
3
$ I

g; E >
$,
:>; !

Journal of the American Medical Informatics Association Volume 3 Number 6 Nov / Dec 1996
$:
$$ 389

Application of Technology n

ModelDB:
An Environment for Running
and Storing Computational
Models and Their Results
Applied to Neuroscience

.. .“...” .‘..‘.. . . . A... < ‘~~.~‘.‘.~.:.~:~.~.~.:~.~:~.....?.......~.:iir. :.: ..I....C.....‘-.,........,.C,.,,....~.~...~.~.~.~ :‘..........A..: : + : ;y ! :: : : : p : $yy’ : : : ! ‘> : + : .___. ..‘.‘...‘.‘r;l....... a.. A.. a.. ..,.. a.. % .,.,...~~.~.~.~,.~~,,~,~~,~~,.~~~~~~,,,,,.,,.,,,,..,,.,..., ;y
BRET E. PETERSON, PHD, MATTHEW D. HEALY, PHD, PRAKASH M. NADKARNI, MD,
PERRY L. MILLER, MD, PHD, GORDON M. SHEPHERD, MD, DPHIL

Abstract R h esearc groups within the Human Brain Project are developing technologies
to help organize and make accessible the vast quantities of information being accumulated in the
neurosciences. The goal of this work is to provide systems that enable this complex information
from many diverse sources to be synthesized into a coherent theory of nervous system function.
Our initial approach to this problem has been to create several small databases. While addressing
the issues of each individual database, we are also considering how each might be incorporated
into an integrated cluster of databases. In this paper, we describe a pilot project in which we
construct a database of computational models of neuronal function. This database allows models
to be created and run and their results reviewed through a World Wide Web interface. Because
models encapsulate knowledge in a formal manner about how neuronal systems function, we
also discuss how this database forms a natural center for our initial attempts at creating a cluster
of related databases. General issues of database development in the context of the Web are also
discussed.

n JAMIA. 1996;3:389-398.

Neuroscience research is generating vast quantities of
data in subdisciplines, ranging from the molecular to
the behavioral level. Each level of study has had sur-
prising success at describing phenomena at that level,
but no one area has been sufficient in itself to provide
a satisfactory description of nervous system function

Affiliations of the authors: Yale University School of Medicine,
New Haven, CT, Department of Anesthesiology and Center for
Medical Informatics (BEP, MDH, PMN, PLM); Section of Neu-
robiology (BEP, GMS).

This work was supported by the National Institute for Deafness
and other Communicative Disorders (National Institutes of
Health), by the National Institute for Neurological Diseases and
Stroke (National Institutes of Health), and by the National Aer-
onautics and Space Administration, National Institute of Mental
Health, and the National Institute for Deafness and other Com-
municative Disorders (National Institutes of Health) through
the Human Brain Project.

Correspondence and reprints: Bret Peterson, PhD, 1 Kearny
Suite 501, San Francisco, CA 94108. email: bret@scileam.com

Received for publication: 3/25/96; accepted for publication:
7/18/96.

as a whole. Furthermore, the complexity of the sys-
tems being studied requires that, even within a given
subdiscipline, an increasingly narrow focus of spe-
cialization is required in order for progress to be
made. This necessary specialization makes compila-
tion and integration of results across disciplines all the
more difficult.‘,’

To help overcome these barriers and to help facilitate
cross-discipline exchange of information between dif-
ferent laboratories, we have developed a pilot mod-
eling database environment called ModelDB (http:/ /
senselab.med.yale.edu/models/help/). ModelDB is a
system that acts as a front end for both a database
and a complex modeling program and ties the two
together. ModelDB provides the necessary function-
ality for developing models in a collaborative envi-
ronment through the use of a World Wide Web inter-
face. Because the models exist in a database, they are
easily linked to data and results in other databases.
This capability is critical because the data and results
upon which the model is based can be easily re-
viewed. Because these links are made using the
HyperText Transfer Protocol (HTTP),3 the databases

PETERSON ET AL., Neural Modeling Database

_I
,’

,_f

,,A’
_’ /‘.

