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Abstract

In recent years, advances in image processing and machine learning have fueled a paradigm shift in detecting gen-
omic regions under natural selection. Early machine learning techniques employed population-genetic summary sta-
tistics as features, which focus on specific genomic patterns expected by adaptive and neutral processes. Though such
engineered features are important when training data are limited, the ease at which simulated data can now be gen-
erated has led to the recent development of approaches that take in image representations of haplotype alignments
and automatically extract important features using convolutional neural networks. Digital image processing meth-
ods termed a-molecules are a class of techniques for multiscale representation of objects that can extract a diverse
set of features from images. One such ¢-molecule method, termed wavelet decomposition, lends greater control over
high-frequency components of images. Another a-molecule method, termed curvelet decomposition, is an extension
of the wavelet concept that considers events occurring along curves within images. We show that application of these
a-molecule techniques to extract features from image representations of haplotype alignments yield high true posi-
tive rate and accuracy to detect hard and soft selective sweep signatures from genomic data with both linear and
nonlinear machine learning classifiers. Moreover, we find that such models are easy to visualize and interpret,
with performance rivaling those of contemporary deep learning approaches for detecting sweeps.
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Introduction et al. 2015; Sheehan and Song 2016; Sugden et al. 2018;
Mughal and DeGiorgio 2019; Mughal et al. 2020; Arnab
et al. 2023; Korfmann et al. 2024), as natural selection is ex-
pected to leave a local footprint of altered diversity within
the genome (Hudson and Kaplan 1988; Hermisson and
Pennings 2017; Setter et al. 2020). To train such models,
summary statistics are calculated from simulated genomic
data, with frameworks ranging from linear models, such as
regularized logistic regression (Mughal and DeGiorgio
2019; Mughal et al. 2020), to nonlinear models, such as en-
semble methods that combine the effectiveness of differ-
ent classifiers and deep neural networks (Lin et al. 2011;
Pybus et al. 2015; Schrider and Kern 2016; Sheehan and
Song 2016; Kern and Schrider 2018; Hejase et al. 2022;
Arnab et al. 2023; Mo and Siepel 2023; ). However, when
opting to use summary statistics to train these models,
we are making an assumption that the chosen set of sum-
mary statistics is sufficient to discriminate among different
evolutionary events, thereby providing satisfactory classifi-
cation. Summary statistics can thus lead to subpar model
performance if suitable measures are not chosen, with
contiguous windows of the genome as input feature vec- these statistics often selected based on theoretical knowl-
tors to detect natural selection (Ronen et al. 2013; Pybus edge and experience.

The rapid increase in computational power over the last
decade has fueled the development of sophisticated mod-
els for making predictions about diverse evolutionary phe-
nomena (Angermueller et al. 2016; Schrider and Kern 2018;
Azodi et al. 2020; Korfmann et al. 2023; Rymbekova et al.
2024). In particular, artificial intelligence has been major
a driver, with approaches employing linear and nonlinear
modeling frameworks (Hastie et al. 2009). These novel
methodologies have been applied for detecting selection,
estimating evolutionary parameters, and inferring rates
of genetic processes (Williamson et al. 2007; Chun and
Fay 2009; Ronen et al. 2013; Schrider and Kern 2016;
Sheehan and Song 2016; Flagel et al. 2019; Adrion et al.
2020; Wang et al. 2021; Burger et al. 2022; Hejase et al.
2022; Kyriazis et al. 2022; Gower et al. 2023; Hamid et al.
2023; Smith et al. 2023; Zhang et al. 2023; Ray et al. 2024).

Multiple strategies have been pursued to address evolu-
tionary questions using machine learning. One such at-

tempt has been to use summary statistics calculated in
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A complementary strategy is to use raw genomic data in
the form of haplotype alignments as input to machine
learning models, and for the model to perform automatic
feature extraction. Attempts at this have mainly adopted
convolutional neural networks (CNNs) (LeCun et al.
1998), which have been successfully applied to a number
of problems in population genomics, including detection
of diverse evolutionary phenomena, estimation of genetic
parameters such as recombination rate, and inference of
demographic history (Chan et al. 2018; Flagel et al. 2019;
Torada et al. 2019; Gower et al. 2021; Isildak et al. 2021;
Qin et al. 2022; Cecil and Sugden 2023; Lauterbur et al.
2023; Whitehouse and Schrider 2023; Riley et al. 2024).
By construction, CNNs are not sensitive to small differ-
ences in details among different neighborhoods in a sam-
ple because of the smoothing that is accomplished
through the one or more pooling layers in the CNN archi-
tecture (Goodfellow et al. 2016). Because such subtle de-
tails are often noise, it is typically beneficial to remove
them as they might impact model predictions. However,
other times those small differences in details could prove
to be important enough to provide an improvement in
predictive performance, as we will show in this article. In
many of the population-genomic problems that machine
learning methods have been applied to, the data are ex-
pected to have appreciable levels of autocorrelation (i.e.
correlation of neighboring genomic locations due to link-
age disequilibrium), which have been handled by using in-
put features deriving from contiguous windows of the
genome (e.g. Lin et al. 2011; Schrider and Kern 2016;
Kern and Schrider 2018) and by explicitly modeling such
autocorrelations (e.g. Flagel et al. 2019; Mughal and
DeGiorgio 2019; Mughal et al. 2020; Isildak et al. 2021;
Arnab et al. 2023).

A recent attempt to improve input data modeling was
taken by Mughal et al. (2020), which used signal processing
tools to extract features from input summary statistics cal-
culated in contiguous windows of the genome, with those
features automatically modeling the spatial autocorrel-
ation of the data. Mughal et al. (2020) demonstrated
that signal processing techniques can help improve true
positive rate and accuracy for detecting positive natural se-
lection, even within a linear model. Moreover, the trained
models could be easily visualized, resulting in an interpret-
able framework for understanding what features are im-
portant for making predictions. Therefore, we believe
such approaches, which have a long-standing foundation
within engineering (e.g. Starck et al. 2002; Liu and Chen
2019), can further be used to make more accurate infer-
ences from raw signals and haplotype data.

To apply such methods on raw haplotype data, we con-
sider basis expansions (see supplementary methods,
Supplementary Material online) in terms of wavelet
(Daubechies 1992) and curvelet (Candes et al. 2006) bases.
Wavelets and curvelets are part of a generalized framework
termed a-molecules (Grohs et al. 2014), which have been
extensively employed in image (two-dimensional signal)
analysis (Starck et al. 2002). Here, the parameter «
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symbolizes the amount of anisotropy permitted in the
scaling of basis functions. Isotropic scaling means that
both coordinate axes are scaled by the same amount. In
contrast, anisotropic scaling means that the x and y axes
can have different scaling factors. As an example, isotropic
scaling of a circle would lead to other circles of different
sizes, whereas anisotropic scaling of a circle would lead
to ellipses of different lengths and widths. For wavelets,
the basis functions are scaled isotropically, whereas for
curvelets, the basis functions can be rotated and are scaled
anisotropically (parabolic scaling; see supplementary
methods, Supplementary Material online). The resulting
wavelet and curvelet coefficients used to decompose an
image can be used as input features to machine learning
models, and we expect wavelets and curvelets to embed
key components in the data to aid machine learning mod-
els in achieving better performance.

