UPF intake and cardiovascular 
diseases, type 2 diabetes, obesity, mental disorders, all-cause 

and heart-disease-related mortality [20]. In this study, we 
aimed to test if higher UPF consumption was associated 
with signs of accelerated biological ageing. Furthermore, we 
assessed how much of this association is accounted for by 
total energy intake and overall diet quality, assessed with 
the American Heart Association (AHA) 2020 continuous 
diet score [21] and the Healthy Eating Index 2015 (HEI-
2015) [22, 23]. Our analysis from the US National Health 
and Nutrition Examination Surveys (NHANES) sheds new 
light on how dietary intake may contribute to healthy 
longevity. 

Methods 
Study population 
This cross-sectional study included data from the 2003– 
2010 NHANES, given that only these sequenced cycles 
collected all data required for calculation of PhenoAge for 
≥18-year-old participants (e.g. C-reactive protein (CRP) is 
not available for cycles 2011–12, 2013–14). The NHANES 
protocol was approved by the National Center for Health 
Statistics (NCHS) Research Ethics Review Board. All the 
NHANES participants provided informed consent. Given 
that questions about the history of CVD and diabetes, 
which are important factors to be accounted for because of 
potential reverse causation, were only asked to individuals 
aged 20 years and over, we excluded 18- and 19-year-olds 
from our analysis. Furthermore, individuals aged 85 and over 
were topcoded at 85 years of age in cycles 2003–04 and 
2005–06; and individuals aged 80 and over were topcoded 
at 80 years of age in cycles 2007–08 and 2009–10. Thus, we 
limited our analysis to people aged between 20 and 79 years 
old with reliable data for at least the first of two 24-hour 
dietary recalls. We excluded all participants with missing data 
necessary for the PhenoAge calculation (n = 2096), pregnant 
women (n = 539) and people with missing data for physical 
activity, a continuous variable used as covariate (n = 3). From 
the 18 693 participants within the eligible age range in 
the 2003–2010 NHANES cycles and reliable data for at 
least the first of two 24 h dietary recalls, 16 055 also met 
the remaining eligibility criteria and were included in our 
analysis (Fig. S1). 

Dietary intake 
All NHANES participants were eligible for two 24-hour 
dietary recall interviews: the first in-person at the Mobile 
Examination Center (MEC) and the second by phone 3– 
10 days later [24, 25]. We utilised all available dietary intake 
data for each participant, using means of both recall days 
when available and one day otherwise. 

Based on food code and SR code descriptions, all food 
items were assigned to one of the four Nova groups: 
unprocessed/minimally processed foods, processed culinary 
ingredients, processed foods and UPFs (Supplementary 
Methods 1) [17, 26]. The contribution (%) of each Nova 
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group to total daily energy intake was calculated for each 
participant. 

The overall diet quality was assessed using the AHA 2020 
continuous diet score [21] and the HEI-2015 [22, 23]. 
The AHA diet score assigns points to ‘beneficial’ dietary 
components (fruits and vegetables; whole grains; fish and 
shellfish; nuts, seeds and legumes) while “harmful” compo-
nents (sugar-sweetened beverages; sodium; processed meat; 
saturated fat) score inversely. HEI-2015, ranging 0–100, 
reflects 13 dietary components from 2015–2020 Dietary 
Guidelines for Americans [22] classified as “adequacy” (e.g. 
fruits, vegetables, whole grains) or “moderation” (e.g. refined 
grains, sodium). In both diet quality indices, higher scores 
represent a higher diet quality. 

Biological ageing 
In lack of a gold standard for the measurement of biological 
ageing [27], we used PhenoAge as this method can be 
applied to routinely collected clinical data with the best 
validation evidence for prediction of healthspan [28–32]. 
The PhenoAge was developed by modelling survival prob-
abilities from blood chemistry data among participants in 
NHANES III [28] using an algorithm that includes chrono-
logical age and nine blood analytes. Importantly, prior stud-
ies established that PhenoAge is sensitive to lifestyle expo-
sures, including nutrition [13, 33–35], and revealed slowed 
ageing in response to calorie restriction [36], an intervention 
established to slow biological ageing [37]. Values of the Phe-
noAge can be interpreted as the age at which an individual’s 
mortality risk would match the average in the NHANES III 
training sample. 

We implemented a modified version of PhenoAge 
algorithm adapted for use in a randomised trial of calorie 
restriction [36] using the ‘BioAge’ R package (Table S1). 
We computed PhenoAge gap as the difference between 
predicted biological age and chronological age. A higher 
PhenoAge gap value indicates an advanced state of 
biological ageing and increased risk of diseases and 
mortality. 