D.

can be in a variety of sites around the world. Because
the interface to the models is also through HTTP, the
collaborative team of modelers and experimenters can
be distributed around the world as well, as envisaged
by the Human Brain Project?5

In this paper we describe the application of ModelDB
to a series of dendritic models using a particular neu-
roscience simulator. ModelDB has potentially broader
applications, however, because it can easily be
adapted to run other simulators as well. The approach
of combining Web and database technologies can also
be generally applied.

Background

An important step toward integrating results at the
level of the neuron has been the creation of compu-
tational models. Starting with the introduction of the
compartmental modeling approach,6,8 there have been
successive steps in the development of specialized
programs,9-” adaptation of general-purpose simula-
tion programs,‘3’14 and finally the recent emergence of

Figure 1 Construction of a canonical
model of part of the spiny dendritic tree
of a neuron. Morphology of a dendritic
branch (A) is abstracted into a series of
cylindrical compartments (B). Each
compartment is modeled as an equiva-
lent electrical circuit (C). Voltage-depen-
dent conductances can be added to ap-
propriate compartments to simulate
active properties in the branch (D).

Ri In Ri In
- T - t

-
- I

% 0lJt % 0lJt

large-scale programmable environments for develop-
ing neural simulations:‘5-2’ ModelDB attempts to ex-
tend these environments further.

The preliminary use of ModelDB has been to create a
series of compartmental models of a simplified canon-
ical representation of a dendritic system using the
GENESIS simulator.” As shown in Figures 1A and B,
the behavior of a small branch of a dendrite is ap-
proximated by first separating its properties into a se-
ries of discrete cylindrical compartments. These com-
partments represent the main branch of the dendrite
and the head and necks of the dendritic spines. The
simulator models the electrical flow between com-
partments by means of equivalent electrical circuits
(Figs. 1C and D).6-8.23-25 This particular model extends
previous models26-28 and was constructed to investi-
gate how nonlinear (voltage-dependent) ion channel
properties in the dendrite and spines (Fig. 1D) might
influence coupling between synaptic input and the
charge spread to more proximal parts of the neuron.
It is this spread that leads to the generation or mod-
ulation of impulses in the axon, which constitute the

Journal of the American Medical Informatics Association Volume 3 Number 6 Nov / Dec 1996

output of the neuron that excites or inhibits other cells
in the pathway The models demonstrate how this
particular set of dendritic properties could make im-
portant contributions to the network properties un-
derlying cortical functions.

Computational models serve as precise representa-
tions of our understanding of studied or, as in this
case, theoretical circuits, neurons, and neuronal com-
ponents. This precision not only helps organize what
is known but also helps make explicit what is un-
known. It thus provides an extremely useful means
for experimenters to consolidate their findings. Mod-
eling does require, however, a significant level of com-
puting and mathematical sophistication, and it usu-
ally requires expertise in a particular programmable
simulation package as well. Therefore, experiments
and modeling together tend to require more skills
than are generally possessed by a single individual.
Consequently, close collaboration has traditionally
been required between modeler and experimenter.

The quantity of information that needs to be ex-
changed between experimenter and modeler in order
to create these models has often prevented this inter-
action from extending beyond the confines of individ-

Figure 2 A schematic of the database
schema. The three-pronged connectors in-
dicate a “many” relation, and the single-
pronged connectors indicate a “one” rela-
tion. The bridging tables for the
many-to-many relations are not shown.
The tables within tables indicate Illustra’s
support of subtables (analogous to object-
oriented subclasses). These allow the
scripts to reference the supertable rather
than having to explicitly join the two sub-
tables. An entry is created in the Models
table for every version of every model. The
entry references a set of files that define
the model. When the model is run, the
Run and Model parameters in each file are
replaced with their assigned values in the
Parameters tables. If no value has been as-
signed, they take on their default values
from the parameter definitions in the File
Parameters tables. Each run generates a
new entry in the Runs table that contains
the resulting data. Entries in the Graph ta-
ble are also associated with Models en-
tries. They specify which variables in the
resulting data should be graphed together.
Selecting a pair of Graph and Run entries
for a particular model allows a helper ap-
plication to graph the data in the specified
format.

391

ual laboratories. Consequently, a model seldom en-
compasses more than the particular expertise of a
single laboratory. ModelDB attempts to make easier
the exchange of information between modeler and ex-
perimenter. Because it is based on Web technology,
ModelDB can operate independent of the collabora-
tors’ locations. It thus allows a distributed group of
multidisciplinary experts to work together on devel-
oping a single model.

