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Dynamics of gut microbiota and their associations with the corresponding hematological injuries postradiation remain to be elucidated.
Using single whole-body exposure to 60Co-c ray radiation at the sublethal dose of 2.5 Gy, we developed a beaglemodel of acute radiation
syndrome (ARS) and then monitored the longitudinal changes of gut microbiome and hematology for 45days. We found that the
absolute counts of circulating lymphocytes, neutrophils, and platelets were sharply declined postradiation, accompanied by a largely
shifted composition of gut microbiome that manifested as a signifcantly increased ratio of Firmicutes to Bacteroidetes. In irradiated
beagles, alterations in hematological parameters reached a nadir on day 14, sustaining for 1week, which were gradually returned to the
normal levels thereafter. However, no structural recovery of gut microbiota was observed throughout the study. Fecal metagenomics
revealed that irradiation increased the relative abundances of genus Streptococcus, species Lactobacillus animalis and Lactobacillus
murinus, but decreased those of genera Prevotella and Bacteroides. Metagenomic functions prediction demonstrated that 26 altered
KEGG pathways were signifcantly enriched on Day 14 and 35 postradiation. Furthermore, a total of 43 bacterial species were found to
correlate well with hematological parameters by Spearman’s analysis. Our results provide an insight into the longitudinal changes in
intestinal microbiota at diferent clinical stages during ARS in canine. Several key microbes those tightly associated with the he-
matological alterations may serve as biomarkers to discriminate the diferent phases of host with ARS.
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1. Introduction

Acute radiation syndrome (ARS) severely endangers health
and life: it commonly happens after a whole-body or a partial-
body exposure to the high-dose irradiation [1], such as ra-
diation therapy, nuclear accidents, and even radiological
terrorist attack [2, 3]. In clinic, ARS commonly clusters with
multiorgan damages, involving hematopoietic, gastrointesti-
nal, cardiovascular, and central nervous systems, which poses

a considerable medical challenge to physicians [4, 5]. Of
which, the injuries of blood cells have been identifed as the
most sensitive pathophysiological indicators for the radiation-
induced efects, characterizing by the decreased counts of
lymphocytes, granulocytes, and platelets (PLTs) [6].

Intriguingly, a growing body of evidence conforms that
there is an essential link between the gut dysbiosis and the
radiation-induced injury [7, 8]. It has been reported that gut
microbes in humans are signifcantly altered after ionizing
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radiation from a medical exposure [9, 10], which may
contribute to the gastrointestinal toxicity after radiation
[11, 12]. Previous laboratory studies also demonstrated that
radiation exposure durations with divergent dosages ap-
parently bear on gut microbiome [13, 14]. Liu reported that
using low-dose ionizing radiation with total level of 0.5Gy
(0.5Gy× 1 dose, 0.1Gy/dose× 5 doses twice per week, or
0.05Gy/dose× 10 doses once per week) signifcantly afected
the composition of the gut microbiota and metabolomes in
mice at least for 35 days [13]. Another report showed that
intestinal tissue damage and altered gut microbiota were
both observed after irradiation for 10 days with a single dose
of 6Gy of gamma rays in mice, and supplementation with
Lactobacillus acidophilus enhanced intestinal epithelial
function by improving stem cell function and cell difer-
entiation [14]. Multiomics analyses of radiation survivors in
mice suggested that Lachnospiraceae and Enterococcaceae
could serve as the benefcial microbes to aford protection
against radiation [8]. Nevertheless, there is no relevant re-
search on the relationship between hematological indicators
and gut microbiota under radiation exposure.

In this regard, several experimental animal models have
been developed to screen and explore the agents against
radiation-induced damage [15]. However, currently avail-
able evidence wasmainly originated from the rodent models,
and more robust data based on the model of a large outbred
species is still urgently needed. Beagles have been considered
as the suitable model for the preclinical studies in radiation,
since the radiation-induced hematopoietic responses in
canines and humans are quite similar [16, 17]. Terefore,
developing an ARS model in beagles to investigate the
dynamic of gut microbial community and its relationship
with hematological injuries is warranted.

In current study, we frstly developed an ARS model in
beagles with whole-body single radiation exposure to 60Co-c
ray. Ten, we determined the dynamic of gut microbiome
for 45 days by metagenomic sequencing and explored its
associations with hematology by correlation analysis.