Covariates 
Demographics (age, sex, ethnicity, education, poverty-
income ratio) and smoking status were collected using 
a Computer-Assisted Personal Interviewing system by 
trained interviewers. Body measures (height and weight) 
were collected by trained health technicians. Physical 
activity was assessed with the Global Physical Activity 
Questionnaire. History of CVD was noted if participants 
reported a physician’s diagnosis of heart failure, coronary 
heart disease, angina, heart attack or stroke. History of 
diabetes was identified if participants reported a doctor’s 
diagnosis, use of hypoglycemic agents or insulin, or HbA1c 
levels ≥6.5% (Hb1Ac was measured in blood with Tosoh 
Automated Hb1Ac Analyser HLC-723G8). Further details 

of the covariates are presented in the Supplementary 
Methods 2. 

Statistical analysis 
Demographic and clinical characteristics were presented as 
mean with standard deviation (SD) for continuous variables, 
or % weighted (SD) for categorical variables. Data were 
compared across the population-stratified quintiles of the 
dietary contribution of UPF (% of total energy intake) using 
P-for-trend for continuous variables or Pearson’s chi-square 
for categorical variables. 

We used regression models to test the association between 
UPF intake (as both a continuous variable and quintiles 
of intake) with biological ageing, including a progressively 
more comprehensive set of covariates in our models to 
account for potential confounding, reverse causality or test 
potential mediation. Tests of linear trend were carried out 
by treating quintiles as a single continuous ordinal variable. 
The models were adjusted as follows: Model 1: NHANES 
cycle, chronological age and gender; Model 2: addition-
ally adjusted for ethnicity, education and poverty-income 
ratio; Model 3: additionally adjusted for physical activity 
and smoking status; and Model 4: additionally adjusted for 
body mass index (BMI) and history of CVD and diabetes. 
These latter covariates in model 4 were included to account 
for potential reverse causality that could dilute the studied 
associations towards the null when assessed through cross-
sectional studies. We constructed three other models that 
were adjusted for total energy intake (Model 5), AHA diet 
score (Model 6) and HEI-15 diet score (Model 7) in addition 
to the covariates used in Model 4 to test the hypothesis that 
UPF intake affects biological ageing over and above total 
energy intake and overall diet quality. 

We used a weighed restricted cubic spline in model 4 
with five knots (5th, 27.5th, 50th, 72.5th, and 95th) as per 
Harrell’s recommendations [38] to examine the shape of the 
dose–response relationship curve between %kcal UPF (as a 
continuous variable) and PhenoAge gap. 

To examine potential differences in the association 
between UPF and PhenoAge gap by gender, chronological 
age (continuous), BMI (continuous), smoking status, 
physical activity (continuous), history of CVD and diabetes, 
total energy intake and diet quality indices (AHA and 
HEI-15, continuous), Wald F tests were used to evaluate 
interaction terms in Model 4 using UPF as a continuous 
variable. Analyses were stratified according to statistically 
significant interaction variables. We further performed a 
sensitivity analysis where we ran all seven models (using 
UPF as both continuous and  quintiles of intake) excluding  
participants with implausible energy intake (defined as 
consumption of <800 kcal/d or >4200 kcal/d in men and 
<500 kcal/d or >3500 kcal/d in women) for either day 1 or 
2 as suggested by Banna et al. [39]. 

Statistical analysis was performed with STATA/SE 16.0 
for Windows (StataCorp LLC) using the survey design (svy) 
and considering the sample weights provided by NHANES 
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Table 1. Characteristics and measured data from NHANES 2003–2010 participants across quintiles of UPFs intake 
(n = 16 055) 
Characteristics Quintiles of UPF (% of total energy intake) 

All 
participants 

Q1 
(0–39.1%) 

Q2 
(39.2–49.5%) 

Q3 
(49.6–57.9%) 

Q4 
(60.0–67.5%) 

Q5 
(67.6–100%) 

P-value 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NHANES cycle, n (%) 

2003–04 3398 (24.2) 618 (16.2) 760 (22.0) 750 (21.9) 674 (20.5) 596 (19.4) 
2005–06 3446 (24.5) 678 (19.2) 760 (21.8) 703 (20.5) 699 (20.1) 606 (18.4) 
2007–08 4459 (25.4) 888 (17.5) 847 (19.0) 880 (19.7) 892 (20.5) 952 (23.3) 
2009–10 4752 (25.9) 1027 (19.5) 844 (16.6) 878 (18.7) 946 (21.2) 1057 (24.0) 

Chronological age (years)a 45.6 (0.3) 47.6 (0.4) 47.2 (0.4) 46.6 (0.4) 45.4 (0.4) 41.7 (0.4) <0.001 
Female, % (SD)b 50.7 (0) 48.2 (1.1) 51.2 (1.1) 50.3 (1.0) 51.6 (1.0) 52.0 (1.1) 0.116 
Race/Ethnicity, % (SD)b <0.001 

