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Abstract

Aims Hospitalized patients with heart failure (HF) are a heterogeneous population, with multiple phenotypes proposed.
Prior studies have not examined the biological phenotypes of critically ill patients with HF admitted to the contemporary
cardiac intensive care unit (CICU). We aimed to leverage unsupervised machine learning to identify previously unknown HF
phenotypes in a large and diverse cohort of patients with HF admitted to the CICU.
Methods We screened 6008 Mayo Clinic CICU patients with an admission diagnosis of HF from 2007 to 2018 and included
those without missing values for common laboratory tests. Consensus k-means clustering was performed based on 10 com-
mon admission laboratory values (potassium, chloride, anion gap, blood urea nitrogen, haemoglobin, red blood cell distribu-
tion width, mean corpuscular volume, platelet count, white blood cell count and neutrophil-to-lymphocyte ratio). In-hospital
mortality was evaluated using logistic regression, and 1 year mortality was evaluated using Cox proportional hazard models
after multivariable adjustment.
Results Among 4877 CICU patients with HF who had complete admission laboratory data (mean age 69.4 years, 38.4% fe-
males), we identified five clusters with divergent demographics, comorbidities, laboratory values, admission diagnoses and
use of critical care therapies. We labelled these clusters based on the characteristic laboratory profile of each group: uncom-
plicated (25.7%), iron-deficient (14.5%), cardiorenal (18.4%), inflamed (22.3%) and hypoperfused (19.2%). In-hospital mortality
occurred in 10.7% and differed between the phenotypes: uncomplicated, 2.7% (reference); iron-deficient, 8.1% [adjusted odds
ratio (OR) 2.18 (1.38–3.48), P < 0.001]; cardiorenal, 10.3% [adjusted OR 2.11 (1.37–3.32), P < 0.001]; inflamed, 12.5% [ad-
justed OR 1.79 (1.18–2.76), P = 0.007]; and hypoperfused, 21.9% [adjusted OR 4.32 (2.89–6.62), P < 0.001]. These differences
in mortality between phenotypes were consistent when patients were stratified based on demographics, aetiology, admission
diagnoses, mortality risk scores, shock severity and systolic function. One-year mortality occurred in 31.5% and differed be-
tween the phenotypes: uncomplicated, 11.9% (reference); inflamed, 26.8% [adjusted hazard ratio (HR) 1.56 (1.27–1.92),
P < 0.001]; iron-deficient, 33.8% [adjusted HR 2.47 (2.00–3.04), P < 0.001]; cardiorenal, 41.2% [adjusted HR 2.41 (1.97–
2.95), P < 0.001]; and hypoperfused, 52.3% [adjusted HR 3.43 (2.82–4.18), P < 0.001]. Similar findings were observed for
post-discharge 1 year mortality.
Conclusions Unsupervised machine learning clustering can identify multiple distinct clinical HF phenotypes within the CICU
population that display differing mortality profiles both in-hospital and at 1 year. Mortality was lowest for the uncomplicated
HF phenotype and highest for the hypoperfused phenotype. The inflamed phenotype had comparatively higher in-hospital
mortality yet lower post-discharge mortality, suggesting divergent short-term and long-term prognosis.
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Introduction

The heterogeneity of the modern cardiac intensive care unit
(CICU) has expanded, reflecting a transition from patients with
acute coronary syndrome (ACS) to patients with circulatory
failure.1,2 Heart failure (HF) is becoming the most common di-
agnosis in contemporary CICU populations.1–3 Patients with
HF in the CICU encompass a wide spectrum of acuity and
chronic illness severity and are at elevated risk of adverse out-
comes (particularly the important minority with advanced
HF).4,5 The prognostic variables relevant to hospitalized HF pa-
tients with lower acuity may differ from critically ill HF patients
in the CICU.6,7 Better understanding of the clinical profile and
outcomes of diverse groups of HF patients within the CICU pop-
ulation is needed to identify subgroups of interest that may re-
quire unique management approaches.7

Historically, clinicians have tried to simplify the diverse acute
HF population by defining physiologic phenotypes based on
haemodynamic variables (e.g., cardiac output, peripheral vas-
cular tone and filling pressures) or left ventricular systolic func-
tion, but these data are not always available at initial evaluation
in the CICU.4,8,9 Other phenotypes have been defined for hospi-
talized HF patients according to the clinical features that define
the overarching disease process.10,11 These traditional pheno-
typing approaches overlook the distinct pathophysiology and
biological heterogeneity that exists within these broad clinical
profiles and could affect treatment responses.

Unsupervisedmachine learning can be used to distinguish HF
subphenotypes based on relevant clinical variables and can eval-
uate more complex interactions than standard statistical analy-
ses in a data-driven manner.12 These occult subphenotypes
identified using machine learning may differ in underlying path-
ophysiology, prognosis and response to therapy, in turn poten-
tially enabling individualization of care.12 This in silico approach
has been examined in patients with acute and chronic HF, as
well as patients with cardiogenic shock (CS), but has not been
applied to critically ill patients with HF requiring CICU
admission.13–22 We sought to leverage machine learning in a
large CICU population as a proof-of-concept analysis to deter-
mine whether we could identify occult HF subphenotypes with
differing clinical profiles and outcomes based on commonly
available laboratory data from the time of CICU admission. We
hypothesized that previously unrecognized subphenotypes with
divergent characteristics could be identified, resulting in differ-
ences in short-term and long-term survival.