2. Materials and Methods

2.1. Animals. Ten male beagle dogs, one-year-old, weighing
9∼10 kg, were obtained from Xi’an Dilepu Biology Resources
Development Co. Ltd (Xi’an, China). After calculation, the
sample size should be greater than or equal to 5. Tus, we
selected ten dogs. Dogs were individually housed in cage
racks (74 cm long, 47.5 cmwide, and 214 cm high) with clean
bedding at the Experimental Animal Center under a 12-h
light/dark cycle at a temperature of 25°C and relatively
humidity of 50%, with free access to water. We feed the dog
twice a day based on their food intake. Considering the
efects of diet on gut microbial community, the drinking
water was fltered by the Sterile Experimental Animal
Drinking Machine (LINGYUNBOJI Technology Co., Ltd.,
Beijing), and the dry standard feed for adult canine was
sterilized by high temperature at 121°C for 30min. All an-
imal procedures were performed in accordance with the
Declaration of the National Institutes of Health Guide and
Use of Laboratory Animals and approved by the animal care

and use committee of Beijing Institute of Microbiology and
Epidemiology (No. IACUC-DWZX-2018-002).

2.2. Study Design and Radiation. After an acclimation period
for two weeks, beagles were frst fasted for 12h and then
transferred to individual cubes, receiving a single whole-body
exposure to 60Co-c ray radiation at the Beijing Key Laboratory
for Radiobiology (Beijing, China). Te dog was in a single cage
and no other restrictions on animals during radiation exposure.
Te total radiation dosewas 2.5Gywith the delivering dose rate
at 59.57 cGy/min, and the distance from radiation source to
beagles was 450 cm. After irradiation, beagles were sent back to
cage racks, followed by an observational period of 45days.
After the experiments, dogs were euthanized by intravenous
injection of sodium pentobarbital (dosage 100mg/Kg).

2.3. Sample Collection. Fresh stools and whole blood samples
from each animal were harvested at the day of 3, 7, 14, 21, 35,
and 45 after exposure to radiation, respectively. To ensure the
collection of all preradiation feces, Beagles’ fecal samples from
the seventh day to the fourth day prior to radiation were
collected, which viewed as the baseline (marked asDay 0). Stool
samples were collected in sterile tubes from the beagles after
they defecate on its own. Ten, the stool samples were im-
mediately stored at −80°C for metagenomics sequencing.

We collected blood sample on the third day before ra-
diation. Blood samples were collected in tubes containing
ethylenediaminetetraacetic acid (EDTA). During blood
collection, the limbs of beagles were fxed with the fxing
frame, and blood was taken from the cephalic vein. Ten, we
used cotton wool to compress the blood to stop bleeding.
Hematological indicators, including the levels of red blood
cell (RBC), white blood cell, neutrophils, lymphocytes, PLTs,
and hematocrit, were determined with an IDEXX ProCyte
Dx Analyzer (IDDEXX Laboratories, Inc. USA).

2.4. Gut Microbiome Assay. Each stool weighing about
400mg from beagles before and after radiation was used
for assay.

2.5. Genomics DNA Extraction. Total microbial genomic
DNA was extracted using MagPure Stool DNA KF kit B
(Magen, China) according to the manufacturer’s instructions.
Te quality of bacterial genomic DNA was checked by 1%
agarose gel electrophoresis and quantifed with a Qubit Fluo-
rometer by usingQubit dsDNABRAssay kit (Invitrogen,USA).

2.6. Library Construction. After extraction, 1μg genomic
DNA from each sample was randomly fragmented by Covaris
E220 to produce DNA fragments from 200 to 400 bp, followed
by purifcation with the AxyPrep Mag PCR Clean-Up Kit
(Axygen, USA).Ten, fragments were end-repaired by the End
Repair Mix (TruSeq DNA Sample Prep Kit, Illumina, Inc.) and
were purifed using Agencourt AMPure XP beads (Beckman
Coulter, USA). Te repaired DNAs were combined with A-
TailingMix, and then, the Illumina adapters were ligated to the
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Adenylate 3′Ends DNA and followed by product purifcation.
Te products were selected based on the insert size. Several
rounds of PCR amplifcation with PCR Primer Cocktail and
PCRMaster Mix were performed to enrich the Adapter ligated
DNA fragments. After purifcation, the library was qualifed by
the Agilent 2100 bioanalyzer (Agilent, USA) and ABI Ste-
pOnePlus Realtime PCR System. Finally, the qualifed DNA
libraries were sequenced on illumina Hiseq platform (BGI,
Shenzhen, China).