Mexican American 8.2 (0.9) 8.4 (1.0) 9.6 (1.1) 9.0 (1.0) 7.9 (0.9) 6.2 (1.0) 
Non-Hispanic White 72.0 (1.6) 63.3 (2.4) 71.9 (1.8) 73.4 (1.6) 74.3 (1.8) 75.8 (1.8) 
Non-Hispanic Black 10.5 (0.8) 9.5 (0.8) 9.1 (0.8) 10.1 (0.9) 11.3 (1.1) 12.5 (1.2) 
Other/Multiracial 9.3 (0.7) 18.8 (1.7) 9.4 (0.9) 7.5 (0.8) 6.5 (0.7) 5.5 (0.6) 

Education, % (SD)b <0.001 
Incomplete high school 17.3 (0.7) 20.0 (1.0) 17.2 (1.1) 16.4 (0.9) 16.8 (1.1) 16.5 (0.9) 
High school graduate 24.7 (0.7) 18.8 (1.1) 22.5 (1.4) 24.0 (1.0) 25.9 (0.9) 31.2 (1.4) 
Incomplete college 31.3 (0.5) 28.7 (1.1) 30.0 (1.3) 30.3 (1.1) 34.4 (1.0) 32.7 (1.1) 
College graduate 26.6 (1.0) 32.6 (1.4) 30.2 (1.6) 29.2 (1.4) 22.8 (1.3) 19.5 (1.4) 
Missing 0.1 (0) 0 0.1 (0) 0.1 (0) 0.1 (0) 0.1 (0) 

Poverty-income ratio, % (SD)b <0.001 
<1.30 18.7 (0.8) 18.8 (1.0) 15.6 (0.8) 16.6 (0.9) 18.1 (1.1) 23.8 (1.6) 
≥1.30 75.9 (0.9) 75.0 (1.4) 78.8 (0.9) 78.6 (1.1) 75.8 (1.2) 71.6 (1.5) 
Missing 5.4 (0.4) 6.2 (0.7) 5.6 (0.5) 4.8 (0.5) 6.1 (0.7) 4.6 (0.8) 

BMI category, % (SD)b <0.001 
≤24.9 kg/m2 31.2 (0.7) 35.1 (1.4) 31.4 (1.2) 29.0 (1.0) 30.1 (1.2) 30.9 (1.4) 
25–29.9 kg/m2 32.9 (0.6) 34.0 (1.2) 32.6 (1.1) 35.5 (0.9) 32.5 (1.2) 30.2 (1.5) 
>30 kg/m2 34.2 (0.7) 29.1 (1.2) 34.1 (1.4) 33.8 (1.3) 35.1 (1.1) 37.9 (1.2) 
Missing 1.7 (0.1) 1.8 (0.4) 1.9 (0.3) 1.7 (0.3) 2.3 (0.3) 1.0 (0.2) 

Smoking status, % (SD)b <0.001 
Current smoker 24.5 (0.6) 21.6 (1.2) 22.1 (1.2) 21.9 (1.2) 25.7 (1.1) 30.4 (1.1) 
Non-smoker 50.8 (0.8) 51.2 (1.7) 51.6 (1.3) 52.8 (1.5) 50.2 (1.4) 48.3 (1.3) 
Former smoker 24.7 (0.6) 27.2 (1.3) 26.2 (1.1) 25.2 (1.4) 24.1 (1.1) 21.3 (0.9) 
Missing 0.01 (0.01) 0.02 (0.02) 0.01 (0.01) 0.04 (0.04) 0.04 (0.04) 0 

Physical activity (z-score, min/day)a 0.09 (0.01) 0.21 (0.03) 0.10 (0.02) 0.09 (0.03) 0.05 (0.03) 0.03 (0.03) <0.001 
History of CVD, % (SD)b 7.3 (0.4) 7.9 (0.7) 7.3 (0.5) 7.2 (0.6) 7.2 (0.6) 7.0 (0.7) 0.964 

Missing 0.4 (0.01) 0.4 (0) 0.3 (0.1) 0.3 (0.1) 0.4 (0.2) 0.4 (0.1) 
History of diabetes, % (SD)b 9.2 (0.3) 9.1 (0.7) 10.2 (0.6) 9.9 (0.7) 8.9 (0.5) 8.0 (0.6) 0.076 
Total energy intake (kcal/day)a 2160 (11) 2052 (24) 2159 (22) 2163 (20) 2201 (22) 2211 (20) <0.001 
HEI scorea 52.7 (0.3) 60.4 (0.4) 56.8 (0.3) 53.4 (0.3) 49.8 (0.3) 44.7 (0.3) <0.001 
AHA scorea 35.4 (0.3) 42.5 (0.4) 38.5 (0.3) 35.9 (0.4) 32.4 (0.3) 29.0 (0.3) <0.001 
PhenoAge gap (years)a −5.80 (0.07) −6.50 (0.10) −6.03 (0.11) −5.88 (0.10) −5.54 (0.10) −5.19 (0.11) <0.001 
Dietary %kcal UPFa 54.3 (53.6, 

55.1) 
30.0 (0.2) 44.5 (0.0) 53.7 (0.0) 62.5 (0.0) 76.7 (0.0) <0.001 

BMI, body mass index; HEI, Healthy Eating Index; AHA, American Heart Association index; UPF, ultra-processed food. Values presented as mean (SD), unless 
stated otherwise. Comparisons across quintiles were performed using. aLinear regression (P-for-trend). bPearson chi-square. 

for the first day 24-h recall. A P-value at or below 0.05 was 
considered statistically significant. 