Design of the Environment

In the initial stage of this project, there were three pri-
mary goals. The first was to provide a system for ar-
chiving models in order to maintain a structured, con-
tinuous record of the models that were created as well
as to maintain an ongoing record of the parameters
that were tested on these models. The second goal
was to provide a mechanism for experimenters who
were not primarily modelers to run existing models
and test new parameter sets. The third goal was to
create a system that encouraged collaboration by
making it independent of the simulator, the operat-
ing system, and the physical location of the collabo-
rators.

Modified Date

File Parameters :

Name

7

Description
Default Value
Units
Constraints

.Modlfied Date

/ Va,uarameters /

I 1
Run File Params

.. . --..

Model File hams Model Params (1

392 PETERSON ET AL., Neural Modeling Database

Archiving
Modeling is an art of constant revision, A difficulty in
this art is maintaining careful records so that the re-
sults associated with a model that has since under-
gone many revisions can be recreated by duplicating
the previous version of the model. The relational da-
tabase engine used by ModelDB maintains referential
integrity between a model version and runs related to
that version, so it is impossible to accidentally delete
a version on which one or more runs depend.
ModelDB explicitly maintains synchronization be-
tween a particular version of a model and the files/
parameters that constitute it. In collaborative efforts,
the database can also help prevent costly duplicative
efforts. Results from models with parameter sets that
have already been tested can be presented immedi-
ately rather than regenerated by running the model
again.

Interface
Many modeling programs require that a fairly com-
plex language be learned before an actual model can
be implemented. Programming models in such envi-
ronments requires a considerable investment of time.
Once the model is built, however, the code can be
effectively hidden from experimenters to whom it has
no meaning. Experimenters are provided with an in-
terface that allows them to directly manipulate famil-
iar parameters and to initiate runs. The results are eas-
ily accessible, so experimenters can determine how
well the output of the model reflects the particular
system that they are studying.

ModelDB uses a Web interface that affords a series of
advantages. Because browsers are available on almost
every platform, this interface is effectively platform
independent. Only minor modifications need to be
made by the environment developers to support new
simulators. The interface, however, need not change;
thus, from the point of view of those running the
models (experimenters) rather than those developing
them (modelers), the system can appear to be simu-
lator independent as well. Finally, since the system is
accessible over the Internet, it makes running and
demonstrating models possible from almost any-
where in the world; i.e., the system is also location
independent.

Database Structure
The database schema in ModelDB is centered on the
Models table (Fig. 2). An entry in this table references
a set of files that the simulator uses to run the corre-
sponding model. Each file has two sets of parameters
associated with it: Model and Run parameters. Values

for the Model and Run parameters are defined when
the model is created and run, respectively. Dividing
parameters into these two groups is left to the discre-
tion of the modeler and depends on the aspect of the
model being tested. In short, Run parameters are
those whose influence on the model are being tested
and are thus modified often, whereas the Model par-
ameters are those that define the attributes of the
model. When the model is run, an entry in the Run
table that holds the resulting data is created and as-
sociated with the model. Entries in a Graph table can
also be associated with a model. These entries define
what parameters of the run data should be graphed
together.

ModelDB uses an Entity-Attribute-Value (EAV) rep-
resentation for the Run and Model parameters. A file
is the entity, the Run and Model parameters for each
file are its attributes, and each parameter has an as-
signed value. The EAV approach, originally pioneered
in the List Processing (LISP) language in the form of
association lists9 has been widely used to represent
knowledge in medical databases, most notably by the
Columbia Informatics group30J1 to represent signifi-
cant positive and negative findings in clinical patient
records.

The EAV design approach gives a great deal of flexi-
bility in the way that files can be parameterized, from
simply representing numerical values as parameters
as described in this paper to representing variable sec-
tions of code as parameters, Because of this inherent
flexibility, we believe that ModelDB will be able to
support several kinds of simulators. While ModelDB
has thus far been used for neural circuitry modeling,
there is nothing within its schema that contains hard-
coded neurocircuitry concepts (voltage, resistance,
number of compartments, etc.). The only explicit as-
sumption made in ModelDB is that a neural circuitry
model is characterized by a particular set of parame-
ters, some of which will change often during simu-
lations, while others will remain stable. In practice,
however, the EAV approach does have some signifi-
cant inherent inefficiencies (notably in retrieval speed
and the task of building easy-to-use, fault-resistant
user interfaces) that limit its use as a panacea for da-
tabase design. Therefore, similar domains in which
the number of parameters to be tested is relatively
modest are likely to be the most practical for adap-
tations of this environment.

