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Abstract
In recent years, advances in image processing and machine learning have fueled a paradigm shift in detecting gen
omic regions under natural selection. Early machine learning techniques employed population-genetic summary sta
tistics as features, which focus on specific genomic patterns expected by adaptive and neutral processes. Though such 
engineered features are important when training data are limited, the ease at which simulated data can now be gen
erated has led to the recent development of approaches that take in image representations of haplotype alignments 
and automatically extract important features using convolutional neural networks. Digital image processing meth
ods termed α-molecules are a class of techniques for multiscale representation of objects that can extract a diverse 
set of features from images. One such α-molecule method, termed wavelet decomposition, lends greater control over 
high-frequency components of images. Another α-molecule method, termed curvelet decomposition, is an extension 
of the wavelet concept that considers events occurring along curves within images. We show that application of these 
α-molecule techniques to extract features from image representations of haplotype alignments yield high true posi
tive rate and accuracy to detect hard and soft selective sweep signatures from genomic data with both linear and 
nonlinear machine learning classifiers. Moreover, we find that such models are easy to visualize and interpret, 
with performance rivaling those of contemporary deep learning approaches for detecting sweeps.
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Introduction
The rapid increase in computational power over the last 
decade has fueled the development of sophisticated mod
els for making predictions about diverse evolutionary phe
nomena (Angermueller et al. 2016; Schrider and Kern 2018; 
Azodi et al. 2020; Korfmann et al. 2023; Rymbekova et al. 
2024). In particular, artificial intelligence has been major 
a driver, with approaches employing linear and nonlinear 
modeling frameworks (Hastie et al. 2009). These novel 
methodologies have been applied for detecting selection, 
estimating evolutionary parameters, and inferring rates 
of genetic processes (Williamson et al. 2007; Chun and 
Fay 2009; Ronen et al. 2013; Schrider and Kern 2016; 
Sheehan and Song 2016; Flagel et al. 2019; Adrion et al. 
2020; Wang et al. 2021; Burger et al. 2022; Hejase et al. 
2022; Kyriazis et al. 2022; Gower et al. 2023; Hamid et al. 
2023; Smith et al. 2023; Zhang et al. 2023; Ray et al. 2024).

Multiple strategies have been pursued to address evolu
tionary questions using machine learning. One such at
tempt has been to use summary statistics calculated in 
contiguous windows of the genome as input feature vec
tors to detect natural selection (Ronen et al. 2013; Pybus 

et al. 2015; Sheehan and Song 2016; Sugden et al. 2018; 
Mughal and DeGiorgio 2019; Mughal et al. 2020; Arnab 
et al. 2023; Korfmann et al. 2024), as natural selection is ex
pected to leave a local footprint of altered diversity within 
the genome (Hudson and Kaplan 1988; Hermisson and 
Pennings 2017; Setter et al. 2020). To train such models, 
summary statistics are calculated from simulated genomic 
data, with frameworks ranging from linear models, such as 
regularized logistic regression (Mughal and DeGiorgio 
2019; Mughal et al. 2020), to nonlinear models, such as en
semble methods that combine the effectiveness of differ
ent classifiers and deep neural networks (Lin et al. 2011; 
Pybus et al. 2015; Schrider and Kern 2016; Sheehan and 
Song 2016; Kern and Schrider 2018; Hejase et al. 2022; 
Arnab et al. 2023; Mo and Siepel 2023; ). However, when 
opting to use summary statistics to train these models, 
we are making an assumption that the chosen set of sum
mary statistics is sufficient to discriminate among different 
evolutionary events, thereby providing satisfactory classifi
cation. Summary statistics can thus lead to subpar model 
performance if suitable measures are not chosen, with 
these statistics often selected based on theoretical knowl
edge and experience.
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A complementary strategy is to use raw genomic data in 
the form of haplotype alignments as input to machine 
learning models, and for the model to perform automatic 
feature extraction. Attempts at this have mainly adopted 
convolutional neural networks (CNNs) (LeCun et al. 
1998), which have been successfully applied to a number 
of problems in population genomics, including detection 
of diverse evolutionary phenomena, estimation of genetic 
parameters such as recombination rate, and inference of 
demographic history (Chan et al. 2018; Flagel et al. 2019; 
Torada et al. 2019; Gower et al. 2021; Isildak et al. 2021; 
Qin et al. 2022; Cecil and Sugden 2023; Lauterbur et al. 
2023; Whitehouse and Schrider 2023; Riley et al. 2024). 
By construction, CNNs are not sensitive to small differ
ences in details among different neighborhoods in a sam
ple because of the smoothing that is accomplished 
through the one or more pooling layers in the CNN archi
tecture (Goodfellow et al. 2016). Because such subtle de
tails are often noise, it is typically beneficial to remove 
them as they might impact model predictions. However, 
other times those small differences in details could prove 
to be important enough to provide an improvement in 
predictive performance, as we will show in this article. In 
many of the population-genomic problems that machine 
learning methods have been applied to, the data are ex
pected to have appreciable levels of autocorrelation (i.e. 
correlation of neighboring genomic locations due to link
age disequilibrium), which have been handled by using in
put features deriving from contiguous windows of the 
genome (e.g. Lin et al. 2011; Schrider and Kern 2016; 
Kern and Schrider 2018) and by explicitly modeling such 
autocorrelations (e.g. Flagel et al. 2019; Mughal and 
DeGiorgio 2019; Mughal et al. 2020; Isildak et al. 2021; 
Arnab et al. 2023).

A recent attempt to improve input data modeling was 
taken by Mughal et al. (2020), which used signal processing 
tools to extract features from input summary statistics cal
culated in contiguous windows of the genome, with those 
features automatically modeling the spatial autocorrel
ation of the data. Mughal et al. (2020) demonstrated 
that signal processing techniques can help improve true 
positive rate and accuracy for detecting positive natural se
lection, even within a linear model. Moreover, the trained 
models could be easily visualized, resulting in an interpret
able framework for understanding what features are im
portant for making predictions. Therefore, we believe 
such approaches, which have a long-standing foundation 
within engineering (e.g. Starck et al. 2002; Liu and Chen 
2019), can further be used to make more accurate infer
ences from raw signals and haplotype data.

To apply such methods on raw haplotype data, we con
sider basis expansions (see supplementary methods, 
Supplementary Material online) in terms of wavelet 
(Daubechies 1992) and curvelet (Candes et al. 2006) bases. 
Wavelets and curvelets are part of a generalized framework 
termed α-molecules (Grohs et al. 2014), which have been 
extensively employed in image (two-dimensional signal) 
analysis (Starck et al. 2002). Here, the parameter α 

symbolizes the amount of anisotropy permitted in the 
scaling of basis functions. Isotropic scaling means that 
both coordinate axes are scaled by the same amount. In 
contrast, anisotropic scaling means that the x and y axes 
can have different scaling factors. As an example, isotropic 
scaling of a circle would lead to other circles of different 
sizes, whereas anisotropic scaling of a circle would lead 
to ellipses of different lengths and widths. For wavelets, 
the basis functions are scaled isotropically, whereas for 
curvelets, the basis functions can be rotated and are scaled 
anisotropically (parabolic scaling; see supplementary 
methods, Supplementary Material online). The resulting 
wavelet and curvelet coefficients used to decompose an 
image can be used as input features to machine learning 
models, and we expect wavelets and curvelets to embed 
key components in the data to aid machine learning mod
els in achieving better performance.

As a proof of concept, we highlight the utility of 
α-molecules for extracting features from image representa
tions of haplotype alignments when applied to the prob
lem of uncovering genomic regions affected by past 
positive natural selection. Positive selection leads to the in
crease in frequency of beneficial traits within a population. 
Because genomic loci underlie traits, beneficial genetic var
iants at these loci that code for such traits will also elevate 
in frequency. This rapid rise of these beneficial mutations 
leads to alleles at nearby neutral loci to also increase in fre
quency by a phenomenon known as genetic hitchhiking 
(Smith and Haigh 1974). This hitchhiking causes a loss of 
diversity at neighboring neutral loci in addition to the 
lost diversity at the site of selection due to positive selec
tion. The resulting ablation of haplotype diversity is known 
as a selective sweep (Przeworski 2002; Hermisson and 
Pennings 2005, 2017; Pennings and Hermisson 2006), and 
this is a key pattern that researchers exploit when develop
ing statistics for detecting positive selection from genomic 
data.

Evidence of natural selection garnered by identifying se
lective sweeps aids in our understanding of the natural his
tory of populations. For example, detection of sweeps can 
lend insight into the pervasiveness of positive selection in 
shaping genomic variation, whereas the prediction of the 
particular type of adaptive process (i.e. as hard sweep, 
soft sweep, or adaptive introgression) (Hermisson and 
Pennings 2005; Pennings and Hermisson 2006; Setter 
et al. 2020) can serve as a blueprint for pinpointing particu
lar mechanisms that have driven adaptation (Hernandez 
et al. 2011; Granka et al. 2012; Huerta-Sánchez et al. 
2014; Schrider and Kern 2016). However, sweep detectors 
can be confused by false signals due to other common evo
lutionary phenomena. For example, other forms of natural 
selection (e.g. background selection) (Charlesworth et al. 
1993; Braverman et al. 1995; Charlesworth et al. 1995; 
Hudson and Kaplan 1995; Nordborg et al. 1996; McVean 
and Charlesworth 2000; Boyko et al. 2008; Akashi et al. 
2012; Charlesworth 2012) as well as demographic history, 
such as population bottlenecks (Jensen et al. 2005; 
Stajich and Hahn 2005), can leave similar imprints on 
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genetic data (though see Schrider 2020). Therefore, the 
problem of detecting sweep patterns from genomic vari
ation has been extensively studied for decades, and repre
sents a difficult yet suitable setting for evaluating novel 
modeling frameworks.

As an illustration of applying α-molecules to raw haplo
type data, we depict the effect of decomposing and recon
structing image representations of haplotype alignments 
from wavelet and curvelet basis expansions (Fig. 1). 
Specifically, Fig. 1a shows heatmaps of haplotype images, 
averaged across many simulated replicates, for two evolu
tionary scenarios: neutrality (left) and a selective sweep 
(right). The sweep image displays a prominent vertical 
dark region in the image center, which symbolizes the 
loss of diversity due to positive selection. This pattern 
can be further illustrated an example of how such an image 
was created (supplementary fig. S1, Supplementary 
Material online), where we see that after processing a 
haplotype alignment, regions with greater numbers of ma
jor alleles will have a concentration of values close to zero 
toward the top of the image and values close to one to
ward the bottom of the image. The sharp contrast in the 
center of the sweep image (Fig. 1a) signifies the presence 
of major alleles (zeros) at high frequency in the center of 
the image, which presents a reduction in diversity. 
However, in more practical settings, this dark region will 
not be as easy to detect, as there will be some noise in
volved. Figure 1b shows a noisy image of the sweep setting, 
together with reconstructions from wavelet and curvelet 
decomposition that recover the purity of the original im
age. Noise in this scenario may have arisen due to both 
technical and biological factors, such as the particular set 
and number of sampled individuals, the accuracy of geno
type calling and haplotype phasing in these individuals, 
and whether there have been mutation or recombination 
events recently in the history of some of those samples. 
The reconstructions are the result of wavelet and curvelet 
decomposition for which only the top one percent of coef
ficients with largest magnitude values are retained and the 
remaining coefficients have their values set to zero. This 
hard percentile-based thresholding results in a sparse set 
of coefficients such that only a few have nonzero values 
(). We depict a more realistic setting of haplotype variation 
expected from empirical data in Fig. 1c, which shows ori
ginal and sparse wavelet and curvelet reconstructions of 
an image of diversity surrounding a gene on human auto
some 7. Both wavelet and curvelet processes can capture 
the details of the original sweep image fairly well, with 
the curvelet reconstructed image smoother due to the 
greater freedom that is afforded to it by the curvelet de
composition of the functions (see supplementary 
methods, Supplementary Material online).

In the following sections, we introduce a set of linear 
and nonlinear methods that we term α-DAWG 
(α-molecules for Detecting Adaptive Windows in 
Genomes), where such methods first decompose an image 
representation of a haplotype alignment in terms of 
α-molecules, specifically with wavelets and curvelets, and 

then use extracted α-molecule basis coefficients as features 
to train and test models to discriminate sweeps from neu
trality. We validate the true positive rate, accuracy, and ro
bustness of our proposed α-DAWG framework, and show 
that models trained to detect sweeps from neutrality 
perform favorably on a number of demographic and 
selection scenarios, as well as the confounding factors of 
background selection, recombination rate variation, and 
missing genomic segments. We also demonstrate that 
α-DAWG attains superior true positive rate and accuracy 
relative to a CNN-based sweep classifier, and expand 
upon potential reasons for this in the section 
“Discussion”. As a product of employing wavelet and cur
velet analysis on images, we are also able to visualize the 
parameters underlying the α-DAWG sweep classifiers, 
which provides a framework for understanding the learned 
characteristics of input images important for detecting 
sweeps. As a proof of effectiveness on realistic data, we ap
ply α-DAWG to phased whole-genome data of central 
European (CEU) humans (The 1000 Genomes Project 
Consortium 2015) and recover a number of established 
candidate sweep regions (e.g. LCT, ZRANB3, ALDH2, and 
SIGLECL1), as well as predict some novel genes as sweep 
candidates (e.g. CCZ1, SLX9, PCNX2, and MSR1). Finally, 
we make available open-source software for implementing 
α-DAWG at https://github.com/RuhAm/AlphaDAWG.

Results
Sweep Detection with Linear α-DAWG 
Implementations
We decompose two-dimensional genetic signals (haplo
type alignments) using wavelets or curvelets before using 
them to train models to differentiate between sweeps 
and neutrality. For the wavelet transform, we employed 
Daubechies least asymmetric wavelets as the basis func
tions (Daubechies 1988). Each sampled observation of 
the data are composed of a 64 × 64 dimensional matrix 
(see section “Haplotype alignment processing”). Each sam
ple is wavelet decomposed and the resulting coefficients 
are flattened into a single vector of length 4,096. 
Likewise, the curvelet transform gives a vector of coeffi
cients with a length of 10,521 for each sample. We train in
dividual linear models that use as input either wavelet or 
curvelet coefficients (α-DAWG[W] and α-DAWG[C]), 
and we also train a model that jointly uses as input wavelet 
and curvelet coefficients (α-DAWG[W-C]) with a flattened 
vector of length 14,617 per sample.