Results 
Table 1 shows characteristics of the study sample (n = 16 055) 
and their distribution across quintiles of UPF intake. On 
average, the participants in this study were 46 years old, and 
51% were females. The mean %kcal UPF was 54.3% for the 
overall study population, ranging from 30.0% in the first 

quintile of intake (Q1) to 76.7% in the fifth quintile (Q5). 
Younger, Non-Hispanic White and Non-Hispanic Black, 
non-college graduates, lower income, current smokers, less-
physically active participants tended to be concentrated 
among the highest quintiles of UPF intake. Overall, 34% 
of the study population was classified as having obesity, with 
increasing rates across the UPF intake quintiles. The study 
population presented similar demographic characteristics 
when compared with the 2003–2010 NHANES population 
at the same age bracket who completed at least the first of 
two 24 h dietary recalls (Table S2). 
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Table 2. Association between UPF intake (% of total energy intake) and PhenoAge gap and in US adults from NHANES 
2003–2010 (n = 16 055) 

Quintiles of UPF (% of total energy intake) UPF (% of total energy intake) 

β (95% CI) P-trend β (95% CI)a P-value 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Q1 Q2 Q3 Q4 Q5 
Model 1 - 0.48 (0.23, 0.73) 0.63 (0.33, 0.90) 1.03 (0.76, 1.30) 1.44 (1.14, 1.75) <0.001 0.33 (0.27, 0.38) <0.001 
Model 2 - 0.47 (0.23, 0.72) 0.60 (0.34, 0.86) 0.90 (0.64, 1.16) 1.21 (0.91, 1.51) <0.001 0.28 (0.22, 0.33) <0.001 
Model 3 - 0.46 (0.22, 0.70) 0.60 (0.34, 0.85) 0.86 (0.58, 1.13) 1.14 (0.84, 1.44) <0.001 0.26 (0.20, 0.31) <0.001 
Model 4 0.32 (0.07, 0.56) 0.44 (0.21, 0.67) 0.71 (0.44, 0.98) 0.90 (0.60, 1.20) <0.001 0.21 (0.16, 0.26) <0.001 
Model 5 - 0.31 (0.07, 0.56) 0.44 (0.21, 0.67) 0.70 (0.43, 0.98) 0.90 (0.60, 1.20) <0.001 0.21 (0.16, 0.26) <0.001 
Model 6 - 0.21 (−0.04, 0.46) 0.26 (0.03, 0.50) 0.45 (0.18, 0.71) 0.57 (0.26, 0.88) <0.001 0.14 (0.09, 0.20) <0.001 
Model 7 - 0.24 (−0.01, 0.49) 0.28 (0.05, 0.52) 0.48 (0.20, 0.75) 0.57 (0.24, 0.89) <0.001 0.14 (0.09, 0.20) <0.001 

Model 1: adjusted for NHANES cycle, chronological age and gender Model 2: adjusted for NHANES cycle, chronological age, gender, ethnicity, education and 
poverty-income ratio Model 3: adjusted for NHANES cycle, chronological age, gender, ethnicity, education, poverty-income ratio, physical activity and smoking 
status Model 4: adjusted for NHANES cycle, chronological age, gender, ethnicity, education, poverty-income ratio, physical activity, smoking status, BMI, history 
of CVD and diabetes Model 5: adjusted for NHANES cycle, chronological age, gender, ethnicity, education, poverty-income ratio, physical activity, smoking status, 
BMI, history of CVD and diabetes, and energy intake Model 6: adjusted for NHANES cycle, chronological age, gender, ethnicity, education, poverty-income ratio, 
physical activity, smoking status, BMI, history of CVD and diabetes, and AHA diet score Model 7: adjusted for NHANES cycle, chronological age, gender, ethnicity, 
education, poverty-income ratio, physical activity, smoking status, BMI, history of CVD and diabetes, and HEI-15 diet score. aPresented for 10% increase in UPF 
intake (as % kcal). 

There was a significant linear decrease in diet quality 
(assessed as HEI-15 and AHA scores) across the UPF intake 
quintiles. On the other hand, there was a significant linear 
increase in total energy intake and PhenoAge gap across 
the UPF intake quintiles. No differences regarding gender, 
history of CVD or diabetes were observed across UPF intake 
quintiles ( Table 1). 