Running in the Environment
ModelDB was created using cgi-bin scripts written in
Per1 that are accessed via an NCSA Web server. These
scripts access an Illustra database (Fig. 3).32 Illustra is
a hybrid database system that combines relational and

Journal of the American Medical Informatics Association Volume 3 Number 6 Nov / Dec 1996

Figure 3 The environment is implemented
via a Web server. The client uses a Web
browser to access the server. The server in-
vokes scripts that access the database as well
as the simulation software.

393

object-oriented features. The current modeling envi-
ronment primarily uses the relational features and
could easily be ported to other relational databases.
In the future, the object-oriented features will be em-
ployed for allowing analysis-based searches of mod-
eling and experimental data.

Creating a Model

The principal reason for associating multiple files with
a model is that this allows modularization of function
and reuse of code. Many required functions are used
in every model, and these can be grouped into library
files. Including these files in the model simply in-
volves selecting the file names from a list of files in
the database. The files can be assigned to a class (e.g.,
library) to simplify locating them.

In the dendritic models described above, the remain-
ing function of the models was defined with two ad-
ditional files, one describing the morphology of the
dendrite and the other containing the code that im-
plements the experimental test conditions.

The code was first tested on a single instance of the
model with a single set of parameters to verify that it
works. This step is necessary because debugging is
easier within the simulator environment than within
ModelDB. The next step is to parameterize the files
and to enter them into the database. This critical step
involves replacing values that might change from
model to model with Model parameters, and replac-
ing those values whose effect on the model are to be
tested with Run parameters. Run parameters are eas-
ier to change, but, because they define a run, too
many of them can make searching for and displaying
runs cumbersome. In the morphology file (Fig. 4), the
dimensions of every compartment were parameter-
ized. The shapes of the main dendrite and the spine
head compartments were rarely changed, so they
were defined as Model parameters. On the other
hand, the shapes of spine necks were critical variables

in determining function, and thus they were defined
as Run parameters so that they could be modified of-
ten.

After the files were entered into ModelDB, they were
added to a model. Before the model was run, it was
further defined by setting the values of the Model pa-
rameters. If a Model parameter value is not set, it as-
sumes its default value. Once a run is generated, the
values of these parameters can not be changed be-
cause they are part of the model definition.

Running the Models
After a model has been defined by selecting files and
setting the Model parameters, it is ready to run. Be-
fore each run, ModelDB presents an interface that al-
lows the Run parameters to be modified. When these
are submitted, ModelDB creates a local work space for
the current user and places the files within this space
while replacing the Run and Model parameters within
these files to their currently assigned values. It then
calls the simulator to run the model. Currently, the
environment waits for the run to complete and then
puts the results into the database. In the future, in
order to support larger models, a queuing system will
be created so that the user can submit a model but
not necessarily have to wait for it to finish before go-
ing on to other tasks.

This issue was not addressed initially because our ap-
proach had been to develop small canonical models,
not large-scale models containing thousands of com-
partments. Both types of models have advantages for
dealing with the complexity of neuronal systems. Ca-
nonical models attempt to define the minimum com-
plexity required to simulate essential neural opera-
tions. As discussed elsewhere,33” this approach is
critical for incorporating more realistic neurons into
neural networks without adding more computational
complexity to the neural nodes than is absolutely nec-
essary. Developing such models could lead to close
collaborations between system and neuronal model-

394 PETERSON ET AL., Neural Modeling Database

D. ,

ers. This process could be facilitated by ModelDB be-
cause it provides a convenient mechanism for these
modelers to share and run models over the Web.