As a proof of concept, we highlight the utility of
a-molecules for extracting features from image representa-
tions of haplotype alignments when applied to the prob-
lem of uncovering genomic regions affected by past
positive natural selection. Positive selection leads to the in-
crease in frequency of beneficial traits within a population.
Because genomic loci underlie traits, beneficial genetic var-
iants at these loci that code for such traits will also elevate
in frequency. This rapid rise of these beneficial mutations
leads to alleles at nearby neutral loci to also increase in fre-
quency by a phenomenon known as genetic hitchhiking
(Smith and Haigh 1974). This hitchhiking causes a loss of
diversity at neighboring neutral loci in addition to the
lost diversity at the site of selection due to positive selec-
tion. The resulting ablation of haplotype diversity is known
as a selective sweep (Przeworski 2002; Hermisson and
Pennings 2005, 2017; Pennings and Hermisson 2006), and
this is a key pattern that researchers exploit when develop-
ing statistics for detecting positive selection from genomic
data.

Evidence of natural selection garnered by identifying se-
lective sweeps aids in our understanding of the natural his-
tory of populations. For example, detection of sweeps can
lend insight into the pervasiveness of positive selection in
shaping genomic variation, whereas the prediction of the
particular type of adaptive process (i.e. as hard sweep,
soft sweep, or adaptive introgression) (Hermisson and
Pennings 2005; Pennings and Hermisson 2006; Setter
et al. 2020) can serve as a blueprint for pinpointing particu-
lar mechanisms that have driven adaptation (Hernandez
et al. 2011; Granka et al. 2012; Huerta-Sanchez et al.
2014; Schrider and Kern 2016). However, sweep detectors
can be confused by false signals due to other common evo-
lutionary phenomena. For example, other forms of natural
selection (e.g. background selection) (Charlesworth et al.
1993; Braverman et al. 1995; Charlesworth et al. 1995;
Hudson and Kaplan 1995; Nordborg et al. 1996; McVean
and Charlesworth 2000; Boyko et al. 2008; Akashi et al.
2012; Charlesworth 2012) as well as demographic history,
such as population bottlenecks (Jensen et al. 2005;
Stajich and Hahn 2005), can leave similar imprints on
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genetic data (though see Schrider 2020). Therefore, the
problem of detecting sweep patterns from genomic vari-
ation has been extensively studied for decades, and repre-
sents a difficult yet suitable setting for evaluating novel
modeling frameworks.

As an illustration of applying a-molecules to raw haplo-
type data, we depict the effect of decomposing and recon-
structing image representations of haplotype alignments
from wavelet and curvelet basis expansions (Fig. 1).
Specifically, Fig. 1a shows heatmaps of haplotype images,
averaged across many simulated replicates, for two evolu-
tionary scenarios: neutrality (left) and a selective sweep
(right). The sweep image displays a prominent vertical
dark region in the image center, which symbolizes the
loss of diversity due to positive selection. This pattern
can be further illustrated an example of how such an image
was created (supplementary fig. S1, Supplementary
Material online), where we see that after processing a
haplotype alignment, regions with greater numbers of ma-
jor alleles will have a concentration of values close to zero
toward the top of the image and values close to one to-
ward the bottom of the image. The sharp contrast in the
center of the sweep image (Fig. 1a) signifies the presence
of major alleles (zeros) at high frequency in the center of
the image, which presents a reduction in diversity.
However, in more practical settings, this dark region will
not be as easy to detect, as there will be some noise in-
volved. Figure 1b shows a noisy image of the sweep setting,
together with reconstructions from wavelet and curvelet
decomposition that recover the purity of the original im-
age. Noise in this scenario may have arisen due to both
technical and biological factors, such as the particular set
and number of sampled individuals, the accuracy of geno-
type calling and haplotype phasing in these individuals,
and whether there have been mutation or recombination
events recently in the history of some of those samples.
The reconstructions are the result of wavelet and curvelet
decomposition for which only the top one percent of coef-
ficients with largest magnitude values are retained and the
remaining coefficients have their values set to zero. This
hard percentile-based thresholding results in a sparse set
of coefficients such that only a few have nonzero values
(). We depict a more realistic setting of haplotype variation
expected from empirical data in Fig. 1c, which shows ori-
ginal and sparse wavelet and curvelet reconstructions of
an image of diversity surrounding a gene on human auto-
some 7. Both wavelet and curvelet processes can capture
the details of the original sweep image fairly well, with
the curvelet reconstructed image smoother due to the
greater freedom that is afforded to it by the curvelet de-
composition of the functions (see supplementary
methods, Supplementary Material online).

In the following sections, we introduce a set of linear
and nonlinear methods that we term o-DAWG
(a-molecules for Detecting Adaptive Windows in
Genomes), where such methods first decompose an image
representation of a haplotype alignment in terms of
a-molecules, specifically with wavelets and curvelets, and

then use extracted a-molecule basis coefficients as features
to train and test models to discriminate sweeps from neu-
trality. We validate the true positive rate, accuracy, and ro-
bustness of our proposed a-DAWG framework, and show
that models trained to detect sweeps from neutrality
perform favorably on a number of demographic and
selection scenarios, as well as the confounding factors of
background selection, recombination rate variation, and
missing genomic segments. We also demonstrate that
0-DAWG attains superior true positive rate and accuracy
relative to a CNN-based sweep classifier, and expand
upon potential reasons for this in the section
“Discussion”. As a product of employing wavelet and cur-
velet analysis on images, we are also able to visualize the
parameters underlying the a-DAWG sweep classifiers,
which provides a framework for understanding the learned
characteristics of input images important for detecting
sweeps. As a proof of effectiveness on realistic data, we ap-
ply a-DAWG to phased whole-genome data of central
European (CEU) humans (The 1000 Genomes Project
Consortium 2015) and recover a number of established
candidate sweep regions (e.g. LCT, ZRANB3, ALDH2, and
SIGLECL1), as well as predict some novel genes as sweep
candidates (e.g. CCZ1, SLX9, PCNX2, and MSR1). Finally,
we make available open-source software for implementing
a-DAWG at https://github.com/RuhAm/AlphaDAWG.

Results

Sweep Detection with Linear a-DAWG
Implementations

We decompose two-dimensional genetic signals (haplo-
type alignments) using wavelets or curvelets before using
them to train models to differentiate between sweeps
and neutrality. For the wavelet transform, we employed
Daubechies least asymmetric wavelets as the basis func-
tions (Daubechies 1988). Each sampled observation of
the data are composed of a 64 X 64 dimensional matrix
(see section “Haplotype alignment processing”). Each sam-
ple is wavelet decomposed and the resulting coefficients
are flattened into a single vector of length 4,096.
Likewise, the curvelet transform gives a vector of coeffi-
cients with a length of 10,521 for each sample. We train in-
dividual linear models that use as input either wavelet or
curvelet coefficients (a-DAWG[W] and a-DAWGI[C]),
and we also train a model that jointly uses as input wavelet
and curvelet coefficients (a-DAWG[W-C]) with a flattened
vector of length 14,617 per sample.

We first test a-DAWG on two datasets of differing dif-
ficulty that are inspired by a simplified population genetic
model. Specifically, we initially explore application of
a-DAWG on a constant population size demographic his-
tory with N, = 10* diploid individuals (Takahata 1993), as
well as a mutation rate of 1.25 X 1078 per site per gener-
ation (Scally and Durbin 2012) and a recombination rate
drawn from an exponential distribution with a mean of
107 per site per generation (Payseur and Nachman
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Fig. 1. Image representations of haplotype alignments and their sparse reconstructions. Darker regions correspond to higher prevalence of major
alleles. a) Heatmaps representing the 64 X 64-dimensional original haplotype alignments used as input to a-DAWG, averaged across 10,000 si-
mulated replicates for either neutral (left) or sweep (right) settings. The mean sweep heatmap (right) shows the characteristic signature of posi-
tive selection, with a loss of genomic diversity (vertical darkened region) at the center of the haplotype alignments where a beneficial allele was
introduced within sweep simulations. In contrast, this feature is absent in the mean neutral heatmap (left). b) Reconstructed images of a noisy
signal with wavelet and curvelet decomposition. The noisy image was generated by adding Gaussian noise of mean zero and standard deviation
one to the mean sweep image depicted in panel (a). For sparse reconstruction from wavelet and curvelet coefficients, we employed a hard
percentile-based cutoff, where only the one percent of coefficients with largest magnitude values were retained for the image and the remaining
coefficients were set to zero. While both sparse reconstruction approaches capture the overall signal in the noisy image, the curvelet recon-
structed image is smoother than the wavelet reconstructed image. c) Sparse reconstruction of haplotype alignments for a genomic region en-
compassing the CCZ1 gene on human chromosome 7 from wavelet and curvelet coefficients in which hard percentile-based thresholding was
employed as in panel (b).