The analysis revealed little evidence of non-linearity in 
the restricted cubic spline model (coefficient for linear 
term = 0.02 (95% CI 0.00, 0.04); Wald test for linear 
term P-value = 0.046; Wald test for all non-linear terms 
P-value = 0.550). Quintiles of UPF intake were positively 
associated with PhenoAge gap in all the adjusted models 
(P-for-trend ≤ 0.001), indicating accelerated biological 
ageing as UPF intake increased (Table 2). Based on the fully 
adjusted model (model 4), we observed that the highest UPF 
quintile presented a 0.9 (95% CI 0.60, 1.20) higher absolute 
PhenoAge gap compared to the lowest quintile, while a 0.21 
(95% CI 0.16, 0.26) increase in PhenoAge gap was observed 
for every 10% increase in UPF intake (Table 2). 

We further identified that adherence to a healthy diet, as 
indicated by higher AHA and HEI-15 scores, was associated 
with lower PhenoAge gap, while total energy intake had no 
association with PhenoAge gap (Table S3). Further adjust-
ment for energy intake (model 5) resulted in no differences in 
the effect sizes between UPF and PhenoAge gap. Adherence 
to a healthy diet, assessed by both AHA and HEI-15 scores, 
attenuated the relationship between UPF and PhenoAge gap 
(from 0.21 to 0.14 years, models 6 and 7), although the 
association remained significant after adjusting for each of 
these two indicators of diet quality (Table 2). 

Our analysis revealed no interaction of UPF intake 
with gender, BMI, physical activity, smoking status, 
history of CVD, diabetes, total energy intake and the 
two diet quality scores (HEI-15 and AHA) (Table S4). 

However, we observed an interaction between UPF intake 
and chronological age. Our stratified analysis by age group 
(20–39, 40–59 and ≥60 years) indicates a somewhat 
stronger association between UPF intake and PhenoAge 
gap among the ≥60-year-old group (Table 3). We further 
performed a sensitivity analysis excluding those with 
potential implausible energy intake. The results were 
based on data from 13 881 participants and did not 
meaningfully differ from those observed in the main analyses 
(Table S5). 

Discussion 
In this analysis of a representative sample of US adults, we 
identified that UPF intake is associated with older biological 
age assessed by PhenoAge. Although lower diet quality, as 
assessed by standard indices, may partly explain the asso-
ciation between UPF intake and biological ageing, other 
mechanisms associated with food processing are also likely 
involved. Our results support earlier research linking UPF 
consumption to ageing markers such as telomere length [40], 
frailty [41], cognitive decline [42] and dementia [43]. Given 
the global demographic shift towards an ageing population, 
demonstrating UPF’s adverse effects reinforces the need for 
dietary-focused public health strategies to prolong a healthy 
life span. 

This analysis showed that for every 10% increase in 
UPF consumption, there is a 2.4-month increase in the 
gap between biological and chronological age, evidence that 
UPF intake may accelerate biological ageing. If we assume a 
standard diet of 2000 kcal/day, adding an extra 200 calories 
of UPF daily (roughly equivalent to an 80 g serving of 
chicken bites or a small chocolate bar) could lead to the 
biological ageing process advancing by >2 months compared 
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to chronological ageing. Despite a seemingly small effect 
size, it holds significant public health implications. Based 
on previous research on PhenoAge’s links to morbidity, 
disability and mortality [ 32], this rise predicts nearly 2% 
more mortality, 0.75% more incident disability and 0.5% 
more incident chronic disease over 2 years. The association 
between UPF and PhenoAge gap was to some extent stronger 
in older adults, which highlights the potential role of nutri-
tion in promoting healthy ageing and preventing age-related 
diseases. 

The association between UPF intake and biological ageing 
remained significant after adjusting for diet quality and 
total energy intake, suggesting that other factors such as 
lower flavonoid or phytoestrogen intake [44, 45], or higher 
content of package materials such as bisphenol or phthalates 
[46] or compounds formed during processing such as acry-
lamides [47] might also explain the association [16]. Previous 
research indicates that caloric restriction slows biological 
ageing [36] and increases healthy lifespan [48, 49]. While 
we found an association between UPF and energy intake 
(as reported in previous research [50], our findings indicate 
caloric intake does not affect the link between UPF intake 
and biological ageing. 

Our results extend an earlier observation in a Span-
ish cohort linking high UPF intake with shorter leuko-
cyte telomere length, a candidate biomarker of ageing [40]. 
Several dietary guidelines advocate for limiting UPF intake 
[51] due to their connection with over 30 adverse health 
outcomes [20], and our findings provide another reason to 
target UPF consumption to promote healthier ageing. 