Web-based technologies make it possible to present a
consistent interface to experimenters for assigning
values to parameters, independent of the simulator
being used. An interface for starting a run on a simple
model with four spines is shown in Figure 5. In this
example, the Run parameters are the conductance in-
creases induced by active synapses on two spine
heads, the time delay between the activation of the
two synapses, and the diameters of the necks of the
four spines. Clicking on the “Submit” button begins
the run. Information about the run, including the-re-
sulting data, are then entered into the database.

Handling Versions
One main advantage over using a simulator and the
operating system file system is that ModelDB allows

Figure 4 Parameterization
of the model. Each compart-
ment is represented by a
cylinder with a length and
diameter (A). One file in the
model is used to represent
this morphology. When this
file is defined, a list is gen-
erated that gives the param-
eter names and default val-
ues and indicates whether
the parameter is a Run or
Model parameter (B). This
list is associated with the
parameterized file contents
(C). The approach taken
here is to precede parameter
names with “##,’ so that it is
unlikely that a file would
contain one by accident, but
no restrictions on parameter
names are enforced. Before a
run, the parameters are re-
placed to create a working
file (D). In this example, all
parameters except for the
spine neck diameters have
been defined as Model pa-
rameters.

you to maintain previous versions, so models that
have been used to create stored data are never lost. In
order to be viewed as an asset, this maintenance must
not significantly slow the modeling process. Parame-
terization of the files provides a mechanism for the
modeler to pay a very low price for this maintenance.
It only requires a little foresight in the design so that
any item in a file that is likely to change is parame-
terized. Furthermore, those items likely to have many
values tested on each model should be defined as Run
parameters and the rest should be defined as Model
parameters.

This organization leads to four levels of preparing a
model for the next run. If only a Run parameter needs
to be changed, then the model can be run immediately
without modification. If one of the Model parameters
has to be changed, then the experimenter need only
ask the system to duplicate the model and then assign
values to the Model parameters. If something that was
not parameterized within one of the files has to be

Journal of the American Medical Informatics Association Volume 3 Number 6 Nov / Dec 1996 395

changed, the model and file must be duplicated. The
new file can then be modified (probably by the mod-
eler rather than the experimenter) and added to the
new model in place of the previous copy. Finally, com-
pletely new models require that the modeler create
new code in a new set of files. The system requires
very little extra work, and that work is proportional
to the size of the change being made. This minimal
overhead is a small price to pay for guaranteed re-
producibility of the data.

Viewing the Results
Once a model has been run one or more times, the
experimenter must be able to access the results. Often
the same variables, such as spine head voltages, are
to be graphed for each run. Assigning a Graph struc-
ture to a model prevents the experimenter from hav-
ing to define the variables to be graphed more than
once. Since a Graph structure can belong to more than
one model, the structure can be linked to a series of
models as well as to a series of runs. Once a graph is
selected for a model, the list of runs for that model is

presented. When a run is selected, the data from that
run and the graph definition are sent to a helper ap-
plication to create a graph (Fig. 6). Currently, this
helper application has only been written for the Mac-
intosh, but we are taking steps to make this aspect
system-independent as well. This independence will
be achieved either by creating the graphs on the
server side and outputting them in a browser readable
format or by converting the graphing routines to Web-
interpretable code (e.g., Java).35-37

Collaboration
The Web interface makes the models accessible via the
Internet. Collaborators can therefore easily run mod-
els and view results whether they are working in the
same office, in different buildings, or on different con-
tinents. Because computational neuroscience is inter-
disciplinary, as are other modeling fields, this ease of
collaboration is important because it allows the co-
operation of a necessarily diverse set of talents with-
out being constrained by the physical location of the
participants.

Figure 5 Interface for running the
dendritic spines model. The Run pa-
rameters for this model are the synapse
conductances on the first two spine
heads, the delay between the arrival of
these inputs, and the four spine neck
diameters.

New Run
Run notes:

Run parameters:
headlG: I 0
head2G 1 0

##delay: 0.4

P#nlDlam 0 08

Xh2Dlam (a 08

Wh3Dm: 0 08

Wn4Dm: 0 08

in fde br-3pines.g

in file br-spines.g

in file br-spines g

L-I file brayton-spines.p

m file braymu-spinrap

U-I file brayton-spines.p

n-l file brayt0n~spiJler.p

(GGp.,,,,)

PETERSON ET AL., Neural Modeling Database

Two lessons Learned

Two additional issues arose during this work: achiev-
ing adequate performance and creating a safe envi-
ronment. These issues are common, especially in Web-
based applications. Though workable solutions have
been achieved, these issues will continue to require
attention as the project expands.