Methods

Patient population

This retrospective observational cohort study was approved
by the institutional review board (IRB) of Mayo Clinic under

a waiver of informed consent for patients who had provided
consent for their medical records to be used for research.1

We retrospectively analysed consecutive unique patients
admitted to the Mayo Clinic (Rochester, MN) CICU from
January 2007 to April 2018 with an admission diagnosis of
acute or chronic HF; only the first admission was considered
for patients who had multiple admissions during the time
period to minimize potential bias due to readmissions.1,23

The CICU at Mayo Clinic admits patients with medical critical
illness focusing on those with acute or chronic cardiac dis-
ease but does not admit post-cardiotomy patients or patients
with extracorporeal membrane oxygenation (ECMO) or dura-
ble left ventricular assist devices (LVADs). We examined the
availability of all admission laboratory values and selected
laboratory values with <20% missingness for further analy-
sis. We then excluded patients with missing values for any
of these common laboratory tests (complete-case analysis)
to create the final study population (Figure 1), as previously
utilized.13,20

Data sources and definitions

Clinical, diagnosis, laboratory, treatment and outcome data
were extracted electronically from the electronic health
record and relevant Mayo Clinic databases, as previously
described.1 Vital signs at the time of admission were avail-
able only for patients admitted from 2007 to 2015.6,24

Admission diagnoses (including HF) were defined as all Inter-
national Classification of Diseases (ICD)-9/10 diagnosis codes
documented within 1 day of CICU admission.3 Admission
laboratory values were those that were obtained closest to
CICU admission. Data from the first 24 h of the CICU stay
were used to calculate the Acute Physiology and Chronic
Health Evaluation (APACHE)-III/IV and Sequential Organ Fail-
ure Assessment (SOFA) scores using validated electronic
algorithms.3,25,26 The Mayo CICU Admission Risk Score
(M-CARS) was calculated based on data from the time of ad-
mission and has been shown to outperform either APACHE
or SOFA for prediction of in-hospital mortality in this Mayo
Clinic CICU population.23 Current and prior diagnoses were
used to determine the Charlson Comorbidity Index (CCI)
using a validated electronic algorithm.1 For patients admit-
ted from 2007 to 2015, the Society for Cardiovascular Angi-
ography and Interventions (SCAI) Shock Classification (i.e.,
SCAI shock stages A through E) was assigned based on data
from the first 24 h of CICU admission, and the Get With The
Guidelines Heart Failure (GWTG-HF) risk score was calcu-
lated based on admission variables.6,24 Echocardiographic
data were extracted from the Mayo Clinic Cardiovascular
DataMart for patients who had a transthoracic echocardio-
gram (TTE) within 1 day of CICU admission (n = 2998).4

The severity of left ventricular systolic dysfunction (LVSD)
was classified based on the left ventricular ejection fraction
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(LVEF) according to American Society of Echocardiography
(ASE) guidelines. The severity of right ventricular (RV)
dysfunction (RVSD) was assigned holistically by the
board-certified cardiologist interpreting the TTE based on
the entirety of available data.

Selection of feature variables for clustering

All the candidate admission laboratory values without exces-
sive missingness were derived from the basic metabolic panel
(BMP) and complete blood count (CBC) with differential; all
other laboratory values had >30% missingness (Table S1).
Because k-means clustering compares group means and
can be sensitive to highly correlated feature variables, we
examined Pearson product–moment correlations between
candidate laboratory values (Figure S1), including the neutro-
phil-to-lymphocyte ratio (NLR), which was calculated based
on white blood cell (WBC) subfractions from the CBC
differential.27 We then performed univariable logistic regres-
sion to evaluate the association between these laboratory
variables and in-hospital mortality (Table S1) and determine
the area under the receiver operating characteristic curve
(AUC, C-statistic). As in prior analyses, when two laboratory
values were substantially correlated, as demonstrated by
Pearson r correlation coefficients >|0.35|, we selected the
one with a higher AUC for in-hospital mortality and excluded
the other, as previously described—this resulted in the exclu-
sion of sodium, bicarbonate, creatinine and the individual
WBC subtypes.21 Ultimately, 10 admission laboratory values

were selected as features for the clustering analysis: potas-
sium, chloride, anion gap, blood urea nitrogen (BUN),
haemoglobin, red blood cell distribution width (RDW), mean
corpuscular volume (MCV), platelet count, WBC count and
NLR (Figure 1).