2.7. Metagenomic Data Analysis. All the raw data were
trimmed by SOAPnuke v.1.5.2 [18]. Te trimmed reads were
mapped to the host genome using SOAP2 software to
identify and remove host originated reads [19]. High-quality
reads were de novo assembled using IDBA-UD software
[20]. Assembled contigs with length less than 300 bp were
discarded in the following analysis. Genes were predicted
over contigs by using MetaGeneMarker (2.10) [21]. Re-
dundant genes were removed using CD-HIT with identity
cut-of value 95% [22]. Based on the MEGAN LCA algo-
rithm, the taxonomic annotation was assigned [23]. To
generate the taxonomic and functional abundance profles,
the reads were aligned to the genes using Botwie2 with the
default setting [24]. Based on the abundance profles, the
features (Genera and Phyla) with signifcantly diferential
abundances across time points were determined using
Wilcoxon’s rank sum test [25]. p values for multiple testing
were corrected using the BH method, and the corrected p

values < 0.05 were considered as signifcance [26]. Difer-
entially enriched KEGG pathways were identifed according
to reporter scores [27]. An absolute value of reporter score
greater than 1.65 was used as the detection threshold for
signifcance. Te alpha diversity was quantifed by the
Shannon index using the relative abundance profles at gene,
bacterial genus, and KO level with R package. Te beta
diversity was calculated based on Bray–Curtis distance [28].
Principal component analysis (PCA) was plotted with R
package “ade4.”

2.8. Statistical Analysis. Te physiological indicators were
plotted by GraphPad Prism 8.0 software. Statistics were
performed with one-way analysis of variance followed by
unpaired two-tailed Student’s t-test. If the two sets of data
conform to normal distribution and homoscedasticity, the
paired t-test is used. When ∗p< 0.05, ∗∗p< 0.01,
∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001, the diferences were sta-
tistically signifcant. Spearman correlation coefcients
(p< 0.05) and heatmaps were carried out to disclose the
correlation between gut microbiota and hematology by
Graph prism (8.0) software.

3. Results

3.1. Survival Rates and Changes of Hematology in Irradiated
Beagles. To precisely present the dynamics of gut micro-
biome and hematology, we set the total radiation dose to
2.5Gy, because such sublethal dosage (2.4Gy) has been
reported to induce the ARS over 45 days in beagles, which

could entirely simulate the time course of hematology from
acute injuries to recovery throughout this observational
period [29]. All beagles exhibited a rapid vomit response
within hours after irradiation. One dog died on Day 13 and
the other died on Day 19 postradiation, with the fnal
survival rate of 80% on Day 45.

Generally, ARS progresses through 4 clinical phases:
prodrome, latency, manifest illness, and either recovery or
death [30]. Te prodromal period is characterized by several
gastrointestinal symptoms, whereas the latency period is
characterized by partial or complete resolution of symptoms
[30]. Our hematological results showed that reductions of
the absolute counts of the white blood cells (Figure 1(a)),
neutrophils (Figure 1(b)), and PLTs (Figure 1(c)), as well as
the hematocrit (Figure 1(d)), were observed from a few days
postradiation onward and further reached a nadir on Day 14.
In the third phase of ARS (the manifest illness period), the
counts of blood cells and PLTs remained almost disappeared
fromDay 14–21, which fnally recovered to the normal levels
on Day 45 (Figures 1(a), 1(b), 1(c)). Corresponding statis-
tical values of above hematological data were shown in
Table S1. Such longitudinal alterations of hematology in
beagles are in accord with the special change pattern of the
blood cells in humans after a whole-body exposure to
ionizing radiation [6].

3.2. Characteristic Alterations in Gut Microbiota in Canine
After Radiation. Metagenomics sequencing was applied to
monitor the instant variations of intestinal microbiome in
canines. Sampling time points were selected matching to
those for hematological investigations, but we added
a sampling time on Day 3 postradiation.