Performance
Using a Web interface can lead to a number of per-
formance problems. Because this interface does not
easily allow the saving of state, it can require that the
database be accessed more frequently. In the original
implementation, each database access resulted in the
launching of a large program through which com-
munication with the database took place. These prob-
lems were partially alleviated by using Illustra’s text
capabilities and unlimited Structured Query Lan-
guage (SQL) command size to allow multiple queries
to be combined into a single database access, Because
the cgi-bin scripts are written in Perl, which is a strong
text-processing language, they could easily parse the
returned values into separate responses for each
query.

Naviserver (NaviSoft),38 an alternative to the cgi-bin
script interface, is now being investigated. This sys-
tem allows one to embed C or TCL into the server so
that the cgi-bin process initiation is avoided. Further-
more, it maintains constant contact with the database
so that accesses are very efficient. Because Illustra
charges per license where a license is needed for each
connection to the database, a disadvantage of this sys-

tem is that it requires that at least one Illustra license
be dedicated to the Web server.

Providing a Safe User Environment
It was clear from the beginning of this project that
some information about users would have to be main-
tained in order to provide a safe environment for each
model developer. This was accomplished by giving
each user a name and a password that permit access
to the cgi-bin directory via the Web server. Each script
can then determine the user by accessing the
REMOTE-USER environment variable. A script can
also access a separate database that maintains a list of
the groups to which each user belongs. Similar to files
in UNIX, files and models within ModelDB are asso-
ciated with permissions that determine which groups
can read, modify, and run them. This simple scheme
makes it easy to develop a model in the privacy of a
small group, then to make it public after it has been
tested.

Running the model can lead to additional problems
because many simulators allow access to the under-
lying operating system. Intentional or accidental flaws
within the modeling code can therefore lead to system
problems. To help avoid these problems, a dummy
account was instantiated with minimal permissions
and limited disk space. The simulator processes were
assigned to this account by using a program called
cgiwrap.39 Even with a responsible group of model
developers, these precautions were well worthwhile.

Future Directions
The initial goal for ModelDB was to create an envi-

Spine Head And Dendritic Voltages

-head, -vm
max y = 25 1 at 3 4ms

-hWdZ-Vm
mrry=462atZSms

-head3-Vm
mu y = 25 8 at 3 4ms

herd4Jm
max y = 23 3 at 3 5ms

-dcndZ-Vm
mrxy=122at39ms

dend4eVm
mm y = 3.3 at 3.9m5

-dend8-Vm
mrx y = -54 7 at 5 3ms

Figure 6 Viewing results from a run.
A helper application is used to graph
the voltages in the spine heads and in
three of the main dendritic branch com-
partments.

Journal of the American Medical Informatics Association Volume 3 Number 6 Nov / Dec 1996 397

ronment that satisfied an immediate set of needs for
creating models. ModelDB was also designed so that
its capabilities could be easily extended along a num-
ber of fronts. These included extending the number of
supported simulators, providing complex search
mechanisms for models and runs, and, finally, in the
context of the Human Brain Project, incorporating this
database into a set of interrelated databases that allow
information to be shared. The first two of these exten-
sions have been discussed within the context of this
paper and are fairly straightforward; the last exten-
sion is more complex and merits further discussion,

Linking Multiple Databases
The Web provides a simple mechanism for represent-
ing knowledge as links between related material.
These links can be predefined database queries. As the
system is expanded, links will be used to connect the
model and its parameters to other databases currently
under construction (Fig. 7A). These databases include
citation and researcher databases. This simple linking
scheme could provide, for example, a list of citations
and their abstracts relevant to a particular value cho-
sen for one of the model parameters. It could lead to
contact information for researchers working on this
aspect of the system.

