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Abstract
Motivation: Genomic signal processing (GSP), which transforms biomolecular sequences into discrete signals for spectral analysis, has pro-
vided valuable insights into DNA sequence, structure, and evolution. However, challenges persist with spectral representations of variable- 
length sequences for tasks like species classification and in interpreting these spectra to identify discriminative DNA regions.
Results: We introduce SpecGMM, a novel framework that integrates sliding window-based Spectral analysis with a Gaussian Mixture Model to 
transform variable-length DNA sequences into fixed-dimensional spectral representations for taxonomic classification. SpecGMM’s hyperpara-
meters were selected using a dataset of plant sequences, and applied unchanged across diverse datasets, including mitochondrial DNA, viral 
and bacterial genome, and 16S rRNA sequences. Across these datasets, SpecGMM outperformed a baseline method, with 9.45% average and 
35.55% maximum improvement in test accuracies for a Linear Discriminant classifier. Regarding interpretability, SpecGMM revealed discrimi-
native hypervariable regions in 16S rRNA sequences—particularly V3/V4 for discriminating higher taxa and V2/V3 for lower taxa—corroborating 
their known classification relevance. SpecGMM’s spectrogram video analysis helped visualize species-specific DNA signatures. SpecGMM 
thus provides a robust and interpretable method for spectral DNA analysis, opening new avenues in GSP research.
Availability and implementation: SpecGMM’s source code is available at https://github.com/BIRDSgroup/SpecGMM.

1 Introduction
Understanding the information encoded in genomic sequen-
ces to elucidate their structure, function, and evolution is a 
fundamental goal of bioinformatics (Durbin et al. 1998). A 
variety of computational techniques, including string com-
parison algorithms, probabilistic models like hidden Markov 
models, signal processing methods, and machine/deep learn-
ing approaches, have been employed toward this end. Recent 
advances in deep learning have inspired large language mod-
els that generate numerical vector representations for biomo-
lecular sequences, which can then be used for various 
downstream tasks (Alharbi and Rashid 2022, Yue et al. 
2023), including species classification. But these approaches 
often lack transparency in their decision-making processes, 
despite advances in interpretable deep learning models 
(Novakovsky et al. 2023). On the other hand, Genomic sig-
nal processing (GSP) offers a unique perspective by viewing 
DNA/RNA/protein sequences as signals and representing 
them in the frequency/spectral domain (Anastassiou 2001, 
Vaidyanathan 2004). GSP methods help reveal informative 
features and repetitive patterns in sequences, lending them-
selves well to interpretability, a crucial aspect in understand-
ing biological functions and discriminative features across 

species for classification tasks. GSP has proven particularly 
useful for tasks such as gene identification (Vaidyanathan 
2004), structure analysis (Zhang et al. 2002), and, impor-
tantly, taxonomic classification (Randhawa et al. 2019, 
2020, Kar and Ganguly 2024)—the focus of this study.

Despite their advantages, existing GSP-based methods face 
several challenges in the context of taxonomic classification 
which include (i) limited diversity in datasets analyzed that 
can reduce generalizability on diverse datasets, (ii) issues with 
handling sequences of greatly varying lengths without losing 
sequence information, and (iii) challenges in identifying and 
interpreting discriminative DNA features learnt by the classi-
fication models. For instance, Skutkova et al. (2013) utilized 
Dynamic Time Warping to classify genomic signals corre-
sponding to ACTA1 gene across a dataset of 10 organisms, 
mostly mammals. Their approach showcased promising 
results, but is limited by its focus on a single gene and a small 
set of species. On the other hand, Randhawa et al.’s GSP 
studies (Randhawa et al. 2019, 2020) on a larger set of spe-
cies accommodate sequences of vastly differing lengths 
through length normalization techniques like truncation or pad-
ding. But these techniques often lead to loss or distortion of se-
quence information. Further, Randhawa et al. do not adequately 
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address the interpretability of spectral features used for classifica-
tion. Earlier works, such as those by Sussillo et al. (2004) and 
Hassani Saadi et al. (2017), have used spectrograms to uncover 
and interpret unique visual patterns and characteristic features 
of DNA sequences. Yet, these studies primarily analyze spectro-
grams of individual sequences or specific regions, without sys-
tematically comparing spectrograms from sequences of different 
organisms. Thus, there is a clear need for a systematic approach 
that compares and contrasts spectral features of sequences from 
different organisms to enhance interpretability and applicability 
of GSP-based taxonomic classifiers.