We found that alpha diversity (Shannon index) of gut
microbiome was signifcantly increased on Day 14 post-
radiation compared to that onDay 0, demonstrating a higher
evenness and richness of intestinal bacterial species after
radiation (Figure 2(a)). However, the amounts of bacterial
species inmicrobial community were immediately decreased
within the frst 3 days in irradiated beagles, which tempo-
rarily reversed on Day 14, but continuously decreased in the
following time points (Figure 2(b)). Beta-diversity com-
parisons by PCA plots of the gut microbiome exerted a max
distance between baseline (Day 0) and Day 14 (Figure 2(c)),
showing a substantially distinct microbial composition in
the latent stage postradiation. Although plots of microbiome
on Day 21, 35, and 45 were overlapped in a great degree, they
were all dissimilar to that of baseline, respectively
(Figure 2(c)). In addition, we also analyzed gut microbiota
co-occurrence network which is shown in Figure S1. Tese
results demonstrated that radiation irreversibly altered the
structure of gut microbiota in beagles.

For the relative abundance of bacteria at phylum level, we
showed that at baseline (Day 0), the canine gut microbiota was
dominated by Bacteroidetes, followed by theminor abundance
of Firmicutes (Figure 2(d)). Other relative lower proportions
such as Actinobacteria, Proteobacteria, and Fusobacteria were
also observed (Figure 2(d)). Notably, the relative abundance of
phylum Bacteroidetes was sharply declined within the frst
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3 days after radiation challenge, which maintained at low
levels throughout the entire observational period for 45 days
(Figure 2(d)). Although the hematological parameters had
reverted to the normal levels on day 45 (Figure 1), canine
microbial community, especially for the abundance of Bac-
teroidetes, remained no recovery trend.

In irradiated beagles, cladogram generated from the
linear discriminant analysis (LDA) efect size (LEfSe) dis-
played that a total of 33 microbial taxa in phylogenetic
distributions from phylum to species were identifed as
signifcant diferences (Figure 3(a)). According to LDA
scores (LDA score ≥ 2, p< 0.05), characteristically enriched
bacterial species at the divergent clinical phases during ARS

were disclosed (Figure 3(b)). At the genus level, higher
abundance of Prevotella, Bacteroides, Fusobacterium, Sut-
terella, and Faecalibacterium was identifed at baseline (Day
0). In the prodromal phase postradiation, relatively higher
enrichment of Clostridioides and Ruminococcus was seen on
Day 3. During the latency period, higher abundance of
genera Lactobacillus, Lactococcus, and Candidatus Arthro-
mitus on Day 7 were observed. On day 14 higher abundance
were Enterococcus and Streptococcus at genus level. In the
manifest illness phase, the abundance of genus Kocuria was
apparently raised on Day 21, while the higher abundance of
genera Enterococcus and Streptococcus was occurred at the
recovery period (Figure 3(b)).
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Figure 1: Time course of hematological changes in beagles for 45 days after exposure to an acute, whole body, nonlethal gamma ray at the
dose of 2.5Gy. (a) White blood cell, (b) neutrophils, (c) platelets, and (d) hematocrit. Data were plotted in GraphPad Prism 8.0 software.
Statistical signifcances were performed by one-way analysis of variance followed with paired t-test. ∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001;
∗∗∗∗p< 0.0001, compared with the level at Day 0, respectively.
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At species level, time course of the signifcantly altered
bacteria based on relative abundance analysis (Top 30) is
shown in Figure S2. Notably, eight bacterial species of them
were found to be highly sensitive to gamma ray exposure

(Figure 4), since they almost disappeared without restorative
growth after radiation. Tey were Bacteroides plebeius
(Figure 4(a)), Fusobacterium mortiferum (Figure 4(b)),
Prevotella copri (Figure 4(c)), Sutterella wadsworthensis
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Figure 2: Changes of intestinal microbial community in beagles after an acute, whole body, sublethal gamma ray exposure with 2.5 Gy
dosage. (a) Alpha diversity analysis (Shannon index, ∗p< 0.05, Wilcoxon’s rank sum test). (b) Amounts of bacterial species. (c) Beta
diversity comparisons based on principal component analysis (PCA), which was plotted with R package “ade4.” (d) Relative abundance of
bacteria at phylum level.
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Figure 3: Diferentially abundant microbes in irradiated beagles. Linear discriminant analysis (LDA) efect size (LEfSe) analysis was
performed on the relative abundance data of the microbial community. (a) Cladogram. (b) LDA score. To uncover the diferentially
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Figure 4: Time course of gut microbes which are highly sensitive to gamma ray radiation in beagles.Te relative abundance of each bacterial
species was determined by metagenomic sequencing. Data were expressed as mean± SD. Figures were generated by GraphPad Prism 8.0
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(Figure 4(d)), Fusobacterium perfoetens (Figure 4(e)),
Fusobacterium ulcerans (Figure 4(f )), Prevotella copri
CAG.164 (Figure 4(g)), and Prevotella sp. CAG.891
(Figure 4(h)).

