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Systematic assessment of structural variant annotation
tools for genomic interpretation
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Structural variants (SVs) over 50 base pairs play a significant role
in phenotypic diversity and are associated with various diseases,
but their analysis is complex and resource-intensive. Numerous
computational tools have been developed for SV prioritization,
yet their effectiveness in biomedicine remains unclear. Here
we benchmarked eight widely used SV prioritization tools, cat-
egorized into knowledge-driven (AnnotSV, ClassifyCNV) and data-
driven (CADD-SV, dbCNV, StrVCTVRE, SVScore, TADA, XCNV) groups
in accordance with the ACMG guidelines. We assessed their ac-
curacy, robustness, and usability across diverse genomic con-
texts, biological mechanisms and computational efficiency using
seven carefully curated independent datasets. Our results
revealed that both groups of methods exhibit comparable ef-
fectiveness in predicting SV pathogenicity, although performance
varies among tools, emphasizing the importance of selecting the
appropriate tool based on specific research purposes. Further-
more, we pinpointed the potential improvement of expanding
these tools for future applications. Our benchmarking framework
provides a crucial evaluation method for SV analysis tools, of-
fering practical guidance for biomedical research and facilitating
the advancement of better genomic research tools.
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Introduction

Structural variants (SVs), namely genetic alterations exceeding 50
base pairs (bp), significantly contribute to phenotypic diversity
and underlie the mechanisms of a wide spectrum of human
disorders, from rare diseases such as thrombocytopenia-absent
radius syndrome (Klopocki et al, 2007) to common ones like au-
tism spectrum disorder (Zhang et al, 2023) and cancer (Li et al,
2020). However, SVs represent a diverse spectrum of genomic
changes containing deletions, duplications, inversions, insertions,
translocations, and more complex variations (Collins et al, 2020),
which present significant challenges for detection and analysis.

Detecting SVs using short-read sequencing poses challenges
due to difficulties in aligning reads and accurately determining the
full genomic span affected by an SV, especially when break-
points occur within tandem repeats or involve sequences absent
from the reference genome. Although long-read sequencing can
mitigate some of these challenges by providing longer and more
contiguous reads, it is often constrained by higher costs, lower
throughput, and increased error rates compared with short-read
sequencing. In addition, the vast number of SVs detected,
thousands through short-read and up to 20,000 through long-
read whole genome sequencing (WGS) (Collins et al, 2020; Beyter
et al, 2021), results in the complexity of their analysis and
interpretation.

The functional impact of SVs is complex, directly influencing
gene function and indirectly affecting regulatory regions through
long-range interactions (Lupianez et al, 2015). Moreover, a signifi-
cant portion of SVs is found in noncoding regions, where our
understanding is still evolving. Traditional methods for assessing
the functionality or causality of SVs, such as association studies and
eQTL analysis, require extensive cohorts, high-throughput se-
quencing, and sophisticated data analysis (Brandler et al, 2018).
Family based studies, while valuable, are resource-intensive with
specialized expertise (Pagnamenta et al, 2023).

Given the complexity and the high number of SVs, computational
tools for their prioritization have become essential. Since 2015,
more than two dozen tools have been introduced, predominantly in
the last 3 yr. However, there is currently no study in comparing the
performance of these SV prioritization tools. To fill this gap, we have
selected eight tools for benchmarking based on their availability,
periodic updates, ability to handle various SV types without ad-
ditional information or manual work, and computational efficiency
in terms of computational resource usage and compatibility with
standard pipelines (Table S1).

These eight tools are categorized into two types: the first type, or
knowledge-driven, such as AnnotSV (Geoffroy et al, 2021) and
ClassifyCNV (Gurbich & Ilinsky, 2020), is based on established
clinical evaluation guidelines from the American College of Medical
Genetics and Genomics (ACMG) and the Clinical Genome Resource
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(ClinGen), which serve as the gold standard for the clinical eval-
uation and etiological diagnosis of genetic disorders (Richards
et al, 2015). The second type, or data-driven, including tools such
as CADD-SV (Kleinert & Kircher, 2022), dbCNV (Lv et al, 2023),
StrVCTVRE (Sharo et al, 2022), SVScore (Ganel et al, 2017), TADA
(Hertzberg et al, 2022), and XCNV (Zhang et al, 2021), employs
machine learning models such as random forest, gradient
boosted trees, and XGBoost to estimate SV effects, differing in
features or training sets.