2000) and truncated at three times the mean (Schrider sequences using the coalescent simulator discoal
and Kern 2016) for 1.1 megabase (Mb) simulated se- (Kern and Schrider 2016) for 200 sampled haplotypes
quences. Under these parameters, we generated simulated that we assigned as neutral observations. Additionally, to
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Table 1. Optimum hyperparameters chosen through 5-fold cross validation for the elastic net logistic regression classifier across the four datasets
(Constant 1,Constant 2,CEU_1,and CEU_2) and three feature sets (wavelet, curvelet, and joint wavelet-curvelet [W-C])

Hyperparameters Constant 1 Constant 2 CEU_1 CEU_2

Wavelet Curvelet w-C Wavelet Curvelet w-C Wavelet Curvelet w-C Wavelet Curvelet w-C
Wavelet level 1 N/A 1 1 N/A 1 1 N/A 1 1 N/A 1
b4 0.9 0.8 0.9 0.7 0.9 0.9 0.1 0.4 0.1 0.9 0.9 0.9
i 0.00189 0.002 0.001 0.00168 0.001 0.021 0.0013 0.038 0.0012 0.0019 0.011 0.0017

generate selective sweep observations from standing
variation, we introduced a beneficial mutation at the
center of simulated sequences with per-generation selec-
tion coefficient s € [0.005, 0.5] (Mughal et al. 2020) drawn
uniformly at random on a log,, scale, frequency of benefi-
cial mutation when it becomes selected f € [0.001, 0.1]
drawn uniformly at random on a log,, scale, and genera-
tions in the past in which the beneficial mutation becomes
fixed t. The first dataset (denoted by Constant 1), we
set t = 0 such that sampling occurs immediately after the
selective sweep completes. For the second dataset
(denoted by Constant_2), we draw t € [0, 1,200] uni-
formly at random, such that the distinction between
sweeps and neutrality is less clear. We outline these para-
meters for generating the four datasets in section
“Protocol for simulating population genetic variation”.

To evaluate the performance of a-DAWG on the two
datasets, we generated training sets of 10,000 observations
per class and test sets of 1,000 observations per class under
each of the Constant 1 and Constant 2 datasets.
We applied glmnet (Friedman et al. 2010) for training
and testing under a logistic regression model with an elas-
tic net regularization penalty. We used 5-fold cross
validation to identify the optimum regularization hyper-
parameters (Hastie et al. 2009). Moreover, for
0-DAWG[W] and a-DAWG[W-C], we treated the wavelet
decomposition level as an additional hyperparameter,
which we also determined using 5-fold cross validation
across the set {0, 1, 2, 3, 4}. Additional details describing
the model and its fitting to training data can be found
in the section “Methods” and supplementary methods,
Supplementary Material online. Optimum values for the
three hyperparameters estimated for the Constant 1
and Constant 2 datasets are displayed in Table 1.

To assess classification ability, we evaluated model ac-
curacy, relative classification rates through confusion ma-
trices, and true positive rate with receiver-operating
characteristic (ROC) curves. Using these evaluation me-
trics, all three linear a-DAWG models have similar classifi-
cation abilities when applied on either the Constant 1
or Constant 2 dataset (Fig. 2). However, for both
Constant 1 and Constant 2 datasets, linear
o-DAWG[W-C] performs slightly better than linear
0-DAWG[W] and a-DAWGI[C]. As expected, method
true positive rate and accuracy are higher for the
Constant 1 dataset compared with Constant 2,
as there is greater class overlap in the latter dataset. For
both datasets, all three linear a-DAWG models outper-
form ImaGene, and the linear a-DAWG models classify

neutral regions with higher accuracy than sweep regions
(Fig. 2). However, though our three linear a-DAWG models
exhibit relatively balanced classification rates between
neutral and sweep settings, ImaGene is more unbalanced
on the Constant 1 dataset. Specifically, for the
Constant 1 dataset, ImaGene classifies only 2.3% of
neutral regions incorrectly, which is slightly better than
the linear a-DAWG models, but also misclassifies 17.1%
of sweeps as neutral, which ultimately leads to its lower
overall accuracy but is preferable to a high misclassification
of neutral regions as sweeps. Interestingly, for the
Constant 2 dataset, ImaGene displays more ba-
lanced classification rates, with 11.1% and 14.3% rates of
misclassification for sweep and neutral regions, respective-
ly. This finding could be the result of the Constant 2
dataset having more overlap between the two classes.
For both of these datasets, the linear a-DAWG models ex-
hibit superior classification accuracy relative to ImaGene,
as well as higher true positive rate at low false positive rates
based on the ROC curves (Fig. 2).

In addition to their accuracies and true positive rates, an
important aspect of predictive models in population gen-
etics is their interpretability in terms of the ability to
understand what features of the input image representa-
tions of haplotype alignments are important for discrimin-
ating between sweeps and neutrality. To explore how well
each classifier captures characteristic differences between
sweep and neutral observations, we collected the fitted
regression coefficients and applied inverse wavelet
and curvelet transforms to reconstruct the function
[S(haplotype, snp) describing the importance of different
regions of the haplotype alignment that we use as input
to linear a-DAWG (see section “Linear a-DAWG models
with elastic net penalization” of the supplementary
methods, Supplementary Material online). For both data-
sets, the resulting § functions display elevated importance
in places where we would expect differences between
sweep and neutral variation to arise—i.e. increased im-
portance for features at the center of simulated sequences
near the site of selection, tapering off toward zero with dis-
tance from the center (Fig. 2). This pattern of importance
is reflected in the mean two-dimensional images for the
10,000 training observations per class, with sweeps show-
ing (on average) valleys of diversity toward the center of
simulated sequences, whereas diversity of neutral simula-
tions is (on average) flat across the simulated sequences
(Fig. 1a). We also notice that the f function for the linear
0o-DAWG[W] models generally has a step-wise structure
(ignoring local noise), whereas the f§ functions from linear
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Fig. 2. Performances of the three linear a-DAWG models and ImaGene applied to the Constant_1 (top two rows) and Constant 2
(bottom two rows) datasets that were simulated under a constant-size demographic history and 200 sampled haplotypes. The training and
testing sets respectively consisted of 10,000 and 1,000 observations for each class (neutral and sweep). Sweeps were simulated by drawing per-
generation selection coefficient s € [0.005, 0.5] and the frequency of beneficial mutation when it becomes selected f € [0.001, 0.1], both uni-
formly at random on a log,, scale. Moreover, the generations in the past in which the sweep fixed t was set as t =0 for the Constant 1
dataset and drawn uniformly at random as t € [0, 1200] for the Constant 2 dataset. Model hyperparameters were optimized using
5-fold cross validation (Table 1) and ImaGene was trained for the number of epochs that obtained the smallest validation loss. The first
and third rows from the top display the ROC curves for each classifier (first panel) as well as the confusion matrices and accuracies (in labels
after colons) for the four classifiers (second to fifth panel). The second and fourth rows from the top display the two-dimensional representa-
tions of regression coefficient f(haplotype, snp) functions reconstructed from wavelets or curvelets for a-DAWG[W] (first panel), a-DAWG[C]
(second panel), and a-DAWG[W-C] (third and fourth panels). Cells within confusion matrices with darker shades of gray indicate that classes in
associated columns are predicted at higher percentages. The white color at the center of the color bar associated with a f§ function represents
little to no emphasis placed by linear a-DAWG models, whereas the dark blue and dark red colors signify a positive and negative emphasis,
respectively.