In the next stage of development, links will be used
to reference relevant data in experimental databases
(Fig. 7B). Because data from the models and experi-
ments can be coerced into a common datatype, these
databases could share a number of features. One of
these shared features could be a common set of tools
for display and analysis purposes that could be ac-
cessed via the browsers by defining Multipurpose In-
ternet Mail Extension (MIME) types for the data. Fur-
ther extension of capabilities will be possible by using
Illustra’s support for object-oriented database design.
This support allows new data types to be defined
along with corresponding functions for operating on
those types. Incorporating aspects of current analysis
tools into these functions will allow sophisticated
searches based on analysis of model and/or experi-
mental data. For example, one might search for model
and experimental data in which most of the energy in
the spike train is at a spike frequency of between 30
and 50 Hz, a frequency range that may be involved
in feature binding.”

This proposed system is a fairly straightforward step
from our current one. If there is one lesson to be learned
from the Web it is that the best way to collect and con-
nect large quantities of data is to distribute the task over
many users. Our key focus therefore will be to develop
frameworks that will aid the development of these
databases and subsequent knowledge representations.

Miscellaneous DBS
Citat ions, People, etc.

A

1 Model DEI 1

Miscellaneous DBs
Citat ions, People, etc.

B

1 Experimental DB 1
I I

Figure 7 An overview of the progressive development
of multiple databases proposed as a future research di-
rection (see text). These databases will be extensively in-
terlinked to help produce a useful research and clinical
tool.

The Direction of the Human Brain Project
Within the Human Brain- Project, the different labo-
ratory groups share many common goals and strate-
gies for reaching them, but there are differences in the
details. At this early stage in the project, a broad over-
lap in general design with differing details of imple-
mentation is a healthy means for the research com-
munity to weigh the strengths and weaknesses of each
approach.

In the second stage of this project, it will be important
for standards to be created so that systems, tools, and
data can be consolidated. This approach will allow a
critical mass of information to accumulate, leading to
the formation of a truly useful set of databases for
both the research and clinical communities.

Summary

We have created an environment for building and
running models within a database context. The data-
base provides the means for storing and searching for
models and their results in a structured manner. It

PETERSON ET AL., Neural Modeling Database

also provides the means for ensuring that all results
in the database are associated with the model that cre-
ated them. The environment uses a Web interface that
provides machine, simulator, and location indepen-
dence. This independence simplifies the organization
of collaborative modeling efforts. Because models en-
capsulate what is known about a system, this data-
base provides an initial focus to which information
from experimental and citation databases can be
linked. In the future, a more abstract representation
of the knowledge of systems under study will be used
to bridge the modeling databases and these other da-
tabases. This system will provide a powerful tool for
synthesizing what is known and exposing what is not.

References

1. Huerta MF, Koslow SH, Leshner AI. The Human Brain Pro-
ject: an international resource. TINS. 1993;16:436-8.

2. Bloom FE, Young WG. New solutions for neuroscience com-
munications are still needed. Prog Brain Res. 1994;100:275-
81.

3. Lowe HJ, Lomax EC, Polonkey SE. The World Wide Web:
A review of an emerging internet-based technology for the
distribution of biomedical information. J Am Med Inform
Assoc. 1996;3:1- 14.

4. Pechura CM, Martin JB (eds). Mapping the Brain and its
Functions. Integrating Enabling Technologies into Neuro-
science Research. Washington, DC: National Academy
Press, 1991.

5. http://www-hbp-np.scripps.edu/
6. Rall W. Theoretical significance of dendritic trees and mo-

toneuron input-output relations. In: Reiss RF (ed). Neural
Theory and Modeling. Stanford, CA: Stanford University
Press, 1964.

7. Rall W. Distinguishing theoretical synaptic potentials com-
puted for different somadendritic distributions of synaptic
input. J Neurophysiol. 1967;30:1138-68.

8. Rall W, Shepherd GM. Theoretical reconstruction of field
potentials and dendrodendritic synaptic interactions in the
olfactory bulb. J Neurophysiol. 1968;31:884-915.

9. Traub RD. Motoneurons of different geometry and the size
principle. Biol Cybern. 1977;25:163-76.

10. Pellionisz A, Llinas R, Perkel DH. A computer model of the
cerebellar cortex of the frog. Neuroscience. 1977;2:19-35.

11. Traub RD, Llinas R. Hippocampal pyramidal cells: signifi-
cance of dendritic ionic conductances for neuronal function
and epileptogenesis. J Neurophysiol. 1979;59:1352-76.