We introduce SpecGMM, a novel framework that integra-
tes GSP with Gaussian Mixture Models (GMM) to classify 
DNA sequences across various taxonomic levels/ranks. By us-
ing a sliding window technique and a background GMM, 
SpecGMM preserves most of the sequence information when 
converting variable-length DNA sequences to fixed- 
dimensional spectral representations. The resulting spectral 
features are also amenable to comparative spectrogram 
analysis and visualization. Our evaluations using diverse 
DNA sequence datasets demonstrate the superior perfor-
mance of SpecGMM over a baseline GSP method in most 
cases, thereby providing not only improved accuracy (of up 
to 35.55% for SpecGMM’s Linear Discriminant (LD) classi-
fier) but also deeper insights into the discriminative patterns 
within DNA sequences. Our approach thus promises to 
broaden the applicability of GSP in genomic research, paving 
the way for new research in taxonomic classification 
and beyond.

2 Methods
This section describes our SpecGMM framework, which uses 
GSP integrated with GMMs to effectively obtain spectral rep-
resentation for DNA sequences. Application of sliding win-
dow technique on variable-length sequences preserves most 
of the sequence information for robust classification. We as-
sess SpecGMM’s performance across diverse datasets, com-
paring it with a baseline method, and focus on analyzing 
spectral features to interpret the biological significance of 
the results.

2.1 Background on genomic signal representation 
and baseline classification techniques
Genomic (DNA) sequences are transformed into discrete 
signals using numerical representations (see the first table in 
Randhawa et al. 2019), thus enabling the exploitation of sig-
nal processing techniques. This study utilizes the Purine- 
Pyrimidine (PP) representation, where purines (A, G) are 
assigned a value of −1 and pyrimidines (T, C) a value of 1 
(see Supplementary Fig. S1A). Nucleotides marked as un-
known (N) are excluded from the analysis. This representa-
tion allows for the application of digital signal processing 
techniques, specifically through the use of the Fast Fourier 
Transform (FFT) algorithm to efficiently compute the 
Discrete Fourier Transform (DFT) and analyze the spectral 
characteristics of these signals. Please refer to Supplementary 
Methods: Sections 1.1 and 1.2 for further details on the ap-
plication of DFT to derive magnitude spectrum.

The baseline method involves normalizing the length of 
sequences to median length of all sequences either by trunca-
tion or anti-symmetric padding (see Supplementary Fig. S1B) 
to facilitate the extraction of fixed-dimensional magnitude 

spectra. The baseline method constructs a pairwise distance 
matrix using magnitude spectra for training sequences for 
feature extraction. Columns of the distance matrix are used 
as features to train six different machine learning classifiers— 
Fine K-Nearest Neighbor (KNN), Subspace KNN, LD, 
Subspace Discriminant, and two Support Vector Machine 
(SVM) models, viz., Linear SVM (LSVM) and Quadratic 
SVM (QSVM). However, this method could result in the loss 
of significant information for sequences longer than the me-
dian. Additionally, increasing the number of sequences in the 
training set complicates the classification task due to the 
expanding dimensionality of distance matrix-based fea-
ture vectors.

2.2 SpecGMM method
In contrast to the baseline approach, our proposed 
SpecGMM framework enhances species classification by 
leveraging a Universal Background Model (UBM)-GMM to 
process sliding window-based spectral features from DNA 
sequences of varying lengths and project them into a fixed- 
dimensional feature space (Fig. 1). This approach preserves 
most of the sequence information and addresses the issue of 
sequence length normalization. Moreover, it effectively man-
ages the dimensionality of sequence-specific feature represen-
tations without depending on the number of training 
sequences, showcasing a significant advancement over the 
baseline classification method.

2.2.1 Computing spectral features using sliding windows
SpecGMM begins by analyzing DNA sequences through a 
systematic application of fixed-length sliding windows, cap-
turing spectral data across the entire sequence. This method 
moves a fixed-length window, which encompasses a predeter-
mined number of DNA nucleotides, across the sequence, 
allowing overlaps to ensure continuous feature coverage. For 
each window, the magnitude spectrum is computed with the 
FFT order adjusted to the nearest power of two, focusing on 
the first half of the spectrum (0 to π) due to its symmetry 
(Supplementary Fig. S1A). This process generates a sequence 
of fixed-dimensional (D-dimensional) spectra for each DNA 
sequence, as shown in Fig. 1A. While averaging these spectra 
over all windows may provide a sequence-specific fixed- 
dimensional representation, it may obscure local spectral 
features. To preserve these local features when reducing dimen-
sionality, we employ a K-component UBM-GMM framework 
to obtain a better fixed-dimensional (ðK×DÞ-dimensional) 
feature representation for each sequence.