0-DAWGI[C] models are smoother. Similar characteristics
are found in the corresponding £ functions under linear
0-DAWG[W-C] models (one function for wavelet coeffi-
cients and one for curvelet coefficients).

Robustness to Background Selection
Though we have shown that a-DAWG performs well at dis-
tinguishing the pattern of lost genomic diversity due to
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positive selection from neutral variation, it is important to
consider other common forces that may lead to local reduc-
tions in diversity within the genome. In particular, the perva-
sive force of negative selection (McVicker et al. 2009;
Comeron 2014) that constrains variation at functional gen-
omic elements can lead to not only reductions in diversity at
selected loci, but also at nearby linked neutral loci through a
phenomenon termed background selection (Charlesworth
et al. 1993; Hudson and Kaplan 1995; Charlesworth 2012),
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Fig. 3. Probability of falsely detecting moderate background selection a) and moderately strong background selection b) as a sweep as a function
of false positive rate under neutrality for the three linear t-DAWG models trained using the Constant_ 2 dataset as in Fig. 2. The probability of
a false sweep signal is the fraction of background selection test replicates with a sweep probability higher than the sweep probability under
neutral test replicates that generated a given false positive rate. Details regarding the simulation of background selection can be found in

the section “Robustness to background selection”.

much like genetic hitchhiking that leads to a pattern of a se-
lective sweep resulting from positive selection. Moreover,
background selection can lead to distortions in the distribu-
tion of allele frequencies that can mislead sweep detectors
(Charlesworth et al. 1993, 1995, 1997; Keinan and Reich
2010; Seger et al. 2010; Nicolaisen and Desai 2013; Huber
et al. 2016). We expect that a-DAWG should be robust to
background selection, as background selection is not ex-
pected to substantially alter the distribution of haplotype
frequencies as it does not lead to the increase in frequencies
of haplotypes (Charlesworth et al. 1993; Charlesworth 2012;
Enard et al. 2014; Fagny et al. 2014; Schrider 2020).
Nevertheless, it is important to explore whether novel sweep
detectors are robust to false signals of selective sweeps due
to background selection.

To assess whether a-DAWG is robust to background se-
lection, we simulated 1,000 new test replicates of background
selection under a constant-size demographic history using
the forward-time simulator SLiM (Haller and Messer
2019), as the original simulator discoal that we used to
train a-DAWG does not simulate negative selection.
Specifically, we evolved a population of N, = 10* diploid in-
dividuals for 12N, generations, which includes a burn-in per-
iod of 10N, generations and a subsequent 2N, generations
of evolution after the burn-in, under the same genetic
and demographic parameters used to generate the
Constant 2 dataset. At the end of each simulation, we
sampled 200 haplotypes from the population for sequences
of length 1.1 Mb. In addition to these parameters, we also in-
troduced a functional element located at the center of the
1.1 Mb sequence for which deleterious mutations may arise
continuously throughout the duration of the simulation
and with a structure that mimics a protein-coding gene of
length 55 kb where we might expect selective constraint.
Using the protocol of Cheng et al. (2017), selection coeffi-
cients for recessive (h = 0.1) deleterious mutations that arise
within this coding gene were distributed as gamma with

shape parameter 0.2 and mean —0.1 or —0.5 for moderately
and highly deleterious alleles, respectively. Moreover, this
gene consisted of 50 exons each of length 100 bases, 49 in-
trons interleaved with the exons each of length 1,000 bases,
and 5" and 3’ untranslated regions (UTRs) flanking the first
and last exons of the gene of lengths 200 and 800 bases, re-
spectively. The lengths of these components of the coding
gene structure were selected to roughly match the mean va-
lues from human genomes (Mignone et al. 2002; Sakharkar
et al. 2004). Sampled haplotype alignments were processed
according to the steps described in the section “Haplotype
alignment processing”, and these 1,000 background selection
test observations were then used as input to a-DAWG
trained on the Constant 2 dataset.

We find that the probability linear a-DAWG falsely de-
tects moderate background selection as a sweep is roughly
equal to the false positive rate based on neutral replicates
(Fig. 3a), indicating that from the lens of linear a-DAWG,
the distribution of sweep probabilities under background
selection is approximately the same as under neutrality.
When it comes to detecting moderately strong back-
ground selection, linear a-DAWG performs even better
as the probability of falsely detecting background selection
as a sweep is even lower than the false positive rate based
on neutral replicates, emphasizing robustness under mod-
erately strong background selection (Fig. 3b). Thus, as ex-
pected, because linear a-DAWG operates on features
extracted from haplotype alignments, it is robust to pat-
terns of lost diversity locally in the genome due to back-
ground selection in settings of moderately strong and
weaker background selection under human-inspired
demographic and genetic parameters.

Effect of Population Size Fluctuations
Our evaluation of the performance of a-DAWG classifiers
in comparison to ImaGene focused on equilibrium
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demographic settings in which the population size is held
constant. However, this is a highly unrealistic scenario, as
true populations tend to fluctuate in their sizes over
time for a number of reasons. We therefore sought to ex-
plore whether demographic models with population size
changes would substantially hamper the accuracies and
true positive rates of a-DAWG classifiers. Extreme popula-
tion bottlenecks have been demonstrated to cause false
signals of selective sweeps due to their increased variance
in coalescent times, as well as to make sweep detection
more difficult through their global loss of haplotype diver-
sity across the genome. We therefore simulated a setting of
a severe population bottleneck, using a demographic his-
tory inferred (Terhorst et al. 2017) from whole-genome se-
quencing of CEU individuals from the CEU population in
the 1,000 Genomes Project dataset (The 1000 Genomes
Project Consortium 2015).

Neutral simulations were run under this demographic his-
tory, and sweep simulations were performed with a beneficial
mutation added on top of the demographic history, using
the same selection parameters as in the constant-size demo-
graphic history that we previously explored—ie. per-
generation selection coefficient s € [0.005, 0.5] (Mughal
et al. 2020) and frequency of beneficial mutation when it be-
comes selected f € [0.001, 0.1], each drawn uniformly at
random on a log,, scale. Moreover, similarly to our previous
experiments, we considered two datasets of varying difficulty,
each with 10,000 simulations per class for the training set and
1,000 simulations per class for the testing set. The first dataset
(denoted by CEU_ 1) with time of sweep completion set to
t = 0 generations in the past and the second, more difficult,
dataset (denoted by CEU_2) with t € [0, 1200] drawn uni-
formly at random. All classification models were trained and
tested in an identical manner to the earlier Constant 1
and Constant 2 datasets, with optimum estimated va-
lues for the three hyperparameters displayed in Table 1.

Comparing Figs. 4 to 2, we can see that demographic
histories with extreme bottlenecks have actually lead to
an improvement (though marginal) in the true positive
rates and accuracies of the three linear a-DAWG models
compared with the constant size demographic histories,
with linear a-DAWG[W-C] displaying slighting elevated
true positive rate and accuracy compared with linear
0-DAWG[W] and a-DAWG[C]. In contrast, ImaGene
has slightly decreased accuracy and true positive rate com-
pared with the constant-size histories. Similarly, the three
linear a-DAWG models have relatively balanced classifica-
tion rates between neutral and sweep settings (with a
slight skew toward neutrality), whereas ImaGene has
highly unbalanced with a strong, yet conservative, skew to-
ward neutrality for both the CEU_1 and CEU_ 2 datasets.