Clustering analysis

The methodology for the clustering analysis mirrored prior
analyses in patients with CS as described by Zweck et al.21

Prior to clustering, the 10 selected laboratory values were
natural log transformed and then centred and scaled using
the mean and standard deviation (SD) to determine the Z
score. Extreme values >2 SDs from the mean (Z score
>|2|) were trimmed to |2|. Consensus k-means clustering
was performed using 2000 repetitions with 10 starting seeds
for between 2 and 10 clusters. The total within-clusters and
between-clusters sum of squares values (Y axis) were plotted
according to the number of clusters (X axis) to generate an
elbow plot (Figure S2), which had a subtle inflection point at
five clusters, which we used as evidence to support this as
the optimal number of clusters. We wanted to avoid any ex-
cessively small groups accounting for substantially <15% of
the population, and we wanted the highest risk and lowest
risk clusters to diverge substantially (>4-fold) in the risk of
in-hospital mortality; these criteria further justified the use
of five clusters. The mean Z scores for each laboratory feature
in each cluster (i.e., cluster centroids) were plotted to describe
the clusters (Figure 2).

Figure 1 Flow diagram demonstrating inclusion and exclusion criteria for the final study population as well as selection of admission laboratory values
as features for clustering. ALK, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; AUC, area under the receiver
operating characteristic curve; BUN, blood urea nitrogen; CICU, cardiac intensive care unit; CRP, C-reactive protein; MCV, mean corpuscular volume;
NLR, neutrophil-to-lymphocyte ratio; NT-proBNP, N-terminal pro-B-type natriuretic peptide; PaCO2, arterial partial pressure of carbon dioxide; PaO2,
arterial partial pressure of oxygen; PF ratio, ratio of PaO2 to fraction of inspired oxygen; RDW, red blood cell distribution width; WBC, white blood cell
count.
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Statistical analysis

To demonstrate that cluster assignments were clinically
relevant, we examined survival outcomes; the primary out-
come was all-cause in-hospital mortality (including CICU
mortality), and the secondary outcome was all-cause 1 year
mortality based on electronic chart review. Patients lost to
follow-up were analysed based on their vital status at the
last known follow-up. Continuous variables were summa-
rized as mean and SD, and differences across groups were
evaluated using Student’s t tests or analysis of variance
(ANOVA) as appropriate. Categorical variables were summa-
rized as number (per cent), and differences across groups
were evaluated using the Pearson chi-squared test. Odds ra-
tio (OR) and 95% confidence interval (CI) values for predic-
tion of in-hospital mortality were estimated using logistic

regression, before and after multivariable adjustment. Sur-
vival to 1 year after CICU admission (overall and for hospital
survivors) was estimated using Kaplan–Meier curves, with
groups compared using the log-rank test. Hazard ratio
(HR) and 95% CI values for prediction of 1 year mortality
were estimated using Cox proportional hazard regression,
before and after multivariable adjustment. Covariates for
multivariable models were selected a priori based on clini-
cal relevance: age, sex, CCI, Day 1 SOFA score, admission
Braden score, and admission diagnoses of ACS, shock,
cardiac arrest and respiratory failure.3,23,26,28 Two-tailed
P values <0.05 were considered significant. All statistical
analyses were performed using BlueSky Version 10.3.1 Pro
(BlueSky LLC, Chicago, IL). The authors declare that all
supporting data are available within the article and its
supporting information.

Figure 2 Characteristics, description and outcomes of clusters within the cohort. The cluster centroids (top) were used to develop proposed descrip-
tions of the identified clusters based on salient patterns of laboratory variables (bottom left) compared with population means. Marked differences in
in-hospital mortality are observed between clusters (bottom right). AG, anion gap; BUN, blood urea nitrogen; Cl, chloride; Hgb, haemoglobin; K, po-
tassium; MCV, mean corpuscular volume; NLR, neutrophil-to-lymphocyte ratio; Plt, platelet count; RDW, red blood cell distribution width; WBC, white
blood cell count.
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Results

Study population

Out of a data set of 12 428 unique CICU patient admissions,
6008 (48.3%) had an admission diagnosis of HF. Among these,
4877 (81.2%) had available data for all laboratory values from
the BMP and CBC with differential and comprised the final
study population (Figure 1). The final study population had
modest differences from excluded HF patients, although
mean laboratory values were similar (Table S2). The final
study population had a mean age of 69.4 (14.9), and 1872
(38.4%) were females (Table 1). Other admission diagnoses
included ACS in 36.5%, shock in 22.2%, cardiac arrest in
12.6%, sepsis in 9.3% and respiratory failure in 38.1%. Vaso-
active drugs were administered in 35.9% of all patients, and
invasive mechanical ventilation was needed in 22.4%. Among
patients with available vital sign data (n = 3688), the distribu-
tion of SCAI shock stages was as follows: A, 37.3%; B, 33.9%;
C, 17.1%; D, 10.8%; and E, 0.8%. Among those with LVEF data
(n = 2397), the mean LVEF was 39.8% (16.9%), and 33.8% had
LVEF ≥ 50% [HF with preserved ejection fraction (HFpEF)].

Clusters

The distribution of the five clusters was as follows: 1, 22.3%;
2, 19.2%; 3, 25.7%; 4, 14.5%; and 5, 18.4% (Figure 2). These
clusters differed substantially in terms of baseline demo-
graphics, comorbidities, admission diagnoses, illness severity
and need for critical care therapies (Table 1). Most admission
laboratory values, including those that were not used as
features for clustering, differed substantially across clusters
(Table 2). Echocardiographic features likewise varied across
clusters, including markers of LVSD, RVSD and calculated hae-
modynamics (Table 3). The distribution of clusters varied
modestly by age or sex and more substantially by admission
diagnosis, as well as by SCAI shock stage and the severity of
LVSD (Figure S3).