The knowledge-driven approaches implemented related data-
bases described in ACMG guidelines stratified by SV types, incor-
porating factors like protein-coding or other functionally important
elements, gene numbers, haploinsufficiency, benign regions, and
inheritance patterns. In contrast, data-driven approaches based
their training sets and features on gold standard datasets, in-
cluding ClinVar (Landrum et al, 2016), DECIPHER (Firth et al, 2009),
DGV (MacDonald et al, 2014), GnomAD (Collins et al, 2020), and 1 KG
(1000 Genomes Project Consortium et al, 2015), with a focus on
specific aspects of SV analysis. For example, CADD-SV used training
sets derived from human and chimpanzee SVs as neutral proxies,
whereas dbCNV incorporated diverse gold standard datasets within
its scoring models. StrVCTVRE focused on molecular functions
overlapping exons, SVScore aggregated scores from individual
SNPs, TADA considered long-range hypotheses from 3D genomic

data, and XCNV integrated a broad spectrum of population genomic
information.

In this study, we evaluated the eight SV prioritization approaches
in accuracy, robustness, and usability of SV across various genomic
contexts and biological backgrounds. We hope to provide a com-
prehensive evaluation to assist researchers and clinicians in
choosing the most appropriate tools for their study purposes or
dataset usage. Furthermore, we discuss the future directions of SV
prioritization approaches, offering insights into the field to facilitate
the development of tools.

Results

Description of benchmarking pipeline

In our systematic evaluation (Table S1), we identified eight com-
putational approaches developed between 2017 and 2023: AnnotSV,
CADD-SV, ClassifyCNV, dbCNV, StrVCTVRE, SVScore, TADA, and
XCNV (Table 1). The knowledge-driven approaches, AnnotSV and
ClassifyCNV which included scoring metrics, demanded considerable
expertise for implementation based onACMGcriteria. In contrast, data-
driven approaches primarily generated scores to prioritize SVs.

Table 1. Overview of the approaches evaluated in this work.

Softwarea Year Main
language Assumption Classifier Training set Result URL

AnnotSV
(Version:
3.3.6)

2018 Tcl, Shell,
Python ACMG ACMG Implementation of ACMG

guideline.
Annotation,
scores https://lbgi.fr/AnnotSV/

CADD-SV
(Version 1.1) 2022 Python, R Evolutionary fitness Random

forest

Randomly distributed SVs
over the human autosomes,
evolutionarily fixed
chimpanzee and human-
derived SVs.

Scores https://cadd-
sv.bihealth.org/

ClassifyCNV
(Version
1.1.1)

2020 Python,
Shell ACMG ACMG Implementation of ACMG

guideline. Scores https://github.com/
Genotek/ClassifyCNV

dbCNV 2023 Perl,
Shell Molecular functions

Gradient
boosted
trees

The ClinVar, dbVar, ClinGen,
DGV, DECIPHER and gnomAD
(accessed before January
2023)

Classification https://github.com/
lllllv-1/dbCNV

StrVCTVRE
(Version 1.7) 2022 Python Molecular functions on

exons
Random
forest

Rare SVs from ClinVar,
gnomAD, and a recent great
ape sequencing study.

Scores https://
strvctvre.berkeley.edu/

SVScore
(Version 0.6) 2017 Perl,

Shell SNPs-based CADD scores Derived
from CADDb

The precomputed SNP scores
generated by CADD v1.3 Scores https://github.com/

lganel/SVScore

TADA
(Version
1.0.2)

2022 Python,
Shell

Molecular functions
related to long range
interaction

Random
forest

DECIPHER, Variants in the set
published by Audano et al
(2019), GnomAD, UK Biobank
data set and DGV.

Scores https://github.com/
jakob-he/TADA/

XCNV 2022 R,Shell Molecular functions XGBoost

The dbVar, ClinGen,
DECIPHER v10.1, and DGV
(accessed before January
2021).