To ascertain whether more training data may aid in
boosting the performance of ImaGene, we simulated add-
itional training data using the same protocols used to gener-
ate the CEU_ 2 dataset, resulting in a training set comprised
of 30,000 observations per class. We trained ImaGene on
this larger set, and evaluated it on the same test dataset con-
sisting of 1,000 observations per class. Our experiments
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reveal that, using more training data results in a 5.5% in-
crease in overall accuracy and a 9.4% increase in sweep de-
tection accuracy for ImaGene (supplementary fig. S2,
Supplementary Material online). Furthermore, the true posi-
tive rates at small false positive rates also improved with this
additional training data, showing a quicker ascent to the
upper left-hand corner of the ROC curve (supplementary
fig. S2, Supplementary Material online). Despite the im-
provement in performance by ImaGene with additional
training data, linear a-DAWG models still outperformed it
by at maximum 1.95% (compare third row of Fig. 4 to
supplementary fig. S2, Supplementary Material online) while
the nonlinear models outperformed ImaGene with at
maximum 3.1% (compare fourth row of supplementary
figs. S8 to S2, Supplementary Material online) higher overall
classification accuracy with the smaller training set.

Though this increase in classification performance by
ImaGene is promising, it comes at a significant cost of
additional computational and time requirements. Time re-
quirements could potentially have been reduced by em-
ploying a population genetic simulator that is faster than
the coalescent simulator that we used, such as some the
forward time simulator SLiM (Haller and Messer 2023)
that can employ advances parameter scaling and tree-
sequence recording for speedup. However, even with
such advances, replicate generation can remain slow for
sweeps deriving from weak selection coefficients, which
may require many simulation restarts, and the parameter
scaling has recently been shown to potentially bias the in-
tegrity of the simulation (Dabi and Schrider 2024).

From these results, linear a-DAWG appears to be robust
for this classical problematic setting for detecting sweeps.
We also reconstructed the linear a-DAWG f functions for
these bottleneck scenarios, showing increased importance
for features near the center of image representations of
haplotype alignments for which diversity from sweeps is
expected to differ from neutrality in our simulations
(Fig. 4), similar to the results from the constant-size history
settings (Fig. 2). We also observe that the S functions are
noisier when trained on the CEU_1 dataset than on the
CEU_ 2 dataset. This increased noise is due to the optimal
hyperparameter y (see Table 1) estimated closer to zero for
all three linear a-DAWG models trained on CEU 1,
whereas y is estimated closer to one on CEU_ 2. Because
smaller y values result in greater ¢,-norm penalization
compared with £;-norm, the lack of sparsity in the esti-
mated wavelet coefficients for reconstructing the f func-
tions from CEU_1 likely led to more noise. Moreover,
the significant peaks near the pixels toward the bottom
rows and middle columns of the f functions (e.g.
a-DAWGI(] in both Figs. 2 and 4) likely reflect emphasis
in the model contributed by the most recent, strongest,
and hardest sweeps.

Robustness to Recombination Rate Heterogeneity
Recombination rate varies across genomes, and therefore
has an impact in shaping haplotypic diversity observed
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Fig. 4. Performances of the three linear a-DAWG models and ImaGene applied to the CEU_1 (top two rows) and CEU_ 2 (bottom two rows)
datasets that were simulated under a fluctuating population size demographic history estimated from CEU humans (Terhorst et al. 2017) and
200 sampled haplotypes. The training and testing sets, respectively, consisted of 10,000 and 1,000 observations for each class (neutral and sweep).
Sweeps were simulated by drawing per-generation selection coefficient s € [0.005, 0.5] and the frequency of beneficial mutation when it be-
comes selected f € [0.001, 0.1], both uniformly at random on a log;, scale. Moreover, the generations in the past in which the sweep fixed t was
set as t = 0 for the CEU_ 1 dataset and drawn uniformly at random as t € [0, 1200] for the CEU_ 2 dataset. Model hyperparameters were op-
timized using 5-fold cross validation (Table 1) and ImaGene was trained for the number of epochs that obtained the smallest validation loss.
The first and third rows from the top display the ROC curves for each classifier (first pane) as well as the confusion matrices and accuracies (in
labels after colons) for the four classifiers (second to fifth panel). The second and fourth rows from the top display the two-dimensional repre-
sentations of regression coefficient f(haplotype, snp) functions reconstructed from wavelets or curvelets for a-DAWG[W] (first panel),
0-DAWG([C] (second panel), and a-DAWG[W-C] (third and fourth panels). Cells within confusion matrices with darker shades of gray indicate
that classes in associated columns are predicted at higher percentages. The white color at the center of the color bar associated with a f function
represents little to no emphasis placed by linear a-DAWG models, whereas the dark blue and dark red colors signify a positive and negative
emphasis, respectively.

among populations within and among species (Smukowski
and Noor 2011; Cutter and Payseur 2013; Singhal et al.
2015; Pefalba and Wolf 2020; Winbush and Singh 2020).
In particular, low recombination rates may decrease local
haplotypic diversity, which may resemble the pattern of
a selective sweep, whereas high recombination rates may
elevate local haplotypic diversity, which may eliminate
sweep signatures. The genomes across a variety of

organisms exhibit a complex recombination landscape in
which we observe isolated genomic regions with extremely
high (known as hotspots) and low (known as coldspots)
recombination rates (Petes 2001; Hey 2004; Myers et al.
2005; Galetto et al. 2006; Grey et al. 2009; Baudat et al.
2010; Singhal et al. 2015; Booker et al. 2020; Lauterbur
et al. 2023). Therefore, it is important to evaluate the de-
gree with which a-DAWG is robust against scenarios of

9
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recombination rate heterogeneity, including at hotspots
and coldspots.

To test the robustness of a-DAWG under recombin-
ation rate heterogeneity, we simulated 1,000 neutral test
replicates under both constant (ie. Constant 1 and
Constant 2) and fluctuating population size (i.e.
CEU_1 and CEU_2) models using the coalescent simula-
tor discoal (Kern and Schrider 2016), fixing genetic
parameters identical to their respective original datasets
(Constant 1, Constant 2, CEU 1, and CEU_ 2)
while only changing the recombination rate. Specifically,
for a given replicate the recombination rate was drawn
from an exponential distribution with mean of 10~ or
1070 per site per generation and truncated at three times
the mean, resulting in a respective decrease in the mean
recombination rate across the entire simulated 1.1 Mb re-
gion by one or two orders of magnitude relative to distri-
bution used to train the a-DAWG classifiers. To simulate
recombination hotspots and coldspots under constant
and fluctuating population size models, we simulated
1,000 neutral test replicates using the coalescent simulator
msHOT (Hellenthal and Stephens 2007), fixing genetic
parameters identical to their respective original datasets
(Constant 1, Constant 2, CEU 1, and CEU_2)
with the exception of the recombination rate. In particular,
for each test replicate, the recombination rate (r) was
drawn from an exponential distribution with mean of
1078 per site per generation and truncated at three times
the mean (as in the settings used to train a-DAWG), ex-
cept that the central 100kb region of the sequence
evolved with a recombination rate of r/100 or r/10 for
coldspots and 10r or 100r for hotspots, resulting in a loca-
lized decrease or increase in the recombination rate at the
center of the simulated sequences, respectively.