3.3. Te Altered KEGG Pathways of Microbiota Metagenomic
Function Prediction in Irradiated Beagles. To explore the
potential functions of microbial metagenomic, we applied
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
Orthologys (KOs) database to predict the pathways by which
the gut microbiota response to radiation. According to the
annotation information of KOs with signifcantly changed
relative abundance of microbes, we found that, compared to
baseline (Day 0), pathways of homologous recombination,
peptidoglycan biosynthesis, mismatch repair, amino-
acyl–tRNA biosynthesis, and biosynthesis of amino acids
were upregulated in majority of time points in irradiated
beagles, except for those pathways of aminoacyl–tRNA
biosynthesis and biosynthesis of amino acids were down-
regulated on Day 45 (Figure 5(a)). By contrast, pathway of
porphyrin and chlorophyll metabolism was upregulated on
Day 45 but downregulated in the other time points in ir-
radiated beagles. Regarding the metabolic pathways, they
were upregulated on Day 21 and 45 whereas downregulated
on Day 3, 14, and 35 (Figure 5(a)).

By comparing with the self-controlled baseline, we
further focused on the signifcantly changed KEGG path-
ways at level two between pre- and postradiation. Time
points of Day 14 and Day 45 were selected because they
represented for the phase of manifest illness phase and the
recovery phase during ARS, respectively. Compared to
baseline (Day 0), a total of 26 altered KEGG pathways were
predicted both on Day 14 and Day 45, with 12 upregulated
and 14 downregulated (Figure 5(b)). After radiation,
pathways of mismatch repair, fatty acid biosynthesis, lysine
biosynthesis, fatty acid metabolism, peptidoglycan bio-
synthesis, base excision repair, vancomycin resistance,
glycerolipid metabolism, starch and sucrose metabolism,
phosphotransferase system, aminoacyl-tRNA biosynthesis,
and ABC transporters were all upregulated while pathways
of lipopolysaccharide biosynthesis, pentose and glucuronate
interconversions, ubiquinone and other terpenoid-quinone
biosynthesis, folate biosynthesis, amino sugar and nucleo-
tide sugar metabolism, citrate cycle, other glycan degrada-
tion, biotin metabolism, glycosaminoglycan degradation,
carbon fxation pathways in prokaryotes, glyoxylate and
dicarboxylate metabolism, bacterial secretion system, cat-
ionic antimicrobial peptide resistance, and lysine degrada-
tion were downregulated (Figure 5(b)).

3.4. Correlations Between Hematology and Gut Microbiome.
To explore the potential interactions between the hemato-
logical injuries and gut microbes in irradiated beagles, a total
of 43 signifcantly altered bacterial species during ARS to-
gether with 41 hematological indicators were selected to
calculate the Spearman correlation coefcients, which was
visualized in a clustered heat map (Figure 6). Notably, the
absolute counts of RBC, PLTs, lymphocytes (LYMPH),

eosinophils (EO), basophils (BASO), as well as the levels of
hemoglobin (HGB) and hematocrit (HCT) positively cor-
related withmost of the altered bacterial species belonging to
the genera Prevotella, Bacteroides, and Fusobacterium.
However, these hematological parameters negatively cor-
related withmost of the altered bacterial species belonging to
the genera Lactobacillus and Streptococcus. In contrast,
diferential white blood cells classifcation (DIFF-Y), mean
platelet volume (MPV) and monocyte proportions (MONO
%) positively correlated with most of the genera Lactoba-
cillus and Streptococcus, but negatively correlated with the
genera Prevotella, Bacteroides, and Fusobacterium.

4. Discussion

It has been well recognized that gut microbiota plays
a crucial role in health and disease [31]. Interestingly, ac-
cumulating evidence suggests that irradiation heavily alters
the gut microbes [32], which may conversely afect the
recovery of radiation-induced tissue damage [11]. In this
feld, most investigations examining the efects of radiation
on gut microbiota were conducted in cancer patients with
radiotherapy [33, 34].Tere is still lack of research regarding
gut microbiota dynamic after a radiological or nuclear mass
casualty incident under the simulating condition of public
health emergency. Terefore, in the current study, we frstly
developed a canine model of ARS through single whole-
body irradiation with 60Co-c ray, which entirely mimics the
clinical process from hematological injury to recovery in
survivors after acute radiation exposure.