Scores https://github.com/
kbvstmd/XCNV

aSoftware version was given if available.
bCADD was generated by the support vector machine.
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Our benchmarking used six datasets constructed from seven
different data sources, with GnomAD serving as a negative control
set (Tables 2 and S2). The datasets encompassed a total of 489
germline SVs from ClinVar, six noncoding SVs, 12 long-range SVs,
456 somatic SVs from COSMIC (Sondka et al, 2024), 32 GWAS SVs,
and 72 eQTL SVs. The performance of these approaches was

assessed based on three key criteria: accuracy, robustness, and
usability (Fig 1). Accuracy was evaluated using the AUC metric on
the ClinVar dataset since the ability to identify pathogenic SVs.
Robustness was examined in the context of genomic and bio-
logical variability. Usability was measured by computational
efficiency and the user-friendliness of the tools, including the

Table 2. Summary of seven independent datasets used in this study.

Benchmark dataset Positive set (number of positive variants) Negative set (number of negative variants)

Germline SVsa from ClinVar and GnomAD “pathogenic” and “likely pathogenic” germline SVs
from ClinVar (January. 2023–April. 2024) (N = 489).

(1) ”benign” and “likely benign” germline SVs from
ClinVar (January. 2023–April. 2024) (N = 93); (2)
randomly select rare SVs withmatched lengths with
positive sets from gnomAD v4 (N = 396).

Noncoding SVs and GnomAD Noncoding SVs from peer-reviewed publications
(N = 6).

Randomly select rare SVs with matched lengths
with positive sets from gnomAD v4; No overlapped
with protein coding genes listed at gencode
v30lift37 (N = 6).

Long range SVs and GnomAD SVs implicated in long-range interactions from
peer-reviewed publications (N = 12).

Randomly select rare SVs with matched lengths
with positive sets from gnomAD v4 (N = 12).

Somatic SVs
Somatic SVs from COSMIC (v99) with recurrence
>=2 and located on risk genes listed at oncoKB
(N = 218).

Randomly select somatic SVs from COSMIC (v99)
with recurrence = 1 and no overlapped with risk
genes listed at oncoKB (N = 238).

Disease associated SVs from a GWAS and
GnomAD

Rare SVs which validated by replication listed at
the peer-reviewed publication (N = 32).

Randomly select rare SVs with matched lengths
with positive sets from gnomAD v4 (N = 32).

Functional relevant SVs from eQTL studies and
GnomAD

Rare SVs: aberrant gene expression is in multi
tissues and the gene has dosage changed (N = 72).

Randomly select rare SVs with matched lengths
with positive sets from gnomAD v4 (N = 72).

aSVs including CNVs and deletions, duplications.

Figure 1. Overview of study workflow for SV prioritization benchmarking.
This workflow illustrates the evaluation process for eight SV prioritization tools, categorized into knowledge-driven and data-driven approaches. These tools were
benchmarked across seven independent and curated datasets using three main criteria: (1) accuracy in pathogenicity prediction, (2) robustness in diverse genomic and
biological contexts, and (3) usability, focusing on user accessibility and computational performance.

Benchmarking SV prioritization tools Liu et al. https://doi.org/10.26508/lsa.202402949 vol 8 | no 3 | e202402949 3 of 12

https://doi.org/10.26508/lsa.202402949


quality of documentation, ease of installation, requirements of
preinstalled datasets, complexity of input files, and the presence
of an online webserver.

Benchmarking performance evaluation of accuracy

Our comprehensive evaluation revealed significant variability in
the predictive concordance among the eight SV prioritization ap-
proaches. Spearman rank correlation coefficients indicated a
higher degree of consistency for the negative set comparedwith the
positive set, with weak correlations (R < 0.3) prevalent among the
approaches (Fig 2A). This observation suggests a lack of consensus
in predictive capabilities, underscoring the necessity for a thorough
comparative assessment.