We first test α-DAWG on two datasets of differing dif
ficulty that are inspired by a simplified population genetic 
model. Specifically, we initially explore application of 
α-DAWG on a constant population size demographic his
tory with Ne = 104 diploid individuals (Takahata 1993), as 
well as a mutation rate of 1.25 × 10−8 per site per gener
ation (Scally and Durbin 2012) and a recombination rate 
drawn from an exponential distribution with a mean of 
10−8 per site per generation (Payseur and Nachman 
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2000) and truncated at three times the mean (Schrider 
and Kern 2016) for 1.1 megabase (Mb) simulated se
quences. Under these parameters, we generated simulated 

sequences using the coalescent simulator discoal 
(Kern and Schrider 2016) for 200 sampled haplotypes 
that we assigned as neutral observations. Additionally, to 

(a)

(b)

(c)

Fig. 1. Image representations of haplotype alignments and their sparse reconstructions. Darker regions correspond to higher prevalence of major 
alleles. a) Heatmaps representing the 64 × 64-dimensional original haplotype alignments used as input to α-DAWG, averaged across 10,000 si
mulated replicates for either neutral (left) or sweep (right) settings. The mean sweep heatmap (right) shows the characteristic signature of posi
tive selection, with a loss of genomic diversity (vertical darkened region) at the center of the haplotype alignments where a beneficial allele was 
introduced within sweep simulations. In contrast, this feature is absent in the mean neutral heatmap (left). b) Reconstructed images of a noisy 
signal with wavelet and curvelet decomposition. The noisy image was generated by adding Gaussian noise of mean zero and standard deviation 
one to the mean sweep image depicted in panel (a). For sparse reconstruction from wavelet and curvelet coefficients, we employed a hard 
percentile-based cutoff, where only the one percent of coefficients with largest magnitude values were retained for the image and the remaining 
coefficients were set to zero. While both sparse reconstruction approaches capture the overall signal in the noisy image, the curvelet recon
structed image is smoother than the wavelet reconstructed image. c) Sparse reconstruction of haplotype alignments for a genomic region en
compassing the CCZ1 gene on human chromosome 7 from wavelet and curvelet coefficients in which hard percentile-based thresholding was 
employed as in panel (b).
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generate selective sweep observations from standing 
variation, we introduced a beneficial mutation at the 
center of simulated sequences with per-generation selec
tion coefficient s ∈ [0.005, 0.5] (Mughal et al. 2020) drawn 
uniformly at random on a log10 scale, frequency of benefi
cial mutation when it becomes selected f ∈ [0.001, 0.1] 
drawn uniformly at random on a log10 scale, and genera
tions in the past in which the beneficial mutation becomes 
fixed t. The first dataset (denoted by Constant_1), we 
set t = 0 such that sampling occurs immediately after the 
selective sweep completes. For the second dataset 
(denoted by Constant_2), we draw t ∈ [0, 1,200] uni
formly at random, such that the distinction between 
sweeps and neutrality is less clear. We outline these para
meters for generating the four datasets in section 
“Protocol for simulating population genetic variation”.

To evaluate the performance of α-DAWG on the two 
datasets, we generated training sets of 10,000 observations 
per class and test sets of 1,000 observations per class under 
each of the Constant_1 and Constant_2 datasets. 
We applied glmnet (Friedman et al. 2010) for training 
and testing under a logistic regression model with an elas
tic net regularization penalty. We used 5-fold cross 
validation to identify the optimum regularization hyper
parameters (Hastie et al. 2009). Moreover, for 
α-DAWG[W] and α-DAWG[W-C], we treated the wavelet 
decomposition level as an additional hyperparameter, 
which we also determined using 5-fold cross validation 
across the set {0, 1, 2, 3, 4}. Additional details describing 
the model and its fitting to training data can be found 
in the section “Methods” and supplementary methods, 
Supplementary Material online. Optimum values for the 
three hyperparameters estimated for the Constant_1 
and Constant_2 datasets are displayed in Table 1.

To assess classification ability, we evaluated model ac
curacy, relative classification rates through confusion ma
trices, and true positive rate with receiver-operating 
characteristic (ROC) curves. Using these evaluation me
trics, all three linear α-DAWG models have similar classifi
cation abilities when applied on either the Constant_1 
or Constant_2 dataset (Fig. 2). However, for both 
Constant_1 and Constant_2 datasets, linear 
α-DAWG[W-C] performs slightly better than linear 
α-DAWG[W] and α-DAWG[C]. As expected, method 
true positive rate and accuracy are higher for the 
Constant_1 dataset compared with Constant_2, 
as there is greater class overlap in the latter dataset. For 
both datasets, all three linear α-DAWG models outper
form ImaGene, and the linear α-DAWG models classify 

neutral regions with higher accuracy than sweep regions 
(Fig. 2). However, though our three linear α-DAWG models 
exhibit relatively balanced classification rates between 
neutral and sweep settings, ImaGene is more unbalanced 
on the Constant_1 dataset. Specifically, for the 
Constant_1 dataset, ImaGene classifies only 2.3% of 
neutral regions incorrectly, which is slightly better than 
the linear α-DAWG models, but also misclassifies 17.1% 
of sweeps as neutral, which ultimately leads to its lower 
overall accuracy but is preferable to a high misclassification 
of neutral regions as sweeps. Interestingly, for the 
Constant_2 dataset, ImaGene displays more ba
lanced classification rates, with 11.1% and 14.3% rates of 
misclassification for sweep and neutral regions, respective
ly. This finding could be the result of the Constant_2 
dataset having more overlap between the two classes. 
For both of these datasets, the linear α-DAWG models ex
hibit superior classification accuracy relative to ImaGene, 
as well as higher true positive rate at low false positive rates 
based on the ROC curves (Fig. 2).

In addition to their accuracies and true positive rates, an 
important aspect of predictive models in population gen
etics is their interpretability in terms of the ability to 
understand what features of the input image representa
tions of haplotype alignments are important for discrimin
ating between sweeps and neutrality. To explore how well 
each classifier captures characteristic differences between 
sweep and neutral observations, we collected the fitted 
regression coefficients and applied inverse wavelet 
and curvelet transforms to reconstruct the function 
β(haplotype, snp) describing the importance of different 
regions of the haplotype alignment that we use as input 
to linear α-DAWG (see section “Linear α-DAWG models 
with elastic net penalization” of the supplementary 
methods, Supplementary Material online). For both data
sets, the resulting β functions display elevated importance 
in places where we would expect differences between 
sweep and neutral variation to arise—i.e. increased im
portance for features at the center of simulated sequences 
near the site of selection, tapering off toward zero with dis
tance from the center (Fig. 2). This pattern of importance 
is reflected in the mean two-dimensional images for the 
10,000 training observations per class, with sweeps show
ing (on average) valleys of diversity toward the center of 
simulated sequences, whereas diversity of neutral simula
tions is (on average) flat across the simulated sequences 
(Fig. 1a). We also notice that the β function for the linear 
α-DAWG[W] models generally has a step-wise structure 
(ignoring local noise), whereas the β functions from linear 

Table 1. Optimum hyperparameters chosen through 5-fold cross validation for the elastic net logistic regression classifier across the four datasets 
(Constant_1, Constant_2, CEU_1, and CEU_2) and three feature sets (wavelet, curvelet, and joint wavelet-curvelet [W-C])

Hyperparameters Constant_1 Constant_2 CEU_1 CEU_2

Wavelet Curvelet W-C Wavelet Curvelet W-C Wavelet Curvelet W-C Wavelet Curvelet W-C

Wavelet level 1 N/A 1 1 N/A 1 1 N/A 1 1 N/A 1
γ 0.9 0.8 0.9 0.7 0.9 0.9 0.1 0.4 0.1 0.9 0.9 0.9
λ 0.00189 0.002 0.001 0.00168 0.001 0.021 0.0013 0.038 0.0012 0.0019 0.011 0.0017
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α-DAWG[C] models are smoother. Similar characteristics 
are found in the corresponding β functions under linear 
α-DAWG[W-C] models (one function for wavelet coeffi
cients and one for curvelet coefficients).

Robustness to Background Selection
Though we have shown that α-DAWG performs well at dis
tinguishing the pattern of lost genomic diversity due to 

positive selection from neutral variation, it is important to 
consider other common forces that may lead to local reduc
tions in diversity within the genome. In particular, the perva
sive force of negative selection (McVicker et al. 2009; 
Comeron 2014) that constrains variation at functional gen
omic elements can lead to not only reductions in diversity at 
selected loci, but also at nearby linked neutral loci through a 
phenomenon termed background selection (Charlesworth 
et al. 1993; Hudson and Kaplan 1995; Charlesworth 2012), 

Fig. 2. Performances of the three linear α-DAWG models and ImaGene applied to the Constant_1 (top two rows) and Constant_2 
(bottom two rows) datasets that were simulated under a constant-size demographic history and 200 sampled haplotypes. The training and 
testing sets respectively consisted of 10,000 and 1,000 observations for each class (neutral and sweep). Sweeps were simulated by drawing per- 
generation selection coefficient s ∈ [0.005, 0.5] and the frequency of beneficial mutation when it becomes selected f ∈ [0.001, 0.1], both uni
formly at random on a log10 scale. Moreover, the generations in the past in which the sweep fixed t was set as t = 0 for the Constant_1 
dataset and drawn uniformly at random as t ∈ [0, 1200] for the Constant_2 dataset. Model hyperparameters were optimized using 
5-fold cross validation (Table 1) and ImaGene was trained for the number of epochs that obtained the smallest validation loss. The first 
and third rows from the top display the ROC curves for each classifier (first panel) as well as the confusion matrices and accuracies (in labels 
after colons) for the four classifiers (second to fifth panel). The second and fourth rows from the top display the two-dimensional representa
tions of regression coefficient β(haplotype, snp) functions reconstructed from wavelets or curvelets for α-DAWG[W] (first panel), α-DAWG[C] 
(second panel), and α-DAWG[W-C] (third and fourth panels). Cells within confusion matrices with darker shades of gray indicate that classes in 
associated columns are predicted at higher percentages. The white color at the center of the color bar associated with a β function represents 
little to no emphasis placed by linear α-DAWG models, whereas the dark blue and dark red colors signify a positive and negative emphasis, 
respectively.
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much like genetic hitchhiking that leads to a pattern of a se
lective sweep resulting from positive selection. Moreover, 
background selection can lead to distortions in the distribu
tion of allele frequencies that can mislead sweep detectors 
(Charlesworth et al. 1993, 1995, 1997; Keinan and Reich 
2010; Seger et al. 2010; Nicolaisen and Desai 2013; Huber 
et al. 2016). We expect that α-DAWG should be robust to 
background selection, as background selection is not ex
pected to substantially alter the distribution of haplotype 
frequencies as it does not lead to the increase in frequencies 
of haplotypes (Charlesworth et al. 1993; Charlesworth 2012; 
Enard et al. 2014; Fagny et al. 2014; Schrider 2020). 
Nevertheless, it is important to explore whether novel sweep 
detectors are robust to false signals of selective sweeps due 
to background selection.

To assess whether α-DAWG is robust to background se
lection, we simulated 1,000 new test replicates of background 
selection under a constant-size demographic history using 
the forward-time simulator SLiM (Haller and Messer 
2019), as the original simulator discoal that we used to 
train α-DAWG does not simulate negative selection. 
Specifically, we evolved a population of Ne = 104 diploid in
dividuals for 12Ne generations, which includes a burn-in per
iod of 10Ne generations and a subsequent 2Ne generations 
of evolution after the burn-in, under the same genetic 
and demographic parameters used to generate the 
Constant_2 dataset. At the end of each simulation, we 
sampled 200 haplotypes from the population for sequences 
of length 1.1 Mb. In addition to these parameters, we also in
troduced a functional element located at the center of the 
1.1 Mb sequence for which deleterious mutations may arise 
continuously throughout the duration of the simulation 
and with a structure that mimics a protein-coding gene of 
length 55 kb where we might expect selective constraint. 
Using the protocol of Cheng et al. (2017), selection coeffi
cients for recessive (h = 0.1) deleterious mutations that arise 
within this coding gene were distributed as gamma with 

shape parameter 0.2 and mean −0.1 or −0.5 for moderately 
and highly deleterious alleles, respectively. Moreover, this 
gene consisted of 50 exons each of length 100 bases, 49 in
trons interleaved with the exons each of length 1,000 bases, 
and 5’ and 3’ untranslated regions (UTRs) flanking the first 
and last exons of the gene of lengths 200 and 800 bases, re
spectively. The lengths of these components of the coding 
gene structure were selected to roughly match the mean va
lues from human genomes (Mignone et al. 2002; Sakharkar 
et al. 2004). Sampled haplotype alignments were processed 
according to the steps described in the section “Haplotype 
alignment processing”, and these 1,000 background selection 
test observations were then used as input to α-DAWG 
trained on the Constant_2 dataset.

We find that the probability linear α-DAWG falsely de
tects moderate background selection as a sweep is roughly 
equal to the false positive rate based on neutral replicates 
(Fig. 3a), indicating that from the lens of linear α-DAWG, 
the distribution of sweep probabilities under background 
selection is approximately the same as under neutrality. 
When it comes to detecting moderately strong back
ground selection, linear α-DAWG performs even better 
as the probability of falsely detecting background selection 
as a sweep is even lower than the false positive rate based 
on neutral replicates, emphasizing robustness under mod
erately strong background selection (Fig. 3b). Thus, as ex
pected, because linear α-DAWG operates on features 
extracted from haplotype alignments, it is robust to pat
terns of lost diversity locally in the genome due to back
ground selection in settings of moderately strong and 
weaker background selection under human-inspired 
demographic and genetic parameters.