In-hospital mortality

A total of 524 (10.7%) patients died during hospitalization,
including 276 (5.7%) dying in the CICU. In-hospital mortality dif-
fered substantially between clusters (Figure 2), rising incremen-
tally for Cluster 3 (lowest), Cluster 4, Cluster 5, Cluster 1 and
Cluster 2 (highest). This pattern was similar when patients were
stratified by age/sex (Figure 3), admission diagnosis (Figure 3),
GWTG-HF risk score (Figure 4A), SCAI shock stage (Figure 4B),
or the aetiology (ischaemic vs. nonischaemic) or pattern (de
novo vs. acute on chronic) of HF (Figure S4). In-hospital mortal-
ity differed across clusters when stratified into low-risk and
high-risk groups by the M-CARS (Figure 5A) and when stratified

according to the severity of LVSD (Figure 5B) and RVSD
(Figure S5). When compared with the low-risk Cluster 3,
in-hospital mortality was higher in each other cluster both be-
fore and aftermultivariable adjustment, with the risk remaining
highest in Cluster 2 (Table 4).

One-year mortality

A total of 1537 (31.5%) patients died within 1 year of
CICU admission, including in-hospital deaths. Among the
4353 hospital survivors, 1013 (23.3%) died by 1 year, and
460 had follow-up <1 year and were alive at last follow-up.
One-year survival by the Kaplan–Meier method differed
between clusters, both overall (Figure 6A) and for hospital
survivors (Figure 6B), increasing incrementally for Cluster 3,
Cluster 1, Cluster 4, Cluster 5 and Cluster 2. Fewer than half
of patients in Cluster 2 survived to 1 year (median survival:
8.1 months). On Cox proportional hazard regression, 1 year
mortality differed between clusters before and after multi-
variable adjustment, both overall and for hospital survivors
(Table 4).

Discussion

Within a cohort of nearly 5000 CICU patients with HF, we
identified five distinct subphenotypes based on admission
laboratory values using unsupervised machine learning
clustering. These subphenotypes differed across a multitude
of clinical, laboratory and echocardiographic variables even
beyond those features used for clustering. Both in-hospital
and 1 year mortality (including among hospital survivors)
differed substantially between subphenotypes, even after
adjusting for severity of illness and other relevant covariates.
We identified one high-risk phenotype, one low-risk pheno-
type and three intermediate-risk phenotypes. Differences in
mortality between subphenotypes were observed even when
stratified for a variety of important characteristics including
admission diagnosis, shock severity and overall illness sever-
ity. The subphenotype grouping outperformed traditional
HF classifiers (e.g., aetiology or chronicity) for mortality risk
stratification and provided added risk stratification beyond
established prognostic markers. This proof-of-concept analy-
sis demonstrates that prognostically important occult patient
subgroups can be identified within the heterogeneous CICU
HF population beyond traditional labels. Clustering patients
based on patterns of common admission laboratory values
can identify clinically relevant subphenotypes with distinct
underlying pathophysiology.

The admission laboratory values we used to define our
subphenotypes (potassium, chloride, anion gap, BUN,
haemoglobin, RDW, MCV, platelet count, WBC count and
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NLR) are widely available for hospitalized patients and have
shown an association with outcomes in CICU patients or
patients with HF reflecting the effects of acute and chronic

diseases on end-organ function.4,23,27,29–33 We named the
subphenotypes based on our interpretation of their charac-
teristic patterns of laboratory findings based on cluster cen-

Table 1 Baseline characteristics according to cluster assignment.

Cluster 1
‘Inflamed’
(N = 1088)

Cluster 2
‘Hypoperfused’

(N = 935)

Cluster 3
‘Uncomplicated’

(N = 1254)

Cluster 4
‘Iron-deficient’

(N = 705)

Cluster 5
‘Cardiorenal’
(N = 895) Total (N = 4877) P value

Demographics and nonfatal outcomes
Age 69.7 (14.5) 71.4 (14.3) 66.7 (15.1) 66.5 (16.1) 73.2 (13.2) 69.4 (14.9) <0.001
Female 420 (38.6%) 354 (37.9%) 433 (34.5%) 328 (46.5%) 337 (37.7%) 1872 (38.4%) <0.001
White race 1025 (94.2%) 861 (92.1%) 1150 (91.7%) 629 (89.2%) 825 (92.2%) 4490 (92.1%) 0.005
ICU length of stay 3.7 (5.6) 3.9 (4.0) 2.7 (7.0) 3.8 (5.9) 3.5 (7.0) 3.5 (6.1) <0.001
Hospital length of stay 9.5 (11.9) 11.9 (13.6) 8.8 (13.4) 14.2 (27.2) 13.5 (22.8) 11.2 (17.9) <0.001
30 day readmission 77 (8.1%) 101 (13.8%) 133 (10.9%) 80 (12.4%) 97 (12.1%) 488 (11.2%) 0.004
1 year readmission 309 (32.7%) 276 (37.8%) 461 (37.9%) 262 (40.5%) 293 (36.5%) 1601 (36.9%) 0.021

Comorbidities
CCI 2.2 (2.4) 4.3 (3.0) 2.1 (2.1) 3.1 (2.6) 4.0 (2.9) 3.0 (2.8) <0.001
Prior heart failure 245 (22.6%) 449 (48.1%) 363 (29.0%) 295 (42.1%) 440 (49.3%) 1792 (36.8%) <0.001
Prior MI 205 (18.9%) 238 (25.5%) 268 (21.4%) 139 (19.9%) 250 (28.0%) 1100 (22.6%) <0.001
Diabetes mellitus 292 (26.9%) 475 (50.9%) 357 (28.5%) 256 (36.6%) 340 (38.1%) 1720 (35.3%) <0.001
Lung disease 216 (19.9%) 281 (30.1%) 236 (18.8%) 180 (25.7%) 238 (26.7%) 1151 (23.7%) <0.001
CKD 138 (12.7%) 495 (53.0%) 173 (13.8%) 218 (31.1%) 438 (49.0%) 1462 (30.0%) <0.001
Prior dialysis 29 (2.7%) 165 (17.6%) 18 (1.4%) 42 (6.0%) 111 (12.4%) 365 (7.5%) <0.001
Ischaemic HF aetiology 689 (63.4%) 452 (48.4%) 613 (48.9%) 267 (38.1%) 395 (44.2%) 2416 (49.6%) <0.001

Admission ICD-9/10 diagnoses
Cardiac arrest 256 (23.5%) 108 (11.6%) 111 (8.9%) 63 (8.9%) 77 (8.6%) 615 (12.6%) <0.001
Shock 363 (33.4%) 283 (30.3%) 153 (12.2%) 115 (16.3%) 169 (18.9%) 1083 (22.2%) <0.001
CS 317 (29.1%) 235 (25.1%) 135 (10.8%) 92 (13.0%) 121 (13.5%) 900 (18.5%) <0.001
Sepsis 129 (11.9%) 131 (14.0%) 40 (3.2%) 60 (8.5%) 94 (10.5%) 454 (9.3%) <0.001
Respiratory failure 566 (52.0%) 477 (51.0%) 247 (19.7%) 257 (36.5%) 311 (34.7%) 1858 (38.1%) <0.001
ACS 603 (55.4%) 314 (33.6%) 465 (37.1%) 174 (24.7%) 223 (24.9%) 1779 (36.5%) <0.001
STEMI 371 (34.1%) 120 (12.8%) 242 (19.3%) 70 (9.9%) 80 (8.9%) 883 (18.1%) <0.001

Severity of illness
GWTG-HF risk score 42.0 (7.9) 51.0 (8.5) 39.2 (6.9) 43.2 (7.7) 46.4 (7.7) 43.9 (8.7) <0.001
APACHE-III 70.8 (27.4) 80.4 (21.4) 53.8 (17.4) 63.6 (19.0) 72.6 (19.6) 67.6 (23.3) <0.001
Day 1 SOFA 5.0 (3.4) 6.2 (3.3) 2.4 (2.0) 3.8 (2.6) 5.3 (3.1) 4.4 (3.2) <0.001
M-CARS 3.4 (2.4) 4.3 (1.9) 1.6 (1.6) 3.0 (1.7) 3.1 (1.7) 3.0 (2.1) <0.001
Braden score 16.2 (3.6) 16.3 (3.2) 18.9 (2.8) 17.2 (3.2) 16.9 (3.2) 17.2 (3.4) <0.001
SCAI shock stage <0.001
A 225 (27.2%) 150 (23.1%) 515 (53.6%) 214 (39.7%) 272 (38.3%) 1376 (37.3%)
B 293 (35.4%) 199 (30.7%) 316 (32.9%) 193 (35.8%) 251 (35.3%) 1252 (33.9%)
C 155 (18.7%) 169 (26.0%) 107 (11.1%) 83 (15.4%) 116 (16.3%) 630 (17.1%)
D 142 (17.1%) 119 (18.3%) 21 (2.2%) 48 (8.9%) 69 (9.7%) 399 (10.8%)
E 13 (1.6%) 12 (1.8%) 2 (0.2%) 1 (0.2%) 3 (0.4%) 31 (0.8%)

Procedures and therapies
IMV 427 (39.2%) 241 (25.8%) 119 (9.5%) 151 (21.4%) 155 (17.3%) 1093 (22.4%) <0.001
NIPPV 291 (26.7%) 365 (39.0%) 195 (15.6%) 196 (27.8%) 248 (27.7%) 1295 (26.6%) <0.001
CRRT 18 (1.7%) 100 (10.7%) 2 (0.2%) 25 (3.5%) 36 (4.0%) 181 (3.7%) <0.001
Dialysis 38 (3.5%) 163 (17.4%) 32 (2.6%) 66 (9.4%) 85 (9.5%) 384 (7.9%) <0.001
Vasopressors 394 (36.2%) 356 (38.1%) 192 (15.3%) 192 (27.2%) 238 (26.6%) 1372 (28.1%) <0.001
Inotropes 105 (9.7%) 174 (18.6%) 195 (15.6%) 159 (22.6%) 172 (19.2%) 805 (16.5%) <0.001
Any vasoactives 410 (37.7%) 403 (43.1%) 330 (26.3%) 270 (38.3%) 337 (37.7%) 1750 (35.9%) <0.001
IABP 200 (18.4%) 83 (8.9%) 157 (12.5%) 74 (10.5%) 86 (9.6%) 600 (12.3%) <0.001
Other MCS 7 (0.6%) 16 (1.7%) 21 (1.7%) 11 (1.6%) 12 (1.3%) 67 (1.4%) 0.192
PAC 153 (14.1%) 162 (17.3%) 223 (17.8%) 158 (22.4%) 169 (18.9%) 865 (17.7%) <0.001
Coronary angiography 709 (65.2%) 410 (43.9%) 784 (62.5%) 369 (52.3%) 424 (47.4%) 2696 (55.3%) <0.001
PCI 405 (37.2%) 166 (17.8%) 334 (26.6%) 140 (19.9%) 199 (22.2%) 1244 (25.5%) <0.001
Transfusion 120 (11.0%) 199 (21.3%) 40 (3.2%) 142 (20.1%) 193 (21.6%) 694 (14.2%) <0.001
IHCA 40 (3.7%) 29 (3.1%) 18 (1.4%) 17 (2.4%) 16 (1.8%) 120 (2.5%) 0.004

Note: Continuous variables are reported as mean (standard deviation).
Abbreviations: ACS, acute coronary syndrome; APACHE-III, Acute Physiology and Chronic Health Evaluation-III; CCI, Charlson Comorbidity
Index; CKD, chronic kidney disease; CRRT, continuous renal replacement therapy; CS, cardiogenic shock; GWTG-HF, Get With The Guide-
lines Heart Failure; HF, heart failure; IABP, intra-aortic balloon pump; ICD-9/10, International Classification of Diseases-9/10; ICU, intensive
care unit; IHCA, in-hospital cardiac arrest; IMV, invasive mechanical ventilation; M-CARS, Mayo Cardiac Intensive Care Unit Admission Risk
Score; MCS, mechanical circulatory support; MI, myocardial infarction; NIPPV, noninvasive positive pressure ventilation; PAC, pulmonary
artery catheter; PCI, percutaneous coronary intervention; SCAI, Society for Cardiovascular Angiography and Interventions; SOFA, Sequen-
tial Organ Failure Assessment; STEMI, ST-elevation myocardial infarction.
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troids (Figure 1), recognizing that these subjective labels may
not describe the true underlying pathophysiology. Our
algorithm assigned patients to the cluster they most closely
resembled, recognizing that many patients had features of
two or more clusters.

The inflamed subphenotype (Cluster 1) displayed
leucocytosis and an elevated NLR with a relatively high se-
verity of illness. This subphenotype had an intermediate risk
of short-term mortality and a more favourable long-term
outcome among hospital survivors, despite frequent evi-
dence of hypoperfusion/shock with poor echocardiographic
haemodynamics. This could relate to the predominance of
ACS patients, who presumably had a reversible disease pro-
cess and were at lower risk of adjusted mortality. The
hypoperfused subphenotype (Cluster 2) had severe kidney
dysfunction, multi-organ dysfunction, and anion gap acidosis
with the worst TTE haemodynamics and RV dysfunction. This
cluster had the highest risk of death at all time points despite
a similar prevalence and severity of shock versus Cluster 1, per-
haps representing the development of haemometabolic shock
or cardiorenal syndrome with multi-organ dysfunction.21,22

Low chloride levels, as observed in this group, can be associated
with advanced HF, cardiorenal syndrome, poor diuretic re-
sponse and adverse outcomes.5,29,33 This group with exten-
sive physiological abnormalities and poor outcome could be
identified using machine learning based on routine laboratory
values available on initial evaluation in the CICU, in a manner
that could be leveraged using modern electronic health re-
cord systems.

The low-risk uncomplicated subphenotype (Cluster 3) was
the largest cluster and had favourable values of most clinical,
laboratory and echocardiography variables (despite a greater
prevalence of LVSD and frequent use of vasoactive drugs),
resulting in the best outcomes at all time points. The two
least prevalent subphenotypes, iron-deficient (Cluster 4)
and cardiorenal (Cluster 5), both had more anaemia and dif-
fered from each other primarily based on other haematologic
indices, along with worse renal function in the cardiorenal
cluster. Both anaemic subphenotypes were at intermediate
risk of short-term mortality but had worse long-term survival
than the more acutely ill inflamed subphenotype, implying a
higher level of chronic illness and perhaps reflecting a
greater prevalence of advanced HF. The similar outcomes
and presence of anaemia could justify combining these
two phenotypes, but the divergent haematologic and renal
parameters support keeping them separate as per the clus-
tering algorithm.

Prior analyses have used unsupervised machine learning
clustering methods to define subphenotypes in acute HF
populations, although ours is the first to focus on a large co-
hort of CICU patients with HF. Horiuchi et al. used clinical,
laboratory, echocardiographic and electrocardiogram (ECG)
variables to describe three clusters in 345 patients with acute
HF.16 The identified clusters were characterized as ‘vascularTa
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Figure 3 In-hospital mortality by cluster according to age, sex and admission diagnosis.

Figure 4 In-hospital mortality by cluster according to Get With The Guidelines Heart Failure (GWTG-HF) risk score quartile (A) and Society for Cardio-
vascular Angiography and Interventions (SCAI) shock stage (B).
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failure’, with hypertension and pulmonary oedema; ‘cardiac
failure’, with cardiorenal syndrome; and a third group consis-
tent with chronic HFpEF. Murray et al. did a post hoc analysis
of 812 hospitalized HFpEF patients in the ASCEND-HF trial,
reporting four clusters based on clinical variables that
differed in terms of cardiac and non-cardiac organ function
as well as long-term prognosis.20 Unlike our analysis, the dif-
ferences in reported laboratory values were comparatively
modest, and clusters differed most notably in terms of demo-
graphic factors and vital signs. Several prior studies in chronic
HF patients highlight the potential usefulness of unsuper-
vised machine learning for identifying potential phenotypes
with different prognosis and response to treatment.13,14,17–19

Zweck et al. used k-means clustering to define
subphenotypes in patients with CS based on admission labo-
ratory values [WBC, bicarbonate, glomerular filtration rate

(GFR), lactate, alanine aminotransferase (ALT) and platelet
count].21 The three proposed phenotypes (noncongested,
cardiorenal and haemometabolic) were associated with dif-
ferences in mortality even after stratification for shock sever-
ity, including in a validation study from this CICU cohort, with
marked differences in clinical profile, echocardiographic find-
ings, and both short- and long-term outcomes observed.22 In
the current analysis, we used a different set of admission
laboratory values in a larger cohort of CICU patients with
HF including predominantly those without CS. Despite only
a minority being labelled with CS, our highest risk
subphenotype (hypoperfused/Cluster 2) carries many similar-
ities with the highest risk CS phenotype (haemometabolic),
including poor kidney function, metabolic acidosis and
transaminitis.21,22 These analyses emphasize the importance
of hypoperfusion and end-organ dysfunction (particularly

Figure 5 In-hospital mortality by cluster assignment according to the Mayo Cardiac Intensive Care Unit Admission Risk Score (M-CARS) risk group (A)
and severity of left ventricular systolic dysfunction by the American Society of Echocardiography (ASE) guidelines (B). LVEF, left ventricular ejection
fraction.
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acute and chronic cardiorenal syndrome) as key determinants
of adverse outcomes in critically ill patients with circulatory fail-
ure. Underlying echocardiographic and haemodynamic fea-
tures shared by the haemometabolic CS subphenotype and
our hypoperfused (Cluster 2) subphenotype suggest RV conges-
tion and dysfunction as a driver of end-organ injury.21,22

Limitations

Our study carries the same inherent limitations of all retro-
spective cohort studies and cannot infer causal relationships.
We chose to perform a complete-case analysis similar to prior
authors, which could have resulted in selection bias by
excluding those with missing data who likely differed from
included patients as data were not missing at random; we
chose not to perform multiple imputation because of the ap-
parent violation of the missing-at-random assumption.13,20

The degree of missingness (i.e., >50% missing values) forced
us to exclude several potentially relevant laboratory values as
features in the clustering, such as transaminases, lactate,
albumin and inflammatory markers. We did not include labo-
ratory values that are used to define conditions such as ACS
(e.g., troponins) or HF (e.g., natriuretic peptides), which en-
abled us to demonstrate conservation of subphenotypes
across diagnosis groups. We focused only on commonly avail-
able basic laboratory values as features for clustering, while
prior analyses have used a broader array of clinical and

patient-level variables.13–20 This approach could have ex-
cluded important clinical variables that might have improved
subphenotype definitions but has the strength of being
simple and objective, allowing automatic application using
an electronic health record system. We used prediction of
in-hospital mortality as a criterion to select between highly
correlated candidate feature variables, which could have
resulted in bias resulting from data leakage with resultant
overfitting for prediction of in-hospital mortality; we used
logistic regression for this task, recognizing that this method
may be insensitive to nonlinear associations. Only a minority
of candidate feature variables (i.e., 4 of 10) were selected in
this manner, but this could have exaggerated differences in
mortality between subphenotypes. Our heterogeneous CICU
cohort represents those with both acute and chronic HF,
which includes patients with ACS, shock and other acute con-
ditions, and may be less relevant for a pure acute HF popula-
tion. Cluster assignment showed similar associations with
mortality across all relevant subgroups, and the clusters we
identified showed similarities to those described in prior
cohorts.14,21 The clusters we identified in our population
may be unique to this specific CICU population and would
not necessarily be the same in a non-intensive care unit
(ICU) HF population or in HF patients admitted to a different
type of ICU. In any unsupervised machine learning clustering
analysis, groups will be identified, but this does not guaran-
tee that the groups are reproducible or meaningful, and a dif-
ferent clustering method could have divergent results neces-

Table 4 Results of regression models for prediction of in-hospital (logistic) and 1 year (Cox) mortality by the cluster assignment, before
and after adjustment for age, sex, CCI, Day 1 SOFA score, admission Braden score, and admission diagnoses of ACS, shock, cardiac arrest
and respiratory failure.

In-hospital mortality

Cluster Unadjusted OR P value Adjusted OR P value

Uncomplicated Referent — Referent —

Iron-deficient 3.156 (2.054–4.921) <0.001 2.177 (1.381–3.478) <0.001
Cardiorenal 4.111 (2.774–6.232) <0.001 2.112 (1.371–3.317) <0.001
Inflamed 5.126 (3.530–7.647) <0.001 1.788 (1.182–2.765) 0.007
Hypoperfused 10.077 (7.026–14.888) <0.001 4.318 (2.891–6.615) <0.001

One-year mortality—Overall

Cluster Unadjusted HR P value Adjusted HR P value

Uncomplicated Referent — Referent —

Iron-deficient 3.293 (2.683–4.042) <0.001 2.469 (2.002–3.045) <0.001
Cardiorenal 4.107 (3.395–4.969) <0.001 2.411 (1.970–2.949) <0.001
Inflamed 2.560 (2.101–3.118) <0.001 1.561 (1.269–1.920) <0.001
Hypoperfused 6.215 (5.172–7.467) <0.001 3.434 (2.817–4.184) <0.001

One-year mortality—Hospital survivors

Cluster Unadjusted HR P value Adjusted HR P value

Uncomplicated Referent — Referent —

Iron-deficient 3.443 (2.725–4.350) <0.001 2.733 (2.150–3.473) <0.001
Cardiorenal 4.259 (3.427–5.294) <0.001 2.657 (2.109–3.348) <0.001
Inflamed 1.826 (1.435–2.324) <0.001 1.451 (1.130–1.864) 0.004
Hypoperfused 5.241 (4.220–6.510) <0.001 3.264 (2.584–4.123) <0.001

Abbreviations: ACS, acute coronary syndrome; CCI, Charlson Comorbidity Index; HR, hazard ratio; OR, odds ratio; SOFA, Sequential Organ
Failure Assessment.
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sitating external validation; the lack of an external validation
cohort makes our findings exploratory and hypothesis-
generating.12,20 Selecting the optimal number of clusters in-
volved some subjectivity, and we may not have chosen the
ideal number; it is conceivable that no true occult
subphenotypes exist in this cohort.12 There are numerous
methods to define the optimal number of clusters in a
data-driven manner, with limited consensus about the ideal
approach. We chose to use the elbow plot based on its sim-
plicity, recognizing that identification of the inflection point
can be subjective; we specifically wanted to ensure that the
identified subgroups were of suitable size and divergent
mortality risk. We could not calculate other potential metrics,
such as the gap statistic or silhouette values, which can be
used for this purpose. While the clusters identified in our
analysis had systematic differences in mean values of feature
variables (i.e., cluster centroids), there was substantial

overlap between clusters on most laboratory values, and
many individual patients fell on the border between clusters.
This proof-of-concept analysis is hypothesis-generating with
the goal of identifying patterns within a heterogeneous group
that may hold insights into underlying disease processes that
might have a differential response to therapy. We do not
have sufficient data on in-hospital or post-discharge treat-
ments that could have impacted outcomes and cannot
comment on whether the subphenotypes we observed
responded differently to treatments.

Conclusions

Within a large, diverse population of CICU patients spanning
the spectrum of HF, we identified five clinically relevant

Figure 6 Kaplan–Meier curves demonstrating 1 year survival by cluster, overall (A) and among hospital survivors (B).
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subphenotypes based on standard admission laboratory values.
These subphenotypes defined distinct patient profiles that
differed not only in their laboratory findings but also in clinical
variables and echocardiographic measurements. These
subphenotypes stratified the risk of short-term and long-term
mortality across subgroups, with one low-risk subphenotype,
one high-risk subphenotype and three intermediate-risk
subphenotypes. The mortality risk stratification provided by
the subphenotype assignmentwas additive to established prog-
nostic marker and outperformed traditional HF phenotype as-
signments. Unsupervised machine learning can be applied to
common laboratory values for HF patients at the time of CICU
admission to identify subphenotypes with divergent underlying
pathophysiology. Future studies will be needed to externally
validate these subphenotypes and to determine whether they
are truly associated with differences in underlying disease
mechanisms and treatment responses. If heterogeneity of
treatment effect for specific therapies can be demonstrated
across these subphenotypes, then the simple laboratory
subphenotypes could improve risk stratification and facilitate
individualized therapy for critically ill patients with HF.
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ter 3 = Uncomplicated; Cluster 4 = Iron-Deficient; Cluster
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Figure S5. In-hospital mortality according to subphenotype
and pattern of ventricular dysfunction based on moderate
or greater RV and LV dysfunction by TTE.
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