Our results reveal that under a shift in the mean recom-
bination rate by one or two orders of magnitude lower than
what was used for training, linear a-DAWG models exhibit
an increased neutral misclassification rate up to 14% for
constant-size demographic histories when compared with
results in which the recombination rate distribution in test
data matched what the models were trained on
(supplementary fig. S3, Supplementary Material online).
For the more-realistic CEU demographic history, the neutral
misclassification rate observed for linear a-DAWG models
is somewhat lower, maxing out at about an 11%
increase in neutral misclassification (supplementary fig. S3,
Supplementary Material online). Of these models, linear
0-DAWG[W] often had the smallest misclassification error,
though the ranking of the linear a-DAWG models based
on neutral misclassification errors were not consistent across
tested settings. Therefore, in the face of significant reduc-
tions in mean recombination rates relative to what was em-
ployed during training, linear a-DAWG models show
modest inflation of neutral misclassification rates when
compared with results under the usual training settings for
realistic demographic settings.

Furthermore, when faced with recombination hotspots
and coldspots, linear a-DAWG models show a slight rise
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(as high as 10%) in misclassification rate, whereas some mod-
els show proportional deflation in misclassification rates (as
much as 4%) of neutrally evolving regions (supplementary
fig. S4, Supplementary Material online). In general, increasing
the recombination rate from extreme coldspot to
extreme hotspot tends to reduce the neutral misclassifica-
tion rate under the realistic CEU demographic history
(supplementary fig. S4, Supplementary Material online).
When it comes to coldspots, linear a-DAWG models show
decreases in neutral misclassification rates up to 2% as
well as elevations in neutral misclassification rates as high
as 10% (supplementary fig. S4, Supplementary Material on-
line). In the case of hotspots, linear a-DAWG models exhibit
diminishing neutral misclassification rates as low as 4% and
inflations in neutral misclassification as high as 8%
(supplementary fig. S4, Supplementary Material online). In
summary, we observe that even under recombination hot-
spot or coldspots, linear a-DAWG models show a general re-
silience as evidenced by their minimal change in
misclassification rate from original settings, with fewer
errors made for hotspots compared with coldspots
(supplementary fig. S4, Supplementary Material online).

In addition to testing the resilience of linear a-DAWG
models on recombination rate heterogeneity, we went
on to evaluate how a reduced sweep footprint affects
sweep detection accuracy when applied to the CEU_ 2 da-
taset. In particular, the sweep footprint size F can be com-
puted as F=s/[2rIn(4N.s)], where s is the selection
coefficient per generation, r is the recombination rate
per site per generation, and N, is the effective population
size (Gillespie 2004; Garud et al. 2015; Hermisson and
Pennings 2017). Thus, the sweep footprint size is inversely
proportional to the recombination rate. To this end, we si-
mulated 1,000 sweep test replicates with recombination
rates drawn from an exponential distribution with mean
of 2 X 1078 (twice that used for training) per site per gen-
eration and truncated at three times the mean leading to a
sweep footprint size that is on average half the width of the
original replicates, with the mean footprint size across
the original replicates approximately 329 kb. We find
that the reduced footprint size indeed presents a challenge
for the linear a-DAWG models, as we observe a drop
in sweep detection accuracy from original results
(supplementary fig. S5, Supplementary Material online).
This drop in sweep detection accuracy due to reduced
sweep footprint size falls in the range of 3.7% to 4.5%
when compared with the sweep detection accuracy ob-
tained from test replicates using the original recombin-
ation rate (supplementary fig. S5, Supplementary
Material online). Overall, a 2-fold reduction in sweep foot-
print size has minimal to moderate effects on the ability of
linear a-DAWG models to detect sweeps, adding to the
potential robustness of our models.

Performance Under Mutation Rate Variation
Mutation rate varies within the genome and across species
(Kumar and Subramanian 2002; Bromham 2011; Bromham
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et al. 2015; Harpak et al. 2016; Castellano et al. 2020) due to
factors including transcription-translation conflicts and
DNA replication errors (Bromham 2009; Dillon et al.
2018), and this mutation rate heterogeneity could affect
the performance of predictive models that use genomic
variation as input. Like with recombination rate, genomic
regions with low mutation rates can be mistaken as evi-
dence of a selective sweep, as they will harbor low haplo-
typic diversity, whereas genomic regions with high
mutation rates can mask footprints of past selective
sweeps, as they will exhibit elevated haplotypic diversity
(Harris and Pritchard 2017). Thus it is paramount that
0o-DAWG perform well under such conditions of mutation
rate variation.

To evaluate whether a-DAWG is resilient to, and per-
forms well under, mutation rate heterogeneity, we simu-
lated an additional 1,000 sweep and 1,000 neutral
replicates using discoal (Kern and Schrider 2016),
where we deviated from simulation protocol for generat-
ing training data for a-DAWG in which we fixed the mu-
tation rate as u=1.25X 107% per site per generation.
Specifically, for each new test replicate, we sampled the
mutation rate uniformly at random within the interval
[1t/2, 2u] and evaluated how a-DAWG models fare under
this setting of mutation rate variation. We outlined the
performance in terms of accuracy and classification rates
using confusion matrices and true positive rate using
ROC curves (supplementary fig. S6, Supplementary
Material online).

We found that linear a-DAWG models show excellent
overall accuracy (from 89.55 to 96.9%) under mutation
rate variation (supplementary fig. S6, Supplementary
Material online). In terms of detecting neutrally evolving re-
gions, linear a-DAWG[W] exhibits accuracy in the range of
905 to 96%, whereas linear o-DAWG[C] and
o-DAWG[W-C] display a better neutral detection rate in
the range of 95.2 to 98.7% and 93.5 to 98.2%, respectively
(supplementary fig. S6, Supplementary Material online).
Moreover, all linear a-DAWG models retain high true posi-
tive rates across scenarios tested, evidenced by quick rises
to the upper left hand corner of the ROC curve, with linear
0-DAWG[C] and a-DAWG[W-C] models demonstrating
higher true positive rates than linear a-DAWG[W]—an ex-
ception being the applications of these models on the
Constant 1 dataset for which linear -DAWG[W] edges
out the other two (supplementary fig. S6, Supplementary
Material online). These results suggest that all linear
o-DAWG models retain high true positive rates and are ac-
curate when confronted with mutation rate variation.

Comparison with a Summary Statistic Based Deep
Learning Classifier

Though we have benchmarked the linear a-DAWG models
with the nonlinear classifier ImaGene that also uses
images of haplotype alignments as input, it is important
to consider classifiers that instead use statistics summariz-
ing variation as input. We specifically investigate the

performance of the nonlinear diploS/HIC classifier
(Kern and Schrider 2018), which was originally developed
for distinguishing among five classes, namely, soft sweeps,
hard sweeps, linked soft sweeps, linked hard sweeps, and
neutrality from unphased multilocus genotypes (MLGs)
using a feature vector of 12 summary statistics calculated
across 11 windows, where the central window is being clas-
sified. We have adjusted diploS/HIC from its native
state as a multiclass classifier, to instead make decisions
as a binary classifier to distinguish sweeps from neutrality
for comparison purposes with a-DAWG. We trained and
tested diploS/HIC on the Constant 1,
Constant 2,CEU 1, and CEU_2 datasets.

We find that diploS/HIC displays excellent overall ac-
curacy (supplementary fig. S7b, Supplementary Material on-
line) and high true positive rates (supplementary fig. S7a,
Supplementary Material online) across different false posi-
tive rate thresholds in both the constant and fluctuating
population size settings. On all four test datasets,
diploS/HIC outperforms the best performing linear
o-DAWG[W-C] by between 3.35% and 4.40% (compare
Figs. 2 and 4 with supplementary fig. S7b, Supplementary
Material online) in terms of overall accuracy. The edge of
diploS/HIC over the linear a-DAWG models in terms
of performance is further evident in the ROC curves, where
on all datasets we observe a rapid ascent to the upper left-
hand corner of the curve (supplementary fig. S7a,
Supplementary Material online). Though diploS/HIC
outperforms linear a-DAWG across all datasets, a possible
opportunity to close this performance gap would be to em-
ploy a nonlinear a-DAWG, which we explore further in the
section “Performance boost with nonlinear models”.