Effect of Population Size Fluctuations
Our evaluation of the performance of α-DAWG classifiers 
in comparison to ImaGene focused on equilibrium 

(a) (b)

Fig. 3. Probability of falsely detecting moderate background selection a) and moderately strong background selection b) as a sweep as a function 
of false positive rate under neutrality for the three linear α-DAWG models trained using the Constant_2 dataset as in Fig. 2. The probability of 
a false sweep signal is the fraction of background selection test replicates with a sweep probability higher than the sweep probability under 
neutral test replicates that generated a given false positive rate. Details regarding the simulation of background selection can be found in 
the section “Robustness to background selection”.

Digital Image Processing to Detect Adaptive Evolution · https://doi.org/10.1093/molbev/msae242                             MBE

7



demographic settings in which the population size is held 
constant. However, this is a highly unrealistic scenario, as 
true populations tend to fluctuate in their sizes over 
time for a number of reasons. We therefore sought to ex
plore whether demographic models with population size 
changes would substantially hamper the accuracies and 
true positive rates of α-DAWG classifiers. Extreme popula
tion bottlenecks have been demonstrated to cause false 
signals of selective sweeps due to their increased variance 
in coalescent times, as well as to make sweep detection 
more difficult through their global loss of haplotype diver
sity across the genome. We therefore simulated a setting of 
a severe population bottleneck, using a demographic his
tory inferred (Terhorst et al. 2017) from whole-genome se
quencing of CEU individuals from the CEU population in 
the 1,000 Genomes Project dataset (The 1000 Genomes 
Project Consortium 2015).

Neutral simulations were run under this demographic his
tory, and sweep simulations were performed with a beneficial 
mutation added on top of the demographic history, using 
the same selection parameters as in the constant-size demo
graphic history that we previously explored—i.e. per- 
generation selection coefficient s ∈ [0.005, 0.5] (Mughal 
et al. 2020) and frequency of beneficial mutation when it be
comes selected f ∈ [0.001, 0.1], each drawn uniformly at 
random on a log10 scale. Moreover, similarly to our previous 
experiments, we considered two datasets of varying difficulty, 
each with 10,000 simulations per class for the training set and 
1,000 simulations per class for the testing set. The first dataset 
(denoted by CEU_1) with time of sweep completion set to 
t = 0 generations in the past and the second, more difficult, 
dataset (denoted by CEU_2) with t ∈ [0, 1200] drawn uni
formly at random. All classification models were trained and 
tested in an identical manner to the earlier Constant_1 
and Constant_2 datasets, with optimum estimated va
lues for the three hyperparameters displayed in Table 1.

Comparing Figs. 4 to 2, we can see that demographic 
histories with extreme bottlenecks have actually lead to 
an improvement (though marginal) in the true positive 
rates and accuracies of the three linear α-DAWG models 
compared with the constant size demographic histories, 
with linear α-DAWG[W-C] displaying slighting elevated 
true positive rate and accuracy compared with linear 
α-DAWG[W] and α-DAWG[C]. In contrast, ImaGene 
has slightly decreased accuracy and true positive rate com
pared with the constant-size histories. Similarly, the three 
linear α-DAWG models have relatively balanced classifica
tion rates between neutral and sweep settings (with a 
slight skew toward neutrality), whereas ImaGene has 
highly unbalanced with a strong, yet conservative, skew to
ward neutrality for both the CEU_1 and CEU_2 datasets.

To ascertain whether more training data may aid in 
boosting the performance of ImaGene, we simulated add
itional training data using the same protocols used to gener
ate the CEU_2 dataset, resulting in a training set comprised 
of 30,000 observations per class. We trained ImaGene on 
this larger set, and evaluated it on the same test dataset con
sisting of 1,000 observations per class. Our experiments 

reveal that, using more training data results in a 5.5% in
crease in overall accuracy and a 9.4% increase in sweep de
tection accuracy for ImaGene (supplementary fig. S2, 
Supplementary Material online). Furthermore, the true posi
tive rates at small false positive rates also improved with this 
additional training data, showing a quicker ascent to the 
upper left-hand corner of the ROC curve (supplementary 
fig. S2, Supplementary Material online). Despite the im
provement in performance by ImaGene with additional 
training data, linear α-DAWG models still outperformed it 
by at maximum 1.95% (compare third row of Fig. 4 to 
supplementary fig. S2, Supplementary Material online) while 
the nonlinear models outperformed ImaGene with at 
maximum 3.1% (compare fourth row of supplementary 
figs. S8 to S2, Supplementary Material online) higher overall 
classification accuracy with the smaller training set.

Though this increase in classification performance by 
ImaGene is promising, it comes at a significant cost of 
additional computational and time requirements. Time re
quirements could potentially have been reduced by em
ploying a population genetic simulator that is faster than 
the coalescent simulator that we used, such as some the 
forward time simulator SLiM (Haller and Messer 2023) 
that can employ advances parameter scaling and tree- 
sequence recording for speedup. However, even with 
such advances, replicate generation can remain slow for 
sweeps deriving from weak selection coefficients, which 
may require many simulation restarts, and the parameter 
scaling has recently been shown to potentially bias the in
tegrity of the simulation (Dabi and Schrider 2024).

From these results, linear α-DAWG appears to be robust 
for this classical problematic setting for detecting sweeps. 
We also reconstructed the linear α-DAWG β functions for 
these bottleneck scenarios, showing increased importance 
for features near the center of image representations of 
haplotype alignments for which diversity from sweeps is 
expected to differ from neutrality in our simulations 
(Fig. 4), similar to the results from the constant-size history 
settings (Fig. 2). We also observe that the β functions are 
noisier when trained on the CEU_1 dataset than on the 
CEU_2 dataset. This increased noise is due to the optimal 
hyperparameter γ (see Table 1) estimated closer to zero for 
all three linear α-DAWG models trained on CEU_1, 
whereas γ is estimated closer to one on CEU_2. Because 
smaller γ values result in greater ℓ2-norm penalization 
compared with ℓ1-norm, the lack of sparsity in the esti
mated wavelet coefficients for reconstructing the β func
tions from CEU_1 likely led to more noise. Moreover, 
the significant peaks near the pixels toward the bottom 
rows and middle columns of the β functions (e.g. 
α-DAWG[C] in both Figs. 2 and 4) likely reflect emphasis 
in the model contributed by the most recent, strongest, 
and hardest sweeps.

Robustness to Recombination Rate Heterogeneity
Recombination rate varies across genomes, and therefore 
has an impact in shaping haplotypic diversity observed 
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among populations within and among species (Smukowski 
and Noor 2011; Cutter and Payseur 2013; Singhal et al. 
2015; Peñalba and Wolf 2020; Winbush and Singh 2020). 
In particular, low recombination rates may decrease local 
haplotypic diversity, which may resemble the pattern of 
a selective sweep, whereas high recombination rates may 
elevate local haplotypic diversity, which may eliminate 
sweep signatures. The genomes across a variety of 

organisms exhibit a complex recombination landscape in 
which we observe isolated genomic regions with extremely 
high (known as hotspots) and low (known as coldspots) 
recombination rates (Petes 2001; Hey 2004; Myers et al. 
2005; Galetto et al. 2006; Grey et al. 2009; Baudat et al. 
2010; Singhal et al. 2015; Booker et al. 2020; Lauterbur 
et al. 2023). Therefore, it is important to evaluate the de
gree with which α-DAWG is robust against scenarios of 

Fig. 4. Performances of the three linear α-DAWG models and ImaGene applied to the CEU_1 (top two rows) and CEU_2 (bottom two rows) 
datasets that were simulated under a fluctuating population size demographic history estimated from CEU humans (Terhorst et al. 2017) and 
200 sampled haplotypes. The training and testing sets, respectively, consisted of 10,000 and 1,000 observations for each class (neutral and sweep). 
Sweeps were simulated by drawing per-generation selection coefficient s ∈ [0.005, 0.5] and the frequency of beneficial mutation when it be
comes selected f ∈ [0.001, 0.1], both uniformly at random on a log10 scale. Moreover, the generations in the past in which the sweep fixed t was 
set as t = 0 for the CEU_1 dataset and drawn uniformly at random as t ∈ [0, 1200] for the CEU_2 dataset. Model hyperparameters were op
timized using 5-fold cross validation (Table 1) and ImaGene was trained for the number of epochs that obtained the smallest validation loss. 
The first and third rows from the top display the ROC curves for each classifier (first pane) as well as the confusion matrices and accuracies (in 
labels after colons) for the four classifiers (second to fifth panel). The second and fourth rows from the top display the two-dimensional repre
sentations of regression coefficient β(haplotype, snp) functions reconstructed from wavelets or curvelets for α-DAWG[W] (first panel), 
α-DAWG[C] (second panel), and α-DAWG[W-C] (third and fourth panels). Cells within confusion matrices with darker shades of gray indicate 
that classes in associated columns are predicted at higher percentages. The white color at the center of the color bar associated with a β function 
represents little to no emphasis placed by linear α-DAWG models, whereas the dark blue and dark red colors signify a positive and negative 
emphasis, respectively.
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recombination rate heterogeneity, including at hotspots 
and coldspots.

To test the robustness of α-DAWG under recombin
ation rate heterogeneity, we simulated 1,000 neutral test 
replicates under both constant (i.e. Constant_1 and 
Constant_2) and fluctuating population size (i.e. 
CEU_1 and CEU_2) models using the coalescent simula
tor discoal (Kern and Schrider 2016), fixing genetic 
parameters identical to their respective original datasets 
(Constant_1, Constant_2, CEU_1, and CEU_2) 
while only changing the recombination rate. Specifically, 
for a given replicate the recombination rate was drawn 
from an exponential distribution with mean of 10−9 or 
10−10 per site per generation and truncated at three times 
the mean, resulting in a respective decrease in the mean 
recombination rate across the entire simulated 1.1 Mb re
gion by one or two orders of magnitude relative to distri
bution used to train the α-DAWG classifiers. To simulate 
recombination hotspots and coldspots under constant 
and fluctuating population size models, we simulated 
1,000 neutral test replicates using the coalescent simulator 
msHOT (Hellenthal and Stephens 2007), fixing genetic 
parameters identical to their respective original datasets 
(Constant_1, Constant_2, CEU_1, and CEU_2) 
with the exception of the recombination rate. In particular, 
for each test replicate, the recombination rate (r) was 
drawn from an exponential distribution with mean of 
10−8 per site per generation and truncated at three times 
the mean (as in the settings used to train α-DAWG), ex
cept that the central 100 kb region of the sequence 
evolved with a recombination rate of r/100 or r/10 for 
coldspots and 10r or 100r for hotspots, resulting in a loca
lized decrease or increase in the recombination rate at the 
center of the simulated sequences, respectively.

Our results reveal that under a shift in the mean recom
bination rate by one or two orders of magnitude lower than 
what was used for training, linear α-DAWG models exhibit 
an increased neutral misclassification rate up to 14% for 
constant-size demographic histories when compared with 
results in which the recombination rate distribution in test 
data matched what the models were trained on 
(supplementary fig. S3, Supplementary Material online). 
For the more-realistic CEU demographic history, the neutral 
misclassification rate observed for linear α-DAWG models 
is somewhat lower, maxing out at about an 11% 
increase in neutral misclassification (supplementary fig. S3, 
Supplementary Material online). Of these models, linear 
α-DAWG[W] often had the smallest misclassification error, 
though the ranking of the linear α-DAWG models based 
on neutral misclassification errors were not consistent across 
tested settings. Therefore, in the face of significant reduc
tions in mean recombination rates relative to what was em
ployed during training, linear α-DAWG models show 
modest inflation of neutral misclassification rates when 
compared with results under the usual training settings for 
realistic demographic settings.

Furthermore, when faced with recombination hotspots 
and coldspots, linear α-DAWG models show a slight rise 

(as high as 10%) in misclassification rate, whereas some mod
els show proportional deflation in misclassification rates (as 
much as 4%) of neutrally evolving regions (supplementary 
fig. S4, Supplementary Material online). In general, increasing 
the recombination rate from extreme coldspot to 
extreme hotspot tends to reduce the neutral misclassifica
tion rate under the realistic CEU demographic history 
(supplementary fig. S4, Supplementary Material online). 
When it comes to coldspots, linear α-DAWG models show 
decreases in neutral misclassification rates up to 2% as 
well as elevations in neutral misclassification rates as high 
as 10% (supplementary fig. S4, Supplementary Material on
line). In the case of hotspots, linear α-DAWG models exhibit 
diminishing neutral misclassification rates as low as 4% and 
inflations in neutral misclassification as high as 8% 
(supplementary fig. S4, Supplementary Material online). In 
summary, we observe that even under recombination hot
spot or coldspots, linear α-DAWG models show a general re
silience as evidenced by their minimal change in 
misclassification rate from original settings, with fewer 
errors made for hotspots compared with coldspots 
(supplementary fig. S4, Supplementary Material online).

In addition to testing the resilience of linear α-DAWG 
models on recombination rate heterogeneity, we went 
on to evaluate how a reduced sweep footprint affects 
sweep detection accuracy when applied to the CEU_2 da
taset. In particular, the sweep footprint size F can be com
puted as F = s/[2r ln (4Nes)], where s is the selection 
coefficient per generation, r is the recombination rate 
per site per generation, and Ne is the effective population 
size (Gillespie 2004; Garud et al. 2015; Hermisson and 
Pennings 2017). Thus, the sweep footprint size is inversely 
proportional to the recombination rate. To this end, we si
mulated 1,000 sweep test replicates with recombination 
rates drawn from an exponential distribution with mean 
of 2 × 10−8 (twice that used for training) per site per gen
eration and truncated at three times the mean leading to a 
sweep footprint size that is on average half the width of the 
original replicates, with the mean footprint size across 
the original replicates approximately 329 kb. We find 
that the reduced footprint size indeed presents a challenge 
for the linear α-DAWG models, as we observe a drop 
in sweep detection accuracy from original results 
(supplementary fig. S5, Supplementary Material online). 
This drop in sweep detection accuracy due to reduced 
sweep footprint size falls in the range of 3.7% to 4.5% 
when compared with the sweep detection accuracy ob
tained from test replicates using the original recombin
ation rate (supplementary fig. S5, Supplementary 
Material online). Overall, a 2-fold reduction in sweep foot
print size has minimal to moderate effects on the ability of 
linear α-DAWG models to detect sweeps, adding to the 
potential robustness of our models.