2.2.2 Fixed-dimensional representation using UBM-GMM
A UBM-GMM is a GMM extensively used in speaker recog-
nition to distinguish speakers by creating fixed-dimensional 
feature representations from variable-length speech utteran-
ces, as described by Reynolds et al. (2000). Inspired by this 
property, we apply UBM-GMM to genomic data, enabling 
fixed-length representations of variable-length DNA sequen-
ces. Constructing a GMM requires extensive data for accu-
rate parameter estimation, especially for high-dimensional 
feature vectors. To address this issue, UBM-GMM is con-
structed with the Expectation-Maximization algorithm 
(detailed in Supplementary Algorithm 1), by aggregating data 
across multiple classes to ensure parameter robustness. 
Features from a specific DNA sequence are then given as in-
put to this model through Maximum a Posteriori (MAP) 
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adaptation (Supplementary Algorithm 2), adjusting only the 
means of the GMM mixture components to create a mean 
supervector for each sequence (Fig. 1B). This mean supervector 
represents the fixed-length feature vector for the sequence, elimi-
nating the need for sequence truncation or padding.

2.2.3 Classification using mean supervector representation
The mean supervector feature representations for sequences 
obtained through SpecGMM are used for the classification tasks 
(see Fig. 1C). This method ensures that the feature vector di-
mension does not depend on the number of training sequences. 
This addresses a significant limitation of the baseline approach. 
To ensure direct comparisons with the baseline method, we use 
the classifiers used in the baseline study. SpecGMM’s time- 
complexity analysis and hyperparameter selection process are 
explained in Supplementary Methods: Sections 1.5 and 1.6.

2.3 Datasets
Our SpecGMM framework was tested on diverse datasets, in-
cluding mitochondrial DNA (mtDNA) sequences, viral and 
bacterial genomes, and 16S ribosomal RNA (rRNA) sequences. 
All datasets except 16S rRNA sequences were obtained from 

Randhawa et al.’s studies (Randhawa et al. 2019, 2020). The 
bacterial 16S rRNA sequences were obtained from the 16S- 
ITGDB dataset (Hsieh et al. 2022). These 16S rRNA sequences 
were preprocessed to identify hypervariable regions (HVRs) 
and retain only sequences containing HVRs V2–V7 for further 
analysis. We used QIIME2 toolkit (Bolyen et al. 2019) with the 
primer information from Chaudhary et al. (2015) to identify 
HVRs V2–V7, and excluded analysis of regions V1, V8, and 
V9 due to inconsistencies in the available primers. More details 
of the preprocessing are in Supplementary Methods: Section 
1.7 and Supplementary Table S1. Descriptive statistics for data-
sets are provided in Supplementary File D1. Additional infor-
mation on the 16S rRNA sequences, such as taxonomy labels 
and start/end positions of the HVRs obtained using QIIME2, is 
in Supplementary File D2.

2.4 SpecGMM evaluation strategy
A stratified four-fold cross-validation method was used to 
optimize SpecGMM’s hyperparameters using only a dataset 
of plant mtDNA sequences. This Plants dataset comprises 
two categories, Chlorophyta with 44 sequences and 
Streptophyta with 130 sequences, and was chosen for 

Figure 1. Overview of the SpecGMM methodology: (A) PP representation is used to transform the DNA sequence into a discrete signal, as discussed in 
Section 2.1. A fixed-size window slides across sequence length, and DFT is applied to extract magnitude spectra at each position, revealing local frequency 
content. (B) A background GMM (termed UBM-GMM for Universal Background Model—GMM) is constructed from class-wide spectra, with individual 
sequence GMMs adapted via MAP adaptation to produce mean supervectors. (C) The classification workflow involves converting DNA sequences into 
signals, extracting spectra via window-based processing, building a UBM-GMM with training data, adapting it to obtain mean supervectors for training and 
testing, and employing these supervectors to train classifiers and assess their performance on test data. The method is detailed in Section 2.2.
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hyperparameter tuning due to the high variability of its sequences. 
To prevent data leakage, we froze the hyperparameters obtained 
from the Plants dataset and applied them to other genomic data-
sets. Further, these datasets were also divided into four stratified 
folds, with three folds used for training and one for testing. This 
approach ensured that each fold served as an independent test set 
once. We computed performance metrics such as accuracy, preci-
sion, recall, specificity, and F1-score for each test scenario.