We acknowledge limitations. There is no gold standard 
for assessing biological ageing. We focused on PhenoAge 
based on its predictive value for ageing-related health out-
comes and sensitivity to nutritional exposure [29, 30, 32, 
52]. Dietary intake was assessed using self-reported 24-
hour recalls, the least biased self-report instrument avail-
able [53]. We employed a standardised system to classify 
foods, but NHANES data may lack brand-specific details 
crucial for accurate classification, as it focuses on nutri-
ent concentrations rather than food processing [26, 54]. 
Social desirability bias may lead to UPF underreporting, 
while food intake estimates may not reflect the usual diet, 
potentially biasing associations towards null. Furthermore, 
despite standardised NHANES methods [55–57], previous 
research indicates that over 25% of energy intake may be 
misreported [58]. However, our sensitivity analysis revealed 
no impact of misreporting on results, as effect sizes remained 
similar when excluding individuals with extreme energy 
intake. Our study focused on ages 20–79 due to NHANES 
design, limiting findings’ extrapolation to younger and older 
populations. The cross-sectional design of this study limits 
causal inference due to the lack of event temporality and 
residual confounding. Thus longitudinal studies tracking 
diet and lifestyle changes are needed to solidify our findings. 
Additionally, given prior research linking UPF intake to mor-
tality, investigating biological ageing as a potential mediator 
of the association is recommended.
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Conclusions 
Intake of UPF was associated with older biological age in 
US adults aged 20 to 79 years. Adherence to a healthy diet 
explained only part of the association of UPF intake with 
older biological age, suggesting that other properties of UPF 
related to processing may contribute to an acceleration of 
biological processes of ageing. 

Acknowledgements: The authors thank Dianne Cook for 
providing the initial support for PhenoAge calculation. 

Supplementary Data: Supplementary data are available at 
Age and Ageing online. 

Declaration of Conflicts of Interest: DWB is the  consult-
ing CSO and SAB chair of BellSant and a SAB member of 
the Hooke Clinic.  

Declaration of Sources of Funding: E.M.S. received fund-
ing from Fundacão de Amparo à Pesquisa do Estado de 
São Paulo (Processo n◦ 2023/16144-3). P.M is funded by 
a Deakin University Postdoctoral Research Fellowship. 

Data availability: Code will be made available on request 
by contacting the corresponding author. 

References 

1. United Nations, Department of Economic and Social Affairs, 
Population Division . World Population Prospects 2022: Ten 
Key Messages. 2022, New York: United Nations. https://doi.o 
rg/10.18356/9789210014380 . 

2. Scott AJ. The longevity economy. Lancet Healthy Longev. 
2021;2:e828–35. 

3. World Health Organization . Progress Report on the United 
Nations Decade of Healthy Ageing, 2021–2023. Geneva: World 
Health Organization, 2023. 

4. Kennedy BK, Berger SL, Brunet A et al. Geroscience: linking 
aging to chronic disease. Cell . 2014;159:709–13. 

5. López-Otín C, Blasco MA, Partridge L et al. The hallmarks of 
aging. Cell . 2013;153:1194–217. 

6. López-Otín C, Blasco MA, Partridge L et al. Hallmarks of 
aging: an expanding universe. Cell . 2023;186:243–78. 

7. Campisi J, Kapahi P, Lithgow GJ et al. From discoveries in 
ageing research to therapeutics for healthy ageing. Nature. 
2019;571:183–92. 

8. Kaeberlein M, Rabinovitch PS, Martin GM. Healthy 
aging: the ultimate preventative medicine. Science. 
2015;350:1191–3. 

9. Barzilai N, Cuervo AM, Austad S. Aging as a biological target 
for prevention and therapy. JAMA. 2018;320:1321–2. 

10. Belsky DW, Baccarelli AA. To promote healthy aging, focus 
on the environment. Nat Aging. 2023;3:1334–44. 

11. Al-Naggar IM, Newman JC, Kuchel GA. Healthy eating 
patterns: a stealthy geroscience-guided approach to enhancing 
the human healthspan. J Nutr Health Aging. 2023;27:238–9. 

12. Wang S, Li W, Li S et al. Association between plant-based 
dietary pattern and biological aging trajectory in a large 
prospective cohort. BMC Med . 2023;21:310. 

13. Thomas A, Belsky DW, Gu Y. Healthy lifestyle behaviors and 
biological aging in the U.S. National Health and Nutrition 
Examination Surveys 1999-2018. J Gerontol A Biol Sci Med 
Sci. 2023;78:1535–42. 

14. Thomas A, Ryan CP, Caspi A et al. Diet, pace of biological 
aging, and risk of dementia in the Framingham Heart Study. 
Ann Neurol . 2024;95:1069–79. 

15. Gensous N, Garagnani P, Santoro A et al. One-year Mediter-
ranean diet promotes epigenetic rejuvenation with country-
and sex-specific effects: a pilot study from the NU-AGE 
project. Geroscience. 2020;42:687–701. 

16. Dicken SJ, Batterham RL. The role of diet quality in medi-
ating the association between ultra-processed food intake, 
obesity and health-related outcomes: a review of prospective 
cohort studies. Nutrients. 2022;14:23. 

17. Monteiro CA, Cannon G, Levy RB et al. Ultra-processed 
foods: what they are and how to identify them. Public Health 
Nutr. 2019;22:936–41. 

18. Srour B, Kordahi MC, Bonazzi E et al. Ultra-processed 
foods and human health: from epidemiological evidence to 
mechanistic insights. Lancet Gastroenterol Hepatol . 2022;7: 
1128–40. 