In assessing accuracy using the AUC metric against gold
standard datasets, StrVCTVRE stood out with an AUC of 0.96,
demonstrating exceptional performance (Fig 2B, Table S3).
Within the data-driven approaches, XCNV, CADD-SV, TADA, and
SVScore also exhibited commendable AUCs ranging from 0.91 to
0.83. Conversely, dbCNV showed a notably lower performance
with an AUC of 0.50. The distribution of pathogenic score (PS) for
positive and negative sets was distinctly separable in most data-
driven methods, whereas dbCNV showed overlapping distribu-
tions (Fig 2C). Knowledge-driven models, AnnotSV and Classi-
fyCNV, also performed relatively well, with AUCs of 0.93 and 0.70,
respectively. These results highlight the competitive performance

of both knowledge-driven and data-driven models, particularly
StrVCTVRE and AnnotSV.

Performance evaluation of the robustness on genomic features

We conducted a robustness evaluation of the approaches based on
genomic features, including SV types, lengths, and gene contents.
According to ACMG guidelines, deletions and duplications were
assessed separately. The performance of most approaches was
found to be similar for both SV types, which aligned with the
distribution of PS (Fig 3A). StrVCTVRE, AnnotSV, XCNV, CADD-SV, and
ClassifyCNV demonstrated AUCs above 0.71 for deletions and 0.63
for duplications (Fig 3B, Table S4). However, TADA, SVScore, and
dbCNV were less consistent, especially for duplications, where their
AUCs were considerably lower.

When assessing SV performance across different length ranges
(>6*103, 6*103~105, > 105) (Fig 3C), StrVCTVRE, AnnotSV, XCNV, CADD-
SV, and TADA maintained high and consistent performance (AUCs >
0.80) in deletions across all size groups (Fig 3D, Table S5). In
contrast, ClassifyCNV and dbCNV showed relatively poor perfor-
mances, and SVScore displayed a lower AUC (AUC = 0.65) for lengths
greater than 10⁵ bp. For duplications, a decline in performance with
increasing length was observed, particularly for TADA, which
showed a decline in AUC from 0.98 for shorter duplications to 0.94
for longer ones. This trend may be attributed to the size-match
strategy used in TADA’s training set construction. ClassifyCNV
and SVScore showed less promising performance for longer

Figure 2. Comparative performance of eight SV prioritization approaches.
(A) Correlation analysis between positive (pathogenic) and negative (benign) variant sets across the eight approaches, indicating the differentiation ability of each tool.
(B) Distribution of pathogenicity scores for positive and negative sets, showing score separation across the tools. (C) Performance summary across all germline variants
from ClinVar, measured by area under the curve.
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Figure 3. Performance of SV prioritization tools across genomic contexts.
SV type, length, and gene content: (A) Distribution of pathogenicity scores for deletion and duplication sets, illustrating score separation across tools by SV type. (B)
Performance of each tool in deletions and duplications among germline ClinVar variants, evaluated by area under the curve (AUC). (C) Length distributions of deletions
and duplications within the dataset. (D) AUCs performance over three lengths ranges (L1< 6*103, L2:6*103~105, L3 >105) for deletions and duplications. (E) Distribution
differences in protein-coding gene coverage between negative (benign) and positive (pathogenic) SV sets. (F) AUC comparison by gene context (disease-related,
functional genes) for deletions and duplications, further categorized by SVs covering zero genes (No. genes = 0) and one or more genes (No. genes ≥ 1). AUC, area under the
curve; SV, structural variant.
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duplications, where dbCNV failed to distinguish between posi-
tive and negative sets. These results demonstrated that CADD-
SV, AnnotSV, StrVCTVRE, and XCNV had high efficacy across
various SV length groups for both deletions and duplications,
while TADA, SVScore, and ClassifyCNV exhibited diverse per-
formances, particularly for longer lengths (Fig 3D, Table S5).

From the comparison of SV types and length groups, we
observed that the distribution of PS in the duplication set was
generally less distinct. This may be due to the smaller number of
duplications in the training set and feature selection processes
that were more tailored to deletions. The predominance of
shorter deletions over duplications in pathogenic status re-
quires careful consideration. For example, the commonly used
training set ClinVar includes 11,946 germline pathogenic dele-
tions with an average length of 122,698 bp and 1,391 duplications
with an average length of 131,202 bp, with over 13% and 15% of
deletions and duplications being longer than the average length,
respectively (Fig 3C).

Gene content analysis revealed significant differences between
the number of protein-coding genes covered by SVs in negative and
positive sets (Figs 3E and S1). CADD-SV, AnnotSV, StrVCTVRE, and
XCNV consistently showed superior performance across different
gene content categories, irrespective of the number of genes in-
volved, with AUCs exceeding 0.85 (Fig 3F, Table S6). In contrast, TADA,
SVScore, and ClassifyCNV performed better in deletions not asso-
ciated with any disease or functional genes. Notably, deletions without
disease or functional genes were longer but not significantly (mean
length: 20,948.65 bp). For duplications, the performance of CADD-SV,

AnnotSV, StrVCTVRE, and XCNV remained high in groups intersecting
with at least one disease or functional gene (Fig 3F, Table S6). In
summary, our study indicates that while most approaches exhibit
improved performance in the absence of disease or functional genes
in deletions, their efficacy varies in duplications.

Collectively, StrVCTVRE, AnnotSV, CADD-SV, and XCNV have
demonstrated superior performance across various metrics, in-
cluding SV types, length groups, and gene contents, indicating their
robustness in predicting SV pathogenicity.

Performance evaluation of the robustness on biological
mechanisms

Our investigation into the robustness of computational approaches
for SV analysis extended to examining biological mechanisms. We
systematically curated five distinct datasets representing a spec-
trum of genomic variations, including noncoding SVs, long-range
SVs, somatic SVs, disease-associated SVs, and functionally relevant
SVs.

In noncoding SVs, we observed that TADA, SVScore, and AnnotSV
were the top performers, demonstrating high AUC values of 0.92,
0.86, and 0.83, respectively (Fig 4). These tools showed strong
alignment between AUC and other performance metrics such as
accuracy, sensitivity, and specificity (Table S3). However, it is im-
portant to note that CADD-SV and StrVCTVRE were not applicable for
noncoding SVs due to their focus on protein-coding genes. Long
range SVs were evaluated, revealing TADA and XCNV as standout
performers with AUCs of 0.98 and 0.95, respectively (Fig 4).

Figure 4. Performance across approaches
covering various biological mechanisms
including noncoding SVs, long range SVs,
somatic SVs, GWAS SV and eQTL SV.
AUC, area under the curve; SV, structural
variant.
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StrVCTVRE, AnnotSV, and CADD-SV also exhibited robust perfor-
mance, albeit with StrVCTVRE’ s results being partially obscured by
an 11% variant missing rate (Table S3). The discordance between
SVScore’s high AUC and its lower MCC suggested a high false
positive rate, likely due to its default scoring system for long SVs.

Somatic SVs were assessed with TADA and AnnotSV leading the
way with AUCs of 0.77 and 0.74, respectively (Fig 4). Regarding toMCC,
the knowledge-driven approaches, particularly AnnotSV and
ClassifyCNV, showed a slight advantage over data-driven methods.
When assessing disease-associated SVs from large cohort studies,
all methods except SVScore showed comparable AUCs and MCCs
(Fig 4, Table S3). However, CADD-SV, StrVCTVRE, and TADA exhibited
missing variant rates, indicating a need for improvement in
detecting these variants.

Finally, the analysis of functionally relevant SVs revealed varying
performance among data-driven approaches. XCNV emerged as the
top performer with an AUC of 0.71, followed by CADD-SV and TADA
(Fig 4). In contrast, dbCNV and StrVCTVRE lagged behind, high-
lighting challenges in accurately predicting these SVs.

In summary, our assessment confirmed the potential of these
tools to identify novel biological mechanisms from germline var-
iants. While the tools may not exhibit the highest level of AUC for
somatic, GWAS, and eQTL SVs, their performances provide a
foundation for further refinement. Our findings showed the im-
portance of selecting the appropriate tool based on the specific
characteristics of the SVs and highlight the potential for further
refinement across various genomic contexts.

Usability evaluation of computational efficiency and
user-friendliness

The usability of the approaches was assessed. We focused on com-
putational efficiency and user-friendliness, which significantly impact
user experience and practical applicability (Table 3). Computational
efficiency revealed that knowledge-driven approaches generally

outperformed data-driven approaches with the completing tasks
within an average of 15 s. ClassifyCNV was notably efficient, while
StrVCTVRE and TADA led among data-drivenmethods. Notably, the use
of default hyperparameter settings during testing influenced method
efficiency. For instance, CADD-SV provides multicore operational ca-
pability, which may influent efficiency.

Regarding the quality of tutorials and code, we found that most
methods adequately met the basic requirements of users, ensuring
straightforward installation and use. Several approaches offered
support through conda environment and Docker images, which
greatly facilitated the setup process. However, the necessity to
install datasets is a speed limit step which was dependent on
internet connection stability. Our analysis also considered the
complexity of input files, including supported genome builds, file
types, and SV types. We noted that the most of tools supported at
least two SV types. The hg19 genome build was commonly accepted,
though hg38 is increasingly adopted. The bed format, specifying
chromosome, start position, end position, and SV type, emerged as
standard among the evaluated tools. In addition, four out of the
eight approaches provided an online version, including AnnotSV,
CADD-SV, StrVCTVRE, XCNV, enhancing accessibility and user
convenience.

Discussion

In the landscape of genomic sequencing, computational methods
have become indispensable for deciphering the functional rele-
vance and clinical significance of SVs. We created seven datasets
from diverse biological backgrounds and conducted an extensive
benchmarking of eight available approaches, categorized into
knowledge-driven and data-driven, focusing on accuracy, robust-
ness, and usability. Our findings reveal that both categories of tools
demonstrate comparable effectiveness in identifying pathogenic
germline SVs. This study systematically evaluates and compares the

Table 3. Summary of computational efficiency and user-friendliness over all approaches.

Software
Knowledge driven Data driven

AnnotSV ClassifyCNV CADD-SV dbCNV StrVCTVRE SVScore TADA XCNV

Efficiency
(second) 12 3 100 (20 cores) 38 19 5 16 24

Document
quality Excellent Normal Good Normal Good Normal Good Good

Installation cmd, conda, docker cmd conda cmd cmd, conda cmd cmd cmd

Prerequisite
dataset Yes Yes Yes No Yes Yes Yes Yes

Genome
build hg19, hg38 hg19, hg38 hg38 hg19 hg19, hg38 hg19 hg19 hg19

Input Bed, vcf Bed Bed Bed Bed vcf Bed Bed

SV types Deletion, insertion, duplication,
inversion, breakend record CNV Deletion, insertion and

duplication CNV Deletion,
duplication All types CNV CNV

Online
webserver Yes No Yes No Yes No No Yes
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performance of SV prioritization tools, offering important insights to
the biomedical and clinical communities.

Our evaluations yielded several key insights. First, the compa-
rable effectiveness in identifying pathogenic germline SVs across
different methods suggests that the choice between these ap-
proaches should be guided by the specific context and objectives of
the analysis rather than any inherent superiority. This is a signif-
icant hint that underscores the need for a contextual approach in
selecting SV analysis tools. In addition, our benchmarking study
highlights the strengths and limitations of both knowledge-driven
and data-driven techniques. Future tools could benefit from a
hybrid approach. Knowledge-based techniques which leverage
existing knowledge and framework like the ACMG guidelines, are
essential for determine the pathogenicity of SVs. Incorporating
data-driven techniques can be highly beneficial in identifying novel
or potentially pathogenic SVs that may not be well understood yet.
Integrating both approaches can lead to more comprehensive and
accurate SV prioritization, especially for novel or complex regions.

Second, the capacity of these methods to integrate new
knowledge and generate new hypotheses is critical. For example,
the importance of small variants in noncoding regions is well-
established, as illustrated by examples such as a variant in the
promoter region of GATA1 affecting a transcription factor binding
site, leading to hereditary persistence of fetal hemoglobin (Martyn
et al, 2019), or a variant disrupting upstream open reading frames of
the NF2 gene causing neurofibromatosis type 2 (Whiffin et al, 2020).
With WGS uncovering hundreds of thousands of SVs, primarily
impacting noncoding regions, the ability of these tools to ac-
commodate emerging data is essential for scientific discovery.

Third, the applicability of these methods to variants beyond
germline SVs is highly significant. The performances are acceptable
for initial screening and can be particularly useful in data gener-
ation or in settings where a broader filter is applied to capture
potential variants of interest. Recently, several studies focused on
discovery the somatic variants from whole exome sequencing data
from UK Biobank (Bernstein et al, 2024). As the understanding of the
role of somatic and other non-germline variants in disease grows,
tools capable of analyzing a broader spectrum of variants become
increasingly important.

Despite these advancements, challenges persist in generating
unified SV sets across all types, especially from short-read WGS.
Most existing approaches concentrate on deletions and duplica-
tions, often overlooking other SV types. This limitation may stem
from the developing status of ACMG guidelines and the scarcity of
gold standard datasets for certain SV types. The increasing ac-
cessibility of long-read sequencing opens up new opportunities for
SV detection. This technique is particularly effective for identifying
complex SVs, repetitive regions, and resolving large structural
changes that short-read technologies failed. However, it also faces
challenges. These new regions will require updated annotations
and retraining of data-driven models to handle the unique
properties of long-read data. Moreover, integrating long-read se-
quencing data with the existing short-read data and annotations
poses another challenge. There is a need for tools that can effi-
ciently combine information from multiple sequencing platforms
and provide a unified annotation framework.

Understanding the underlying biological mechanisms also neces-
sitates integrating cell-type specific information and phenotype data
(Liu et al, 2023; Sanchez-Gaya & Rada-Iglesias, 2023). Promisingly,
recent methodologies have begun to incorporate phenotype-specific
characteristics (Althagafi et al, 2022; Xu et al, 2023), recognizing their
significance in assessing SV pathogenicity. A particular chal-
lenge lies in interpreting the biological significance of SVs within
noncoding regions, where their impact often depends on dis-
ruptions to regulatory elements such as enhancer–promoter
interactions and topologically associating domain (TAD) boundaries.
Tools that incorporate 3D genomic context could improve
noncoding SV interpretation (Hertzberg et al, 2022; Poszewiecka
et al, 2022).

Finally, CHM13/T2T represents a major improvement in genome
completeness, especially in difficult regions like centromeres and
telomeres. Combining it with updated annotations and resources
could be a promising direction for tool development, benefiting
future clinical and biological studies. As the identification of
pathogenic SVs increases, comprehensive annotation of the
noncoding genome, a deeper understanding of SVs in disease
etiology, and advancements in bioinformatics technologies will
undoubtedly spur the development of additional tools. Our
future work will compare these emerging tools as they become
available.

In conclusion, our study provides a critical evaluation of
computational tools for prioritizing SVs, highlighting their ac-
curacy, robustness, and usability. The findings emphasize the
importance of selecting tools based on the specific analysis
context and objectives. As genomics continues to evolve, the
adaptability of these tools to new knowledge and data gener-
ation will be crucial for advancing our understanding of the
genomic basis of disease.

Materials and Methods

Dataset curation

To ensure the strength and reproducibility of our benchmarking
assessments, the creation of an independent dataset is required
that does not overlap with any variants used in the training
datasets of the software under evaluation. Our pipeline created
seven distinct datasets, with the first six serving as positive datasets
to evaluate specific aspects of software performance, and the last
one serving as a negative control which were: (1) germline SVs from
ClinVar; (2) SVs in noncoding regions (Noncoding SVs); (3) SVs in-
volved in long-range interactions (long range SVs); (4) somatic SVs
from COSMIC (https://cancer.sanger.ac.uk/cosmic); (5) validated
SVs from GWAS (Auwerx et al, 2024); (6) functionally relevant SVs
from eQTL studies (Scott et al, 2021); (7) population SVs from
GnomAD version 4.1 (https://gnomad.broadinstitute.org/) (Fig 1,
Tables 2 and S2). Employing a dual-strategy approach, we ensured
that the access date for our test datasets was subsequent to the
publication date of the evaluated software and meticulously
eliminated any overlapping SVs among the datasets.
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The first benchmark dataset, derived from ClinVar in March 2024,
focused on CNVs, including deletions and duplications, classified
according to ACMG guidelines. We retained CNVs exceeding 50 bp in
length and meeting specific classification criteria (“pathogenic,”
and “likely pathogenic” as positive labels, “likely benign” and
“benign” as negative labels). To address the limited number of
negative sets, we randomly selected deletions and duplications
with allele frequencies less than 1% from GnomAD, confirming no
overlap with GnomAD V2 or pathogenic SVs in ClinVar.

The second to fifth benchmark datasets were curated to reflect
disease relevance with diverse biological origins (Table 2). Non-
coding SVs with established pathogenicity were identified from
peer-reviewed publications, emphasizing the role of noncoding
regions in genetic pathology (Gordon et al, 2014; Bieth et al, 2015;
Turner et al, 2016; Cappuccio et al, 2019) (Table S7). Long-range SVs
were sourced from studies demonstrating their impact on the
three-dimensional genome architecture (Kouwenhoven et al, 2010;
Ellaway et al, 2013; Tayebi et al, 2014; Lupianez et al, 2015; Franke
et al, 2016; D’Haene et al, 2019; Long et al, 2020) (Table S7). Somatic
SVs were derived from COSMIC, and we constructed a matched
positive and negative SV dataset following the approach by Wang
et al (2023) and oncoKB (Chakravarty et al, 2017). Disease-associated
SVs from GWAS were included based on validation and significance
thresholds.

The sixth dataset from eQTL studies aimed to connect molecular
and clinical phenotypes, focusing on rare SVs with aberrant gene
expression across multiple tissues (Scott et al, 2021). The conse-
quence of SV with respect to outlier gene is either complete dosage
change or partial dosage change.

The final dataset, comprising population SVs, served as negative
controls, with additional rare GnomAD variants added for com-
prehensiveness. All variants were lifted over to hg19 using UCSC
liftover tool. We restricted our analysis to autosomes in hg19 ge-
nome build.

Feature selection

Genomic content, crucial for evaluating the disease or functional
relevance of SVs, was systematically compiled. We collected three
groups of genes: protein-coding genes, disease-associated genes,
and functionally relevant genes. Protein-coding genes were
sourced from GENCODE. Disease associated genes were obtained
from Orphanet (https://www.orpha.net/consor/cgi-bin/index.php),
genes with dosage sensitivity from ClinGen (https://search.
clinicalgenome.org/kb/gene-dosage/cnv) and ACMG-approved
genes (V3.0). The functional relevant genes were collected among
essential genes from cell culture studies (Hart et al, 2017), genes
lethal in mouse models (Motenko et al, 2015), and genes with
predicted dosage sensitive (probability of haploinsufficiency >= 0.9
or probability of triplosensitivity >= 0.9) (Collins et al, 2022). An-
notations were based on distinct feature types in hg19 genome
build (Liu et al, 2023).

Workflow building and evaluation method

All methods, except dbCNV, generated pathogenic scores (PS) for SV
prioritization with lower scores indicating non-pathogenicity and

higher scores suggesting pathogenicity. For dbCNV, the five-tier
classification was converted into numeric indicators. PS was de-
rived using default parameters, followed by min–max normaliza-
tion. All methods operated using default settings.

To evaluate the performance among approaches, we used a
suite of metrics including accuracy (Equation (1)), sensitivity
(Equation (2)), specificity (Equation (3)), positive prediction value
(PPV) (Equation (4)), false positive rate (FPR) (Equation (5)), F1-
score (Equation (6)), Matthews correlation coefficient (MCC)
(Equation (7)) and area under the curve (AUC). Data visualization
and analysis scripts were conducted using R and self-authored
scripts.

Accuracy = ðTP + TNÞ=ðTP + FP + TN + FNÞ (1)

Sensitivity = TP=ðTP + FNÞ (2)

Specificity = TN=ðTN + FPÞ (3)

PPV = TP=ðTP + FPÞ (4)

FPR = FP=ðFP + TNÞ (5)

F1 − Score = 2 * ðPPV * SensitivityÞ=ðPPV + SensitivityÞ (6)

MCC = ððTP * TN − FP * FNÞÞ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððTP + FPÞðTP + FNÞðTN + FPÞðTN + FNÞÞ
p

(7)

Computational resource

The computational resources for testing all approaches including
an Intel(R) Xeon(R) Gold 6140 CPU @ 2.30 GHz with 144 cores and 1
TB of memory, running CentOS Linux release 7.7.1908.

Data Availability

The data accessed in this article are available in ClinVar (accessed
at 2024-Mar-20), GnomAD (v4.1) and Cosmic (accessed at 2024-Mar-
20).
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