Comparison with a Likelihood Ratio Based Classifier
Though we have elected to evaluate the performance of
our a-DAWG methods in comparison to ITmaGene, as
it also uses images as input to a machine learning classifier,
it is informative to explore classification ability relative to
more traditional methods of sweep detection, such as the
maximum likelihood approach SweepFinder (Nielsen
et al. 2005; DeGiorgio et al. 2016). Comparing linear
0-DAWG to SweepFinder?2 (DeGiorgio et al. 2016)
on all four test datasets, we see that linear a-DAWG mod-
els consistently demonstrate superior true positive rate
across the range of false positive rates compared with
SweepFinder?2 (Fig. 5). Though SweepFinder is a
powerful sweep classifier, this result is expected, because
the test sweep datasets have varying degrees of sweep soft-
ness, strength, and age. The sweep model employed by
SweepFinder? is one of a recent, hard, and effectively
immediate (i.e. strong) sweep, and thus the method has
limited true positive rate in detecting soft sweeps. On
the other hand, the sweep training data given to linear
a-DAWG models were generated across a range of sweep
softness, strength, and age, and so a-DAWG is more suited
to detecting a broad set of sweep modes relative to trad-
itional model-based approaches.
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Fig. 5. ROC curves of the three linear a-DAWG models and SweepFinder?2 applied to the Constant 1, Constant 2, CEU_1, and
CEU_ 2 test datasets, with the linear a-DAWG models trained and applied in Figs. 2 and 4.

Ability to Detect Hard Sweeps from de Novo
Mutations

Our experiments have explored a-DAWG classification
ability when trained and tested on settings for which the
initial frequency of the beneficial mutation (f) was allowed
to vary across a broad range of values from 0.001 to 0.1,
with adaptation from beneficial mutations at these fre-
quencies occurring through selection on standing vari-
ation. The lower frequency range would likely lead to
harder sweeps, as only one or a few haplotypes would
rise to high frequency, whereas the upper range would
yield softer sweeps. However, a more classic example of a
hard sweep would occur through selection on a de novo
mutation for which the beneficial allele is present on a sin-
gle haplotype (Przeworski 2002; Hermisson and Pennings
2005). We therefore elected to examine the accuracy of
o-DAWG for detecting hard sweeps from de novo
mutations.

To evaluate this scenario, we simulated an additional
1,000 test sweep replicates with discoal (Kern and
Schrider 2016) for each of the Constant 1,
Constant 2, CEU 1, and CEU_2 datasets, with
protocol identical to those for simulating sweeps under
these datasets with the exception that f = 1/(2N,), where
N, is the diploid effective population size rather than
f €[0.001,0.1]. We then deployed our three linear
0o-DAWG models and ImaGene that were trained on
settings for which f € [0.001, 0.1] to evaluate relative
classification accuracy and true positive rate of hard
sweeps from de novo mutations. We find that linear
0o-DAWG and ImaGene showcase relative classification
ability consistent with prior experiments, with all ap-
proaches having high accuracy and true positive rate
and with linear a-DAWG edging out ImaGene for
sweep detection (Fig. 6). Though the setting of hard
sweeps from de novo mutations was not explicitly in-
cluded within the domain of the linear a-DAWG training
distribution, it is not surprising that linear a-DAWG mod-
els still retain high accuracy and true positive rate for
such scenarios, as the footprints of hard sweeps are
more prominent than those of soft sweeps (Hermisson
and Pennings 2017).
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Performance Boost with Nonlinear Models

So far we have only discussed linear classifiers. However, if
the decision boundary separating sweeps from neutrality is
nonlinear, then a nonlinear model may be expected to
yield better performance than a linear model. We there-
fore considered extending our logistic regression classifier
to a multilayer perceptron neural network. The number of
hidden layers or the number of nodes within a hidden layer
of the network is related to the models capacity, or its flexi-
bility in the set of functions that it can model well
(Goodfellow et al. 2016). Because a neural network with
enough hidden layers or enough nodes within the hidden
layers can approximate arbitrarily complicated functions,
it is possible to overfit the model to the training data
(Cybenko 1989; Hornik et al. 1989). Common solutions
to this overfitting issue include limiting the network cap-
acity (number of hidden layers and nodes) or constraining
the model through regularization (Goodfellow et al. 2016).

With this in mind, we considered a neural network with
one hidden layer containing eight hidden nodes within the
layer so that we can still model nonlinear functions while
also having limited capacity of the network. This limited
capacity also heavily reduces the number of parameters
that need to be estimated in the model, thereby reducing
the computational cost of fitting he model. As with our
previous linear models, we also included an elastic net
regularization penalty to constrain the model, and em-
ployed 5-fold cross validation to identify the optimum
regularization hyperparameters. This neural network was
implemented using keras with a tensorflow backend,
and we fit this model to all four datasets that we consid-
ered earlier: Constant 1, Constant 2, CEU 1,
and CEU_ 2. Additional details describing the model and
its fitting to training data can be found in the section
“Methods” and supplementary methods, Supplementary
Material online. Optimum values for the three hyperpara-
meters estimated on the four datasets are displayed in
Table 2.

Using nonlinear versions of the a-DAWG models in-
stead of linear, we see once again that the three nonlinear
a-DAWG classifiers perform similarly to each other on
each dataset (supplementary fig. S8, Supplementary
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and ImaGene trained as in Figs. 2 and 4. The top panel depicts the percentage of 1,000 hard sweep from de novo mutation test replicates
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Table 2. Optimum hyperparameters chosen through 5-fold cross validation for the elastic net eight node and one hidden layer perceptron classifier
across the four datasets (Constant 1, Constant 2, CEU 1, and CEU_2) and three feature sets (wavelet, curvelet, and joint wavelet-curvelet

(w-C))

Hyperparameters Constant 1 Constant_ 2 CEU_1 CEU_2

Wavelet Curvelet W+C Wavelet Curvelet W+C Wavelet Curvelet W+C Wavelet Curvelet W+C
Wavelet level 1 N/A 1 1 N/A 1 1 N/A 1 1 N/A 1
Y 0.3 1 0.9 1 0.1 0.9 1 0.9 0.1 1 0.9 0.1
A 10~° 107° 107° 107¢ 10°¢ 10°° 107° 10~° 10~° 107° 107° 107¢

Material online). In contrast to the linear classifiers (Figs. 2
and 4), nonlinear a-DAWG[W-C] outperforms other
nonlinear models in only Constant_2,and CEU_2 da-
tasets while lagging slightly behind a-DAWGIC], and
a-DAWG[W] in Constant 1 and CEU_1 datasets, re-
spectively (supplementary fig. S8, Supplementary Material
online). These scenarios in which the nonlinear
0o-DAWG[W-C] performs the best are settings in which
there is greater overlap between the neural and sweep
classes. Comparing Figs. 2, 4, and supplementary fig. S8,
Supplementary Material online, we see that nonlinear
0-DAWGIC] and a-DAWG[W-C] models showcase in-
creased overall classification accuracy on the
Constant 1and CEU_2 datasets. Moreover, nonlinear
0-DAWG[W] and a-DAWG[W-C] models exhibit in-
creased overall classification accuracy on the CEU 1 data-
set, with a neutral detection rate as high as 98.5%, which