19. Baker P, Machado P, Santos T et al. Ultra-processed foods and 
the nutrition transition: global, regional and national trends, 
food systems transformations and political economy drivers. 
Obes Rev. 2020;21:e13126. 

20. Lane MM, Gamage E, Du S et al. Ultra-processed food 
exposure and adverse health outcomes: umbrella review of 
epidemiological meta-analyses. BMJ . 2024;384:e077310. 

21. Lloyd-Jones DM, Hong Y, Labarthe D et al. Defining and 
setting national goals for cardiovascular health promotion and 
disease reduction: the American Heart Association’s strate-
gic Impact Goal through 2020 and beyond. Circulation. 
2010;121:586–613. 

22. Krebs-Smith SM, Pannucci TE, Subar AF et al. Update of 
the Healthy Eating Index: HEI-2015. J Acad Nutr Diet. 
2018;118:1591–602. 

23. Reedy J, Lerman JL, Krebs-Smith SM et al. Evaluation 
of the Healthy Eating Index-2015. J Acad Nutr Diet. 
2018;118:1622–33. 

24. Centers for Disease Control and Prevention (CDC). 
National Center for Health Statistics (NCHS) . National  
Health and Nutrition Examination Survey Questionnaire. 
MEC In-Person Dietary Interviewers Procedures Manual . 
Hyattsville, MD: U.S. Department of Health and Human 
Services, Centers for Disease Control and Prevention. March, 
2010. 

25. Centers for Disease Control and Prevention (CDC). National 
Center for Health Statistics (NCHS) . National Health and 
Nutrition Examination Survey (NHANES). Phone Follow-Up 
Dietary Interviewer Procedures Manual . Hyattsville, MD: U.S. 
Department of Health and Human Services, Centers for 
Disease Control and Prevention. March, 2001. 

26. Steele EM, O’Connor LE, Juul F et al. Identifying and 
estimating ultraprocessed food intake in the US NHANES 
according to the Nova classification system of food processing. 
J Nutr. 2023;153:225–41. 

27. Ferrucci L, Gonzalez-Freire M, Fabbri E et al. Measuring bio-
logical aging in humans: a quest. Aging Cell . 2020;19:e13080. 

28. Levine ME, Lu AT, Quach A et al. An epigenetic biomarker 
of aging for lifespan and healthspan. Aging (Albany NY). 
2018;10:573–91.

7

https://academic.oup.com/ageing/article-lookup/doi/10.1093/ageing/afae268#supplementary-data
https://doi.org/10.18356/9789210014380
https://doi.org/10.18356/9789210014380
https://doi.org/10.18356/9789210014380


B. R. Cardoso et al.

29. Liu Z, Kuo PL, Horvath S et al. A new  aging measure  
captures morbidity and mortality risk across diverse subpop-
ulations from NHANES IV: a cohort study. PLoS Med . 
2018;15:e1002718. 

30. Hastings WJ, Shalev I, Belsky DW. Comparability of bio-
logical aging measures in the National Health and Nutri-
tion Examination Study, 1999-2002. Psychoneuroendocrinol-
ogy. 2019;106:171–8. 

31. Parker DC, Bartlett BN, Cohen HJ et al. Association of blood  
chemistry quantifications of biological aging with disability 
and mortality in older adults. J Gerontol A Biol Sci Med Sci. 
2019;75:1671–9. 

32. Graf GH, Crowe CL, Kothari M et al. Testing black-
white disparities in biological aging among older adults 
in the United States: analysis of DNA-methylation and 
blood-chemistry methods. Am J Epidemiol . 2022;191: 
613–25. 

33. Graf GH, Zhang Y, Domingue BW et al. Social mobility 
and biological aging among older adults in the United States. 
PNAS Nexus. 2022;1:1–10. 

34. Cao X, Zhang J, Ma C et al. Life course traumas and cardio-
vascular disease-the mediating role of accelerated aging. Ann 
N Y Acad Sci. 2022;1515:208–18. 

35. Yang G, Cao X, Li X et al. Association of unhealthy 
lifestyle and childhood adversity with acceleration of aging 
among UK biobank participants. JAMA Netw Open. 2022;5: 
e2230690. 

36. Kwon D, Belsky DW. A toolkit for quantification of biolog-
ical age from blood chemistry and organ function test data: 
BioAge. Geroscience. 2021;43:2795–808. 

37. Flanagan EW, Most J, Mey JT et al. Calorie restriction and 
aging in humans. Annu Rev Nutr. 2020;40:105–33. 

38. Harrell F. Regression Modeling Strategies: With Applications 
to Linear Models, Logistic Regression, and Survival Analysis. 
New York: Springer, 2001. https://doi.org/10.1007/978-1-
4757-3462-1. 

39. Banna JC, McCrory MA, Fialkowski MK et al. Examining 
plausibility of self-reported energy intake data: considerations 
for method selection. Front Nutr. 2017;4:45. 