In general, higher exposed dosage causes more severe
radiation-induced injury [35]. However, many variable
factors, such as chronic or acute exposure, dose delivering
rate, and experimental subjects, will result in diferent
outcomes in radiation studies, even with the equal exposed
dosage. Considering the fact that acute whole-body gamma
ray irradiation caused 1 death in 20 dogs at the single dose of
2.5Gy [15], we therefore chose such sublethal dosage to
radiate animals and fnally achieved the survival of 80% in
irradiated beagles. As expected, the changes of hematology
in the surviving dogs were highly consistent with the clinical
observations in humans with ARS [36, 37], showing
a fashion that irradiation sharply declined the absolute
counts of circulating lymphocytes, neutrophils, and PLTs,
which gradually reverted to the normal levels thereafter.

Te composition of gut microbiota in humans and
animals is indeed afected by irradiation, but the details of
intestinal bacterial species during the ARS are still poorly
characterized. In the present study, one of the most im-
portant features regarding the altered gut microbial com-
munity postradiation was the dramatically decreased
abundance of the phylum Bacteroidetes without obvious
recovery, even though hematological parameters were
returned to the normal levels at the corresponding time
point. Currently, the impacts of irradiation on the abun-
dance of Bacteroidetes are still controversial. In the large
animal models, irradiation profoundly disrupted gut
microbiota profles, leading to an opposite change for the
phylum Bacteroidetes, with decreased abundance in
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minipigs but increased abundance in rhesus macaques
[38, 39]. In rodents, using 16S rDNA amplicon sequencing,
total-body radiation with 60Co signifcantly decreased the
Firmicutes/Bacteroidetes ratio, which was mainly owing to
the increased abundance of phylum Bacteroidetes post-
radiation for 14 days [40]. In contrast, a time dependently
decreased abundance of phylum Bacteroidetes was recently
described in male BALB/c mice after low-dose 60Co radi-
ation, accompanied by the decreased number of species as
well as an increased alpha diversity [13]. Tis fnding was in
line with our results that radiation led to a higher Shannon
index on Day 14 but decreased amounts of bacterial species
in most of time points postradiation. In patients undergoing
pelvic radiotherapy, a lower abundance of phylum Bacter-
oidetes was also identifed in fecal samples than that in
control group [41]. Tese conficting results might be at-
tributed to diferences in the experimental subjects, se-
quencing method, and operational conditions. As we
known, radiosensitivity difers between animal models [42],
and the microbiota is also known to vary between species
[43]. It has been shown that gut microbiota in healthy mice
exhibits a higher ratio of Firmicutes/Bacteroidetes than that
in beagles [44], and several studies demonstrate that com-
paring to mice, gut microbiota in beagle or pig is more
similar to that in humans [45, 46]. Moreover, we noticed that
healthy beagles used in another study had a higher abun-
dance of Firmicutes than those in this study [47]. Altogether,
these results indicate that animal models used for gut
microbiota research in radiation should be chosen with
caution.

We found that the beta-diversity of gut microbiota in
irradiated beagles remained signifcantly altered after
challenge for 45 days. Likewise, a prospective study in pa-
tients with gynecologic cancers displayed that the structure
and composition of gut microbiomes remained signifcantly
altered during the 12weeks follow-up period after receiving
pelvic radiation [48]. Also, it has been revealed that after
radiation challenge for 280 days, bacterial community in
irradiated mice was still distinct from that of controls [8].
Collectively, these results support the notion that irradiation
elicits a long-lasting and not easily recovered efect on in-
testinal microbial community.

Our further analysis implied that the abundances of
genera Prevotella, Bacteroides, Fusobacterium, Sutterella,
and Faecalibacterium were all signifcantly decreased
throughout the study compared to those before radiation.
Currently, the evidence for the radiation on these genera is
quite limited, especially for that on genus Sutterella. Te
abundance of genus Bacteroides in minipigs and genus
Prevotella in macaques was shown to be profoundly de-
creased by irradiation [47]. However, another report argued
that genera Bacteroides and Prevotellawere both increased in
nonhuman primates (Chinese rhesus macaques, Macaca
mulatta) after radiation with high dose for 4 days [39]. In
addition, a study investigating the impact of pelvic radio-
therapy on gut microbiota of gynecological cancer patients
using pyrosequencing of bacterial 16S rRNA fragments
showed that Fusobacteriaceae abundance increased after
radiation [49]. Other reports demonstrated that ionizing

radiation exposure would decrease the benefcial bacteria
such as Faecalibacterium [50, 51], which agreed with our
results.