Performance Under Mutation Rate Variation
Mutation rate varies within the genome and across species 
(Kumar and Subramanian 2002; Bromham 2011; Bromham 
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et al. 2015; Harpak et al. 2016; Castellano et al. 2020) due to 
factors including transcription-translation conflicts and 
DNA replication errors (Bromham 2009; Dillon et al. 
2018), and this mutation rate heterogeneity could affect 
the performance of predictive models that use genomic 
variation as input. Like with recombination rate, genomic 
regions with low mutation rates can be mistaken as evi
dence of a selective sweep, as they will harbor low haplo
typic diversity, whereas genomic regions with high 
mutation rates can mask footprints of past selective 
sweeps, as they will exhibit elevated haplotypic diversity 
(Harris and Pritchard 2017). Thus it is paramount that 
α-DAWG perform well under such conditions of mutation 
rate variation.

To evaluate whether α-DAWG is resilient to, and per
forms well under, mutation rate heterogeneity, we simu
lated an additional 1,000 sweep and 1,000 neutral 
replicates using discoal (Kern and Schrider 2016), 
where we deviated from simulation protocol for generat
ing training data for α-DAWG in which we fixed the mu
tation rate as μ = 1.25 × 10−8 per site per generation. 
Specifically, for each new test replicate, we sampled the 
mutation rate uniformly at random within the interval 
[μ/2, 2μ] and evaluated how α-DAWG models fare under 
this setting of mutation rate variation. We outlined the 
performance in terms of accuracy and classification rates 
using confusion matrices and true positive rate using 
ROC curves (supplementary fig. S6, Supplementary 
Material online).

We found that linear α-DAWG models show excellent 
overall accuracy (from 89.55 to 96.9%) under mutation 
rate variation (supplementary fig. S6, Supplementary 
Material online). In terms of detecting neutrally evolving re
gions, linear α-DAWG[W] exhibits accuracy in the range of 
90.5 to 96%, whereas linear α-DAWG[C] and 
α-DAWG[W-C] display a better neutral detection rate in 
the range of 95.2 to 98.7% and 93.5 to 98.2%, respectively 
(supplementary fig. S6, Supplementary Material online). 
Moreover, all linear α-DAWG models retain high true posi
tive rates across scenarios tested, evidenced by quick rises 
to the upper left hand corner of the ROC curve, with linear 
α-DAWG[C] and α-DAWG[W-C] models demonstrating 
higher true positive rates than linear α-DAWG[W]—an ex
ception being the applications of these models on the 
Constant_1 dataset for which linear α-DAWG[W] edges 
out the other two (supplementary fig. S6, Supplementary 
Material online). These results suggest that all linear 
α-DAWG models retain high true positive rates and are ac
curate when confronted with mutation rate variation.

Comparison with a Summary Statistic Based Deep 
Learning Classifier
Though we have benchmarked the linear α-DAWG models 
with the nonlinear classifier ImaGene that also uses 
images of haplotype alignments as input, it is important 
to consider classifiers that instead use statistics summariz
ing variation as input. We specifically investigate the 

performance of the nonlinear diploS/HIC classifier 
(Kern and Schrider 2018), which was originally developed 
for distinguishing among five classes, namely, soft sweeps, 
hard sweeps, linked soft sweeps, linked hard sweeps, and 
neutrality from unphased multilocus genotypes (MLGs) 
using a feature vector of 12 summary statistics calculated 
across 11 windows, where the central window is being clas
sified. We have adjusted diploS/HIC from its native 
state as a multiclass classifier, to instead make decisions 
as a binary classifier to distinguish sweeps from neutrality 
for comparison purposes with α-DAWG. We trained and 
tested diploS/HIC on the Constant_1, 
Constant_2, CEU_1, and CEU_2 datasets.

We find that diploS/HIC displays excellent overall ac
curacy (supplementary fig. S7b, Supplementary Material on
line) and high true positive rates (supplementary fig. S7a, 
Supplementary Material online) across different false posi
tive rate thresholds in both the constant and fluctuating 
population size settings. On all four test datasets, 
diploS/HIC outperforms the best performing linear 
α-DAWG[W-C] by between 3.35% and 4.40% (compare 
Figs. 2 and 4 with supplementary fig. S7b, Supplementary 
Material online) in terms of overall accuracy. The edge of 
diploS/HIC over the linear α-DAWG models in terms 
of performance is further evident in the ROC curves, where 
on all datasets we observe a rapid ascent to the upper left- 
hand corner of the curve (supplementary fig. S7a, 
Supplementary Material online). Though diploS/HIC 
outperforms linear α-DAWG across all datasets, a possible 
opportunity to close this performance gap would be to em
ploy a nonlinear α-DAWG, which we explore further in the 
section “Performance boost with nonlinear models”.

Comparison with a Likelihood Ratio Based Classifier
Though we have elected to evaluate the performance of 
our α-DAWG methods in comparison to ImaGene, as 
it also uses images as input to a machine learning classifier, 
it is informative to explore classification ability relative to 
more traditional methods of sweep detection, such as the 
maximum likelihood approach SweepFinder (Nielsen 
et al. 2005; DeGiorgio et al. 2016). Comparing linear 
α-DAWG to SweepFinder2 (DeGiorgio et al. 2016) 
on all four test datasets, we see that linear α-DAWG mod
els consistently demonstrate superior true positive rate 
across the range of false positive rates compared with 
SweepFinder2 (Fig. 5). Though SweepFinder is a 
powerful sweep classifier, this result is expected, because 
the test sweep datasets have varying degrees of sweep soft
ness, strength, and age. The sweep model employed by 
SweepFinder2 is one of a recent, hard, and effectively 
immediate (i.e. strong) sweep, and thus the method has 
limited true positive rate in detecting soft sweeps. On 
the other hand, the sweep training data given to linear 
α-DAWG models were generated across a range of sweep 
softness, strength, and age, and so α-DAWG is more suited 
to detecting a broad set of sweep modes relative to trad
itional model-based approaches.
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Ability to Detect Hard Sweeps from de Novo 
Mutations
Our experiments have explored α-DAWG classification 
ability when trained and tested on settings for which the 
initial frequency of the beneficial mutation (f) was allowed 
to vary across a broad range of values from 0.001 to 0.1, 
with adaptation from beneficial mutations at these fre
quencies occurring through selection on standing vari
ation. The lower frequency range would likely lead to 
harder sweeps, as only one or a few haplotypes would 
rise to high frequency, whereas the upper range would 
yield softer sweeps. However, a more classic example of a 
hard sweep would occur through selection on a de novo 
mutation for which the beneficial allele is present on a sin
gle haplotype (Przeworski 2002; Hermisson and Pennings 
2005). We therefore elected to examine the accuracy of 
α-DAWG for detecting hard sweeps from de novo 
mutations.

To evaluate this scenario, we simulated an additional 
1,000 test sweep replicates with discoal (Kern and 
Schrider 2016) for each of the Constant_1, 
Constant_2, CEU_1, and CEU_2 datasets, with 
protocol identical to those for simulating sweeps under 
these datasets with the exception that f = 1/(2Ne), where 
Ne is the diploid effective population size rather than 
f ∈ [0.001, 0.1]. We then deployed our three linear 
α-DAWG models and ImaGene that were trained on 
settings for which f ∈ [0.001, 0.1] to evaluate relative 
classification accuracy and true positive rate of hard 
sweeps from de novo mutations. We find that linear 
α-DAWG and ImaGene showcase relative classification 
ability consistent with prior experiments, with all ap
proaches having high accuracy and true positive rate 
and with linear α-DAWG edging out ImaGene for 
sweep detection (Fig. 6). Though the setting of hard 
sweeps from de novo mutations was not explicitly in
cluded within the domain of the linear α-DAWG training 
distribution, it is not surprising that linear α-DAWG mod
els still retain high accuracy and true positive rate for 
such scenarios, as the footprints of hard sweeps are 
more prominent than those of soft sweeps (Hermisson 
and Pennings 2017).

Performance Boost with Nonlinear Models
So far we have only discussed linear classifiers. However, if 
the decision boundary separating sweeps from neutrality is 
nonlinear, then a nonlinear model may be expected to 
yield better performance than a linear model. We there
fore considered extending our logistic regression classifier 
to a multilayer perceptron neural network. The number of 
hidden layers or the number of nodes within a hidden layer 
of the network is related to the models capacity, or its flexi
bility in the set of functions that it can model well 
(Goodfellow et al. 2016). Because a neural network with 
enough hidden layers or enough nodes within the hidden 
layers can approximate arbitrarily complicated functions, 
it is possible to overfit the model to the training data 
(Cybenko 1989; Hornik et al. 1989). Common solutions 
to this overfitting issue include limiting the network cap
acity (number of hidden layers and nodes) or constraining 
the model through regularization (Goodfellow et al. 2016).

With this in mind, we considered a neural network with 
one hidden layer containing eight hidden nodes within the 
layer so that we can still model nonlinear functions while 
also having limited capacity of the network. This limited 
capacity also heavily reduces the number of parameters 
that need to be estimated in the model, thereby reducing 
the computational cost of fitting he model. As with our 
previous linear models, we also included an elastic net 
regularization penalty to constrain the model, and em
ployed 5-fold cross validation to identify the optimum 
regularization hyperparameters. This neural network was 
implemented using keras with a tensorflow backend, 
and we fit this model to all four datasets that we consid
ered earlier: Constant_1, Constant_2, CEU_1, 
and CEU_2. Additional details describing the model and 
its fitting to training data can be found in the section 
“Methods” and supplementary methods, Supplementary 
Material online. Optimum values for the three hyperpara
meters estimated on the four datasets are displayed in 
Table 2.

Using nonlinear versions of the α-DAWG models in
stead of linear, we see once again that the three nonlinear 
α-DAWG classifiers perform similarly to each other on 
each dataset (supplementary fig. S8, Supplementary 

Fig. 5. ROC curves of the three linear α-DAWG models and SweepFinder2 applied to the Constant_1, Constant_2, CEU_1, and 
CEU_2 test datasets, with the linear α-DAWG models trained and applied in Figs. 2 and 4.
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Material online). In contrast to the linear classifiers (Figs. 2
and 4), nonlinear α-DAWG[W-C] outperforms other 
nonlinear models in only Constant_2, and CEU_2 da
tasets while lagging slightly behind α-DAWG[C], and 
α-DAWG[W] in Constant_1 and CEU_1 datasets, re
spectively (supplementary fig. S8, Supplementary Material
online). These scenarios in which the nonlinear 
α-DAWG[W-C] performs the best are settings in which 
there is greater overlap between the neural and sweep 
classes. Comparing Figs. 2, 4, and supplementary fig. S8, 
Supplementary Material online, we see that nonlinear 
α-DAWG[C] and α-DAWG[W-C] models showcase in
creased overall classification accuracy on the 
Constant_1 and CEU_2 datasets. Moreover, nonlinear 
α-DAWG[W] and α-DAWG[W-C] models exhibit in
creased overall classification accuracy on the CEU_1 data
set, with a neutral detection rate as high as 98.5%, which 

provides the nonlinear models with an edge over their lin
ear counterparts with the same image decomposition 
method. We also observe a deviation from nonlinear mod
els having superior performance over linear ones on the 
Constant_2 dataset, for which all nonlinear all 
α-DAWG models have overall decreased accuracy. That 
is, no single model among the six α-DAWG models (three 
linear and three nonlinear) consistently performs better 
than the others. However, when examining the perform
ance boost of our nonlinear models, we need to consider 
the robustness scenarios where the test inputs may have 
been generated from genomic regions with missing data, 
which may give rise to false detection of sweep signals at 
neutrally evolving regions. We discuss more about how 
nonlinear α-DAWG models fare when faced with technical 
hurdles like missing data in section “Robustness to missing 
genomic segments”.

Fig. 6. Performances of the three linear α-DAWG models and ImaGene applied to the Constant_1, Constant_2, CEU_1, and CEU_2 
test datasets of hard sweeps from de novo mutations (see Performance on hard sweeps from de novo mutations) using the linear α-DAWG models 
and ImaGene trained as in Figs. 2 and 4. The top panel depicts the percentage of 1,000 hard sweep from de novo mutation test replicates 
classified as a sweep or neutrality, whereas the bottom panel shows true positive rate at a 5% false positive rate (FPR) to detect such sweeps. 
Cells within confusion matrices at the top with darker shades of gray indicate that classes in associated columns are predicted at higher 
percentages.

Table 2. Optimum hyperparameters chosen through 5-fold cross validation for the elastic net eight node and one hidden layer perceptron classifier 
across the four datasets (Constant_1, Constant_2, CEU_1, and CEU_2) and three feature sets (wavelet, curvelet, and joint wavelet-curvelet 
[W-C])

Hyperparameters Constant_1 Constant_2 CEU_1 CEU_2

Wavelet Curvelet W+C Wavelet Curvelet W+C Wavelet Curvelet W+C Wavelet Curvelet W+C

Wavelet level 1 N/A 1 1 N/A 1 1 N/A 1 1 N/A 1
γ 0.3 1 0.9 1 0.1 0.9 1 0.9 0.1 1 0.9 0.1
λ 10−5 10−5 10−5 10−6 10−6 10−5 10−5 10−5 10−5 10−5 10−5 10−6
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In addition to predictive ability, as with the linear mod
el, we collected the regression coefficients from the eight 
hidden nodes and inverse transformed them to recon
struct the β(haplotype, snp) functions at each of the hid
den nodes. We then averaged these maps according to 
their weights with which they contribute to the output 
node (see section “Nonlinear α-DAWG models with elastic 
net penalization” of the supplementary methods, 
Supplementary Material online). Supplementary fig. S9, 
Supplementary Material online shows that the 
β(haplotype, snp) functions for each of the nonlinear 
α-DAWG models display expected patterns, with in
creased importance for features at the center of the haplo
type images, tapering off toward zero with distance 
from the center, as well as curvelet coefficient functions 
typically smoother than wavelet coefficient functions. 
Though the β functions observed differ from each other, 
they each emphasize the center of input images 
(supplementary fig. S9, Supplementary Material online). 
Importantly, the β functions are not an indicator of model 
performance, as they simply depict areas of an image that 
nonlinear α-DAWG models place emphasis. We also note 
that we observe markedly different β functions across non
linear α-DAWG models in both smoothness and magni
tude, which depends on the signal decomposition 
method applied as well as the optimal regularization hy
perparameters associated with the model.