3 Results
We performed extensive analysis across various genomic 
datasets to assess the efficacy of the SpecGMM approach for 
DNA sequence-based classification tasks.

3.1 Hyperparameter optimization and illustrative 
performance for plant species classification
To select SpecGMM’s hyperparameters, we took the 
window size recommendation from an earlier GSP study 
(Vaidyanathan 2004) and combined it with the optimal number 
of mixture components learnt from an mtDNA dataset having 
two plant categories (see Supplementary Methods: Section 1.6). 
These plant categories—Chlorophyta and Streptophyta—com-
prised sequences of highly varying lengths. We found that the 
window size of 351, a window shift of 99 nucleotides, an FFT 
order of 512, and a 5-component UBM-GMM performed rea-
sonably well (see Supplementary Table S2) and displayed strong 
discriminative capabilities (see Fig. 2). Notable differences were 
observed in the mixture component weights during MAP adap-
tation for training sequences from the two categories, particu-
larly for components 4 and 5 (see Fig. 2A). Furthermore, visual 
differences between the plant categories were evident in the 
means of the adapted GMMs, especially that of mixture compo-
nents 3–5 (see Fig. 2B). These results show that SpecGMM’s 
fixed-dimensional representation can be used for classification 
in settings where sequences are of highly varying lengths. The 
hyperparameters underlying this representation were applied as 
is for analyzing other sequence datasets too.

3.2 SpecGMM’s comparative performance and 
robustness to various factors
SpecGMM’s performance was benchmarked against a baseline 
that utilized PP representation, median length normalization, 

and PCC-based distance measures (Randhawa et al. 2019). 
Across benchmark datasets from three different studies, 
SpecGMM was found to perform better than or comparable 
to the baseline (see Table 1). SpecGMM achieved improve-
ments in average classification accuracies of up to 18.88% for 
the LD classifier and 23.15% for the LSVM classifier, com-
pared to the baseline on test sequences. Additionally, the per-
formance of SpecGMM was not compromised by sequence 
length variability, as indicated by the Median Absolute 
Deviation (MAD), especially in the case of BacteriaTest data-
set, reconfirming SpecGMM’s capability to handle sequences 
of varying lengths effectively. Detailed classification results, in-
cluding metrics like standard deviation, precision, recall, spe-
cificity, and F1-score, are provided in Supplementary File D3. 
A comparative analysis of various numerical representations 
across different datasets is provided in Supplementary File D4, 
which confirms PP representation to be the best- 
performing one.

We also performed a few additional analyses to test the ro-
bustness of the observed performance trends. SpecGMM was 
run with four other classifiers (besides LD and LSVM) used 
in the baseline study; and across these six classifiers, 
SpecGMM continued to perform better than baseline in 29– 
35 of the total 36 benchmark datasets (see Supplementary 
File D3). To address potential information leakage issues 
arising from high similarity between training vs. testing set 
sequences, we performed homology reduction using 
GraphPart (Teufel et al. 2023), and evaluated SpecGMM vs. 
baseline on the homology-reduced datasets. As shown in 
Supplementary File D3, the better performance of SpecGMM 
over the baseline also prevailed after homology reduction.

3.3 SpecGMM aids classification of 16S rRNA  
sequences
We applied SpecGMM to classify 16S rRNA sequences across 
different taxonomic levels, using the same hyperparameters 
optimized for the benchmark datasets. As outlined in Table 2, 
SpecGMM consistently outperformed the baseline method at 
all taxonomy levels, except at the Species level for the LSVM 
classifier. At this level, SpecGMM’s LD classifier surpassed the 
baseline by 13.27%, while the baseline LSVM classifier per-
formed slightly better. For all 16S rRNA datasets combined, 

Figure 2. SpecGMM’s application to classify plant species: A five-mixture component GMM was built using 256-dimensional magnitude spectra (0 to π 
rad/sample) from DNA sequences of two plant species, Chlorophyta and Streptophyta. (A) The figure displays a heatmap of mixture weights for training 
sequences from the two plant species represented in a matrix of sequences (rows) against five mixture components (columns). (B) The figure represents 
the mixture component means of adapted Gaussian Mixture Models for selected sequences from Chlorophyta and Streptophyta, visually demonstrating 
how the means of the mixture components differ between the two species.
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SpecGMM achieved an accuracy improvement of up to 
35.55% and 4.28% for LD and LSVM classifiers, respectively.

Recognizing the importance of HVRs in 16S rRNA sequen-
ces for species classification (Yang et al. 2016), we adopted a 
shorter window size and shift than the default 351 and 99 
nucleotides to enhance resolution across sequence length (see 
Supplementary Methods: Section 1.6). For species-level clas-
sification, the accuracy of SpecGMM with a window size of 
63 nucleotides, a shift of 9, and an FFT order of 64 was bet-
ter than that of the GSP baseline by 26.17% and 3.17% for 
LD and LSVM classifiers, respectively.

3.4 SpecGMM framework reveals discriminative 
HVRs of 16S rRNA
To further investigate SpecGMM’s discriminative capabilities 
and interpretability, we examined the impact of different 
regions of the 16S rRNA sequences on classification accu-
racy, as a post-hoc analysis. Specifically, we considered 16S 
rRNA HVRs and assigned each sequence window to an HVR 
based on the maximum overlap criterion. We derived average 
posterior representations from window-based posteriors dur-
ing the MAP adaptation process, as depicted in Fig. 3A. 

These K-dimensional posterior vector representations from a 
K-component GMM served as features for classifying differ-
ent taxonomic levels.

The rationale for choosing this posterior representation is 
driven by the purpose of the current analysis, which is to assess 
the discriminatory power of individual HVR regions using the 
SpecGMM framework. Another possible representation would 
be to derive a mean supervector per HVR, but this would 
not be effective due to the insufficient number of windows 
per HVR.

As illustrated in Fig. 3B, classification accuracies varied sig-
nificantly across HVRs at different taxonomic levels/ranks. 
V3 and V4 showed particularly high discriminative power at 
most ranks, especially at higher ones, consistent with prior 
studies (e.g., Yang et al. 2016). At the Species and Genus lev-
els, V2 and V3 were notably informative, aligning with find-
ings by Bukin et al. (2019). In some cases, V5–V7 also 
demonstrated considerable discriminative ability. While using 
features from the entire sequence yielded robust results, each 
HVR individually exceeded chance accuracy, highlighting 
their value in taxonomic classification. However, accuracies 
decreased at more specific taxonomic levels, like species 

Table 1. Comparative classification accuracies using baseline and SpecGMM methods for benchmark datasets: Average classification accuracies (in %) 
for independent test sets across four folds for Linear Discriminant (LD) and Linear SVM (LSVM) classifiers are reported for various benchmark datasets.

Dataset #Cls Chance Acc. Baseline Acc. SpecGMM Acc. delta Med. of  
Seq. Len.

MAD

LD LSVM LD LSVM LD LSVM

Datasets with different properties (Randhawa et al. 2019)
Primates 2 65.35 95.95 98.63 97.3 100 1.35 1.37 16554 50
Protists 3 37.63 91.13 74.35 96.85 97.5 5.72 23.15 35660 8000
Fungi 3 39.49 78.15 73.2 93.78 95.13 15.63 21.93 39154 13337
Plants� 2 62.21 91.35 86.18 91.95 93.08 0.6 6.9 128211 96761
Amphibians 3 42.93 87.95 90.05 97.25 100 9.3 9.95 17271 848
Insects 7 19.07 82.5 85.3 93.78 99 11.28 13.7 15529 302
threeClasses 3 39.5 86.68 99.55 99.63 99.95 12.95 0.4 16361 489
Vertebrates 5 35.27 85 97.85 98 100 13 2.15 16616 135
BacteriaTest (bacterial genome) 3 51.16 76.45 92.8 92.68 98.53 16.23 5.73 70992 37385
Birds_Fish_Mammals 3 45.9 98.13 99.98 99.98 100 1.85 0.02 16606 111
Dengue (viral genome) 4 31.4 97.18 99.88 100 100 2.82 0.12 10676 31
Mammalia 8 18.42 78.93 90.38 96.6 99.38 17.67 9 16537 161
Datasets at different taxonomy levels (Randhawa et al., 2019)
Domain-Kingdom (Eukaryota) 4 82.3 81.63 95.45 91.5 98.83 9.87 3.38 16580 409
Domain-Kingdom (Eukaryota_noProtists) 3 86.35 88.5 97.23 93.5 99.08 5 1.85 16573 373
Kingdom-Phylum (Animalia) 7 48.81 74.95 94.73 93.83 98.75 18.88 4.02 16553 292
Phylum-Subphylum (Chordata) 3 98.5 96.38 99.55 99.93 99.88 3.55 0.33 16615 137
Subphylum-Class (Vertebrata) 5 35.27 85 97.85 98 100 13 2.15 16616 135
Class-Subclass (Actinopterygii) 3 96.82 98.95 99.8 100 99.95 1.05 0.15 16589 69
Subclass-Superorder (Neopterygii) 7 37.26 81.3 93.23 95.88 97.73 14.58 4.5 16597 65
Superorder-Order (Ostariophysi) 3 69.82 86.15 98.88 99.75 100 13.6 1.12 16597 24
Order-Family (Cypriniformes) 5 63.86 89.45 96.58 99.85 100 10.4 3.42 16601 20
Family-Genus (Cyprinidae) 6 18.09 89.33 80.8 95.35 96.5 6.02 15.7 16597 10
Subfamily-Genus (Acheilognathinae) 2 50.09 100 100 100 100 0 0 16600 12
Viral sequence datasets at different taxonomy levels (Randhawa et al., 2020)
Test-1 (11 viral families þ Riboviria) 12 10.88 71.73 86.45 82.7 90.98 10.97 4.53 7350 4559
Test-2 (families of realm Riboviria) 12 10.74 60.63 79.63 78.55 83.58 17.92 3.95 7486 2489
Test-3a (genera of family Coronaviridae) 4 44.14 90.78 87.9 99.03 98.1 8.25 10.2 29704 1178
Test-3b (genera of family Coronaviridae) 3 48.04 91.38 91.88 99 99 7.62 7.12 29704 860
Test-4 (subgenera of Betacoronavirus) 4 32.66 97.43 91.83 100 100 2.57 8.17 30161 559
Test-5 (Test-4þ SARS-CoV-2) 5 25.03 96.65 95.35 98.75 100 2.1 4.65 29891 280
Test-6 (Sarbecovirus þ SARS-CoV-2) 2 52.57 97.35 97.35 97.23 97.23 −0.12 −0.12 29749 76

Accuracies are compared against a random classifier’s expected accuracy, calculated based on class proportions. The table also includes the median of 
sequence lengths and their Median Absolute Deviation (MAD) to indicate variability within each dataset. All sequences were processed using the PP 
representation. The baseline method used median length normalization and PCC-based distance measures, while SpecGMM utilized fixed hyperparameters: a 
window size of 351, window shift of 99, FFT order of 512, and a 5-component UBM-GMM. The delta column quantifies the performance difference 
between SpecGMM and the baseline for both classifiers. The delta values that are at least 10 are marked in bold font. The average delta values for LD and 
LSVM, excluding the Plants dataset used for hyperparameter tuning and including results from 16S rRNA datasets in Table 2, were 9.45% and 4.81%, 
respectively.
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classification, emphasizing the challenge of distinguishing 
closely related organisms.

3.5 Spectrogams help interpret SpecGMM results 
and visualize signatures
Spectrogram analysis, which visualizes the frequency versus 
position characteristics of DNA sequences, facilitates the iden-
tification of local spectral patterns. In our study, spectrograms 
were generated for 16S rRNA sequences from various species 
within the genus Bacillus. Figure 4 depicts spectrogram for a 
representative sequence of the species Bacillus subtilis. Further, 
videos were created using the spectrograms of 100 selected 
sequences of each available species of genus Bacillus (see 
Supplementary Videos SV1–SV9). These spectrogram videos 

aided visualization of species-specific signatures. Notably, sub-
sequences from the V2 and V3 regions were predominantly 
found in Bacillus subtilis sequences. For instance, the subse-
quence corresponding to the V2 region appeared in 278 out of 
495 available Bacillus subtilis sequences, but was less preva-
lent or absent in available sequences from other species within 
the genus. A similar pattern was observed for the V3 region. In 
contrast, subsequences from the V4–V7 regions were also pre-
sent in sequences from other species. These findings align with 
our previous HVR analysis (refer to Fig. 3B), which 
highlighted the discriminative potential of the V2 and V3 
regions in distinguishing species within the genus Bacillus.

The results taken together show that our SpecGMM ap-
proach not only demonstrates superior classification accuracy 

Table 2. Comparative classification accuracies using baseline and SpecGMM methods for 16S datasets: The fields are same as in Table 1.

Dataset #Classes Chance  
Acc.

Baseline Acc. SpecGMM Acc. Median of  
Seq. Lengths

MAD

LD LSVM LD LSVM LD LSVM

WinLen¼ 351  
WinShift¼99

WinLen¼63  
WinShift¼9

Phylum (Kingdom: Bacteria) 12 8.72 74.18 85.13 84.23 88.83 82.98 87.8 1473 31
Class (Phylum: Firmicutes) 3 5.8 89.9 95.88 93.88 97.05 94.15 96.95 1474 60
Order (Class: Bacilli) 5 1.95 77.73 92.45 93.15 94.75 91.2 94.7 1512 44
Family (Order: Bacillales) 4 1.39 60.58 94.35 96.13 98.63 95.05 98.08 1478 41
Genus (Family: Bacillaceae) 3 1.5 92.08 97.53 97.53 99.85 98.73 99.55 1469 36
Species (Genus: Bacillus) 9 2.46 36.58 63.98 49.85 57.83 62.75 67.15 1537 19

Accuracies for two different window sizes (WinLen) and shifts (WinShift) are reported for SpecGMM method. Maximum average accuracies for each 
classifier are marked in bold font. Detailed results are available in Supplementary File D3.

Figure 3. Discriminative hypervariable regions (HVRs) in 16S rRNA sequences according to SpecGMM for taxonomic classification: (A) For each 
sequence, windows are assigned to each HVR (V2–V7) based on maximum overlap criterion. Posterior probabilities are computed for each window (using 
the magnitude spectrum of the window as detailed in Supplementary Algorithm 2). This generates a K-dimensional posterior vector per window, with 
respect to the K mixture-component UBM-GMM. The posterior vectors of the windows assigned to an HVR can then be averaged to get a posterior 
representation of the HVR. These average posteriors are used as features for classification. (B) The figure compares taxonomic classification accuracies 
using HVR-based features. The brown dotted lines show the chance accuracies.

6                                                                                                                                                                                                                                   Jaiswal et al. 

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae171#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae171#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae171#supplementary-data


compared to the baseline but also enriches our understanding 
of the variations in spectral characteristics over the sequence 
length. The integration of spectral/spectrogram analysis 
into our methodology provides a powerful tool for visually 
interpreting complex DNA patterns, thereby enhancing the 
interpretability of our results.

4 Discussion
Our study introduces SpecGMM, a novel approach that 
addresses the challenges associated with spectral representa-
tion of variable-length DNA sequences in the context of taxo-
nomic classification. Through the integration of signal 
processing techniques with GMM, SpecGMM not only 
enhances the discriminative power of spectral features for ge-
nomic sequences but also suggests that the sequences possess 
species-specific signatures.

Our comprehensive evaluation across diverse datasets, in-
cluding mitochondrial DNA, bacterial and viral genomes, 
and particularly 16S rRNA sequences, showed that 
SpecGMM performs better than or comparable to the base-
line GSP method. The hyperparameters optimized using the 
Plants (mtDNA) dataset were used as is for other datasets 
having various sequence types, yet SpecGMM performed 
consistently across these datasets, showcasing its robustness. 
Moreover, the interpretability offered by SpecGMM, espe-
cially in analyzing 16S rRNA sequences and visualizing their 
local spectral patterns using spectrogram videos, provided 
insights into the discriminative power of different 16S rRNA 
HVRs at different taxonomic ranks.