Using metagenomics sequencing, we identifed several
species that were the key players contributing to the de-
creased abundances of bacterial genera after radiation
challenge (Figure 4). In irradiated beagles, the decreased
abundance of genus Bacteroides was primarily attributed to
the deletion of Bacteroides plebeius. Te reduction of genus
Fusobacterium was mainly due to the sharp declines of
Fusobacterium mortiferum, Fusobacterium perfoetens, and
Fusobacterium ulcerans. Te change in genus Prevotella
originated from the drops of Prevotella copri, Prevotella copri
CAG.164, and Prevotella sp. CAG.891. While the decline of
genus Sutterella was driven by disappearing of Sutterella
wadsworthensis. To our knowledge, Bacteroides plebeius
were usually found in human gut microbiota which can
produce porphyranase, an enzyme that can break down
porphyan [52]. Sutterella wadsworthensis was found in both
human and dog gut microbiota, and some studies dem-
onstrated that Sutterella wadsworthensis can induce IL-8
production in enterocytes [53]. Prevotella copri had been
proved to be both positive and negative to host healthy while
Fusobacteriummortiferum can cause infection cases [54, 55].
Te other species of Fusobacterium perfoetens, Fusobacte-
rium ulcerans, Prevotella copri CAG.194, and Prevotella sp.
CAG.891 had few information about their efects on host,
which needed to be further investigated.

Another key fnding in current study is that charac-
teristic alterations in gut microbes greatly difer in the
various phases during ARS. Many studies attempted to
explore the intestinal microbiota as novel biomarkers after
acute radiation exposure. It has been documented that ra-
diation decreased the relative abundances of genera Lacto-
bacillus, Ruminococcus, and Streptococcus in irradiated mice
with a total dose of 4 Gy of 60Co-c rays [56]. However,
radiation was also displayed to cause signifcant increase of
genus Lactobacillus as well as families Lactobacillaceae and
Streptococcaceae, but decrease of several Clostridiaceae
members, and failed to change the Peptostreptococcaceae in
maleWistar rats after whole-body irradiation [57]. Similarly,
radiation also increased the proportion of Lactobacillus in
the large intestine in mice [58]. Nevertheless, they did not
clarify the characteristics of microbes among diferent
clinical stages during ARS. Here, we delineated the dynamics
of these characteristic alterations of bacterial species after
radiation, showing that at the latency phase, the pre-
dominant change in gut microbiota is the enrichment of
genera Lactobacillus, Ruminococcus, and clostridioides.
While at the manifest illness phase, the main features in gut
microbiota are higher relative abundances of families
Micrococcales and Peptostreptococcaceae. At the recovery
phase, the characteristically enriched genera Streptococcus
and Enterococcus were observed (Table 1). Tese key mi-
crobes varied at diferent phases may directly produce di-
vergent regulations on the KEGG pathways using
metagenomic function prediction based on (KEGG)
Orthologys (KOs) database. We found that in irradiated
beagles, the upregulated pathways of peptidoglycan
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biosynthesis, homologous recombination and mismatch
repair were observed. Several studies had proved that ho-
mologous recombination andmismatch repair were strongly
afected by the gamma ray irradiation [59, 60]. With the
change of amino acids biosynthesis pathway, several events
may occur such as epigenetic modifcation, bioenergy supply
through producing α-ketoacid, detoxifcation of ammonia,
and maintaining intracellular redox status [61], which in-
fuence the subsequent hematology recovery postradiation.
We noticed that the predicted pathways only suggested the
potential interactions between host and gut microbiota,
further studies were needed to reveal the mechanism by
which gut microbes contributing to ARS. Taken together, we
highlighted that the above-mentioned key microbes could
serve as potential biomarkers to discriminate diferent
phases of host with ARS.