To further evaluate the performance of the nonlinear 
α-DAWG models, we compared it with diploS/HIC. 
We find that the gap in overall accuracy between non
linear α-DAWG models and diploS/HIC closes in 
with diploS/HIC outperforming the best nonlinear 
α-DAWG models between 1.20% and 3.50% (compare 
fourth row of supplementary fig. S8, Supplementary 
Material online with supplementary fig. S7b, 
Supplementary Material online). The edge diploS/ 
HIC has over nonlinear α-DAWG models is likely owed 
to the fact that diploS/HIC uses summary statistics, 
which have been chosen because they are adept at detect
ing sweep patterns and also for discriminating among evo
lutionary processes in general (Panigrahi et al. 2023). On 
the other hand, this is an ideal setting without some of 
the potential technical hurdles that might be encountered 
in empirical data. Thus, in the section “Robustness to miss
ing genomic segments”, we explore how diploS/HIC 
and the linear and nonlinear α-DAWG models fare when 
challenged with artificial drops in haplotypic diversity 
due to missing data.

Robustness to Missing Genomic Segments
So far we have explored experiments that mimicked the 
biological process that would allow simulated haplotype 
variation to approximate real empirical haplotype vari
ation as closely as possible. However, we assumed that 
this variation was known with certainty, and have not 
yet considered flawed data due to technical artifacts. 
One particular technical issue is that some regions of the 

genome are difficult to assay variation at, leading to 
chunks of missing genomic segments in downstream data
sets due to the inability to access the portion of the gen
ome or because that region was filtered as the data were 
found to be unreliable. The presence of such missing seg
ments can reduce the number of SNPs and, thus, the num
ber of distinct observed haplotypes, causing spurious 
drops in haplotype diversity locally in the genome that 
may masquerade as selective sweeps. Indeed, previous 
studies have found that such forms of missing data can 
mislead methods to erroneously detect sweeps at neutrally 
evolving regions (Mallick et al. 2009; Mughal and 
DeGiorgio 2019). It is therefore desirable that sweep clas
sifiers are robust against this kind of confounding factor.

To evaluate the robustness of α-DAWG to missing data, 
we removed portions of SNPs in the test set using the iden
tical protocol of Mughal and DeGiorgio (2019). Briefly, we 
removed 30% of the total number of SNPs in each simu
lated replicate by deleting 10 nonoverlapping chunks of 
contiguous SNPs, each of size equaling 3% of the total 
number of simulated SNPs. The starting position for 
each missing chunk was chosen uniformly at randomly 
from the set of SNPs, and this position was redrawn if 
the chunk overlapped with previously deleted chunks. 
Image representations of haplotype alignments were 
then created from these modified genomic segments by 
applying the same data processing steps as in our nonmiss
ing experiments (see section “Haplotype alignment pro
cessing”). All models were trained assuming no missing 
genomic segments, with missing segments only in the 
test dataset.

Figure 7 shows the true positive rates, accuracies, and 
classification rates of the three linear α-DAWG models 
and ImaGene applied to the four datasets in which the 
test data have missing segments. Comparing the results 
to those of Figs. 2 and 4, in all cases the three linear 
α-DAWG models have unbalanced classification rates, 
with a skew toward predicting neutrality. Though missing 
data ultimately reduces accuracy of the three linear 
α-DAWG models, the misclassifications are conservative, 
as it is preferable to misclassify sweeps as neutral (i.e. fail 
to detect the sweep event) than to falsely classify neutral 
regions as sweeps (i.e. detect a nonexistent process). 
Moreover, as evident from comparing Fig. 7 to Figs. 2
and 4, the three linear α-DAWG models have sacrificed 
only a small margin of overall performance. These experi
ments therefore suggest that the three linear α-DAWG 
models are robust to missing data, in that they do not 
falsely detect sweeps, which is what we might expect 
from missing genomic segments due to the loss of haplo
type diversity. In contrast, missing data have a more critical 
impact on the performance of ImaGene, with it now ex
hibiting a strong skew toward classifying sweeps. 
Unfortunately, such skew is detrimental as a high percent
age of neutral simulations are now falsely predicted as 
sweeps, which diverges from conservative classification 
rates of the three linear α-DAWG models under missing 
genomic regions. The diminished performance of 
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ImaGene under missing data suggests that the alignment 
processing method employed by α-DAWG may help it 
guard against false sweep footprints due to the reduced 
haplotypic variation caused by missing genomic regions.

We also ran identical missing data analyses for our non
linear α-DAWG models, with supplementary fig. S10, 
Supplementary Material online highlighting the consider
able robustness of α-DAWG to the technical artifacts gen
erated by missing genomic segments. We observe that 
among our nonlinear α-DAWG models, α-DAWG[W-C] 
shows higher overall classification accuracy compared 
with the other two nonlinear α-DAWG models 
(supplementary fig. S10, Supplementary Material
online). This elevated accuracy comes at an increased 
computational cost due to the greater number of 
coefficients that are needed to optimize in the 
nonlinear α-DAWG[W-C] model (supplementary fig. S11, 
Supplementary Material online). Specifically, the nonlinear 

α-DAWG[W-C] model has the highest computational de
mand with a mean CPU usage of 18.75% and mean mem
ory overhead of about 52.14 GB per epoch, whereas the 
nonlinear α-DAWG[W] and α-DAWG[C] models respect
ively have mean CPU usages of 9.45 and 14.95% and mean 
memory overheads of about 49.91 GB and 49.64 GB per 
epoch (supplementary fig. S11, Supplementary Material
online).

We further went on to compare the performance of 
diploS/HIC against α-DAWG when the test data 
contains missing segments on all four datasets. We find 
that all linear α-DAWG models have better overall 
accuracy compared with results obtained utilizing 
diploS/HIC (compare Fig. 7 and supplementary fig. 
S7d, Supplementary Material online). Though diploS/ 
HIC shows high sweep detection accuracy, it suffers in 
correctly detecting neutrally evolving regions as it mis
classifies at minimum 30.6% of neutral replicates with 

Fig. 7. Performances of the three linear α-DAWG models and ImaGene applied to the Constant_1, Constant_2, CEU_1, and CEU_2 
(from top to bottom) test datasets with missing genomic segments (see Robustness to missing genomic segments) using the linear α-DAWG 
models and ImaGene trained and applied in Figs. 2 and 4. Each row displays the ROC curves (first panel) as well as the confusion matrices 
and accuracies (in labels after colons) for the four classifiers (second to fifth panels). Cells within confusion matrices with darker shades of 
gray indicate that classes in associated columns are predicted at higher percentages.
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missing segments as sweeps (supplementary fig. S7d, 
Supplementary Material online). This high misclassifica
tion rate of neutral regions as sweeps is likely due to the 
fact that diploS/HIC uses physical based windows to 
compute summary statistics (Mughal and DeGiorgio 
2019). On the other hand, misclassification of neutral re
gions as sweeps does not exceed 7.7% across all linear 
α-DAWG models on all datasets in the presence of missing 
segments (Fig. 7). It is also possible diploS/HIC has suf
fered here on missing genomic segments because it is a 
nonlinear model, and maybe the model has learned too 
many of the fine details within the idealistic training 
data. Thus, we also evaluate how a nonlinear α-DAWG 
models would behave when encountering missing genom
ic segments in test input data. We find that nonlinear 
α-DAWG models misclassify at most 9.4% of neutral repli
cates with missing segments as sweeps across all datasets 
as opposed to a 30.6% misclassification rate of such neutral 
observations by diploS/HIC (compare supplementary 
fig. S10, Supplementary Material online with 
supplementary fig. S7d, Supplementary Material online). 
These results underscore the apparent disadvantage of 
using physical based windows when faced with missing 
genomic tracts. Overall, both linear and nonlinear 
α-DAWG models show better resilience when confronted 
with scenarios involving missing genomic segments com
pared with diploS/HIC.

These missing data experiments assumed a fixed per
centage of missing SNPs (30%) distributed evenly across 
10 genomic chunks of roughly 3% missing SNPs, which is 
likely to be less realistic than missing data distributions ob
served empirically. To consider such a scenario, we se
lected missing genomic segments inspired from an 
empirical distribution for which the missing segments 
are arranged in blocks with mean CRG (Centre for 
Genomic Regulation) mappability and alignability score 
(Talkowski et al. 2011) lower than 0.9 (Mughal et al. 
2020). To generate test replicates with missing segments, 
we randomly selected one of the 22 human autosomes, 
where the probability of selecting a particular autosome 
is proportional to its length. Once an autosome is selected, 
we chose a 1.1 Mb region uniformly at random, and iden
tified blocks within this region with low mean CRG scores. 
In the case where this region does not harbor blocks with 
low mean CRG score, we chose another starting position 
for a 1.1 Mb region until a region was found with blocks 
of low mean CRG score. We then scaled the genomic posi
tions of this 1.1 Mb region to start at zero and stop at one 
to adhere to the discoal position format for simulated 
replicates, and subsequently removed SNPs from the test 
replicate that intersected positions of blocks with low 
mean CRG scores. As it is likely to find only a few (typically 
one) long block of missing segment in a 1.1 Mb region, this 
protocol for generating missing data in a contiguous 
stretch is different and more realistic than our prior proto
col for removing SNPs within 10 short blocks. The mean 
percentage of missing SNPs using this empirical inspired 
protocol is about 10.87%, which is lower than and 

contrasts with the 30% missing SNPs observed in our ori
ginal experiment.

Comparing the results of our empirically inspired ex
periments (supplementary fig. S12, Supplementary 
Material online) to those without missing data (Figs. 2
and 4), in all cases the three linear α-DAWG models 
with missing data performed on par with nonmissing scen
arios in terms of overall accuracy (from 91.30 to 96.55%). In 
general, when compared with settings without missing 
data, all methods on all datasets display a relative increase 
in sweep detection accuracy, with the exception of linear 
α-DAWG[C] applied to the Constant_2 dataset for 
which sweep detection accuracy is slightly decreased by 
0.4%. Moreover, our empirically inspired experiments 
show promising results using nonlinear α-DAWG models, 
in which the nonlinear α-DAWG[W-C] model shows an 
edge over the other two nonlinear α-DAWG models 
with overall accuracies ranging from 92.55 to 96.40% 
(supplementary fig. S13, Supplementary Material online). 
Furthermore, when compared with our previous missing 
data experiments, we find the empirically inspired missing 
data distribution has better overall accuracy as well as 
fewer sweep misclassifications on all datasets for both 
linear (compare Fig. 7 and supplementary fig. S12, 
Supplementary Material online) and nonlinear (compare 
supplementary figs. S10 and S13, Supplementary Material
online) models. This improved accuracy is owed to the 
fact that in the empirically inspired experiments, the 
mean percentage of missing SNPs is lower than that of 
the original missing data experiments. Overall, α-DAWG 
models are robust to different degrees and distributions 
of missing loci, and are unlikely to falsely attribute lost hap
lotypic diversity due to missing segments as a sweep.

Robustness of α-DAWG Models Against Class 
Imbalance
Class imbalance during training can potentially cause the 
trained machine learning models to be biased toward 
more accurately predicting the major class at the expense 
of the minor class (Libbrecht and Noble 2015), making the 
exploration of classifier robustness to such settings im
portant. Moreover, a minority of the genome is expected 
to be evolving under positive selection (Sabeti et al. 
2006), and so we expect that in many empirical applica
tions, the sweep class would be a minor class within the 
test (empirical) set. We therefore set out to explore 
whether α-DAWG models are able to surmount class im
balance in the training and test sets using precision-recall 
curves. Precision is defined as the proportion of true posi
tives among all the predictions that are positives, whereas 
recall is the proportion of true positives among actual po
sitives in a dataset. Precision-recall curves provide a more 
transparent view of classifier performance than ROC 
curves under class imbalance. To evaluate the effect of 
training imbalance, we considered training sets of 10,000 
observations, each with different combinations of observa
tions from each class that ranged from balanced (5,000 
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observations per class) to severely imbalanced (1,000 ob
servations in one class and 9,000 in the remaining class). 
Furthermore, to assess the impact of testing imbalance, 
we considered training sets of 10,000 observations per class 
and test sets composed of varying combinations of obser
vations from each class that ranged from balanced (500 
observations per class) to severely imbalanced (100 obser
vations in one class and 900 in the remaining class), total
ing 1,000 observations per test set.

Our results show that despite infusing severe class imbal
ance during training, all linear α-DAWG models exhibit high 
precision for the majority of the recall range (supplementary 
fig. S14, Supplementary Material online). This excellent per
formance is further accentuated by the area under the 
precision-recall curve (AUPRC), which shows that all linear 
α-DAWG models have an AUPRC ranging from 96.23% to 
99.15% (supplementary fig. S14, Supplementary Material on
line). Specifically, when linear α-DAWG models are trained 
with a balanced dataset (5,000 observations per class), the 
AUPRC is highest (ranging from 97.17% to 99.15%), whereas 
the lowest AUPRC (96.23%) is obtained when only 1,000 of 
the training observations were neutral (supplementary fig. 
S14, Supplementary Material online). These results suggest 
that class imbalance during training has only a minor affect 
on performance of linear α-DAWG. When it comes to resili
ence of linear α-DAWG models under imbalanced testing 
sets, all linear α-DAWG models have high AUPRC, 
ranging from 94.03 to 99.98% (supplementary fig. S15, 
Supplementary Material online). Moreover, in most cases, 
as the proportion of sweep observations increased, 
the AUPRC also increased (supplementary fig. S15, 
Supplementary Material online). Overall, the observed ro
bustness to training imbalance is echoed by the results of 
testing imbalance.

Effect of Selection Strength on α-DAWG Models
Selection strength of a beneficial mutation influences the 
prominence of the valley of lost diversity left by a selective 
sweep, with stronger sweeps contributing to a wider sweep 
footprint on average (Willoughby et al. 2017; Roze 2021; 
Sultanov and Hochwagen 2022). Moreover, this adaptive 
parameter also impacts the sojourn time of the sweeping 
haplotypes, which may lead to the erosion of sweep foot
prints by recombination (Hamblin and Di Rienzo 2002; 
Pennings and Hermisson 2017; Garud 2023). Therefore, it 
is important to assess the ability of α-DAWG models to de
tect sweeps when the range of selection coefficients (s) is 
varied, to better understand the effectiveness of α-DAWG 
models under different selection regimes. To this end, we 
simulated sweep test replicates with selection strength 
that differs from the range used in the training set, which 
was [0.005, 0.5] drawn uniformly at random on a logarith
mic scale. We instead simulated five test sets each 
with 1,000 sweep replicates, where the selection 
coefficient was drawn uniformly at random within the re
stricted ranges of s ∈ [0.001, 0.005], s ∈ [0.005, 0.01], 
s ∈ [0.01, 0.05], s ∈ [0.05, 0.1], or s ∈ [0.1, 0.5], and 

with all other genetic, demographic, and adaptive para
meters identical to those of the CEU_2 dataset (see the 
section “Effect of population size fluctuations” for details).

Upon analyzing the sweep detection accuracy of three 
linear α-DAWG models, we find as expected that there is 
a pattern of increasing sweep detection accuracy as we 
move toward stronger sweeps (supplementary fig. S16, 
Supplementary Material online). Sweep detection accur
acy is the lowest (in the range of 61% to 63%) when the 
replicates are drawn as s ∈ [0.001, 0.005] that encom
passes the weakest sweep strength and that is outside 
the range of selection coefficients used to train α-DAWG 
(supplementary fig. S16, Supplementary Material online). 
This low accuracy underscores the assumption that weak
er adaptive alleles do not leave pronounced sweep foot
prints, thereby making it challenging for α-DAWG 
models to detect such sweeps, particularly as they are 
out of the training distribution. However, the sweep detec
tion accuracy sharply increases to a minimum of 83.6% 
when s falls within the range used to train linear 
α-DAWG (supplementary fig. S16, Supplementary 
Material online), with detection rates reaching 92.7% for 
all three models for the strongest sweeps of s ∈ 
[0.1, 0.5] (supplementary fig. S16, Supplementary 
Material online). Overall, linear α-DAWG models show 
greater ability to detect sweeps as adaptive strength in
creases, with detection rate significantly elevated when se
lection coefficients fall within in the range used to train the 
models.

We further went on to test the robustness of linear 
α-DAWG models when trained and tested on weaker 
sweeps. We simulated an additional 10,000 sweep repli
cates for training and 1,000 sweep replicates for testing 
with selection coefficients in the range s ∈ [0.001, 0.05] 
drawn uniformly at random on a logarithmic scale, keeping 
other genetic, demographic, and selective parameters 
identical to the CEU_2 dataset. Under this setting, we 
find that linear α-DAWG models exhibit overall accuracies 
ranging from 89.05 to 89.55% (supplementary fig. S17, 
Supplementary Material online), which is roughly 4% lower 
than the accuracies from the original model trained with 
stronger sweeps with coefficients s ∈ [0.005, 0.5] (Fig. 4). 
This reduction in overall accuracy is unsurprising, given 
that selection coefficients of the training and test sweep 
replicates (s ∈ [0.001, 0.05]) are smaller than those of 
roughly 50% of the sweep replicates in our original proto
col (s ∈ [0.001, 0.05]). Because sweep footprints under 
this weaker setting would lead to greater class overlap be
tween neutral and sweep replicates, it is more difficult to 
distinguish positive selection from neutrality. The ROC 
curves also echo the diminished performance, with lower 
true positive rates at small false positive rates (first panel 
of supplementary fig. S17, Supplementary Material online). 
These results may partially explain the surprising finding 
that population bottlenecks did not significantly reduce 
classification accuracy of linear α-DAWG models (Fig. 4) 
compared with a constant size demographic history 
(Fig. 2), suggesting that maintenance of overall high 
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classification accuracy may be explained in part by repli
cates with strong selection coefficients. Overall, linear 
α-DAWG models show an expected dip in terms of overall 
accuracy when trained and tested on weaker sweeps com
pared with original results.

Application to a European Human Genomic Dataset
So far we have shown that α-DAWG performs well on si
mulated datasets. To examine its efficacy on real world 
data, we applied it to whole-genome haplotype data 
from a CEU human population (CEU) in the 1,000 
Genomes Project dataset (The 1000 Genomes Project 
Consortium 2015). We utilize this population as it is histor
ically well-studied for signals of selection and, therefore, 
provides a setting to evaluate whether α-DAWG can un
cover expected and well-established sweep candidate 
genes. To train α-DAWG, we employ 10,000 simulation re
plicates per class for neutral and sweep settings, simulated 
under the same protocol as the CEU_2 dataset, with the 
exception that we sample 198 haplotypes instead of 200 to 
match the CEU empirical dataset. We chose to employ the 
nonlinear α-DAWG[W-C] model for our empirical 
application, as we expect empirical data to contain 
missing genomic segments and in our missing data ex
periments involving two different settings, nonlinear α- 
DAWG[W-C] shows higher overall classification accuracy 
compared with the other two nonlinear α-DAWG models 
(supplementary figs. S10 and S13, Supplementary Material
online). This promise of nonlinear α-DAWG[W-C] for em
pirical application is further substantiated by its superior 
performance over linear α-DAWG[W-C] on ideal settings 
for a realistic demographic history (i.e. CEU_2) (compare 
supplementary figs. S8 and S10, Supplementary Material
online).

To initially explore the consistency in empirical predic
tions among α-DAWG models, we examine the overlap of 
sweep probability windows above a certain threshold 
among different α-DAWG models. We chose the threshold 
to be 0.9 averaged across seven consecutive windows 
(supplementary fig. S18a, Supplementary Material online) 
in one scenario and chose this cutoff to be greater than the 
99th percentile of the probabilities for a given α-DAWG 
model (supplementary fig. S18b, Supplementary Material
online) in another scenario. Our results suggest that the 
nonlinear α-DAWG[W-C] model, which we focus on in 
our empirical analysis, has 96.5% of its windows that are 
above a probability cutoff of 0.9 are also identified by 
the linear α-DAWG[W-C] model with the same probability 
threshold (supplementary fig. S18a, Supplementary 
Material online). Conversely, 98% of such windows in the 
linear α-DAWG[W-C] model reach the threshold in the 
nonlinear α-DAWG[W-C] model (supplementary fig. 
S18a, Supplementary Material online).

We also find similar concordance in the nonlinear 
α-DAWG[C] model, such that 94.1% and 86.3% of its win
dows passing the probability cutoff of 0.9 are also identified 
by the linear α-DAWG[C] and α-DAWG[W-C] models, 

respectively (supplementary fig. S18a, Supplementary 
Material online). While such windows exceeding the thresh
old in the linear α-DAWG[W-C] model are also uncovered 
by the linear α-DAWG[C] model (90.7% of windows), there 
is a lack of reproducibility of these windows in the nonlinear 
α-DAWG[C] scan (37.1% of windows). In contrast to these 
results, when it comes to the threshold that is above 99th 
percentile of the probabilities for each model, we find 
that any two models show symmetry in their overlapping 
windows (supplementary fig. S18b, Supplementary 
Material online). For both thresholds employed, the pair 
of models that yield the highest similarity in general 
utilize the same decomposition input (W, C, or W-C) 
(supplementary fig. S18, Supplementary Material online), 
though there exist some exceptions. Also, we find pairs 
of models where one is employing solely wavelets 
(e.g. α-DAWG[W]) and the other is either using curvelets 
(e.g. α-DAWG[C]) or a combination of wavelets and curve
lets (e.g. α-DAWG[W-C]) are highly dissimilar (similarity 
score zero or close to zero), which alludes to less concord
ance between a wavelet-based model and a model that 
uses wavelet features only in part or not at all. Overall, 
α-DAWG models are able to recapitulate the sweep signals 
of other α-DAWG models with moderate to high degree of 
concordance when both models in question employ curve
lets either in a standalone model (e.g. α-DAWG[C]) or in a 
combined model with wavelets (e.g. α-DAWG[W-C]).

Applying the nonlinear α-DAWG[W-C] model,the over
all pattern in α-DAWG predictions across the genome sug
gests that, as expected, sweeps are generally rare in 
humans (supplementary fig. S19, Supplementary Material
online), with 1.56% of classified windows with a sweep 
probability greater than 0.9. These results suggest that 
α-DAWG is robust to potential technical artifacts and 
forces that lead to patterns other than sweeps, which 
may mislead a classifier to predict sweeps with high confi
dence. We next sought to identify candidate genes that 
show characteristic sweep patterns by finding peaks with 
high mean predicted sweep probability. Specifically, to 
average out potential noise from a single window with 
high sweep probability and for smoothness, we computed 
mean predicted sweep probabilities through a seven-point 
moving average across sweep windows, spanning three 
windows before and after a given target window. We de
fine these peaks as the genomic interval in which this 
seven-point moving average of predicted sweep probabil
ities increases from below 0.15 to above 0.75 followed by a 
decline to below 0.15. We find that 1.58% of windows 
have sweep probability greater than 0.9 following this aver
aging process (supplementary table S1, Supplementary 
Material online), and list the associated autosomal regions 
in supplementary table S2, Supplementary Material online. 
We further present genes ranked in the order of their peak 
probabilities (supplementary table S3, Supplementary 
Material online), and highlight some candidates that either 
are supported by previous literature (Fig. 8) or are novel 
candidates (Fig. 9) with noteworthy associations to various 
immune functions or diseases.
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As expected, α-DAWG identified high sweep support at 
LCT (Fig. 8a) on chromosome two, which is widely ac
cepted as having undergone past positive selection 
(Bersaglieri et al. 2004). The LCT gene is responsible for lac
tase persistence, which has recently evolved due to in
creased consumption of animal milk and other dairy 
products (Sabeti et al. 2006). Based on the plotted prob
abilities around the LCT region on chromosome two 
(Fig. 8a), we observe a sharp spike in probability at the lo
cation of LCT. Upstream of LCT, α-DAWG predicts another 
gene, ZRANB3, to have high sweep support (Fig. 8b), which 
echos a prior finding of Liu et al. (2013). ZRANB3 helps re
pair DNA lesions, allowing the DNA replication process to 
continue on an undamaged DNA strand without introdu
cing mutations (Weston et al. 2012; Sebesta et al. 2017).

Among the other candidates for sweep uncovered by 
α-DAWG is the ALDH2 gene on chromosome 12 
(Fig. 8c), for which a selective sweep is also supported by 
Oota et al. (2004). ALDH2 is responsible for intolerance 
to large quantities of alcohol (Chang et al. 2017). We 
also have found evidence for a selective sweep at the 
HLA-DQB1 gene (Fig. 8d) within the major histocompati
bility complex (MHC) on chromosome six. MHC is a family 
of closely related and highly polymorphic genes that code 
for cell surface proteins that are involved in adaptive im
mune system (Mignot et al. 1997). HLA-DQB1 is part of 

the subfamily of MHC molecules termed MHC class II, 
which are responsible for providing instructions for produ
cing proteins that are responsible for initiating immune re
sponses (Janeway Jr et al. 2001). Due to their high 
polymorphism, MHC genes are also widely thought to 
evolve under balancing selection (Bernatchez and Landry 
2003), but recent studies have also found evidence for 
past positive selection acting on genes within the MHC 
(Meyer and Thomson 2001; Goeury et al. 2018; Harris 
and DeGiorgio 2020a). SIGLEC-L1 on chromosome 19 is an
other of α-DAWG sweep prediction (Fig. 8e). Gagneux and 
Varki (1999) argued that this gene might be under 
positive selection due to its potential involvement in 
host-pathogen interactions. The ZP3 gene on chromosome 
seven is also detected by α-DAWG (Fig. 8f), with evidence 
for positive selection at this gene supported by previous 
studies (e.g. Hart et al. 2018). ZP3 encodes zonal pellucida 
glycoproteins, which comprise the protective coating of 
the eggs and precipitates sperm-egg recognition during 
fertilization (Litscher et al. 2009). This finding is also com
patible with the results of Schrider and Kern (2017), which 
found an enrichment of candidate sweep genes that were 
involved in sperm-egg recognition,

In addition to finding instances of selective sweeps that 
have already been identified in the literature, α-DAWG 
also uncovers several novel sweep candidates with high 

(a) (b) (c)

(d) (e) (f)

Fig. 8. Probabilities of sweep in select positions of interest of genome of CEU population. The plots are smoothed by seven-point moving average. 
The locations of the genes are marked by the shaded regions. The figure shows predictions of selective sweeps made by nonlinear 
α-DAWG[W-C] that agree with existing literature.
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support and that exhibit haplotype patterns consistent 
with sweeps for which we observe extended regions with 
high frequencies of major alleles coincident with high 
α-DAWG sweep probabilities (supplementary fig. S20, 
Supplementary Material online). One of these candidates 
is CCZ1 on chromosome seven (Fig. 9a), which facilitates 
GDP/GTP exchange (Gerondopoulos et al. 2012). 
α-DAWG also classifies the gene SLX9 on chromosome 
21 as undergoing positive selection (Fig. 9b), which is a 
protein-coding gene thought to be involved in the cre
ation of ribosomes through ribosome biogenesis in the nu
cleolus (Fischer et al. 2015). Another identified candidate 
gene is PCNX2 on chromosome one (Fig. 9c), which is in
volved in tumorigenesis of colorectal carcinomas with 
high microsatellite instability (Kim et al. 2002). MYH14 
on chromosome 19 shows high predicted sweep probabil
ity as well (Fig. 9d), and is part of the Myosin superfamily, 
which is responsible for cytokinesis, cell motility, and cell 
polarity (Donaudy et al. 2004). Moreover, MYH14 has 
also been implicated in tumor development (De 
Miranda et al. 2014; Landau et al. 2015). α-DAWG identi
fied MSR1 on chromosome eight with high sweep prob
ability (Fig. 9e), and this gene has been implicated in 
atherosclerosis, Alzheimer’s disease (Herber et al. 2010), 
and prostate cancer (Hsing et al. 2007). As a final example, 
MAPK4 on chromosome 19 is also identified as undergoing 

positive selection by α-DAWG (Fig. 9f). MAPK4 is a mem
ber of the mitogen-activated protein kinase family, which 
is involved in breast cancer (Wang et al. 2022). This pattern 
of detecting sweeps at cancer-related genes was also found 
by a number of prior studies (Lou et al. 2014; Schrider and 
Kern 2017, 2018; Mughal et al. 2020; Amin et al. 2023; 
Arnab et al. 2023). In particular, past sweeps may have 
caused deleterious alleles to hitchhike to high frequency 
due to linked selection (Schrider and Kern 2017), leading 
to combinations of alleles that may contribute to contem
porary maladaptive phenotypes. These results hint at an 
interesting pattern that many past positively selected al
leles reside in genes that are currently involved in cancer 
within humans.

Furthermore, we sought to examine the correlation of 
the nonlinear α-DAWG[W-C] scores at candidate genes 
with a more traditional method. For comparison, we chose 
to scan the CEU population data using nSL 
(Ferrer-Admetlla et al. 2014), which evaluates how haplo
type homozygosity decays with distance from a test SNP, 
and use the implementation within selscan (Szpiech and 
Hernandez 2014) while normalizing the scores within fre
quency bins across the genome. To assign a score to 
each gene, we used a score for α-DAWG as the peak seven- 
point moving averaged sweep probability predicted by the 
nonlinear α-DAWG[W-C] falling within each gene and for 

(a) (b) (c)

(d) (e) (f)

Fig. 9. Probabilities of sweep in select positions of interest of genome of CEU population. The plots are smoothed by seven-point moving average. 
The locations of the genes are marked by the shaded regions. The figure shows the novel predictions of selective sweeps made by nonlinear 
α-DAWG[W-C].
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nSL we chose the peak absolute nSL score intersecting each 
gene. We retained only genes for which both nSL and the 
nonlinear α-DAWG[W-C] model had a value. To assess 
correlation between these two methods, we employed 
both the Spearman rank correlation and the Pearson cor
relation, with the Pearson correlation computed on the 
scores that have been adjusted by Box-Cox transforma
tions (Box and Cox 1964; Griffith et al. 1998) to satisfy nor
mality assumptions as well as possible. For both 
approaches, we estimated a correlation coefficient to be 
roughly 0.15 with significant P-values for the Spearman 
and Pearson correlation tests of 3.47 × 10−56 and 
4.30 × 10−56, respectively. Furthermore, we found that 
178 shared genes exceed the 90th percentile for both nSL 
and nonlinear α-DAWG[W-C] score distributions. The ex
tremely small P-values indicate statistically significant rela
tionships and given the large sample size of genes 
considered, the correlation coefficients, though small, sug
gest a reliable association between the scores yielded by 
nSL and nonlinear α-DAWG[W-C].

Discussion
In this article, we have implemented a framework 
termed α-DAWG for detecting genomic windows with 
footprints of past adaptation. In particular, α-DAWG 
uses α-molecules to extract features from image represen
tations of haplotype alignments, which are then used as in
put to machine learning classifiers. We have tested the true 
positive rate and accuracy of both linear and nonlinear 
models combined with α-molecule feature extraction 
through wavelet and curvelet transformed data (Figs. 
2, 4, and supplementary fig. S8, Supplementary Material
online). We have also tested α-DAWG on data with miss
ing genomic regions and demonstrated that it is robust 
against such common technical artifacts in modern se
quencing data (Fig. 7, supplementary figs. S10, S12, and 
S13, Supplementary Material online). None of the variants 
of α-DAWG perform decisively and consistently better 
than the others, yet all display better true positive rate 
and accuracy than a leading CNN-based sweep classifier 
ImaGene in most cases. Moreover, we collected the re
gression coefficients from our trained linear and nonlinear 
α-DAWG models into 64 × 64 dimensional coefficient ma
trices (the same size as the input data), which enable inter
pretability of the trained models by highlighting particular 
regions of haplotype alignments that the models place 
greatest emphasis (Figs. 2, 4, and supplementary fig. S9, 
Supplementary Material online).

In addition to classification tasks, the α-DAWG model
ing framework can be retooled for regression tasks by 
changing the model response from a qualitative to a quan
titative output. Such problems would include predicting 
adaptive and genetic parameters. For example, similar to 
Mughal et al. (2020), the model could be used to estimate 
the selection coefficient (s), frequency of the adaptive al
lele when it became beneficial (f), and the time at which 
the sweep completed (t) that we have drawn for creating 

the training and test datasets in this study. Estimation of 
such parameters would refine our understanding of the 
mechanisms specifically leading to sweep footprints. For 
instance, estimating s would provide information about 
how much adaptive pressure there was on the beneficial 
allele, f would help interpret whether selection occurred 
on a de novo mutation or on standing variation, and t 
would contribute to interpreting whether adaptive events 
coincide with other factors, such as past climate and 
pathogen pressures. Therefore, reframing α-DAWG as a re
gression model would allow us to glean additional insight 
about a population at identified adaptive regions.

To reliably train our α-DAWG models, substantially 
more training data are needed than when given 
hand-engineered features through summary statistics for 
a similar task (e.g. Lin et al. 2011; Schrider and Kern 
2016; Sheehan and Song 2016; Kern and Schrider 2018; 
Mughal and DeGiorgio 2019; Mughal et al. 2020; Arnab 
et al. 2023). In exchange, the models have the property 
of universality, in the sense that we do not need to worry 
about choosing appropriate summary statistic features a 
priori, as the features are selected automatically with 
α-molecules. We therefore expect these methods to have 
a wider range of applications than those that employ 
hand-engineered features. These models are also interpret
able, which is evident from the plots of the regression coef
ficients where we observe higher magnitude coefficients 
at the center of the matrix, corresponding to lower 
regions of diversity (Figs. 2, 4, and supplementary fig. S9, 
Supplementary Material online). These regression coeffi
cient maps are similar to those used by Mughal et al. 
(2020) when employing hand-engineered summary statis
tics as input. Our regression coefficient maps represent an 
alternative to the class activation and saliency maps used 
by CNN models (Yu et al. 2015), which have been shown 
to also carry similar levels of interpretability for explaining 
models for detecting adaptation (Gower et al. 2021; Arnab 
et al. 2023).

The regression coefficient matrices in Figs. 2, 4, and 
supplementary fig. S9, Supplementary Material online indi
cate where to focus to uncover differences between neu
tral and sweep regions, which is along the center of the 
SNP axis. This finding agrees with what we have seen for 
the mean image representation of haplotype alignments 
in Fig. 1a. We also notice that coefficient matrices from 
wavelet models are coarser than those from curvelet mod
els, which could be due to several reasons. First, wavelets 
do not provide directional specificity, meaning that wave
let basis functions cannot be aligned in different directions, 
and so the only way for wavelets to capture a particular 
feature in the signal is to move the wavelet basis to the 
position of the feature. Second, translation happens in dis
crete amounts, which leads to the coarse pattern in the 
wavelet model regression coefficients. Curvelets, on the 
other hand, can be aligned in different directions (in add
ition to translation), and so to capture any feature curve
lets can rotate as well as translate (see supplementary fig. 
S21, Supplementary Material online for an illustration). 
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This flexibility grants curvelets enhanced ability compared 
with wavelets to reproduce specific features, making the 
regression coefficient matrix smoother than the corre
sponding wavelet matrix (Fig. 1b and c). Third, the curvelet 
transform simply has a greater number of coefficients for 
each data sample than wavelets, even though curvelets 
are sparser than wavelets as most of the coefficients are es
timated to be zero. This increased number of modeled fea
tures increases the α-DAWG penalization hyperparameter 
for curvelets more so than wavelets (Table 1), as more 
regularization is needed to reach an optimal effective num
ber of features used in the model. This more aggressive 
regularization may contribute to the smoother regression 
coefficient matrices for curvelets compared with wavelets.

Despite curvelets reconstructing smoother appearing 
images than wavelets due to their anisotropic scaling prop
erties (Fig. 1), the curvelet-based α-DAWG[C] models still 
do not significantly outperform the wavelet-based 
α-DAWG[W] models. A possible reason for this finding 
may lie in the nature of the data. In particular, the input 
images to α-DAWG models exhibit a block-like structure 
(first panel of Fig. 1c), which α-DAWG[W] may be capable 
of better exploiting as wavelets also produce a block-like 
structures (second panel of Fig. 1c), making for easier 
matching of patterns in such images. In contrast, curvelets 
are especially adept at detecting line-like edges or geo
metric shapes found in nature and are able to detect 
finer edges compared with wavelets (Gebäck and 
Koumoutsakos 2009; Ma and Plonka 2009; Mishra and 
Sharma 2022). Because the patterns found in our original 
input images are block-shaped and do not contain fine 
edges, the angular rotation capabilities of curvelets by 
themselves may not offer a significant advantage in our 
current α-DAWG framework. However, studies have found 
that images extracted from summary statistics, such as 
moments of pairwise linkage disequilibrium (Mughal 
et al. 2020) or the creation of two-dimensional images 
through spectral decomposition of summary statistic sig
nals (Arnab et al. 2023) harbor structures that may deviate 
from block-like patterns, and curvelets may offer a more 
considerable edge on input images from such settings. 
Furthermore, curvelets may also aid in detection of selec
tion in more complicated scenarios that may lead to peaks 
and valleys of diversity within a stretch of a chromosome, 
such as adaptive introgression (Setter et al. 2020) or balan
cing selection acting at multiple nearby loci (Barton and 
Navarro 2002; Navarro and Barton 2002; Tennessen 
2018), due to their anisotropic scaling properties.

Considering the performances of α-DAWG models un
der different demographic histories, an interesting obser
vation is that the models perform considerably well 
under bottleneck scenarios (i.e. the CEU demographic his
tory), with performance metrics comparable to that under 
the equilibrium constant-size demographic history. This 
finding is somewhat surprising, as population bottlenecks 
can lead to significant variance in diversity along chromo
somes that may give rise to sharp peaks and valleys that 
affect the local and global genetic diversity across the 

genome, resulting in challenges for detecting sweeps 
(Barton 1998; Thornton and Jensen 2007; Pavlidis et al. 
2008). Yet, wavelet and curvelet transformations are able 
to capture features, including these sharp features, that 
contribute to components of the local and global struc
ture of a signal (Hüpfel et al. 2008; Shan et al. 2009; 
Kobitski et al. 2021; Yulong et al. 2023). Because the 
ℓ1-norm regularization penalty used in fitting the 
α-DAWG models encourages sparsity by performing fea
ture selection, noise components due to sharp peaks and 
valleys that might be expected from population bottle
necks may be removed from the model. The removal of 
such noise components may be an important contributor 
to the comparable performance of α-DAWG models on 
the equilibrium and nonequilibrium demographic scen
arios that we evaluated.

All three of our α-DAWG models were found to per
form consistently better than ImaGene in all tested 
cases. However, there are several factors that may have 
led to this performance differential. First, for equal com
parison among all test methods across experiments, we ini
tially trained ImaGene using 10,000 observations per 
class, which is significantly fewer observations than the 
50,000 per class used by Torada et al. (2019). Deep CNN 
architectures, like that of ImaGene, have enormous 
numbers of model parameters that need to be estimated 
and are notorious for requiring extensive amounts of train
ing data to estimate such parameters (Chollet 2021). 
Keeping these data requirement in mind, we embarked 
on an experiment in which we supplied ImaGene with 
30,000 training samples per class, while training 
α-DAWG on the same 10,000 training observations per 
class. We found that α-DAWG models having minimal 
numbers of parameters required fewer training observa
tions to achieve a certain level of classification accuracy 
or true positive rate, whereas even after utilizing the add
itional training data, ImaGene lags behind α-DAWG. 
Other considerations are that, ImaGene resizes each 
observed input haplotype alignment to a 128 × 128 di
mensional matrix, whereas α-DAWG uses 64 × 64 dimen
sional matrices as input. This smaller sized input matrix 
used by α-DAWG may help smooth away some noise with
in each input observation, making the signal within each 
haplotype alignment easier to extract.

The simulated datasets we have used in this article to 
train and test α-DAWG were from phased haplotypes. 
However, without high-enough quality genotypes and suf
ficiently large reference panels, phasing genotypes into 
haplotypes can be error prone. Importantly, such haplo
type phasing may be currently impossible for certain study 
systems. As an alternative, α-DAWG could use as input un
phased multilocus genotype alignments (Harris et al. 
2018), which would each represent a string of the number 
(zero, one, or two) of minor alleles observed in the geno
type of each individual at each SNP in the alignment, in 
contrast to the strings of zeros and ones that we employ 
for haplotype data. Such a conversion would reduce the ef
fective sample size of the variation observed within a given 
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genomic region, and would have less information than if 
phased haplotypes were available. Because of this, we 
would expect that using such data would reduce the 
true positive rate and accuracy of the α-DAWG models. 
However, a number of articles have demonstrated that 
the true positive rate and accuracy to detect sweeps and 
other evolutionary phenomena from unphased multilocus 
genotypes often remains high, just not as high as with 
phased haplotypes, and so conversion to such data remain 
a viable option (Harris et al. 2018; Kern and Schrider 2018; 
Mughal and DeGiorgio 2019; Adrion et al. 2020; Harris and 
DeGiorgio 2020a, 2020b; Mughal et al. 2020; DeGiorgio and 
Szpiech 2022).

We have used the proposed α-DAWG models to identify 
evidence of positive selection from genomic data. Wavelets 
and curvelets methods are well-suited for identifying char
acteristic features in signals and ignoring noise, and there
fore the use of wavelet or curvelet coefficients instead of 
raw data to train the models ensures that identification of 
selective sweep is more heavily influenced by those charac
teristic features rather than other artifacts, like noise. As a 
result, the models are more accurate and more insensitive 
to imperfections in the data (e.g. noise or missing genomic 
segments), and are thus more robust to misclassification 
due to confounding factors. In addition, because of the flexi
bility that α-DAWG allows in terms of the type of data it can 
take as input (i.e. any two-dimensional image), this method 
can be used to solve a number of classification or prediction 
problems given appropriate training data, and thus repre
sents a general framework for predictive modeling in evolu
tionary genomics.