40. Alonso-Pedrero L, Ojeda-Rodríguez A, Martínez-González 
MA et al. Ultra-processed food consumption and the risk of 
short telomeres in an elderly population of the Seguimiento 
Universidad de Navarra (SUN) project. Am J Clin Nutr. 
2020;111:1259–66. 

41. Sandoval-Insausti H, Blanco-Rojo R, Graciani A et al. Ultra-
processed food consumption and incident frailty: a prospec-
tive cohort study of older adults. J Gerontol A Biol Sci Med Sci. 
2020;75:1126–33. 

42. Cardoso BR, Machado P, Steele EM. Association between 
ultra-processed food consumption and cognitive performance 
in US older adults: a cross-sectional analysis of the NHANES 
2011-2014. Eur J Nutr. 2022;61:3975–85. 

43. Li H, Li S, Yang H et al. Association of ultraprocessed food 
consumption with risk of dementia: a prospective cohort 
study. Neurology. 2022;99:e1056–66. 

44. Leitão AE, Roschel H, Oliveira-Júnior G et al. Association 
between ultra-processed food and flavonoid intakes in a 

nationally representative sample of the US population. Br J 
Nutr. 2024;131:1074–83. 

45. Martínez, Steele E, Monteiro CA. Association between dietary 
share of ultra-processed foods and urinary concentrations of 
phytoestrogens in the US. Nutrients. 2017;9:1–15. 

46. Martínez Steele E, Khandpur N, da Costa Louzada ML et al. 
Association between dietary contribution of ultra-processed 
foods and urinary concentrations of phthalates and bisphenol 
in a nationally representative sample of the US population 
aged 6 years and older. PloS One. 2020;15:1–21. 

47. Martínez Steele E, Buckley JP, Monteiro CA. Ultra-processed 
food consumption and exposure to acrylamide in a nationally 
representative sample of the US population aged 6 years and 
older. Prev Med . 2023;174:107598. 

48. Waziry R, Ryan CP, Corcoran DL et al. Effect of long-term 
caloric restriction on DNA methylation measures of biological 
aging in healthy adults from the CALERIE trial. Nature Aging . 
2023;3:248–57. 

49. Kraus WE, Bhapkar M, Huffman KM et al. 2 years of calorie 
restriction and cardiometabolic risk (CALERIE): exploratory 
outcomes of a multicentre, phase 2, randomised controlled 
trial. Lancet Diabetes Endocrinol . 2019;7:673–83. 

50. Hall KD, Ayuketah A, Brychta R et al. Ultra-processed diets 
cause excess calorie intake and weight gain: an inpatient 
randomized controlled trial of ad libitum food intake. Cell 
Metab. 2019;30:67–77.e3. 

51. Koios D, Machado P, Lacy-Nichols J. Representations of 
ultra-processed foods: a global analysis of how dietary guide-
lines refer to levels of food processing. Int J Health Policy 
Manag. 2022;11:2588–99. 

52. Belsky DW, Moffitt TE, Cohen AA et al. Eleven telomere, 
epigenetic clock, and biomarker-composite quantifications 
of biological aging: do they measure the same thing? Am J 
Epidemiol . 2018;187:1220–30. 

53. Prentice RL, Mossavar-Rahmani Y, Huang Y et al. Evaluation 
and comparison of food records, recalls, and frequencies for 
energy and protein assessment by using recovery biomarkers. 
Am J Epidemiol . 2011;174:591–603. 

54. Slining MM, Yoon EF, Davis J et al. An approach to monitor 
food and nutrition from “factory to fork”. J Acad Nutr Diet. 
2015;115:40–9. 

55. Blanton CA, Moshfegh AJ, Baer DJ et al. The USDA auto-
mated multiple-pass method accurately estimates group total 
energy and nutrient intake. J Nutr. 2006;136:2594–9. 

56. Moshfegh AJ, Rhodes DG, Baer DJ et al. The US Department 
of Agriculture Automated Multiple-Pass Method reduces 
bias in the collection of energy intakes. Am J Clin Nutr. 
2008;88:324–32. 

57. Rumpler WV, Kramer M, Rhodes DG et al. Identifying 
sources of reporting error using measured food intake. Eur J 
Clin Nutr. 2008;62:544–52. 

58. Murakami K, Livingstone MBE. Prevalence and characteris-
tics of misreporting of energy intake in US adults: NHANES 
2003–2012. Br J Nutr. 2015;114:1294–303. 

Received 10 July 2024; editorial decision 25 September 
2024

8

https://doi.org/10.1007/978-1-4757-3462-1

	 Association between ultra-processed food intake and biological ageing in US adults: f   indings from National Health and Nutrition Examination Survey NHANES 2003--2010
	Introduction
	Methods
	Results
	Discussion
	Conclusions
	6  Acknowledgements:
	7 Supplementary Data:
	8 Declaration of Conflicts of Interest:
	9 Declaration of Sources of Funding:
	10 Data availability:


