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The pathogenesis of Alzheimer’s disease (AD) depends on environmental
and heritable factors, with its molecular etiology still unclear. Here we
present aspatial transcriptomic (ST) and single-nucleus transcriptomic
survey of late-onset sporadic AD and AD in Down syndrome (DSAD).
Studying DSAD provides an opportunity to enhance our understanding
of the AD transcriptome, potentially bridging the gap between genetic
mouse models and sporadic AD. We identified transcriptomic changes
that may underlie cortical layer-preferential pathology accumulation.
Spatial co-expression network analyses revealed transient and regionally
restricted disease processes, including a glial inflammatory program
dysregulated in upper cortical layers and implicated in AD genetic risk
and amyloid-associated processes. Cell-cell communication analysis
further contextualized this gene programin dysregulated signaling
networks. Finally, we generated ST data from an amyloid AD mouse model
toidentify cross-species amyloid-proximal transcriptomic changes with
conformational context.

The fundamental work of pioneers like Santiago Ramo6n y Cajal revealed
that the human brainis spatially organized at macroscopic and micro-
scopic levels, where brain circuitry and function underlie structural
organization. Single-nucleus RNA-sequencing (snRNA-seq) has
revealed thatbraincell populations are heterogeneous at the molecular
level'®. In Alzheimer’s disease (AD) brains, specific cell populations
havebeenidentified asunderrepresented or overrepresented relative
tothe cognitively healthy brain”, revealing an axis of selective vulner-
ability to resilience in neurodegeneration'? and providing founda-
tional knowledge of the genes, cis-regulatory elements and networks

altered in AD". The functional consequences of transcriptomic changes
indisease-related cell populations remain elusive, and spatial context
is critical for solving this puzzle.

Here we examined spatial and single-nucleus transcriptomes of
clinical AD samples in early-stage and late-stage pathology and AD in
Down syndrome (DSAD). Individuals with Down syndrome (DS) aged
>65 years old have an 80% risk of dementia'*. Despite shared features
between sporadic AD (sAD) and DSAD""¢, there are no single-cell or
spatial transcriptomic (ST) studies comparing these populations—pres-
ently only one single-cell study of DS brains". Focusing on DSAD as a
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Fig.1|ST and single-nucleus transcriptomic analysis of genetic and sporadic
forms of AD. a, We performed ST experiments in the human frontal cortex and
the mouse brain using 10x Genomics Visium. Human samples—n =10 cognitively
normal controls, n =9 early-stage AD, n =10 late-stage AD and n =10 DSAD
(median1,316 genes per spot; n =115,251ST spots; Supplementary Table 1).
Mouse samples—n =10 WT and n =10 5xFAD aged 4 months; n=10 WT andn=10
5xFAD aged 6 months; n =10 WT and n =10 5xFAD aged 8 months; n=8 WT and
n=125xFAD aged 12 months (median 2,438 genes per spatial spot; n = 212,249
ST spots; Supplementary Table 2). b, Two representative human ST samples
from each of the disease conditions, each spot colored by cortical annotations
from BayesSpace? clustering analysis. ¢, One representative mouse ST sample
from WT and 5xFAD at each time point, each spot colored by brain region
annotations derived from BayesSpace clustering analysis. d, We performed

snRNA-seq in the frontal cortex and PCC from cognitively normal control donors
(n=27FCXandn=27PCC)and DSAD donors (n=21FCXandn=21PCC). We
alsoincluded snRNA-seq data from three previous studies of the cortexin AD””
(n=27 controls, n =23 early-stage AD and n = 48 late-stage AD). e, UMAP plot
depicting a two-dimensional view of the cellular neighborhood graph of 585,042
single-nuclei transcriptome profiles. Each pointin this plot represents one cell,
colored by their cell-type annotations derived from Leiden clustering®® analysis.
EX,n=229,041;INH, n=90,718; MG, n=20,197; ASC, n = 57,443; OPC, n =23,053;
ODC, n=153,182; PER, n=4,659; END, n=3,637; FBR, n=2,403 and SMCs, SMC,
n=709.See Table1for additional cluster name abbreviations. lllustrations were

created with Biorender.com. EX, excitatory neurons; INH, inhibitory neurons;
MG, microglia; ASC, astrocytes; ODC, oligodendrocytes; PER, pericytes; END,
endothelial cells; FBR, fibroblasts; SMCs, smooth muscle cells.

geneticform of AD, due to the vastly increased risk from triplication of
APPon chromosome 21 (chr21), provides opportunities for compara-
tive analyses withsAD and to further our understanding of AD genetics.
Our analyses uncovered shared and distinct transcriptomic changesin
DSAD and sAD and identified relationships between genetic risk and
altered transcriptomic signatures.

We also performed ST in 5xFAD mice, an amyloid model of AD, at
four time points to facilitate cross-species comparisons. snRNA-seq
studies in AD mouse models have found glial disease-associated cell
states'®"’; however, it has been challenging to robustly identify their
human counterparts. Although mouse models offer advantages for
studying disease, AD clinical trial failures of drugs successful in mice
raise questions about the translatability of mouse findings. Trans-
lational and druggable targets may be nominated via cross-species
integrative approaches, as demonstrated by our previous work?’?.,
We paired our ST experiments with fluorescent amyloid imaging to
identify cross-species amyloid-proximal gene expression changes.
Together, our multifaceted experimental and analytical approaches
illuminate spatially restricted and cell-type-specific transcriptomic
changes across AD subtypes and species.

Results

ST and cellular transcriptomics of AD

We performed aspatially resolved cross-species gene expression study
of AD by generating ST data (10x Genomics Visium) from postmortem
human prefrontal cortex (FCX; n =10 cognitively healthy controls,
n=9early-stage AD, n =10 late-stage AD, n =10 DSAD) and 5xFAD and
wild-type (WT) mouse brains (n = 8-12 per group, 4-12 months; Fig.1a-c
and Supplementary Fig. 1). Unbiased clustering analysis* identified
nine clustersin our human dataset—three white matter (WM) clusters
and six gray matter (GM) clusters encompassing the cortical layers—and
15 brain-region-specific clusters in our mouse dataset. We annotated
these clusters based on known marker gene expression, tissue locali-
zation and unbiased cluster marker gene detection (Supplementary
Figs.2-4, Table 1and Supplementary Tables 3 and 4).

We also performed snRNA-seq” (Parse Biosciences) in cognitively
healthy controls (n=27FCXand n =27 PCC) and DSAD (n=21FCXand
n=21PCC, 55individuals total; Supplementary Table 5). The PCC and
FCX may represent early and late AD changes, respectively®. We used
SCANVI»* for reference-based integration of this dataset with three
previous AD studies’” (FCX; total n = 27 cognitively healthy controls,
n=23early-stage AD and n = 48 late-stage AD) for a total of 585,042
nuclei after quality control (Fig. 1d and Supplementary Fig. 1). Clus-
tering analysis identified all major brain cell types, including rare vas-
cular populations” (Fig. 1e), and their marker genes provided further
context for their transcriptomic identities (Supplementary Fig.1and
Supplementary Table 6; Methods). Differential abundance analysis®
revealed widespread shiftsin cell state composition, especiallyamong
microglia, astrocytes and vascular cells,encompassing both selectively
vulnerable and disease-reactive states (Supplementary Fig. 6 and
Supplementary Note; Methods).

Table 1| Abbreviations for spatial and snRNA-seq cluster

names

Cluster Abbreviation Dataset
Cortical deep layers Ctx (deep layers) Mouse ST
Cortical upper layers Ctx (upper layers) Mouse ST
Olfactory cortex Ctx (olfactory) Mouse ST
Hippocampus pyramidal Hippocampus (pyr.) Mouse ST
layer
Hypothalamus/amygdala Hypothal./amygdala Mouse ST
White matter (cerebral WM (c. peduncle) Mouse ST

peduncle)

Excitatory neuron EX Human snRNA-seq
Inhibitory neuron INH Human snRNA-seq
Astrocyte ASC Human snRNA-seq
Microglia MG Human snRNA-seq
Oligodendrocyte oDC Human snRNA-seq
Oligodendrocyte precursor ~ OPC Human snRNA-seq
cell

Arteriole endothelial cell Arterial Human snRNA-seq
Capillary endothelial cell Capillary Human snRNA-seq
Transport pericyte T-pericyte Human snRNA-seq
Extracellular matrix pericyte  M-pericyte Human snRNA-seq
Smooth muscle cell SMC Human snRNA-seq
Perivascular fibroblast P. fibro. Human snRNA-seq
Meningeal fibroblast M. fibro. Human snRNA-seq

Regional and cell-type-specific gene expression changes

Toidentify disease-associated gene expression changes, we performed
differential expression (DE) analysis in each disease group compared
to controls for our human ST and snRNA-seq datasets (Supplemen-
tary Figs. 7-12 and Supplementary Tables 7-12). Trisomy 21 suggests
overexpression of chr21 genes in our DSAD samples, so we examined
differentially expressed genes (DEGs) by chromosome. We found chr21
gene overexpression was dependent on region or cell type (adjusted
P<0.05; Fig.2a,b, Extended Data Fig.1and Supplementary Fig. 13). For
example, APPis upregulated in DSAD samples but interestingly is not
significantly different from control samplesinspatial cluster L3/L4. Our
analysisidentified substantial downregulation of genesin cluster L3/L4
across diagnoses, which may reflect preferential pathology accumula-
tioninL3 (refs.29-31). Layers L3/L4 are central to cognitive processes
and known for their dense synaptic connections; these DEGs may reflect
the molecular responses to pathological changesimpacting cognition.
Deconvolution of the spatial DEGs using the snRNA-seq dataset showed
that many genes upregulated across all the spatial regions were from
glialand vascular cells (Figs. 2c,d and Supplementary Note; Methods).
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Wealso found high correlations (R > 0.5) of DE effect sizes between
diagnoses in most spatial clusters and modest correlations (R>0.2)
inmost snRNA-seq clusters (Fig. 2e,fand Supplementary Figs. 14-16).
These trends were stronger in GM clusters compared to WM clus-
ters, consistent with the snRNA-seq data, where the correlations were
stronger in neuronal versus glial clusters. Gene ontology (GO) term
enrichment of the shared DEGs revealed region-specific enrichment
of AD-relevant biological pathways, such as upregulation of genes
related to long-term potentiation in L3-L5 and downregulation of
those related to amyloid fibril formationin L3/L4 and L3-L5 (Fig. 2g,h
and Supplementary Table 13). Similarly, we compared human ST DE
effect sizes to 5XFAD versus WT DEGs, revealing the 5xFAD model
recapitulates some clinical AD changes (Supplementary Figs. 17-22,
Supplementary Tables 14-17 and Supplementary Note).

System-level analysis of spatial gene expression programs

We performed high-dimensional weighted gene co-expression network
analysis (hdWGCNA)**in our ST dataset within each cortical layer clus-
terand WM, yielding 166 gene modules from seven networks (Fig. 3a).
Hierarchical clustering of these modules defined 15 cortex-wide
‘meta-modules’ based on similarity in expression patterns (module
eigengenes (MEs)) and their constituent gene sets (Fig. 3a, Extended
DataFig.2, SupplementaryFig.23 and Supplementary Table 18; Meth-
ods). Weinterrogated system-level differences between disease groups
and controls with differential ME (DME) analysis (Fig. 3a, circular heat-
map, and Supplementary Table 19; Methods). Comparing DME effect
sizesacross diagnoses, we found that many DSAD changesreflect those
insAD, as well as modules uniquely regulated in each group (Fig. 3b,c
and Extended Data Fig. 3). Early-stage AD had several modules exclu-
sively downregulated in the WM and L3/L4 networks (Fig. 3c), and path-
way enrichment associated these modules with neurotransmission,
neurodevelopment and amyloid-f formation (Extended Data Fig. 3).
Alternatively, most modules specifically upregulatedin late-stage AD
originated from the L6b network, while modules specifically upregu-
lated in DSAD largely came from the L1and L3/L4 networks.

We next sought to compare disease subtypes in the broader 15
meta-modules. These meta-modules were enriched for genes involved
inmyelination (M1) and chemical synaptic transmission (M3, M4, M7,
M10 and M13), as well as previously implicated processes like gluta-
mate signaling (M6), inflammatory response (M11) and amyloid fibril
formation (M14; Fig. 3d and Supplementary Table 20). DME analysis
of these meta-modules revealed that M6, containing hub genes such
as APP, SCN2A and CPE, is upregulated in L1in all diagnoses (Fig. 3e).
While L1is less densely populated with neurons than other cortical
layers, M6 is expressed primarily inneurons, indicating that processes
like APP metabolism, macroautophagy and RNA splicing are alteredin
AD L1 neurons. Alternatively, M11 is expressed in non-neuronal cells
and upregulated across cortical upper-layer clusters. M11 contains
genes associated with immune response and neuronal death, and its

hub genes include complement pathway genes (CIQB and C3) and
disease-associated astrocyte genes™” (SERPINA3, VIM and CD44). We
inspected these modules in the mouse ST dataset, revealing that M1,
M6 and M11 expression levels were correlated with age only in 5XFAD
mice, therefore representing changes associated with disease progres-
sion and amyloid accumulation (Fig. 3f and Supplementary Fig. 24).
Module preservation analysis® showed that almost all meta-modules
were preserved in the mouse dataset (Fig. 3g, Z-summary preserva-
tion > 2), although M1, M6 and M11 were moderately to weakly pre-
served (Z-summary preservation <10).

Inflammatory signature correlated with AD genetic risk
We also performed genetic enrichment analyses with single-cell dis-
ease relevance scores (scDRS)* to investigate cellular and regional
enrichmentfor ADrisk genes and to identify links between disease risk
signatures with co-expression modules (Extended Data Fig. 4 and Sup-
plementary Figs. 25-29; Methods). We found significant associations
with AD geneticriskinclusters L1,L3/L4 and WMin DSAD (Monte Carlo
test FDR < 0.05; Fig. 3h). ST spots contain multiple cells, and previous
studies show enrichment of AD genetic risk exclusively in myeloid
cells’. The signal may be obscured by neuronal and oligodendrocytic
signatures in sAD samples. 5XFAD mice displayed increasing AD risk
scores with age, withsignificant region-level associations at 12 months
for several regions, including deep cortical layers and WM (Fig. 3i).
Furthermore, we found significant cluster-level associations for micro-
gliaclusters MG1and MG2 across all four snRNA-seq datasets (Fig. 3j).
We next correlated meta-module expression and AD risk scoresin
each cluster with a significant scDRS group-level association (Fig. 3k
and Extended Data Fig. 5). While these correlations were modest, in
the human ST dataset, we found the strongest correlations in the L3/L4
cluster with M13, M10, M7 and M11in DSAD (PearsonR > 0.2). Further-
more, we found that M11 was correlated with AD genetic risk in 5XFAD
mice, increasing in strength with age. In the snRNA-seq datasets, M11
was highly expressed in microgliaand correlated with AD geneticrisk
across all datasets and disease subtypes, with astronger correlationin
activated microglia cluster MG2 (mean Pearson R = 0.342) compared
to MG1 (mean Pearson R = 0.284). Finally, several meta-module mem-
ber genes are associated with AD genetic risk through genome-wide
association studies (GWAS)*¥, such as BINI in M1, APP and APOE in
M6 and clusterin (CLU) and ADAMTSIin M11.

Transcriptomic sex differences among subtypes of AD

Previous studies have described sex differences in AD clinical manifes-
tations, risk factors and gene expression®***>. Here we performed DE
analysis to investigate sex differences between DSAD and sAD using
our ST dataset (Supplementary Tables 21-23; Methods). We found
transcriptome-wide differences, with broad upregulation of genes
in females compared to males across the spatial clusters and on all
chromosomes (Fig. 4a-cand Supplementary Fig.30). Deconvolution

Fig.2|Altered gene expression signatures among subtypes of AD.

a, Heatmap colored by effect size from the DSAD versus control differential
gene expression analysis, with genes stratified by chromosome and by spatial
region. Statistically significant (FDR < 0.05) genes with an absolute average
log,(FC) = 0.25in at least one region are shown. b, Stacked bar chart showing
the number of DSAD versus control DEGs in each spatial region stratified

by chromosome. ¢, Heatmap showing the gene expression values in the
snRNA-seq dataset of spatial DEGs shared between DSAD and late-stage AD.
d, Deconvolution of spatial DEGs using snRNA-seq cluster marker genes. Bar
charts showing the number of DEGs up or down in disease for each spatial
cluster are shown on the top and bottom, respectively. Proportional bar
charts in the middle show the proportion of spatial DEGs that are also cluster
marker genes in each of the snRNA-seq clusters. Spatial DEGs that are not in the
snRNA-seq marker genes are shown in gray. e, Comparison of DE effect sizes
from early-stage AD versus control and DSAD versus control. Genes that were

statistically significant (adjusted P < 0.05) in either comparison were included
inthis analysis. Genes are colored blue if the direction is consistent, yellow if
inconsistent and gray if the absolute effect sizes are smaller than 0.05. Black
linerepresents alinear regression with a 95% confidence interval around the
mean shown in gray. Pearson correlation coefficients are shown in the upper
left corner of each panel. f, Comparison of DE effect sizes from late-stage AD
versus control and DSAD versus control, layout asin e. g,h, Selected pathway
enrichment results from DEGs that were upregulated (g) or downregulated (h)
inboth late-stage AD and DSAD compared to controls. i,j, Selected pathway
enrichment results from DEGs that were upregulated (i) or downregulated (j) in
late-stage AD exclusively. kI, Selected pathway enrichment results from DEGs
that were upregulated (k) or downregulated (I) in DSAD exclusively. One-sided
Fisher’s exact test was used for enrichment analysis. VEGF, vascular endothelial
growth factor; NMDA, N-methyl-D-aspartate; NK, natural killer.
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Fig.3|System-level analysis of spatial gene expression programs.

a, Dendrogram shows 166 co-expression modules grouped into 15 meta-modules.
Network plot represents the consensus co-expression network; each dot is a

gene colored by meta-module assignment. Heatmap shows effect sizes from
DME testing. Triangular heatmaps show the distance of gene sets and expression
between modules (left, Jaccard; right, odds ratio). b, Comparison of effect sizes
from DME testing across disease groups. Black lines linear regression with a 95%
confidence interval around the meanin gray. ¢, Lineplots showing differentially
expressed modules specific to disease groups. Top, downregulated modules.
Bottom, upregulated modules. d, Selected pathway enrichment results for each
meta-module. One-sided Fisher’s exact test was used for enrichment analysis.

e, Heatmaps of meta-module DMEs in each disease group compared to controls.
Xindicates alack of statistical significance. f, Violin plots showing MEs of selected

meta-modules in mouse ST, split by age, with black line indicating the median
ME. g, Lollipop plot showing module preservation analysis of the meta-modules
projected into the 5XFAD mouse dataset. Z-summary preservation > 10, highly
preserved; 10 > Z-summary preservation > 2, moderately preserved and 2 > Z-
summary preservation, not preserved. h, st-DRS for AD in human ST clusters.
Black outlines on the dots denote a significant group-level association (Monte
Carlo test false discovery rate (FDR) < 0.05).1, st-DRS for AD computed in mouse
ST clusters. Feature plots show the st-DRS scores for representative samples in
WT and 5xFAD. j, Single-cell disease relevance scores for AD in microgliain the
snRNA-seq dataset, split by dataset and disease status. k, Dot plots show the
percentage of ST spots in each group as the size and the correlation of the MEs
and the scDRS AD enrichment as the color. mo, month.
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analysis showed that many genes upregulated in females were glial and
vascular, while more of those upregulated in males were neuronal or
oligodendrocytic (Fig. 4d and Supplementary Fig. 31). GO enrichment
revealed that genes involved in inflammation, oxidative stress and
glucose metabolismare upregulated in females independent of abrain
region, whereas male DEGs are related to alternative splicing, chromatin
organization and cytoskeletal organization and transport (Fig. 4e,f
and Supplementary Table 24). We found that microglial activation was
enriched specificallyinL6b and WMin females, but amyloid-3-related
processes were enriched inboth female- and male-specific DEGs. This
enrichmentwasrestricted toL3-L5in males, indicating regional speci-
ficity of transcriptomic sex differences related to amyloid processing.
Geneset overlap analysis demonstrated that many of the DEGs with the
largest effect sizes were shared across multiple regions (Fig. 4g). CIQB
(M11) isupregulated in DSAD femalesin all the spatial regions, with the
highest effect size inthe WM (average log,(fold change (FC)) = 0.969),
and we validated this at the protein level using immunofluorescence
(Figs. 4h-j; two-sided ¢ test P value = 0.037). We also performed
sex-based DE analysis within the other diagnoses in the human and
mouse ST datasets and the snRNA-seq dataset, revealing additional
sex-specific signatures of disease (Supplementary Figs. 30, 32-45and
Supplementary Tables 25-31).

To investigate system-level sex-related transcriptomic changes
in AD, we performed DME analysis between females and malesineach
disease group (Figs. 4k,I). In cluster L1, M11 was upregulated in males
in early-stage AD but upregulated in females for late-stage AD and
DSAD, revealing stronger neuroinflammatory signatures in females
with high pathological load. Many of the top region-specific modules
in sAD were from the L1 network, yet the direction of effect switched
between early and late stages (Fig. 41). For example, modules L1-M1
and L1-M8 were the top female modules in late-stage AD and among
the top male modules in early-stage AD, indicating key temporal dif-
ferences in disease-related gene expression changes between sexes.
In general, more modules were upregulated in late-stage AD females
versus morein early-stage AD males. We also compared the DME effect
sizes between the sex DMEs and the diagnosis DMEs (Fig. 4m), and
found many modules not DE between control and disease showed sex
differences.

Imaging mass cytometry (IMC) reveals protein expression
changes

We next used IMC for multiplexed imaging of 23 proteins, including
cell-type markers, proteins encoded by genes of interest from our tran-
scriptomic analyses and proteins of interest from an AD proteomic
study** (Fig. 5a-c and Supplementary Table 1). We analyzed spatial pro-
tein expression patternsin FCX samples from our ST cohort (post-QC:
n=2cognitively normal controls, n = 6 late-stage AD and n = 6 DSAD),
and clustering revealed 11 populations (Fig. 5d; Methods). We recov-
ered proteomic profiles for astrocytes (GFAP* and S100b*), neurons
(microtubule-associated protein 2 (Map2*) and NeuN"), microglia

(Ibal’) and populations enriched in extracellular matrix proteins or
phospho-tau (Figs. Se,f).

We compared proteinabundancesbetweendisease groupsinthese
cell populations (Figs. 5g-1 and Supplementary Table 32; Methods).
Amyloid-f and phospho-tau significantly increased in AD neurons,
as expected, but Map2 decreased, indicative of neurodegeneration
(Fig. 5g). DSAD neurons demonstrated elevated phospho-tau burden
compared to late-stage AD, and one astrocyte cluster was marked by
high phospho-tau, likely engulfing these phospho-tau-bearing neurons
and indicating increased tau pathology in DSAD (Fig. 5j). Cystatin C
(CST3), known to colocalize with amyloid, was significantly changed
in microglia and astrocytes from late-stage AD and DSAD (Fig. 5i). In
our ST data, CST3 was upregulated in both groups in spatial clusters
L3-L5 and L5/L6. We also found a significant upregulation of CLU in
both microglia and astrocyte subpopulations with increased CD44
expression in both late-stage AD and DSAD (Figs. 5j,k). CD44 and CLU
are hub genes of meta-module M11, which we found upregulated in
both 5XFAD and clinical AD samples, demonstrating coregulation at
both gene and protein levels.

Integrated analysis reveals dysregulated cell signaling

We analyzed cell-cell communication (CCC) in disease by predicting
spatial coordinates of each snRNA-seq cell with CellTrek* (Extended
DataFig. 6, Supplementary Figs. 46 and 47 and Supplementary Note)
and inferring CCC using CellChat*® after stratifying snRNA-seq popula-
tions by upper cortical, lower cortical or WM (Fig. 6a; Methods). This
revealed changesinthe CCClandscape, illuminating dysregulated path-
ways based on relative information flow between DSAD and controls
(Fig. 6b, Extended Data Fig. 7, Supplementary Figs 48-50 and Supple-
mentary Table 33). We focused on the following three signaling path-
ways: NECTIN, ANGTPL and CD99. NECTIN signaling is downregulated
in DSAD (Figs. 6¢-f). Nectins are involved in synapse maintenance**’,
and NECTIN2 has been implicated in AD genetic risk’>*'. We report
diminished neuronal NECTIN signaling (Figs. 6¢,d) and, using immu-
nofluorescence, Nectin2 downregulation in neurons from late-stage
AD and DSAD (Fig. 6g,h; two-way ¢ test, P < 0.05). In control samples,
ANGPTL signaling features astrocyte clusters in lower cortical layers
and WM (ASC1and ASC3, respectively) communicating with neurons,
pericytes and oligodendrocyte precursor cells (OPCs) with the ligand
ANGPTL4 (Figs. 6i-1). However, in DSAD, additional astrocytes, such as
ASC1and ASC3in the cortical upper layers, showed significant inter-
actions mediated by ANGPTL4. Increased ANGPTL4 expression has
been previously observed in astrocytes from patients with AD with
vascular changes®, and co-immunofluorescence of ANGPTL4 and
GFAP confirmed astrocytic ANGPTL4 upregulationin DSAD (two-way ¢
test, P<0.05; Fig. 6m,n). We note aloss of astrocyte-inhibitory neuron
ANGPTL communication withthe disease,and ANGPTL4isahub gene
of meta-module M11. Furthermore, CD99is also ahub gene of M11, but
CD99signalingis downregulated in DSAD, confirmed by immunofluo-
rescence (Extended Data Fig. 8).

Fig.4|Sex-related transcriptomic differences in subtypes of AD. a, Effect sizes
from DSAD female versus male differential gene expression, genes stratified by
chromosome and spatial region. Significant (FDR < 0.05) genes with absolute
average log,(FC) = 0.25in at least one region are shown. b, Stacked bar chart
showing the number of DSAD female versus male DEGs by spatial region stratified
by chromosome. ¢, Volcano plots showing the effect size and significance level
from the DSAD female versus male DE (MAST*, two-sided test). d, Number of
DEGs upregulated in females or upregulated in males for each cluster on top
andbottom, respectively. Proportional bar charts show the proportion of DEGs
that are snRNA-seq marker genes. e,f, Selected pathway enrichment analysis
from DEGs that were upregulated in females (e) or males (f). One-sided Fisher’s
exact test was used for enrichment analysis. g, Overlap between sets of DEGs in
spatial clusters. h, Representative images from the prefrontal cortex (PFC) of
age-matched male and female patients with DSAD stained for C1QB (red). Dashed

line visually separates GM and WM. i, Bar graph representing mean fluorescence
intensity (relative) in x20 images of C1QB (n = 5 brain sections from n = 3 female
DSAD cases and n =5brain sections from n =3 male cases) in the WM. Pvalue
from the two-sided t test is shown. Error bar shows one s.d. from the mean. j, Top,
spatial feature plots showing CIQBexpression in representative female (left) and
male (right) DSAD samples. Bottom, samples colored by region annotations.

k, Heatmap showing the meta-module DSAD female versus male DME results

for each cortical layer and WM. X indicates a lack of significance.1, Volcano plot
showing the effect size and significance level from DSAD female versus male DME
analysis (two-sided Wilcoxon rank-sum test). m, Comparison of DME effect sizes
between sex and diagnosis tests. Black line represents alinear regression with
a95% confidence interval around the mean shown in gray. Pearson correlation
coefficients are shown in the upper left corner of each panel. Number of modules
significantin either analysis in each quadrantis noted. F, female; M, male.
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Fig. 5| IMCreveals single-cell spatial proteomic changesin AD. a, IMC was
performed in postmortem human cortical tissue (n = 2 control, n = 6 late-stage
AD and n = 6 DSAD) using the Hyperion Imaging System (Standard BioTools).
Illustrations were created with Biorender.com. b, Representative IMC images
from control, late-stage AD and DSAD samples with select targets from the panel.
¢, Images as in b at higher magnification and focused around amyloid plaques.

d, UMAP plot showing the unbiased clustering of segmented nuclei from the
IMC dataset based on their protein intensity values. Each dot represents a
segmented nucleus, colored by cluster assignment. e, Stacked bar plots showing
the proportion of segmented nuclei assigned to each cluster stratified by disease

groups. f, Heatmap showing the relative protein intensity of each proteinin

each IMC cluster. Dendrograms depict hierarchical clustering results based on
these relative intensities. g-1, Violin plots showing the distribution of protein
intensities for selected proteins in IMC clusters Neuron (AB+, MAP2+) (g), Neuron
(NeuN+, MAP2+) (h), ASC (GFAP+) (i), ASC (GFAP+, Tau+) (j), MG (CD44+) (k),

MG (CD68+) (1), stratified by disease groups. For box and whisker plots, box
boundaries and lines correspond to the IQR and median, respectively. Whiskers
extend to the lowest or highest data points that are no further than 1.5 times the
IQR from the box boundaries. Two-sided Wilcoxon rank-sum test results are
overlaid on each plot. NS, P> 0.05; **P < 0.01; **P < 0.001, ***P< 0.0001.IQR,
interquartile range; NS, not significant; ECM, extracellular matrix.
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Fig. 6 | Altered cell-cell communication signaling networks in DSAD.

a, Schematic representation of CCC analysis. b, Bar plot showing signaling
pathways with significant differences between DSAD and controls, ranked
based on their information flow (sum of communication probability among all
pairs of cell populations in the network). c,d, Network plot showing the CCC
signaling strength between different cell populationsin controls (c) and DSAD
(d) for NECTIN signaling. e, Spatial feature plots of the snRNA-seq in predicted
spatial coordinates for one control sample (left) and one DSAD sample (right) for
select NECTIN signaling genes. f, Dot plot showing gene expression of NECTIN
signaling genes with significant CCCinteractions in control (top) and DSAD
(bottom). g, Representative double immunofluorescence images for Nectin2
(green), Map2 (yellow) and DAPI (blue) from postmortem human brain tissue
(PFC) of control, late-stage AD and DSAD cases. h, Bar plot representing results
of NECTIN colocalization analysis from x60 images (n = 5 cognitively healthy
control, n =4 late-stage AD and n = 4 DSAD cases) using the JACoP Plugin

fromImage) and Manders' correlation coefficient. Data are presented as

the average of three different fields of view (FOVs) per sample. Pvalues

from two-way ¢ tests are shown. Error bar shows one s.d. from the mean.

ij, Network plotasincanddin control (i) and DSAD (j) for ANGPTL signaling.

k, Spatial feature plots as in e for one control sample (top) and one DSAD sample
(bottom) for the ANGPTL pathway. I, Dot plot showing gene expression of
ANGPTL signaling genes with significant CCCinteractions in control (top) and
DSAD (bottom). m, Representative double immunofluorescence images at x10
and x60 magnification for ANGPTL4 (green), GFAP (red) and DAPI (blue) from
postmortem human brain tissue (PFC) of control, late-stage AD and DSAD cases.
n, Bar plot representing results of ANGPTL colocalization analysis from x60
images (n =3 cognitively healthy control, n = 3 late-stage AD and n =4 DSAD
cases) using the JACoP Plugin from Image) and Manders' correlation coefficient.
Data are presented as the average of three different FOVs per sample. Pvalues
from two-way ¢ tests are shown. Error bar shows 1s.d. from the mean.

Conformation-specific amyloid gene expression signatures
Deep characterization of amyloid pathology and associated molecu-
lar changes is critical to understanding AD pathogenesis. Therefore,
we stained human and mouse ST tissues with Amylo-Glo for dense
amyloid-f plaques and the Anti-Amyloid Fibrils OC Antibody (OC) for
diffuse amyloid fibrils (Fig. 7a,b). In the human dataset, we found that
amyloid pathology distribution was consistent with neuropathological
plaque staging (Fig. 7c), and we observed increasing amyloid deposi-
tionin 5xFAD with age across cortical and subcortical regions (Supple-
mentary Fig. 51). By integrating amyloid imaging and transcriptomic
data, we identified amyloid hotspots and 65 plaque-associated and
215 fibril-associated genes proximal to these hotspots in the human
dataset (Fig. 7d,f, Supplementary Figs. 52-55 and Supplementary
Table 34). Genes associated with plaques and fibrils included diagnosis
DEGs and M11 hub genes, CLU and VIM, and are enriched in processes
includingintermediate filament assembly, long-term potentiation and
blood-brainbarrier transport (Fisher’s exact test P=1.8 x 10™5, odds
ratio =1248.92; Fig. 7g,h and Supplementary Table 35). Fibril-specific
genes are related to synaptic function and hemopoiesis (Fig. 7i).

In the mouse dataset, we identified amyloid-associated genes
withineachspatial cluster, revealing 1,829 plaque-associated and 1,759
fibril-associated genes, with the largest overlaps in the hippocampus
pyramidal and upper cortical layer clusters (Fig. 7f and Supplementary
Table 36). GO enrichment linked these gene sets to inflammatory and
neurodegenerative processes (Fig. 7j and Supplementary Table 37),
and they overlapped with previously reported gene signatures iden-
tified in AD mouse models'®'>**>* Fibrillar-specific genes included
Itgb2, Cd53 and 1133, suggesting unique immune signatures preceding
plaque formation. We found modest yet significant overlaps between
human and mouse amyloid-associated genes, particularly among
plaque-associated, and microglial genes were more common in mice
(Fig. 7k). Shared fibrillar-associated genesin the cortex include NEFH,
NEFM, ALDOC and MAFB. Notably, meta-module M11’s hub genes VIM
and CLUwere among the shared amyloid-associated genes, and M11's

expression weakly correlated with amyloid hotspots (max Pearson cor-
relation R =0.131inL5/L6 early-stage AD, R = 0.187 in ctx deep layersin
6 month 5xFAD), implicatingitin cross-species amyloid-associated pro-
cesses (Supplementary Fig. 56). Furthermore, co-expression network
analysisinthe 5xFAD ST dataset uncovered an amyloid-associated gene
module (SM6), which shared similar genes and expression patterns
withapreviously identified set of ‘plaque-induced’ genes> (Figs. 7I,m,
Extended Data Figs. 9 and 10, Supplementary Fig. 57-59 and Supple-
mentary Table 38).

Discussion

Spatiotemporal pathological progression coupled with cellular dys-
regulationare focal points of AD. Our ST and single-nucleus transcrip-
tomic analysis of DSAD, sAD and 5xFAD mice reveals insights into
key disease processes (Fig. 7n). We identified regional DEGs shared
betweensAD and DSAD, contextualizing their shared genetic, clinical
and biomarker features'®*>*°, Remarkably, we identified changes in
L3/L4 across all diagnoses, coinciding with L3-preferential amyloid
depositionin AD; these changes may underlie this regional vulnerabil-
ity. Weidentified sex-related differences in DSAD, revealingincreased
expression of inflammatory genes within females and regulatory
genes in males. However, the number of replicates used for these
sex comparisonsis alimitation of this study. DS samples without AD
also would be valuable controls but are extremely rare due to the
high prevalence of AD in the aged DS population® and not included
in this study.

Integrated system-level analyses of ST and snRNA-seq enhanced
our understanding of the AD transcriptome among subtypes. CCC
analysisidentified signaling pathway changes. Dysregulated ANGPTL
and CD99 signaling highlight astrocyte modulation of brain vascular
integrity in AD and pinpoint downstream targets of astrocyte pheno-
type changes. Multiscale network analysis* identified a diverse array
of gene modules, exposing AD spatiotemporal gene expression pat-
terns. We found significant downregulation of L3/L4 and WM modules

Fig.7| Amyloid-associated gene expression signatures. a,b, Representative
fluorescent images from DSAD (a) and 12-month 5xFAD (b) stained with
Amylo-Glo and OC to mark dense amyloid plaques and diffuse amyloid fibrils,
respectively. ST data colored by cluster, amyloid quantification and hotspot
analysis are below theimages. ¢, Box and whisker plots showing the distribution
of amyloid quantifications in the human ST dataset, stratifying samples by
neuropathological plaque staging. Box boundaries and lines correspond to

the IQR and median, respectively. Whiskers extend to the lowest or highest
datapoints that are no further than 1.5 times the IQR from the box boundaries.
Number of samples per stage—none, n = 8; stage A, n = 3; stage B, n =7 and stage
C,n=14.Two-sided Wilcoxon test was used for pairwise comparisons.d,e,
Amyloid hotspot results (Getis-Ord Gi*) for human (d) and mouse (e). f, Number
of amyloid-associated genes from Amylo-Glo, shared and OC for mouse clusters.
Euler diagram shows the overlap of Amylo-Glo- and OC-associated genesin the

human dataset. g, Number of Amylo-Glo- and OC-associated genes that overlap
with disease DEGs. h,i, Selected pathway enrichment results from amyloid-
associated genes that were shared between Amylo-Glo and OC (h) and OC-
specific (i) in the human ST dataset. j, Selected pathway enrichment results from
amyloid-associated genes shared between Amylo-Glo and OCin the mouse ST
dataset. One-sided Fisher’s exact test was used for enrichment tests. k, Heatmap
showing gene set overlap results of mouse and human amyloid-associated genes,
aswell as with other gene sets (DAA'’, DAM'®, DOL** and PIGs>). NS, P> 0.05;
*P<0.05;*P<0.01;**P<0.001, ***P < 0.0001.1, Expression of SM6 and PIGs
modules in representative mouse ST samples. m, Euler plot showing overlap of
the SM6 and PIGs>. n, Overview of the experiments, data analysis and selected
conclusions of this entire study. lllustrations were created with Biorender.com.
DAA, disease-associated astrocytes; DAM, disease-associated microglia; DOL,
disease-associated oligodendrocytes; BBB, blood-brain barrier.
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specifically inearly-stage AD, indicating dynamic shiftsin gene expres-
sionthat may have a pivotal rolein AD progression. Glialmeta-module
M11is upregulated in the cortical upper layers and contains DEGs
shared between sAD and DSAD. We also found evidence of an associa-
tion between AD genetic risk and M11 by comparing risk scores with
M11across data modalities and species.

Weintegrated amyloid imaging and ST toidentify transcriptomic
signatures proximal to dense amyloid plaques and diffuse fibrils, yield-
ing cross-species amyloid-associated gene sets. We acknowledge that
the present resolution of ST (55 pum) may have limited our findings—
sample differences between the human and mouse datasets likely
also contributed to the differences in these gene sets. However, we
identified M11 hub genes in the amyloid-associated genes, observing
M1l expression at regions with amyloid depositionin miceand humans,
altogether emphasizing the critical role of M11's associated biological
processes and genes in AD pathophysiology.

This study offers an exploration into the spatiotemporal dynam-
ics of AD gene expression using ST and snRNA-seq. Our analysis high-
lights specific cell typesin AD, describes disease-associated changesin
human cortical niches and mouse brain regions, identifies key networks
coordinating spatiotemporal and cellular changes and links these
transcriptomic signatures to AD genetic risk and amyloid pathology
accumulation. Together, this work adds new dimensions to our under-
standing of AD, emphasizing the dynamic shifts in gene expression
and the critical involvement of both neuronal and glial components
indisease progression, and highlights the importance of studying AD
subtypes like DSAD.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
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Methods

Postmortem human brain tissue

Human brain tissue fromthe prefrontal cortex and posterior cingulate
cortex (PCC) was obtained from the University of California, Irvine’s
(UCI) Alzheimer’s Disease Research Center and the National Insti-
tutes of Health NeuroBioBank under UCI’s Institutional Review Board
(IRB). Additional postmortem human brain tissue originating from
other studies®’ was obtained under the IRB of Rush University Medical
Center. Informed consent was obtained from all human participants.
Samples were assigned to groups based on both neurofibrillary tangle
and plaque staging, in addition to clinical diagnoses. Samples were
also selected based on several covariates, including age, sex, race,
postmortem interval (PMI), RNA integrity number (RIN) and disease
comorbidity. RIN values were obtained by isolating total RNA with the
Zymo Direct-zol RNAIsolationKit and running on the Agilent TapeSta-
tion 4200. Sample information is given in Supplementary Table 1.

Mouse brain tissue

Allmouse work was approved by the Institutional Animal Care and Use
Committee at UCI. 5xFAD hemizygous (C57BL/6J;Jackson Laboratory,
034848) and WT (Jackson Laboratory, 000664) littermates were bred
and housed until killed at 4, 6, 8 and 12 months. Sample information s
givenin Supplementary Table 2. For genotyping, we used the following
primers (for PSENI): 5’-AAT AGA GAA CGG CAG GAG CA-3’ (forward)
and 5-GCCATG AGG GCA CTA ATC AT-3’ (reverse). Mice were killed by
carbon dioxide inhalation. After PBS transcardiac perfusion, one brain
hemisphere was flash-frozeninisopentane chilled with dryice for RNA
analyses, while the other hemisphere was fixed in 4% paraformaldehyde
forimmunohistochemistry.

snRNA-seq

In total, 50 mg of fresh-frozen postmortem human brain tissue was
homogenized in Nuclei EZ Lysis buffer (NUC101-1KT; Sigma-Aldrich)
and incubated for 5 min before being passed through a 70 pm filter.
Samples were then centrifuged at 500g for 5 min at 4 °C and resus-
pended in additional lysis buffer for 5 min. After another centrifuga-
tion at 500g for 5 min at 4 °C, samples were incubated in nuclei wash
and resuspension buffer (NWR; 1x PBS, 1% BSA and 0.2 U pl™ RNase
inhibitor) for 5 min. To remove myelin contaminants, we prepared
sucrose gradients with nuclei PURE sucrose buffer and nuclei PURE
2M sucrose cushion solution from the Nuclei PURE Nuclei Isolation
Kit (NUC-201; Sigma-Aldrich), and samples were carefully overlaid and
centrifuged at13,000gfor 45 minat4 °C.Samples were thenwashedin
NWRbefore processing with the Nuclei Fixation Kit (Parse Biosciences,
SB1003). After nuclei fixation and permeabilization, samples were
cryopreserved with DMSO until the day of library preparation. We
generated single-nucleus libraries with the Whole Transcriptome Kit
(WTK, Parse Biosciences, SB2001). cDNA library quantification and
quality were assessed with a Qubit dsDNA HS Assay Kit (Invitrogen,
Q32851) and D5000 HSKit (Agilent, 5067-5592 and 5067-5593) or D1000
HSKit (Agilent, 5067-5584 and 5067-5585) for the Agilent TapeStation
4200. Libraries were sequenced using the Illumina NovaSeq 6000 S4
platform using 100 bp paired-end sequencing for asequencing depth
0f 50,000 read pairs per cell.

ST

Fresh-frozen tissue samples were sectioned on an HM525NX cryostat
(Thermo Fisher Scientific) at —15 °C for 10-um thick sections that were
immediately mounted onto 10x Genomics Visium slides. Slides were
individually stored in slide mailers (sealed airtight in a plastic bag) at
-80 °C until staining. We followed 10x Genomics Methanol Fixation,
Immunofluorescence Staining and Imaging for Visium Spatial Protocols
(Rev C), exceptafter tissue sections were fixed inmethanol and blocked,
the sections were incubated with Amylo-Glo (Biosensis, TR-300;1:100)
for20 min. Sections were thenincubated with the primary antibody OC

(1:500 for mouse and 1:200 for human; polyclonal, Millipore, AB2286)
andrespective secondary antibody (1:400; goat anti-rabbit secondary
antibody, Alexa Fluor 488 or Alexa Fluor 647, both Life Tech). Immedi-
ately afterimmunostaining, capture areas were imaged on a widefield
Nikon Ti2-E microscope at x20 magnification. ST libraries were then
generated from the tissue sections according to the 10x Genomics
Visium User Guide (Rev E). Library quantification, quality check and
sequencing were performed as previously described, but sequencing
depthwasbased onan estimated 60% tissue area coverage per sample
for 50,000 read pairs per covered spot. The individual ST spots may
contain one to ten cells per spot, as reported by 10x Genomics based
on their Visium analysis of 10-um thick mouse brain sections.

IMC

Primary antibodies were formulated carrier-free except for YKL-
40, which contained glycerol and was purified before metal conju-
gation with Amicon 10K Buffer Exchange Columns (EMD Millipore,
UFC501096). All antibody concentrations were obtained using aNan-
odrop 2000c Spectrophotometer and formulated with a final stock
concentration of 0.5 mg ml™. All antibodies were conjugated using
Standard BioTool’s (SBT, formerly Fluidigm) Maxpar X8 metal conjuga-
tion protocol with Maxpar metal labeling kits (SBT, 201300).

Fixed and cryoprotected tissue was sectioned on an HM525NX cry-
ostat (Thermo Fisher Scientific) at -15 °C for 14-um thick sections onto
Fisher Superfrost Plus slides. Slides were stored at =80 °C until staining
andsealed airtightin a plasticbag. We followed the fresh-frozen stain-
ing protocol from SBT; however, because the tissue was previously
fixed, we skipped the fixationstep. Slides were transferred ondryice to
incubate at 37 °Cfor 5 min ona PCR machine, similar to the10x Genom-
ics Visium protocol. Sections were washed in PBS three times for 5 min
before drawing a hydrophobic barrier. After the hydrophobic barrier
dried, we incubated the sections with 3% BSA in PBS with 0.2% Triton
X-100 for 45 minat room temperature. We thenincubated the sections
with the primary antibody cocktail diluted in 0.5% BSA/PBS with 0.2%
Triton X-100 overnight at 4 °C. The antibodies and dilutions used in
the primary antibody cocktail are given in Supplementary Table 29.
Sections were then washed in PBS with 0.2% Triton X-100 twice for
8 min before incubating with the iridium intercalator (SBT, 201192A;
1:100 in PBS) for 30 min at room temperature. We then washed the
sections in water twice for 5 min before allowing themto air dry before
ablation. Hyperion Imaging System (SBT) was tuned before ablation
using Hyperion Tuning Slide (SBT, 201088) for optimal instrument
performance. Ablations were performed with ablation energy of four
with a reference energy of zero in 1,000 x 1,000 pm regions of inter-
est, except for one due to unexpected consumption of Argon gas that
resultedina1,000 x 922 acquisition.

Immunofluorescence

PFA-fixed human postmortem brain tissues were sectioned at 30 pm
usingacryotome (Leica, SM2010R). Sections were then rehydrated (1x
PBS) and permeabilized using sodium citrate buffer (heated at 95 °C
for 10 min). After blocking with 3% BSA solution or serum (respective
to the antibodies), sections were incubated with primary antibodies
at 4 °C overnight (ANGPTL4 antibody (1:500; Thermo Fisher Scien-
tific, 710186), GFAP polyclonal antibody (1:500; Thermo Fisher Sci-
entific, PA3-16727), CD99 antibody (1:250; Thermo Fisher Scientific,
MA5-12287), CD99L2 antibody (1:500; Thermo Fisher Scientific, PAS-
58539), Nectin2 antibody (1:250; Thermo Fisher Scientific, PA582470),
MAP2 antibody (1:250; Thermo Fisher Scientific, PA1-10005) and C1QB
polyclonal antibody (1:250; Thermo Fisher Scientific, PA5-42554)).
Secondary antibodies were selected according to the manufacturer’s
instructionsandincubated for 2 h. Slides were imaged using Zeiss Axio
ScanZ1Slide scanner (for x10 images) and Nikon ECLIPSE Ti2 inverted
microscope (for x20/x40/x60 images). Images from three randomly
selected areas of each slice were used for analysis. For C1QB staining,
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wetried to dissect WM-enriched regions from postmortem fixed brain
samples and verified the presence of both WM and GM at a ratio of
approximately 3:1 (for most male samples) and 2:1 (for most female
samples) through visual inspection and subsequent confirmation
with MOBP staining, ensuring accurate tissue characterization. To
control for potential variations in background fluorescence between
samples, we used Image]) to quantify the average mean fluorescence
intensity of the background. We then applied background subtraction
by deducting this value from the total mean fluorescence intensity,
thereby minimizing the impact of uneven background signals on our
fluorescence measurements.

Preprocessing gene expression data

For the snRNA-seq dataset, we aligned sequencing reads to the refer-
ence transcriptome (GRCH38) and quantified gene expression using
splitpipe (Parse Biosciences) in each of the five sSnRNA-seq experiments.
We quantified and corrected the ambient RNA signal present in our
samples using Cellbender®® remove-background (v0.2.0). Heterotypic
barcode collisions were inferred in each snRNA-seq experiment using
Scrublet® (v0.2.3) with default settings. We merged the individual
snRNA-seq experimentsinto asingle AnnData (v0.8.0) object, totaling
611,999 barcodes and 29,889 genes before additional quality control
filtering. For each snRNA-seq experiment, we removed barcodesin the
95th percentile for the number of unique molecular identifiers (UMlIs)
detected, doublet score from Scrublet and percentage of mitochon-
drial reads. We also applied dataset-wide cutoffs to remove barcodes
with less than or equal to 250 UMIs, greater than or equal to 50,000
total UMIs and greater than or equal to 10% mitochondrial reads. For
one of the snRNA-seq experiments, we applied a more stringent filter
to remove cells with less than or equal to 500 UMIs and greater than
or equal to 5% mitochondrial reads. We retained 431,534 barcodes for
downstream analysis.

The10x Genomics Loupe Browser image alignment tool was used
toselect Visium ST spots thatintersected the tissue based on the fluo-
rescentimages. Sequencing reads from the human and mouse Visium
experiments were processed using the 10x Genomics Spaceranger
(v1.2.1) pipeline, with GRch38 and MM10 as the respective reference
transcriptomes. Spaceranger count was used to align sequencing
reads to the reference, quantify gene expression and perform a pre-
liminary clustering analysis for each sample. Unlike the snRNA-seq
dataset, we did not filter out additional spots based on sequencing
QC metrics; however, our mouse ST clustering analysis did reveal a
group of low-quality spots that we excluded from many downstream
analyses like DE. The UMI counts matrices and fluorescentimages for
the human and mouse samples were combined into merged Seurat®
objects for the respective species.

Initial snRNA-seq data analysis

Following QC filtering, we processed the snRNA-seq dataset using
SCANPY®*and scVI®*. The UMI counts matrix was first normalized using
thefunctionssc.pp.normalize totalandsc.ppl.loglp.Wesetup
the AnnData object to train the scVImodel using snRNA-seq as the batch
key and the following additional continuous and categorical covari-
ates—sample ID, diagnosis, brain region, age at death, percentage of
mitochondrial counts, number of UMI, PMIand RIN. We set up the scVI
model with two hidden layers, 128 nodes per layer, a 30-dimensional
latent embedding after the encoder phase and a dropout rate of 0.1. We
trained the model over 50 epochs and noted a flattened loss curve by
theend of the training procedure. Thelatent embedding learned from
the scVImodel accounts for the batch effects and additional covariates
specified in the model setup step, and we used this embedding for
Leiden clustering and uniform manifold approximation and projec-
tion (UMAP)* dimensionality reduction in SCANPY. With aresolution
parameter of 1.5, we identified 43 clusters. We inspected gene expres-
sion patternsinthese clusters for a panel of canonical central nervous

system cell-type marker genes to assign major cell-type labels to each
cluster. We also checked the distribution of QC metricsin each cluster
to identify outlier clusters. Six clusters (7, 29, 33, 35, 50 and 51) were
removed from the downstream analysis as QC outliers or due to the
presence of potential doublets. We recomputed the UMAP and Leiden
clustering (resolution =1.2) after filtering these clusters, yielding 29
clusters. Glutamatergic neuron clusters were annotated based onthe
expression of known cortical layer marker genes, and GABAergic neu-
ron clusters were annotated based on the expression of known markers
(VIP,SST, PVALB and LAMPS). At this stage, non-neuronal cell clusters
were simply labeled by their major cell types (astrocytes, microglia,
oligodendrocytes, oligodendrocyte progenitors and vascular cells).
To identify subpopulations in non-neuronal cells, we performed sub-
clustering analysis in each of the major non-neuronal cell populations
(microglia, astrocytes, oligodendrocytes and vascular cells). Each
group was isolated in its own AnnData object, and Leiden clustering
was performed (see GitHub repository for subclustering parameters).

Reprocessing publicly available single-nucleus gene
expression datasets

We obtained sequencing data from three published snRNA-seq
studies”” of AD. Sequencing data from refs. 8,9 datasets were down-
loaded from Synapse (syn18485175 and syn21670836), and the data
from ref. 7 generated by our own group was not redownloaded. We
used a uniform pipeline to process each of these datasets, with slightly
varying parametersthatare noted in our GitHub repository. This pipe-
line and the resulting AnnData objects are identical to those used in
another study from our group®, and we reiterate the main analysis
steps here. Sequencing reads were pseudoaligned to the reference
transcriptome (GRch38), and gene expression was quantified using the
count function from kallisto bustools®®. The ambient RNA signal was
corrected in UMI counts matrices for each sample using Cellbender®®
remove-background, and we used Scrublet® toidentify barcodes attrib-
uted to more than one cell. Individual samples were then merged into
one AnnData object for each of the three studies. Analogous to the
snRNA-seq data we generated in this study, we performed percentile
filtering based on the following QC metrics: doublet score, number of
UMl per cell and percentage of mitochondrial reads per cell. The down-
stream processing was performed using SCANPY®*. Gene expression
wasnormalized using the functions sc.pp.normalize totalandsc.
pp . loglp, resultinginaln(counts per million (CPM)) transformation
of the input UMI counts data. Highly variable features were identified
using sc.pp.highly variable genes, which were then scaled to
unit variance and centered at zero using sc.pp.scale. Linear dimen-
sionality reduction was performed on the scaled expression matrix
using principal component analysis (PCA) with the function sc.tl.pca.
Harmony® was used to batch-correct the PCA representation with the
function sc.external .pp.harmony integrate. A cell neighbor-
hood graph was computed based on the harmony representation using
sc.pp.neighbors, followed by Leiden*® clustering and nonlinear UMAP
dimensionality reduction with sc.tl.leiden and sc.tl.umap, respectively.
Canonical central nervous system cell-type marker genes were used to
assign coarse-grainidentities to each cluster and toidentify additional
doublet clusters that passed our previous filtering steps. We inspected
the distribution of the QC metricsin each cluster and removed outlier
clusters. After filtering additional low-quality clusters, we ran UMAP
and Leiden clustering again to result in the final processed AnnData
object for each dataset.

Differential cell state abundance testing in the snRNA-seq
datasets

Wesought totest for differential cell state abundance across conditions
within our snRNA-seq dataset using the R package miloR?® (v1.8.1).
MiloR offers a statistical framework for testing for the enrichment
or depletion of certain cell states across two conditions of interest
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(control versus disease status) using partially overlapping cellular
neighborhoods on the k-nearest neighbors (KNN) graph. For our dif-
ferential abundance analysis, we first constructed the KNN graph and
identified cellular neighborhoods using the scANVI* representation of
our snRNA-seq dataset. After constructing this cell neighborhood cell
counts matrix, anegative-binomial generalized linear model (GLM) is
fit to obtain Pvalues and FC differences for the differencesin neighbor-
hood abundances across the conditions of interest. For our analysis,
we applied this differential abundance procedure separately for the
four snRNA-seq datasets used in this study.

ST clustering analysis

In the human and mouse ST datasets, we grouped spots into biologi-
cally relevant clusters by accounting for transcriptome measure-
ments and spatial coordinates. The BayesSpace” clustering algorithm
uses a low-dimensional representation of the transcriptome with a
spatial before encouraging the assignment of neighboring spots in
the same cluster. Critically, BayesSpace produces a single unified
clustering across many different ST experiments rather than sepa-
rate clustering and annotation for each ST slide. Seurat objects were
converted to the SingleCellExperiment format using the function
as.SingleCellExperiment. Absolute and relative spatial coordinates
were stored inthe metadatacompartment of the SingleCellExperiment
objects to inform the BayesSpace model of the spatial information,
ensuring to offset each sample such that there was no overlap. Each
dataset was log-normalized, and linear dimensionality reduction was
performed with PCA using the function spatialPreprocess from the
BayesSpace R package. Harmony® batch correction was applied on the
basis of individual samples using the RunHarmony function. For the
human dataset, we ran BayesSpace clustering using the spatialCluster
functionintheBayesSpace R package, varying the g parameter (number
ofresulting clusters) from five through ten. We inspected the output of
each clustering and found that g = 9 produced results that were most
consistent with the underlying anatomy of the cortex, allowing us to
annotate clusters based on cortical layers and WM. Similarly, we ran
BayesSpace clustering on the mouse dataset varying the g parameter
between10and 20, and we selected g =15 for downstream analysis. To
inspect the tissue composition variability among the human ST sam-
ples, we calculated the normalized difference between the number of
GM and WM spotsineach sample.

Reference-based integration of snRNA-seq datasets

We performed reference-based integration of the snRNA-seq dataset
from the present study with the three published AD snRNA-seq data-
sets. Using our new snRNA-seq dataset as the reference, we projected
the three published datasets into the reference latent space using
scANVIZ, and we performed transfer learning to predict cell identi-
ties using scArches®. While scANVI shares similarities with the scVI
model that we previously used to process our snRNA-seq data, it is a
semi-supervised model that leverages cell annotations in the reference
dataset to inform the latent representation of the query dataset. We
trained the scANVI model separately for each of the query datasets
using the class scvi.model.SCANVI, training for 100 epochsineach case.
Foreach query dataset, this process resulted in alow-dimensional rep-
resentation of the transcriptomein the latent space originally learned
fromthe reference snRNA-seq dataset withthemodel .get latent
representationfunctionand predicted cellannotation labels from
the model.predict function. We merged the reference dataset with the
three query datasets, and we ran UMAP on the scANVI latent repre-
sentation to visually represent the unified dataset in two dimensions.

Cluster marker gene analysis

We performed cluster marker gene analysis for each snRNA-seq cluster
using the snRNA-seq dataset generated in this study. For this analy-
sis, we used a ‘one-versus-rest’ strategy to systematically perform

differential gene expression analysis, comparing each cluster to all the
other clusters. We used MAST* as our DE model for this test, accounting
for the sequencing batch and the number of UMI per nuclei as covari-
atesin our model. We used asimilar strategy to perform cluster marker
gene analysis in our human and mouse Visium ST datasets where we
used the biological sample ID and the number of UMI per spot as model
covariates for MAST.

Differential gene expression analysis

We systematically performed differential gene expression analysis in
each of our datasets to compare the disease conditions with controls.
For all our differential gene expression tests, we use MAST* as the
underlying model, which has shown favorable resultsinrecent bench-
marks for DE analysis in datasets with multiple sequencing batches.
For the snRNA-seq dataset generated in this study, we compared gene
expression between the DSAD and cognitively normal control groups
for each cluster and major cell type, and we performed this analysis
separately for the two brain regions profiled in this study (frontal
cortex and PCC). We used the sequencing batch, number of UMI per
nuclei, sample PMIand sample RIN as model covariates for these tests.
We used a similar strategy for the DE analysis of the previously pub-
lished snRNA-seq datasets’’ to compare late-stage AD samples with
cognitively normal controls, accounting for the study of origin and
number of UMI per nuclei as model covariates. We compared gene
expression between cognitively normal controls and the three experi-
mental groups (early-stage AD, late-stage AD and DSAD) separately
in our human ST dataset. For these comparisons, we used RIN, PMI,
number of UMI per spot, date of sequencing library preparation and
sequencing batch as model covariates. In the mouse ST dataset, we
performed differential gene expression analysis to compare gene
expression between 5xFAD and WT mice in each ST cluster, and we
stratified this analysis by each age group (4, 6, 8 and 12 months). For
the mouse analysis, we used the number of UMI per spot, sequencing
batch, date of killing and date of sequencing library preparation as
model covariates. We visualized the results of the DE tests as volcano
plots to show the statistical significance and the effect sizes for each
gene. For the human datasets, we also visualized the DE results using a
heatmap stratified by chromosome toinspect the contribution of each
chromosome to the overall set of DEGs. In the human ST datasets, we
‘deconvolved’ the spatial DEGs by their cell populations by compar-
ing each set of DEGs to the snRNA-seq marker genes. For each disease
versus control spatial DEG, we checked if it was also a marker gene
for one of the cell populations. In the case where a DEG was a marker
geneinmore than one population, we broke ties based on the highest
effect size from the marker gene test. In this analysis, we also noted
which genes were not markers of any snRNA-seq cell population. We
theninspected the proportion of the set of DEGs that were attributed
to each of the cell populations.

Within the human snRNA-seq and ST datasets, we compared the
results of the DE analyses across the different conditions within each
snRNA-seqand ST group. For these comparisons, we computed Pearson
correlations and performed linear regression on the DE effect sizes for
the set of genes that were significantly different between condition
and control for either of the analyses. We visualized these results using
scatter plots and indicated genes that were consistent or inconsistent
interms of their effect sizes across the different comparisons. We used
the EnrichR® R package (v3.1) to identify biological pathways and
processesthatareenrichedin our sets of DEGs and in sets of DEGs that
were shared across different DE tests.

Hierarchical co-expression network analysis in human ST

We performed hierarchical co-expression network analysis across dif-
ferent corticallayersand WM in our human ST dataset using the R pack-
age hdWGCNA**7° (v0.2.19). Before network analysis, we computed
pseudo-bulk gene expression profiles for each of our 39 ST samples
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in for the cortical layer clustersand WM (L1, L2-13, L3-L4, L3-L4-L5,
L5-L6,L6b, WM), and we calculated log,(CPM mapped reads) normal-
ized expression values. Genes were retained for network analysis if
they were expressed above 0 UMI countsin at least 5% of cellsin any of
the spatial annotations, thereby retaining 10,199 genes. We selected
soft-power threshold parameters for each spatial region by computing
the scale-free topology model fit for different soft-power values and
using the smallest parameter that yielded amodelfit greater than 0.8.
Co-expression networks were then computed separately for the seven
spatial regions using the hdWGCNA function ConstructNetwork, using
a minimum module size of 50, a merge cut height of 0.1 for dynamic
tree cutting”’, the soft-power thresholds as previously described and
all other parameters set to the default values. This process yielded
166 gene co-expression modules across the seven spatial regions, and
we assigned a unique name to each module based on a combination
of their spatial region of origin and a numeric identifier. For exam-
ple, module ‘L1-M7’ is the seventh module originating from spatial
regionL1. We calculated gene expression summary values, called MEs,
for each of these 166 modules in each of the ST spots using the hdW-
GCNA function ModuleEigengenes, applying aHarmony95 correction
to the MEs based on biological sample of origin. We then computed
eigengene-based connectivity (KME) for each gene using the hdWGCNA
function ModuleConnectivity.

We next sought to perform a hierarchical analysis of these
co-expression networks using a strategy similar to a previous study’.
First, we calculated similarity metrics between pairs of co-expression
modules that arose from different spatial regions by computing gene
overlap statistics such as Jaccard similarity (/) using the R package
GeneOverlap (v1.34.0). Next, we calculated pairwise Pearson correla-
tions between each of the 166 co-expression modules within each of
the seven brain regions, and we kept the component-wise maximum
of these correlations (E). Using these two measures of similarity, we
computed a module-module dissimilarity matrix D=1- (E + (3))/4).
We then computed the Euclidean distance between modules in this
matrix and performed hierarchical clustering with the R function
hclust. We refer to the 15 groups of modules that arose from this hier-
archical clustering analysis as ‘meta-modules’. Similar to our previous
co-expression network analysis, we computed MEs and kMEs for these
meta-modules to summarize gene expression in the ST spots and to
quantify the eigengene-based connectivity of each gene. For cases
where a single gene was assigned to more than one meta-module, we
re-assigned the gene to only the meta-module where the gene had the
highest eigengene-based connectivity. Additionally, we computed a
consensus topological overlap matrix (TOM) based on the seven TOMs
from the co-expression analysis in each spatial region, and we visual-
ized this consensus TOM as a UMAP plot using the hdWGCNA function,
RunModuleUMAP. We identified enriched biological processesineach
of the meta-modules using the EnrichR®’ R package (v3.1) to overlap
these gene sets with those associated via GO.

We performed DME analysis to compare the differences in the
expression of each co-expression module between disease groups
(early AD, late AD and DSAD) with cognitively normal controls. This
analysis was done using the hdWGCNA function FindDMEs, using a
two-sided Wilcoxon rank-sum test for the comparisons. Like differential
gene expression analysis, DME analysis results in measures of statisti-
calsignificance and effect sizes for each co-expression module across
each comparison. Forthe 166 region-specific co-expression modules,
we performed DME analysis only within the region that the modules
were derived from. Alternatively, for the meta-modules, we performed
DME analysis within each of the spatial regions. After performing these
tests, we sought to compare the results of these tests across the differ-
ent disease conditions to identify similarities and differences among
the co-expression patterns. For the 166 co-expression modules, we
computed Pearson correlations and linear regressions comparing the
effect sizes of the DME results and visualized the results as scatter plots.

We next tested the overlap between sets of co-expression modules that
were significantly differentially expressed between the groups using
the UpSetR” package.

To inspect the activity of these spatially derived co-expression
networksin other related contexts, we projected the 166 co-expression
modules and the 15 meta-modules into our snRNA-seq and mouse ST
datasets using the hdWGCNA function ProjectModules. This function
computes MEsinaquery dataset for sets of genes from co-expression
modules that were found in a different reference dataset. In this case,
thereference datasetis the human ST dataset, and the query datasets
are the human snRNA-seq and the mouse ST datasets. We coarsely
inspected the distributions of the meta-modulesin specific cell types
withinthe humansnRNA-seq dataset with UMAP visualizations where
eachcellis colored by the projected ME value. Inthe mouse ST dataset,
weinspected these trends using violin plots stratified by age group and
genotype. Furthermore, inthe mouse dataset, we performed module
preservation analysis® to assess the reproducibility of these modules
across species using the hdWGCNA function ModulePreservation.

Co-expression network analysis in mouse ST

We used hdWGCNA®* to perform a brain-wide gene co-expression
network analysis in our mouse ST dataset, similar to the analysis from
the mouse brain ST dataset fromref. 53, which was used to identify the
‘plaque-induced gene’ (PIG) network. First, because co-expression
network analysis is sensitive to noise in sparse datasets, we computed
‘meta-spots’ by merging the transcriptomes of adjacent ST spots in
agrid pattern for each of the 80 ST samples. Genes were retained for
network analysis if they were expressed above O UMI in at least 5% of
spots originating from any of the different brain regions, yielding a
total of 12,579 genes. After performing a soft-power threshold search
similar to our human co-expression network analysis, we computed
the co-expression network TOM and identified gene modules using
the hdWGCNA function ConstructNetwork with default parameters.
Intotal, this process yielded ten brain-wide spatial co-expression mod-
ules. We computed MEs for these modules using the hdWGCNA func-
tion ModuleEigengenes, applying a Harmony®’ correction to the MEs
based on the sequencing batch. Next, we computed eigengene-based
connectivity (kME) for each gene using the hdWGCNA function Mod-
uleConnectivity. We visualized the co-expression network in two
dimensions by computing a UMAP representation of the TOM with
the hdWGCNA function RunModuleUMAP. We used the EnrichR®
R package (v3.1) to identify biological processes from GO that were
enriched inthese co-expression modules.

We sought to compare these co-expression modules with other rel-
evantgenesets. For this analysis, we used the same gene sets described
inthe ‘Quantifying gene expression signatures of disease-relevant gene
sets’ section. We performed pairwise Pearson correlations of the MEs
with the UCell™ scores of these gene signatures to assess the similarity
of gene expression patterns using the hdWGCNA function Module-
TraitCorrelation. We next computed gene overlap statistics between
the sets of genes in each co-expression module with these other gene
sets using the R package GeneOverlap. To further our comparison
with the spatial co-expression modules from ref. 53, such as the PIG
module, we used the hdWGCNA function ProjectModules to quantify
gene expression patterns of ref. 53 modules in our mouse ST dataset.
We then computed pairwise Pearson correlations between the MEs
for the co-expression modules derived from our mouse ST dataset to
those derived from the dataset of ref. 53.

Polygenic disease enrichment analysis in ST and snRNA-seq

We performed polygenic disease enrichment analysis in our ST and
snRNA-seq datasets using the Python package scDRS* (v1.0.0). Briefly,
scDRS computes cell-level disease enrichment scores using transcrip-
tomic measurements and putative disease gene sets from GWAS. These
transcriptomic datasets are inspected for deviations from expected
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expression levels based on 1,000 ‘control’ gene sets with matching
mean and variance to the disease gene sets. After normalizing the
disease enrichment scores, scDRS computes cell-level P values using
the empirical distribution of the pooled normalized control scores.
In addition to cell-level enrichments, scDRS computes group-level
enrichment P values (cluster, cell type, region, etc.) using a unified
Monte Carlo test based on the test statistics for the disease scores
in a given group and the distribution of test statistics for the control
scores in the same group. The scDRS Python package includes puta-
tive disease gene sets curated by the authors of scDRS, and we used
these provided gene sets for our analysis (74 gene sets for humans
and 22 for mice). We applied scDRS to the following datasets: human
ST, mouse ST, snRNA-seq from the present study, snRNA-seq from
ref. 8, snRNA-seq from ref. 9 and snRNA-seq from ref. 7. scDRS was
performed in each dataset separately, and we report the results sepa-
rately because batch effects from distinct datasets could potentially
affect the enrichment results, which the scDRS algorithm does not
explicitly account for. We computed group-level associations for cell
clusters in the snRNA-seq data and the region clusters for the spatial
data separately for each disease group in humans and separately for
eachgenotype and age group in the mouse dataset. We next assessed a
potential relationship between the scDRS score for AD with the spatial
co-expressionmodules by computing Pearson correlations of MEs with
the scDRS scores. These correlations were performed separately for
different clusters and disease groups. This analysis was performed for
the 166 spatial co-expression modules in the human ST dataset; the 15
co-expression meta-modules in the human ST dataset, the mouse ST
dataset and the human snRNA-seq dataset; and the 10 mouse spatial
co-expression modules.

Sex differences within disease groups

We performed additional differential gene expression tests to iden-
tify sex differences within the different disease groups present in our
dataset, using asimilar strategy as the other DE tests with MAST* as the
underlying model. For the snRNA-seq datasets, we compared expres-
sionbetween nuclei from female versus male samplesin each cell type
and each cell cluster, and we used sequencing batch, the number of
UMI per nuclei and the PMI as the model covariates. Because the ST
dataset has fewer samples than the snRNA-seq dataset, the results were
more likely to be skewed by a dataset imbalance between the female
and male samples. For instance, within the DSAD cohort, there were a
greater number of female samples (seven) as compared to male sam-
ples (three). For the human ST dataset, before running the DE analysis,
we first downsampled the dataset (stratified by biological sample) such
that the number of spots from the female samples matched that from
the male samples. We then performed DE analysis with MAST using
the unique sampleidentifier, the number of UMI per spot and the PMI
as the model covariates. For the mouse ST dataset, we performed DE
tests between females and males in the 5XFAD mice within the same age
group (4, 6,8 and 12 months) using the unique sampleidentifier and the
number of UMI per spot as model covariates. We inspected the overlap
between sets of DEGs between the different spatial regions usingthe R
package UpSetR” (v1.4.0). We used the EnrichR R package to identify
biological processes enriched in DEGs in each spatial region. Tocomple-
ment the DE analysis, we also used the hdWGCNA R package to perform
DME analysis to compare the expression of our co-expression modules
between female and male samplesin each spatial region.

Spatial proteomics data analysis

SBT MCD files were imported into Visiopharm Software (v2022.03).
Image classes were created for training and included background,
nuclei and nuclei border. Nuclei detect Al App (v2023.01.2.13695), a
pretrained deep learning app developed by Visiopharm, was used to
detectnucleiwithIr191andIr193 nuclear channels. Single-cell data was
exported to a.tsv file for further analysis.

We performed an unbiased clustering analysis of our IMC spatial
proteomic dataset using the R package Seurat®* (v4.3.0). We first cre-
ated a Seurat object using the protein intensity by nuclei segments
matrix as the input, and then we log-normalized this matrix using the
Seurat function NormalizeData. We next performed dimensional-
ity reduction by scaling and centering the data with the ScaleData
function and performing PCA with the RunpPca function. To correct
the sample-specific differences in our protein intensity data, we ran
Harmony® to correct the PCA matrix before running Louvain clustering
and UMAP. We then performed a one-versus-rest marker test (two-sided
Wilcoxon rank-sum test) with the Seurat function Findal1Markersto
identify proteins that were significantly expressed in each cluster to
annotate themwith cell-type labels. Following our cell-type annotation,
we performed additional Wilcoxon rank-sum tests to compare the dif-
ferentexperimental groups (cognitively normal controls, late-stage AD
and DSAD) within each cluster for each protein in our panel.

Spatial mapping of snRNA-seq data

We mapped our snRNA-seq dataset into spatial coordinates using the
R package CellTrek* (v0.0.94). Briefly, the CellTrek pipeline enables
spatial mapping of single-cell transcriptomes by creating anintegrated
co-embedding of ST and single-cell data, followed by amultivariate ran-
domforest modelto predict the biological coordinates fromthe shared
feature space. Inour testing, we found that this algorithm was limited in
that it could not scale to large datasets comprising hundreds of thou-
sands of single cells. Additionally, this algorithm only maps datatoa
single ST slide atatime. We also found that the CellTrek algorithm only
provided predicted coordinates for asubset of the input single-cell tran-
scriptomes. For these reasons, we mapped our snRNA-seq frontal cortex
datatothe human ST dataset in a pairwise fashion for each snRNA-seq
sample and each ST sample. For agiven pair of ST and snRNA-seq sam-
ples, we constructed an integrated co-embedding using the CellTrek
function traint with default parameters. We theniteratively mapped
thesingle-cell transcriptomesinto the ST coordinates using the CellTrek
functionover threeiterations. The second iteration only included cells
that were not mapped in thefirstiteration, and the third iteration only
included cellsthat were not mapped inthefirst or second iterations. We
then computed the Euclidean distance between each mapped cell and
each of the ST spots, and we labeled each cell with a spatial annotation
based on the most frequently observed annotation among the labels
oftheten closest spots. After running the pairwise CellTrek mappings,
we compiled theresultsintoasingle table.In sum, this process yielded
multiple spatial coordinates and multiple annotations for each cell
across the 39 human ST samples in this study. Given that these tissue
samples varied in their GM and WM content, the CellTrek mappings and
inferred spatial annotations are generally not consistent across the ST
samples. To come up with a consensus regional annotation across the
different spatial mappings, we excluded the mappings from ST samples
that were excessively highin WM or GM content. We computed ametric
summarizing the GM to WM ratio in each ST sample by counting the
number of GM spots and WM spots, taking the difference and dividing
by thetotal number of spots. Positive valuesindicate higher GM content,
while negative valuesindicate higher WM content. We excluded samples
with greater than 0.9 and less than -0.3, thereby retaining mappings
from34 of the ST samples. For each cell, we counted the number of times
it was mapped to each spatial region and labeled the cell based on the
most frequently mapped region across the different samples. We further
simplified these spatial annotations by upper cortical, lower cortical or
WMregions. We performed differential abundance testing with miloR*
to compare the abundance of nucleiin each cell cluster stratified by
these spatial annotations between the control and DSAD groups.

Cell-cell signaling analysis
We performed cell-cell signaling analysis in our snRNA-seq frontal
cortex dataset with CellChat*® (v1.1.3), using the predicted spatial
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annotations in addition to cell-type labels. The human CellChatDB
ligand-receptor interaction database was used for this analysis. To
facilitate downstream comparisons of the signaling networks in DSAD
versus control samples, we ran the CellChat workflow separately based
ondisease status. The CellChat object was created using the normal-
ized gene expression matrix and the cell-type annotations with the
predicted spatial regions from CellTrek, removing any cell groups with
fewer than 30 cells. We then ran the recommended CellChat workflow
using the following functions: identifyOverExpressedGenes,
identifyOverExpressedInteractions,projectData, compute-
CommunProb, filterCommunication, subsetCommunication,
computeCommunProbPathway, aggregateNet and netAnaly-
sis_computeCentrality. The DSAD and control CellChat objects
were merged into one object using the mergeCellChat function. We
compared the signaling networks across conditions both functionally
and structurally using the computeNetSimilarityPairwise function.
Furthermore, we used the rankNet function to compute the rela-
tive information flow changes between DSAD and control across all
signaling pathways. We identified differentially expressed ligands
and receptors as well as their signaling pathways using the identi-
fyOverExpressedGenes function, visualizing selected results with the
netVisual bubble function.

We next compared the results from CellChat to another cell-cell
signaling analysis pipeline, LIANA” (R package (v0.1.13)). LIANA dif-
fers from CellChat in that it is a unified analysis package for running
anumber of different CCC inference methods (including CellChat)
with a number of different ligand/receptor interaction databases.
Thus, the results from LIANA are aggregated from different analysis
approaches. Similar to our CellChat analysis, we ran LIANA with the
default parameters for snRNA-seq profiles from our controland DSAD
groups. Tocompare the results between CellChat and LIANA, we com-
puted Pearson correlations between the number of predicted cell-cell
interactions between each cell group as the signal sender versus the
other groups as the signal receivers.

Quantifying gene expression signatures of disease-relevant
gene sets

We used the UCell” R package (v2.2.0) to quantify gene expression
signatures of several relevant gene sets with the function AddModules-
core_UCell.Thefollowing genesets were used for this analysis: home-
ostatic microglia'®, disease-associated microglia'®, disease-associated
astrocytes', disease-associated oligodendrocytes® and PIGs>. The full
list of genes within each gene set used for this analysis can be found on
our GitHub repository.

Integration of amyloid imaging dataand ST data

Because we stained the brain sections used for ST with Amylo-Gloand
OC, we developed a custom data analysis pipeline to identify gene
expression changes associated with amyloid- plaque depositions in
our human and mouse ST datasets. For this analysis, our data process-
ing pipeline was uniform among the human and mouse datasets. We
used custom automated imaging analysis protocols (General Analysis
protocols on NIS-Elements) to obtain Amylo-glo® and OC* binaries
thresholding by intensity and size, as well as accounting for autofluores-
cence/nonspecific staining by negative thresholding based on anempty
channel. We exported the following values for each binary: area (um?),
diameter, center Xand Y coordinates. Only 5XFAD samples were used
for the mouse samples, as there is no amyloid pathology in WT mice.
Samples with high backgrounds were excluded. The image analysis
of the Amylo-Glo and OC fluorescent images gives us the coordinates
and sizes of stained amyloid bodies that can then be directly compared
to the Visium ST data. We separately counted the number of amyloid
aggregates stained with Amylo-Glo or OC that overlapped each of the
ST spots. We then calculated the number of Amylo-Glo or OC* binaries
perspotby testing foranintersectionbetweenaspotand abinary. The

radius of aspatial spot was calculated according to values provided by
10x Genomics, where a spot is 55 um with a100 pm distance between
spot centers, and expanded the radius of aspot to account for the gap
between spots. To account for the size of each amyloid aggregate, we
alsocomputed the sumofthe areas of allamyloid aggregates overlap-
ping each ST spot. We next used the R package Voyager” (v1.0.10) to
perform hotspot analysis by computing the Getis-Ord Gi*’”7® statistics
for the Amylo-Glo and OC areascoresin each ST sample.

Identifying amyloid-associated gene expression signaturesin
human and mouse

We used the Getis-Ord Gi*’”® hotspot statistics for amyloid aggregates
stained with Amylo-Glo and OC to identify gene expression signa-
tures associated with amyloid aggregation in the human and mouse
ST datasets. We used GLMs to identify genes that were significantly
altered in expression with respect to the amyloid hotspot statistics.
This analysis was done using the £it _models function from the R
package monocle3” (v1.3.1). We used the biological sample of origin
and the number of UMI per spot as model covariates, and statistical
significance is evaluated using a two-sided Wald test. Furthermore,
this analysis was performed separately for the Amylo-Glo and OC
hotspot statistics because these two stains identify different forms
of amyloid aggregates. Because our mouse brain dataset profiled an
entire brain hemisphere and the clusters broadly corresponded to
different major brain regions, we also performed this analysis sepa-
rately for each of the clustersin the mouse ST dataset. Alternatively,
the human dataset contains ST profiles only in the frontal cortex GM
and WM. Amyloid aggregation tends to primarily occurinthe GM, as
seeninour hotspotanalysis, and for this reason, we chose to exclude
the human WM ST spots from the analysis. After running the GLM, we
computed Pearson correlations between the amyloid hotspot scores
and gene expression for significant results. We consider genes to
be amyloid-associated if there is a significant result from the GLM
(FDR < 0.05) and a positive correlation between gene expression and
the amyloid score.

For each of these sets of amyloid-associated genes, we performed
biological pathway enrichment analysis using the R package EnrichR*
(v3.1) with gene sets from the GO database. In both the human and
mouse datasets, we computed overlap statistics between the sets of
amyloid-associated genes from Amylo-Glo and OC using the R package
GeneOverlap (v1.34.0). Furthermore, we computed overlap statistics
betweeneach set of amyloid-associate genes and other disease-relevant
gene sets, which were previously described in the Quantifying gene
expression signatures of disease-relevant gene sets. We also performed
ageneoverlap analysis to compare the set of amyloid-associated genes
between the human and mouse datasets.

Statistics and reproducibility

No statistical method was used to predetermine the sample size for the
experiments. The investigators were not blinded to allocation during
experiments and outcome assessment. Samples were only excluded
fromanalysesif sampleloss occurred or they did not meet QC criteria.
snRNA-seq samples were randomized for nuclei isolation and library
preparation. Single-nucleusisolations were performed in randomized
groups of 12 samples. Library preparations were performed as four
batches of 24 samples, with an additional batch to increase the number
of nuclei per sample for 16 samples. ST samples were assigned toslides
inasupervised manner due to the restriction of four samples per slide
andtoensureacontrol sample wasincluded in each forimaging analy-
sis. Human and mouse ST samples were distributed to avoid perfectly
confounding variables as much as possible based on the provided
sample metadatavariables. All sequencing data were analyzed in total
and with appropriate batch correction methods. IMC samples were
allocated for n=2/group per slide (three slides total) and selected to
balance by sex and age where possible.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Allrawand processed ST and single-nucleus RNA-sequencing data have
been depositedinto the National Center for Biotechnology Information
Gene Expression Omnibus database under accession GSE233208. Our
datasetsarealso publicly available to browse interactively on the Cellx-
Gene data portal at the following link: https://cellxgene.cziscience.
com/collections/7clfbbae-5f69-4e3e-950d-d819466aecb2. Additional
snRNA-seq datasets from published studies were obtained from Syn-
apse with the following accessions: syn18485175 (ref. 8), syn21670836
(ref.9) and syn22079621 (ref. 7). Source imaging data as well as Hype-
rion source data are available with figshare using this link.

Code availability
The data analysis code used for this study is available on
GitHub®® at https://github.com/swaruplabUCI/DSAD_Spatial_
Miyoshi_Morabito_2024.
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Extended Data Fig. 1| Spatial transcriptomic DEGs examined by
chromosome. a, Heatmap colored by effect size from the spatial transcriptomic
early-stage AD versus control differential gene expression analysis, with

genes stratified by chromosome and by spatial region. Statistically significant
(FDR < 0.05) genes with an absolute average log,(fold change) > 0.25in at least
oneregion are shown. b, Stacked bar chart showing the number of spatial
transcriptomic early-stage AD control DEGs in each spatial cluster stratified by
chromosome. ¢, Heatmap colored by effect size from the spatial transcriptomic

late-stage AD versus control differential gene expression analysis, with genes
stratified by chromosome and by spatial region. Statistically significant

(FDR < 0.05) genes with an absolute average log,(fold change) > 0.25in at least
oneregionare shown. d, Stacked bar chart showing the number of spatial
transcriptomic late-stage AD versus control DEGs in each spatial cluster
stratified by chromosome. e, Spatial feature plots of four selected DEGs in one
representative sample from each disease group.
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Extended Data Fig. 3 | Differential module eigengenes (DMEs) among disease
conditions. a, DMEs that are upregulated in all disease conditions compared

to control. Modules are grouped into different plots based on which disease
condition had the highest effect size. Higher fold change values correspond

to modules that are upregulated in disease. b, DMEs that are upregulated in

one condition and downregulated in at least one other condition. ¢, Selected
pathway enrichment results for the top 25 hub genes for each module for the

set of modules upregulated in different disease conditions. d, DMEs that are

downregulated in all disease conditions compared to control, similar to a.

e, DMEs that are downregulated in one condition and upregulated in at least

one other condition. f, Selected pathway enrichment results for the top 25 hub
genes for each module for the set of modules downregulated in different disease
conditions. g, Upset plot showing the overlap between sets of differentially
expressed modulesin each disease group. One-sided Fisher’s exact test was used
for enrichment analysis.
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Extended DataFig. 4 | Genetic enrichment analysis in human spatial
transcriptomics. Dot plots showing the results of genetic enrichment analysis
performed in the human Visium ST dataset using scDRS. The scDRS Python
package was run on the human ST dataset to compute spatial transcriptomic
disease relevance scores (st-DRS) across a corpus of 74 traits provided by

the scDRS package, resulting in spot-level disease enrichment scores and

significance levels. Gene-trait association information was derived from the
scDRS package, which was compiled from several genetic studies®*° A Monte
Carlo (MC) test was used to test for group-level significance between each trait
and the ST clusters, separately for each disease group and the entire dataset
together (all, right side). Black outlines on the dots denote a significant group-
level association (FDR < 0.05).
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Extended DataFig. 5| Correlation of co-expression network module
eigengenes and scDRS genetic enrichment. Dot plots show the percentage
of snRNA-seq nuclei or ST spots in each group as the size and the correlation of
the module eigengenes (MEs) as the color in the human snRNA-seq dataset (a),

the human spatial transcriptomics (ST) dataset (b) and the mouse ST dataset
(c). For this visualization, only groups with a significant group-level association
(microglia clusters MGl and MG2 for example) are included.
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Extended Data Fig. 6 | Systematic integration of spatial and single-nucleus
expression profiles. a, Pairwise integration of samples from spatial and single-
nucleus transcriptomics (left). For all possible pairs of ST + snRNA-seq samples,
we constructed a transcriptomic co-embedding (middle) and used a multivariate
random forest (CellTrek*) to predict the spatial coordinates of snRNA-seq cells in
the given spatial context. The snRNA-seq dataset is shown on the right projected
into two different spatial contexts (left: control sample; right: DSAD sample),
split by major cell lineages and colored by cell annotations. b, Spatial feature
plots of selected layer-specific marker genes, shown side-by-side in the ST dataset
and the snRNA-seq dataset projected into the spatial context for one DSAD
sample (left) and one control sample (right). ¢, Proportion of nuclei from each
snRNA-seq cluster mapped to the spatial domains defined by the ST clustering.

d, Distribution of spatial domain mapping probabilities for nuclei from each

of the snRNA-seq clusters. e, Box and whisker plots showing differential cell
composition between disease and control. Groups are organized on the y-axis
by major cell types and ordered by median fold-change values within each cell
type. Box boundaries and lines correspond to the IQR and median, respectively.
Whiskers extend to the lowest or highest data points that are no further than
1.5times the IQR from the box boundaries. Each data point represents a single-
cellneighborhood from Milo; the number of cell neighborhoods per cluster is
shownin Supplementary Table 5. f, Spatial density plot showing the snRNA-seq
dataset in predicted spatial coordinates, highlighting selected cell populations.
g, Spatial feature plots showing selected module eigengenes in the snRNA-seq
dataset in predicted spatial coordinates.
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Heatmap showing the differential cell-cell communication (CCC) interaction
strength between AD in DS and control. Each cell represents a snRNA-seq

cell population, where rows correspond to signaling sources and columns
correspond to signaling targets. Bar plots on the top right show the sum of the

number of CCCinteractions (b) and interaction strength (c) for control and AD
inDS. d, Joint dimensionality reduction and clustering of signaling pathways
inferred from AD in DS and control data based on their functional similarity. Each
point represents a signaling pathway.
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CD99 signaling network analysis
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Extended Data Fig. 8| CD99 signaling changes between DSAD and control. images for CD99 (green), CD99L2 (red) and DAPI (blue) from postmortem human
a,b, Network plot showing the CCC signaling strength between different cell brain tissue (prefrontal cortex, PFC) of control, AD and ADDS cases. Images
populationsin controls (a) and DSAD (b) for the CD99 signaling pathway. were captured using a Nikon ECLIPSE Ti2 inverted microscope. g, Bar graph
c,d, Spatial feature plots of the snRNA-seq in predicted spatial coordinates for representing results of colocalization analysis from x60 images (n = 3 cognitively
one control sample (c) and one DSAD sample (d) for one ligand and one receptor healthy control, n=3 AD and n =4 DSAD cases) using the JACoP Plugin from
inthe CD99 pathway. e, Dot plot showing gene expression in the snRNA-seq Image) and Manders’ correlation coefficient. Data are presented as the average
dataset of ligands and receptors in the CD99 signaling pathway with significant of three different fields of view (FOVs) per sample. P-values from two-way t-tests
interactions based on CellChat. f, Representative double immunofluorescence areshown.
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a Mouse brain spatial co-expression network
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Extended Data Fig. 10 | Module hub gene networks from the mouse co-expression network analysis. Hub gene networks for each of the 10 mouse spatial co-
expression modules. The top 25 hub genes ranked by kME are visualized. Nodes represent genes, and edges represent co-expression links.
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1.2.1), Scanpy (v1.8), BayesSpace (v 1.10.1), CellTrek (v 0.0.94), CellChat (v 1.1.3), UCell R package (v 2.2.0), monocle3 (v 1.3.1), EnrichR (v 3.1),
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data in this manuscript have been deposited in the NIH GEO database. GSE233208 can be accessed with token: aduxqgegclhmjzcj.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex was used as a covariate throughout the analysis. Case and control was balanced for sex and sex-specific differences are
reported throughout the study.

Reporting on race, ethnicity, or | Race and ethnicity data where available are provided. No separate analysis for race and ethnicity were performed.
other socially relevant

groupings

Population characteristics Population characteristics were individually collected and available clinical and demographic data including age and sex are
available in Supplemental Table 1.

Recruitment Human brain tissue from prefrontal cortex and posterior cingulate cortex was obtained from UC Irvine’s Alzheimer’s Disease
Research Center and the NIH NeuroBioBank. Samples were assigned to groups based on both NFT and plaque staging, in
addition to clinical diagnoses. Samples were also selected based upon several covariates, including age, sex, race,
postmortem interval (PMI), RNA integrity number (RIN), and disease comorbidity.

Ethics oversight Postmortem tissue were de-identified before acquisition and thus exempt from IRB approval. Exemption to this effect was

obtained from UCI’s Institutional Review Board (IRB).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Data exclusions  We used network connectivity based outlier removal to remove outliers from the analysis. However the raw data included the outlier samples.

Replication Additional samples were used for replication and where applicable (like snRNA-seq and spatial transcriptomics data) data were correlated by
published datasets for replication,

Randomization  Randomization is not relevant for this study - blinded identity (de-identified) samples were obtained from brain banks and were given sample
level metadata by the brain bank. when subset-level data was analyzed the subset was randomized.

Blinding Blinding is not relevant for this study, samples were obtained from the brain banks.
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Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
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Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Plants

Antibodies

Antibodies used ANGPTL4 Antibody; Cat#710186; 1:500; ThermoFisher, GFAP Polyclonal Antibody; Cat#PA3- 16727; 1:500; ThermoFisher, CD99
antibody; Cat#MA5-12287; 1:250; ThermoFisher, CD99L2 antibody; Cat#PA5-58539; 1:500; ThermoFisher, Nectin 2 Antibody;
Cat#PA582470;1:250;ThermoFisher, MAP2 Antibody; Cat#PA1-10005; 1:250; ThermoFisher, C1QB Polyclonal Antibody;
Cat#PA5-42554; 1:250; ThermoFisher. For Imaging mass cytometry (Hyperion) data we used these antibodies - CD44, Clone#IM7,
BioLegend, 5 pg/ml; rPTPRM, Clone#MAB4446, R&D Systems, 30 pg/ml; Moesin, Clone#MSN492, Biotium, 30 pg/ml; Cystatin C,
Clone#MA5-29195, ThermoFisher, 25 pg/ml; B-Amyloid, Clone#6E10, BioLegend, 5 ug/ml; CD68, Clone#KP1, BioLegend, 10 pg/ml;
MAP2, Clone#EPR19691, Abcam, 2 pg/ml; ERBIN, Clone#AF7866, R&D Systems, 40 pg/ml; BIN1, Clone#EPR13463-25, Abcam, 30 ug/
ml; CD163, Clone#EPR19518, Abcam, 30 ug/ml; GFAP, Clone#2E1.E9, BioLegend, 2 ug/ml; Foxp2, Clone#AF5647, R&D Systems, 20
ug/ml; NeuN, Clone#D4G40, Cell Signaling, 20 pg/ml; APOE, Clone#WUE-4, Novus, 20 pg/ml; Midkine, Clone#EP1143Y, Abcam, 40
ug/ml; CLP-1, Clone#AF2690, R&D Systems, 20 pg/ml; COL25A1, Clone#540802, R&D Systems, 40 ug/ml; GPC5, Clone#297716, R&D
Systems, 40 ug/ml; pTau, Clone#AT8, ThermoFisher, 20 ug/ml; Ibal, Polyclonal#019-19741, Wako, 15 pg/ml; Mac-2/Gal3,
Clone#M3/38, Cedarlane, 20 ug/ml; YKL-40, Clone#ab180569, Abcam, 30 ug/ml; S100b, Clone#EP1576Y, Abcam, 2 ug/ml; Apol/
Clusterin, Clone#210, ThermoFisher, 40 ug/ml.
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Validation Antibodies were validated by respective manufactures and available on their website. Additional validations were also run before
using the antibodies for Hyperion panel by IMC core at UCI

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals C57BL/6J mouse, 5xFAD mouse model of AD harboring five familial AD mutations. 5xFAD hemizygous (C57BL16) and wildtype
littermates were bred and housed until sacrifice at 4, 6, 8, and 12 months.

Wild animals No wild animals were used in the study
Reporting on sex Sex was considered throughout the study for both human and mouse studies. Sex specific differences were described in the results
section

Field-collected samples  No field-collected samples were collected

Ethics oversight All mouse work was approved by the Institutional Animal Care and Use (IACUC) committee at UCI.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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