Methods
Haplotype Alignment Processing
We found that processing haplotype alignments in a par
ticular manner improves the performance of α-DAWG. 
Here, a haplotype alignment is a matrix in which rows 
are haplotypes, columns are biallelic SNPs, and the value 
in row i and column j is a zero if haplotype i has the major 
allele at SNP j and is a one if it has the minor allele. Because 
we use as input image representations of sorted haplotype 
alignments spanning a large physical distance of 1.1 Mb, 
true signals of reductions of haplotype diversity may be 
missed if selective sweeps were too soft, weak, or old, as 
their footprints may not span such a large window. 
Thus, the sorting of haplotype alignments within sweep re
gions may be too heavily affected by neutral loci unaffect
ed by the sweeps. To tackle this issue, we constructed 
image representations of sorted haplotype alignments, 
where haplotypes are sorted locally in overlapping win
dows of a fixed number of SNPs (columns), and variation 
at SNPs in overlapping windows was subsequently aver
aged. Specifically, we create a new haplotype alignment 
by processing this haplotype alignment through several 
steps. Starting at the first column, we extract a submatrix 
of length 100 SNPs, and sort the rows in ascending order 

from top to bottom using the ℓ1-norm, which will ensure 
that haplotypes with more major alleles are at the top of 
the submatrix and haplotypes with more minor alleles 
are at the bottom. Using a stride of 10 SNPs, we then ex
tract subsequent submatrices of 100 SNPs (the final sub
matrix is discarded if it has fewer than 100 SNPs), and 
sort them in the same way. We then align the sorted sub
matrices such that each column of the submatrices occu
pies the same column index of the original matrix. We then 
average the number of minor alleles in a particular row and 
column across the corresponding elements of all sorted 
submatrices that aligned to the particular column. We 
then use the python library skimage (Pedregosa et al. 
2011) with linear interpolation to resize this locally sorted 
haplotype alignment matrix to a 64 × 64 dimensional ma
trix to facilitate wavelet and curvelet decomposition. A de
piction of the haplotype alignment processing procedure 
employed by α-DAWG is presented in supplementary fig. 
S1, Supplementary Material online.

We have found that averaging in this way using the 
CEU_2 dataset yields at minimum about an 11.3% per
formance boost in terms of accuracy across all linear mod
els (compare third row of Fig. 4 and first row of 
supplementary fig. S22, Supplementary Material online) 
and at minimum a 6.65% performance boost in terms of 
accuracy across all nonlinear models (compare fourth 
row of supplementary fig. S8, Supplementary Material on
line and second row of supplementary fig. S22, 
Supplementary Material online) relative to results ob
tained without using local sorting. A possible reason for 
this performance boost using local sorting is that local 
sorting ignores more distant drops in diversity and ignor
ing such drops is important, as the locally sorted windows 
in the central SNPs are unaffected by diversity at the per
iphery of the classified window.

Protocol for Simulating Population Genetic Variation
The four main datasets that we used to train and test 
α-DAWG models were of varying difficulty and cover 
both constant and fluctuating size demographic histories. 
For the constant size model, we chose Ne = 104 diploid in
dividuals (Takahata 1993), a mutation rate of 1.25 × 10−8 

per site per generation (Scally and Durbin 2012), and a re
combination rate drawn from an exponential distribution 
with a mean of 10−8 per site per generation (Payseur and 
Nachman 2000) and truncated at three times the mean 
(Schrider and Kern 2016). Each simulation modeled se
quences drawn from a segment of the genome of length 
1.1 Mb. In addition to these parameters, the selective 
sweep simulations had a beneficial mutation introduced 
at the center of the sequences (position 550 kb). This 
beneficial mutation evolved with per-generation selection 
coefficient s drawn uniformly at random on the interval 
[ log10 (0.005), log10 (0.5)] (Mughal et al. 2020), permitting 
a consideration of moderate to strong selection positive 
selection. Furthermore, the frequency of the beneficial mu
tation when it becomes selected f was drawn uniformly at 
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random on the interval [ log10 (0.001), log10 (0.1)], permit
ting a range of hard and soft sweep scenarios to be evalu
ated. Finally, we created two different datasets for each 
demographic history that depended on the number of 
generations in the past that the beneficial mutation be
comes fixed t. For the Constant_1 dataset, which re
presented an ideal setting, we set t = 0 to such that 
sampling happens immediately after the selective sweep 
completes, whereas for Constant_2 dataset, which re
presents a more complex scenario, we draw t uniformly at 
random on the interval [0, 1,200]. The second scenario 
permits more time for the signal of the completed sweep 
to erode due to neutral processes, thereby leading to po
tentially greater class overlap between the neutral and 
sweep settings. Similarly, for the fluctuating size demo
graphic model, keeping the selection parameters the 
same as the constant size model, we generated two data
sets of varying difficulty, such that the CEU_1 dataset was 
created when t = 0 and the CEU_2 dataset was con
structed by letting t ∈ [0, 1,200] be drawn uniformly at 
random. We detail the demographic and simulation para
meters on supplementary table S4, Supplementary 
Material online.

Training α-DAWG Classifiers to Detect Sweeps
We employ both linear and nonlinear classification algo
rithms to classify image representations of haplotype align
ments as one of two classes: neutral or sweep. Specifically, 
we employ elastic net (ℓ1- and ℓ2-norms) penalized logistic 
regression and multilayer perceptrons for the linear and 
nonlinear algorithms. The linear models were trained using 
glmnet (Friedman et al. 2010), while the nonlinear mod
els represented by a feed-forward neural network with an 
output layer consisting of one node with a sigmoid activa
tion and one hidden layer consisting of eight hidden nodes 
each with a ReLU activation were trained with keras 
(Chollet 2015) using a TensorFlow backend (Abadi 
et al. 2015). To extract features from the image representa
tions of haplotype alignments, we perform wavelet and 
curvelet analysis to estimate basis expansion coefficients, 
which are then subsequently fed into the classifiers for 
training. The wavelet transform was performed with the 
waveslim (Whitcher 2005), and selected Daubechies 
wavelets as they have been demonstrated to have an 
edge over other forms of wavelet and perform well in em
pirical applications involving signal processing (Lina 1998; 
Ding and Cao 2011). In particular, we chose Daubechies 
least asymmetric wavelets as they provide better smooth
ness and more vanishing moments than many other wave
let forms (Usevitch 2001), and this smoothness has 
translated into smooth β maps for when attempting to 
understand the features that other population genetic 
classifiers place greatest emphasis (Mughal et al. 2020). 
More vanishing moments result in smaller high-frequency 
coefficients after the signal decomposition, which leads to 
more concentrated signal that results in better signal com
pression suitable for machine learning applications (Guo 

et al. 2022). Curvelet transform was accomplished with 
the curvelab package (Candes et al. 2005). Wavelet 
and curvelet analyses have the potential to provide greater 
control of the high-frequency components of decomposed 
images than Fourier analysis. Moreover, wavelet and curve
let analyses lead to fewer nonzero coefficients compared 
with Fourier analysis, yielding sparser models.

We use 5-fold cross validation over five detail levels j0 ∈ 
{0, 1, 2, 3, 4, 5} of wavelet decomposition, regularization hy
perparameter parameter λ, and hyperparameter γ ∈ 
{0.0, 0.1, . . . , 1.0} controlling the proportion of ℓ1-norm 
penalty during model fitting, to identify the optimum hyper
parameters 􏽢j0, 􏽢λ, and 􏽢γ, respectively. Note that for the 
curvelet-based models, we only considered hyperparameters 
λ and γ, as j0 is not a parameter of the curvelet decompos
ition. During cross validation, we partitioned the data with 
80% reserved for training and 20% for validation on each 
of the 5-folds, such that on each fold the training set con
sisted of 8,000 observations per class and the validation set 
2,000 observations per class. The software glmnet searches 
automatically across the regularization hyperparameter 
(λ), whereas for the nonlinear model we performed 
an explicit search over a predefined grid of 
λ ∈ {10−6, 10−5, . . . , 10−1, 1, 10}. The best-fit values for 
these hyperparameters estimated by cross validation are pre
sented in Table 1 for the linear models and Table 2 for the 
nonlinear models. For our linear models trained with 
glmnet, we set the parameters family to “binomial”, 
nfolds to five, and type.measure to “deviance” dur
ing model fitting. For our nonlinear models, we employed 
the Adam optimizer (Kingma and Ba 2017) to find the min
imum of the penalized cross entropy cost function through 
minibatch gradient descent applied to a batch size of 100 ob
servations. We set the number of epochs to be 100, as in our 
initial experiments the binary cross-entropy loss on the val
idation set stabilized within the first 100 epochs. Moreover, 
for all α-DAWG implementations, the training features 
(wavelet and curvelet coefficients) were standardized to 
have a mean zero and unit standard deviation across all 
training observations. Validation and test observations 
were placed on the same scale, such that their features 
were standardized with the same mean and standard devi
ation parameters as the training features.

Also, when it comes to runtime, it takes on average 3.9 s 
to create an image representation of a haplotype align
ment followed by wavelet and curvelet decomposition 
using MacOS with 16 GB memory. For a training set size 
of 10,000 observations per class, running the linear models 
with 5-fold cross validation takes around 7 h on average 
per model, whereas the nonlinear models with 5-fold cross 
validation take around 5 h on average per model while 
working with 64 GB memory.

Training and Testing the ImaGene Classifier
To provide a benchmark for the results of our α-DAWG 
models, we compared α-DAWG to a state-of-the-art 
sweep classifier ImaGene (Torada et al. 2019), which 
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also attempts to classify genomic regions as sweeps using 
image representations of sorted haplotype alignments— 
similar to α-DAWG. A key distinction between 
ImaGene and α-DAWG is that ImaGene uses CNNs 
to extract features from input images, whereas α-DAWG 
employs α-molecules. Moreover, ImaGene uses a differ
ent approach to mitigate model overfitting termed 
simulation-on-the-fly, in which new datasets are generated 
(simulated) for each training epoch of ImaGene. To en
sure that α-DAWG and ImaGene are using the same 
training data to build models, we instead train 
ImaGene for multiple epochs and track the training 
and validation loss curves, where we used 9,000 and 
1,000 observations per class for training and validation, re
spectively. We used the epoch with the smallest validation 
error to ultimately train the final ImaGene model. We 
trained ImaGene on the full set of 10,000 training obser
vations per class, and tested ImaGene on an independent 
set of 1,000 test observations (the same training and test 
sets employed by α-DAWG). In another experiment, we 
trained ImaGene on 30,000 training observations per 
class and tested on the same 1,000 observations to see if 
training with a significantly larger dataset would improve 
performance. In this scenario involving 30,000 training ob
servations per class, we used 27,000 and 3,000 observations 
per class for training and validation, respectively, and 
then retrained the entire ImaGene model on the full 
set of 30,000 training observations per class based on 
the number of epochs that results in the smallest valid
ation loss.

Processing of European Human Genomic Data
We applied α-DAWG to the CEU human population from 
the 1,000 Genomes Project dataset (The 1000 Genomes 
Project Consortium 2015), which consisted of 99 diploid 
individuals and thus a sample of 198 haplotypes. Before ap
plication of α-DAWG, we performed several filtering op
erations to the dataset. First, we only retained biallelic 
nucleotide sites that were polymorphic (SNPs). We further 
removed SNPs with a minor allele count less than three, as 
Mughal et al. (2020) demonstrated that frequencies of sin
gletons and doubletons were poorly predicted from the in
ferred CEU demographic model (Terhorst et al. 2017) that 
we employ to train α-DAWG.

Each chromosome was divided into windows of 1.1 Mb, 
with a stride length 10 kb. While processing the empirical 
data, we should remember that α-DAWG is trained to de
tect samples of sweeps where the region showing lost diver
sity is in the middle of the sampled sequence (Fig. 1a). For 
this reason, we employ a stride length of 10 kb so that many 
neighboring windows overlap in an attempt to ensure that 
any probable region of reduced diversity or sweep resides 
close to the middle of some window. At each 1.1 Mb win
dow, we process haplotype alignments (see the section 
“Haplotype alignment processing”) before applying wavelet 
and curvelet transforms. We then apply denoizing on the 
wavelet and curvelet coefficients of the sampled windows. 

Denoizing is performed by thresholding or shrinkage, with 
absolute values of coefficients larger than a certain cutoff 
are left untouched, while coefficients smaller than the cut
off are set to zero. We chose to apply a simple scheme of 
thresholding for our purposes, which differs somewhat 
from more common thresholding approaches used on im
age processing or other applications (Antoniadis 1997). In 
particular, we set a cutoff based on percentiles rather 
than some fixed value, with all wavelet or curvelet coeffi
cients larger in magnitude than the 99th percentile left un
touched, while other coefficients set to zero. This 
procedure helps remove noise in addition to the ℓ2- and 
ℓ1-norm penalties enforced by elastic net. To train the 
α-DAWG classifier for application to these data, we used 
the CEU_2 dataset, but sampled only 198 haplotypes to 
match the sample size from the empirical data, and we ap
plied the same filtering denoizing steps used for the empir
ical dataset.

To evaluate the effect of this denoizing protocol, we ap
plied the identical procedure on the CEU_2 training and 
testing dataset. Our results indicate that though both the 
linear and nonlinear α-DAWG models have excellent true 
positive rate and overall accuracy (as high as 92.75%; 
supplementary fig. S23, Supplementary Material online), 
and these performance metrics only slightly lag behind 
those under settings where denoizing was not performed 
(compare supplementary fig. S23, Supplementary 
Material online with Fig. 4 and supplementary fig. S8, 
Supplementary Material online).

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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Data Availability
We release the source code for α-DAWG under the MIT 
open source license, and this code can be accessed on 
GitHub (https://github.com/RuhAm/AlphaDAWG). This re
pository also includes the three linear and three nonlinear 
pretrained α-DAWG models, together with scripts for simu
lating training data and plotting results. The CEU data from 
the 1,000 Genomes Project can be accessed from the project 
website (https://www.internationalgenome.org/category/ 
phase-3/). The CurveLab software used in our analysis for 
the curvelet transformation can be accessed at https:// 
www.curvelet.org/.
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