There are many paradigms to taxonomic classification, 
such as ones based on sequence or k-mer alignment, deep 
learning, or GSP-guided machine learning proposed in this 
work. A fair comparison of methods from different para-
digms is challenging—for instance, k-mer approaches like 
Kraken 2 (Wood et al. 2019) rely on a reference database, 
and their accuracy depends on how well the reference data-
base captures the species in the benchmark dataset (Lu et al. 
2022); whereas our SpecGMM follows a training-testing ma-
chine learning paradigm. Nevertheless, to place SpecGMM in 
the context of other popular tools, we have compared it to 
the k-mer based method Kraken 2 and a deep learning based 
method, DNABERT-S (Zhou et al. 2024), and discuss these 
results next:

� SpecGMM is comparable to Kraken 2 on genus-level 
classification and outperforms Kraken 2 on species-level 
classification of the 16S rRNA benchmark datasets 
(Supplementary Table S3). This observation aligns with 
Kraken 2’s known limitation of misclassifying sequences 
at the species level, when sister species of the same genus 
are present in the reference database (Wood et al. 2019). 

� In the same 16S rRNA bacterial benchmarks, we com-
pared SpecGMM, which represents each sequence by a 
supervector from a UBM-GMM model, to DNABERT-S, 
which represents each sequence by an embedding from a 
species-aware deep learning model trained on microbial 
sequences (bacteria, fungi, and viruses). SpecGMM was 
significantly faster in generating sequence representations; 
and performed comparable to or better than DNABERT- 
S in all datasets except for one dataset at species level 

Figure 4. Spectrogram analysis of a representative Bacillus subtilis 16S rRNA sequence: A spectrogram shows the magnitude spectra obtained from 
windows along the length of a given sequence as columns of a heatmap. For the sequence here, WinLen¼ 63 and WinShift¼9 yield 160þwindows 
(with each window’s magnitude spectrum shown as a heatmap column) and 32 frequency components (heatmap rows). For each HVR (see Fig. 3A), we 
choose four contiguous windows with some prominent frequency components, and extract the DNA substring (contiguous subsequence) spanned by 
these windows. We search this DNA substring across sequences belonging to genus Bacillus, and report the number of matching sequences from 
different species of the Bacillus genus. Note that the DNA substring is 90-nucleotide long and hence shown inside a box in a wrap-around form; the 
corresponding four consecutive windows are also highlighted in the spectrogram above the box. Refer to Supplementary Videos SV1–SV9 for 
visualization of common spectrogram patterns across sequences of given species.
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(Supplementary Table S4), where DNABERT-S outper-
formed SpecGMM likely due to its specialized learning 
for species-level classification. Additionally, when tested 
on eukaryotic datasets with sequences from species not 
seen when learning the representation models (UBM- 
GMM or DNABERT-S’ model), SpecGMM consistently 
outperformed DNABERT-S (Supplementary Table S5). 
These findings show the generalizability of SpecGMM to 
unseen data. However, direct comparisons are challenging 
because the models differ in learning strategies and train-
ing data, and DNABERT-S was trained specifically for 
species-level classification tasks (see captions of 
Supplementary Tables S4 and S5 for details). 

SpecGMM’s primary distinction from other paradigms 
discussed above lies in its efficient integration of GSP with 
GMMs. SpecGMM ensures robust handling of variable-length 
sequences without the need for padding or truncation. 
Moreover, it provides unique interpretability of the spectral 
features of DNA sequences, as can be seen from our 16S rRNA 
analysis, offering clearer insights into the features used for 
classification compared to deep learning models, which often 
lack transparency and require high computational resources.

While our method has shown performance improvement 
on several benchmark datasets, handling the computational 
demands of large datasets remains challenging. Nevertheless, 
the promising results achieved with SpecGMM encourage its 
application and potential effectiveness in broader genomic stud-
ies that are yet to be explored. Future research will focus on fur-
ther enhancing SpecGMM’s efficiency and scalability on even 
more diverse sets of sequences not well studied in the literature, 
and on understanding any classification biases of SpecGMM. 
Regarding the latter, we did not find any significant sequence 
length bias affecting the classification of an analyzed 16S rRNA 
dataset. To derive optimal sequence lengths for classification, 
future work can focus on a more detailed analysis of a wider 
range of datasets. Another promising avenue is the exploration 
of more nuanced spectral features within genomic sequences, 
using advanced signal processing techniques, highlighting dis-
criminative DNA regions and studying their biological signifi-
cance. To conclude, SpecGMM represents a promising step 
forward in the field of signal processing-based genomic classifi-
cation, offering both improved accuracy and deeper insights 
into the spectral characteristics of DNA sequences.
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