provides the nonlinear models with an edge over their lin-
ear counterparts with the same image decomposition
method. We also observe a deviation from nonlinear mod-
els having superior performance over linear ones on the
Constant 2 dataset, for which all nonlinear all
a-DAWG models have overall decreased accuracy. That
is, no single model among the six a-DAWG models (three
linear and three nonlinear) consistently performs better
than the others. However, when examining the perform-
ance boost of our nonlinear models, we need to consider
the robustness scenarios where the test inputs may have
been generated from genomic regions with missing data,
which may give rise to false detection of sweep signals at
neutrally evolving regions. We discuss more about how
nonlinear a-DAWG models fare when faced with technical
hurdles like missing data in section “Robustness to missing
genomic segments”.
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In addition to predictive ability, as with the linear mod-
el, we collected the regression coefficients from the eight
hidden nodes and inverse transformed them to recon-
struct the f(haplotype, snp) functions at each of the hid-
den nodes. We then averaged these maps according to
their weights with which they contribute to the output
node (see section “Nonlinear a-DAWG models with elastic
net penalization” of the supplementary methods,
Supplementary Material online). Supplementary fig. S9,
Supplementary Material online shows that the
P(haplotype, snp) functions for each of the nonlinear
0o-DAWG models display expected patterns, with in-
creased importance for features at the center of the haplo-
type images, tapering off toward zero with distance
from the center, as well as curvelet coefficient functions
typically smoother than wavelet coefficient functions.
Though the £ functions observed differ from each other,
they each emphasize the center of input images
(supplementary fig. S9, Supplementary Material online).
Importantly, the f functions are not an indicator of model
performance, as they simply depict areas of an image that
nonlinear a-DAWG models place emphasis. We also note
that we observe markedly different 5 functions across non-
linear a-DAWG models in both smoothness and magni-
tude, which depends on the signal decomposition
method applied as well as the optimal regularization hy-
perparameters associated with the model.

To further evaluate the performance of the nonlinear
0o-DAWG models, we compared it with diploS/HIC.
We find that the gap in overall accuracy between non-
linear a-DAWG models and diploS/HIC closes in
with diploS/HIC outperforming the best nonlinear
a-DAWG models between 1.20% and 3.50% (compare
fourth row of supplementary fig. S8, Supplementary
Material online  with  supplementary fig. S7b,
Supplementary Material online). The edge diploS/
HIC has over nonlinear a-DAWG models is likely owed
to the fact that diploS/HIC uses summary statistics,
which have been chosen because they are adept at detect-
ing sweep patterns and also for discriminating among evo-
lutionary processes in general (Panigrahi et al. 2023). On
the other hand, this is an ideal setting without some of
the potential technical hurdles that might be encountered
in empirical data. Thus, in the section “Robustness to miss-
ing genomic segments”, we explore how diploS/HIC
and the linear and nonlinear a-DAWG models fare when
challenged with artificial drops in haplotypic diversity
due to missing data.

Robustness to Missing Genomic Segments

So far we have explored experiments that mimicked the
biological process that would allow simulated haplotype
variation to approximate real empirical haplotype vari-
ation as closely as possible. However, we assumed that
this variation was known with certainty, and have not
yet considered flawed data due to technical artifacts.
One particular technical issue is that some regions of the
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genome are difficult to assay variation at, leading to
chunks of missing genomic segments in downstream data-
sets due to the inability to access the portion of the gen-
ome or because that region was filtered as the data were
found to be unreliable. The presence of such missing seg-
ments can reduce the number of SNPs and, thus, the num-
ber of distinct observed haplotypes, causing spurious
drops in haplotype diversity locally in the genome that
may masquerade as selective sweeps. Indeed, previous
studies have found that such forms of missing data can
mislead methods to erroneously detect sweeps at neutrally
evolving regions (Mallick et al. 2009; Mughal and
DeGiorgio 2019). It is therefore desirable that sweep clas-
sifiers are robust against this kind of confounding factor.

To evaluate the robustness of a-DAWG to missing data,
we removed portions of SNPs in the test set using the iden-
tical protocol of Mughal and DeGiorgio (2019). Briefly, we
removed 30% of the total number of SNPs in each simu-
lated replicate by deleting 10 nonoverlapping chunks of
contiguous SNPs, each of size equaling 3% of the total
number of simulated SNPs. The starting position for
each missing chunk was chosen uniformly at randomly
from the set of SNPs, and this position was redrawn if
the chunk overlapped with previously deleted chunks.
Image representations of haplotype alignments were
then created from these modified genomic segments by
applying the same data processing steps as in our nonmiss-
ing experiments (see section “Haplotype alighment pro-
cessing”). All models were trained assuming no missing
genomic segments, with missing segments only in the
test dataset.

Figure 7 shows the true positive rates, accuracies, and
classification rates of the three linear a-DAWG models
and ImaGene applied to the four datasets in which the
test data have missing segments. Comparing the results
to those of Figs. 2 and 4, in all cases the three linear
a-DAWG models have unbalanced classification rates,
with a skew toward predicting neutrality. Though missing
data ultimately reduces accuracy of the three linear
a-DAWG models, the misclassifications are conservative,
as it is preferable to misclassify sweeps as neutral (i.e. fail
to detect the sweep event) than to falsely classify neutral
regions as sweeps (i.e. detect a nonexistent process).
Moreover, as evident from comparing Fig. 7 to Figs. 2
and 4, the three linear a-DAWG models have sacrificed
only a small margin of overall performance. These experi-
ments therefore suggest that the three linear a-DAWG
models are robust to missing data, in that they do not
falsely detect sweeps, which is what we might expect
from missing genomic segments due to the loss of haplo-
type diversity. In contrast, missing data have a more critical
impact on the performance of ImaGene, with it now ex-
hibiting a strong skew toward classifying sweeps.
Unfortunately, such skew is detrimental as a high percent-
age of neutral simulations are now falsely predicted as
sweeps, which diverges from conservative classification
rates of the three linear a-DAWG models under missing
genomic regions. The diminished performance of
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Fig. 7. Performances of the three linear a-DAWG models and ImaGene applied to the Constant 1, Constant_ 2,CEU_1,and CEU 2
(from top to bottom) test datasets with missing genomic segments (see Robustness to missing genomic segments) using the linear a-DAWG
models and ImaGene trained and applied in Figs. 2 and 4. Each row displays the ROC curves (first panel) as well as the confusion matrices
and accuracies (in labels after colons) for the four classifiers (second to fifth panels). Cells within confusion matrices with darker shades of
gray indicate that classes in associated columns are predicted at higher percentages.

ImaGene under missing data suggests that the alignment
processing method employed by a-DAWG may help it
guard against false sweep footprints due to the reduced
haplotypic variation caused by missing genomic regions.
We also ran identical missing data analyses for our non-
linear a-DAWG models, with supplementary fig. S10,
Supplementary Material online highlighting the consider-
able robustness of a-DAWG to the technical artifacts gen-
erated by missing genomic segments. We observe that
among our nonlinear a-DAWG models, a-DAWG[W-C]
shows higher overall classification accuracy compared
with the other two nonlinear a-DAWG models
(supplementary fig. S10, Supplementary Material
online). This elevated accuracy comes at an increased
computational cost due to the greater number of
coefficients that are needed to optimize in the
nonlinear a-DAWG[W-C] model (supplementary fig. S11,
Supplementary Material online). Specifically, the nonlinear

a-DAWG[W-C] model has the highest computational de-
mand with a mean CPU usage of 18.75% and mean mem-
ory overhead of about 52.14 GB per epoch, whereas the
nonlinear a-DAWG[W] and a-DAWG[C] models respect-
ively have mean CPU usages of 9.45 and 14.95% and mean
memory overheads of about 49.91 GB and 49.64 GB per
epoch (supplementary fig. S11, Supplementary Material
online).

We further went on to compare the performance of
diploS/HIC against a-DAWG when the test dat