12. MacGregor RJ. Neural and Brain Modeling. San Diego, CA:
Academic Press Inc., 1987.

13. Shepherd GM, Brayton RK. Computer simulation of a den-
drodendritic synaptic circuit for self- and lateral-inhibition
in the olfactory bulb. Brain Res. 1979;175:377-82.

14. Carnevale NT, Woolf TB, Shepherd GM. Neuron simula-
tions with SABER. J Neurosci Met. 1990;33:135-48.

15. Hines M. A program for simulation of nerve equations with
branching geometries. Int. J Biomed Comput. 1989;24:55-
68.

16. Hines M. NEURON-A program for simulation of nerve

equations. In: Eeckman F (ed). Neural Systems: Analysis
and Modeling. Norwell, MA: Kluwer Academic Publishers,
1993:127-36.

17. Hines M. The NEURON simulation program, In: Skrzypek
J (ed). Neural Network Simulation Environments. Norwell,
MA: Kluwer Academic Publishers, 1993.

18. http://www.neuro.duke.edu/neuron/home.html
19. Wilson MA, Bower JM. The simulation of large-scale neural

networks. In: Koch C, Segev I (eds). Methods in Neuronal
Modeling: From Synapses to Networks. Cambridge, MA:
The MIT Press, 1989.

20. Bower JM, Beeman D. The Book of Genesis. New York:.
Springer-Verlag, 1995.

21. http://www.bbb.caltech.edu/GENESIS
22. Peterson BE, Gale EA, Jensen RV, Shepherd GM. Models of

dendritic spines containing active conductances display
complex temporal processing capabilities. Soc Neurosci
Abs. 1995;21:376.5.

23. Hille B. Ionic Channels of Excitable Membranes. Sunder-
land, MA: Sinauer Associates, 1984.

24. Jack JJB, Noble D, Tsien RW. Electric Current Flow in Ex-
citable Cells, 2nd ed. Oxford: Clarendon Press, 1975.

25. Johnson D, Wu SM. Foundations of Cellular Neurophysiol-
ogy. Cambridge, MA: The MIT Press, 1995.

26. Shepherd GM, Brayton RK, Miller JP, Segev I, Rinzel J, Rall
W. Signal enhancement in distal cortical dendrites by means
of interactions between active dendritic spines. Proc Natl
Acad Sci I-l S A. 1985;82:2192-5.

27. Shepherd GM, Brayton RK. Logic operations are properties
of computer-simulated interactions between excitable den-
dritic spines. Neuroscience. 1987;21:151-65.

28. Shepherd GM, Woolf TB, Carnevale NT. Comparisons be-
tween active properties of distal dendritic branches and
spines: implications for neuronal computations. Journal of
Cognitive Neuroscience. 1989;1:273-86.

29. Friedman C, Hripcsak G, Johnson S, Cimino J, Clayton P. A
generalized relational schema for an integrated clinical pa-
tient database. SCAMC Proc. 1990;335-9.

30. Johnson S, Cimino J, Friedman C, Hripcsak G, Clayton P.
Using metadata to integrate medical knowledge in a clinical
information system. SCAMC Proc. 1990;340-4.

31. Winston PH. LISP, 2nd ed. Reading, MA: Addison-Wesley,
1984.

32. http://www.illustra.com/
33. Rall W. Perspectives on neuronal modeling. In: Binder MD,

Mendell LM (eds). The Segmental Motor System. New York:
Oxford University Press, 1990; 129-49.

34. Shepherd GM. Canonical neurons and their computational
organization. In: McKenna T, Davis J, Zornetzer SF (eds).
Single Neuron Computation. Cambridge MA: MIT Press,
1992;27-59.

35. van Hoff A, Shaio S, Starbuck 0. Hooked on Java. New
York: Addison-Wesley, 1996.

36. van Hoff A. Java and Internet programming: similar to C
and C++ but much simpler. Dr. Dobb’s Journal. 1995;20:
56-61.

37. http://java.sun.com/
38. http://naviserver.navisoft.com/
39. ftp://ftp.cc.umr.edu/pub/cgi/cgiwrap/
40. Singer W, Gray CM. Visual feature integration and the tem-

poral correlation hypothesis. Annu Rev Neurosci. 1995;18:
555-86.