In addition, we also found the well correlations between
hematological indicators and bacterial species. Several well-
known probiotics were identifed in irradiated beagles such
as Lactobacillus acidophilus, Lactobacillus helveticus, Lac-
tobacillus reuteri, Lactobacillus johnsonii, Lactobacillus
gasseri, Lactobacillus lactis, Lactobacillus salivarius, and
Lactobacillus animalis. Tese microbes had been shown to
signifcantly correlate with hematological factors [62–69].
For the decreased RBC and lymphocyte in postradiation, the
negative correlations between hematological factors and
probiotics were found, which were contradicted to the
previous common sense that probiotics would decrease after
irradiation. Moreover, the next-generation probiotics of
Bacteroides fragilis and Faecalibacterium prausnitzii in ir-
radiated beagles exhibited the opposite trends with previous
reports [70, 71], which may aford potential immunomo-
dulating functions. However, Streptococcus mutans, Strep-
tococcus gallolyticus, Streptococcus agalactiae, Streptococcus
lutetiensis, Streptococcus suis and Enterococcus cecorum are
usually known as potential pathogenic species those may
cause infections [72–77]. Yet, they were enriched at the
recovery phase during ARS. From current reports and our
research, it is clear that radiation not only causes changes in
peripheral blood cells, but also alters the composition of gut
microbiota, and there is a correlation between these two
aspects. However, the mechanism of this correlation is
currently not clear. On one hand, changes in gut microbiota
led to changes in bacterial metabolites, which can enter
tissues or blood through the intestinal barrier, leading to
changes in the body, including changes in blood cells. On the
other hand, changes in the composition and abundance of
intestinal bacteria can lead to changes in some metabolic

pathways, which in turn can cause changes in the body. In
addition, the damage caused by radiation to the body may
result in changes of certain molecules or cellular regulatory
factors, which in turn afect gut microbiota.Terefore, under
the key factor of radiation, there may also be mutual in-
fuence between peripheral blood cells and intestinal
microbiota, but this still needs further verifcation.

Now, there is a rising interest in how the microbiome
infuences the individual’s generally reaction to radiation
and the possible mechanisms. Te following aspects may
help researchers gain a deeper understanding of the re-
lationship and mechanism between gut microbiota and
radiation. First is the screening for key gut bacteria and
metabolites associated with radiation damage through
analysis of changes in gut microbiota and their metabolites.
Ten, the increased or decreased abundance of these bacteria
or metabolites are needed to uncover the potential mech-
anisms. In addition, what metabolic pathways are involved
and how they are regulated by gut microbiota are also
main focus.

5. Conclusions

Our study ofers the relevant preclinical details on the dynamics
of gut microbiota in dog postradiation. Te characteristically
altered gut microbes induced by irradiation greatly difer at the
various clinical phases, which is likely to serve as biomarkers to
discriminate the diferent phases of patients with ARS. At the
latency phase Lactobacillus,Ruminococcus, andClostridioides at
genus level, at the manifest illness phase Micrococcales and
Peptostreptococcaceae at family level, and at the recovery phase
Streptococcus and Enterococcus at genus level should be
focused on.

Nomenclature

ARS Acute radiation syndrome
Gy Gray
PCA Principal component analysis
LDA Linear discriminant analysis
LEfSe Linear discriminant analysis efect size
KEGG Kyoto encyclopedia of genes and genomes
KOs Kyoto encyclopedia of genes and genomes

orthologys
tRNA Transfer ribonucleic acid
ABC ATP-binding cassette
RBC Red blood cell
PLTs Platelets

Table 1: Changes of gut microbiota in diferent irradiated animal models.

Study objects Methods Changed species Reference

Mice 16s rDNA Enrichment: Helicobacter, Alistipes
Decrease: Lactobacillus, Ruminococcus, and Streptococcus [56]

Wistar rats Quantitative PCR Enrichment: Bacteroidales, Lactobacillaceae, and Streptococcaceae
Decrease: Clostridiaceae [57]

Beagles Metagenomics
Enrichment: Lactobacillus, Ruminococcus, Clostridioides, Micrococcales,

Peptostreptococcaceae, Streptococcus, and Enterococcus
Decrease: Bacteroides plebeius, Fusobacterium, Prevotella, Sutterella wadsworthensis

Tis study
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LYMPH Lymphocytes
EO Eosinophils
BASO Basophils
HGB Hemoglobin
HCT Hematocrit
MPV Mean platelet volume
MONO Monocyte
DNA Deoxyribonucleic acid
EDTA Ethylenediaminetetraacetic acid
PCR Polymerase chain reaction
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