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Application of Technology n 

ModelDB: 
An Environment for Running 
and Storing Computational 
Models and Their Results 
Applied to Neuroscience 
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Abstract R h esearc groups within the Human Brain Project are developing technologies 
to help organize and make accessible the vast quantities of information being accumulated in the 
neurosciences. The goal of this work is to provide systems that enable this complex information 
from many diverse sources to be synthesized into a coherent theory of nervous system function. 
Our initial approach to this problem has been to create several small databases. While addressing 
the issues of each individual database, we are also considering how each might be incorporated 
into an integrated cluster of databases. In this paper, we describe a pilot project in which we 
construct a database of computational models of neuronal function. This database allows models 
to be created and run and their results reviewed through a World Wide Web interface. Because 
models encapsulate knowledge in a formal manner about how neuronal systems function, we 
also discuss how this database forms a natural center for our initial attempts at creating a cluster 
of related databases. General issues of database development in the context of the Web are also 
discussed. 
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Neuroscience research is generating vast quantities of 
data in subdisciplines, ranging from the molecular to 
the behavioral level. Each level of study has had sur- 
prising success at describing phenomena at that level, 
but no one area has been sufficient in itself to provide 
a satisfactory description of nervous system function 
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as a whole. Furthermore, the complexity of the sys- 
tems being studied requires that, even within a given 
subdiscipline, an increasingly narrow focus of spe- 
cialization is required in order for progress to be 
made. This necessary specialization makes compila- 
tion and integration of results across disciplines all the 
more difficult.‘,’ 

To help overcome these barriers and to help facilitate 
cross-discipline exchange of information between dif- 
ferent laboratories, we have developed a pilot mod- 
eling database environment called ModelDB (http:/ / 
senselab.med.yale.edu/models/help/). ModelDB is a 
system that acts as a front end for both a database 
and a complex modeling program and ties the two 
together. ModelDB provides the necessary function- 
ality for developing models in a collaborative envi- 
ronment through the use of a World Wide Web inter- 
face. Because the models exist in a database, they are 
easily linked to data and results in other databases. 
This capability is critical because the data and results 
upon which the model is based can be easily re- 
viewed. Because these links are made using the 
HyperText Transfer Protocol (HTTP),3 the databases 
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can be in a variety of sites around the world. Because 
the interface to the models is also through HTTP, the 
collaborative team of modelers and experimenters can 
be distributed around the world as well, as envisaged 
by the Human Brain Project?5 

In this paper we describe the application of ModelDB 
to a series of dendritic models using a particular neu- 
roscience simulator. ModelDB has potentially broader 
applications, however, because it can easily be 
adapted to run other simulators as well. The approach 
of combining Web and database technologies can also 
be generally applied. 

Background 

An important step toward integrating results at the 
level of the neuron has been the creation of compu- 
tational models. Starting with the introduction of the 
compartmental modeling approach,6,8 there have been 
successive steps in the development of specialized 
programs,9-” adaptation of general-purpose simula- 
tion programs,‘3’14 and finally the recent emergence of 

Figure 1 Construction of a canonical 
model of part of the spiny dendritic tree 
of a neuron. Morphology of a dendritic 
branch (A) is abstracted into a series of 
cylindrical compartments (B). Each 
compartment is modeled as an equiva- 
lent electrical circuit (C). Voltage-depen- 
dent conductances can be added to ap- 
propriate compartments to simulate 
active properties in the branch (D). 
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large-scale programmable environments for develop- 
ing neural simulations:‘5-2’ ModelDB attempts to ex- 
tend these environments further. 

The preliminary use of ModelDB has been to create a 
series of compartmental models of a simplified canon- 
ical representation of a dendritic system using the 
GENESIS simulator.” As shown in Figures 1A and B, 
the behavior of a small branch of a dendrite is ap- 
proximated by first separating its properties into a se- 
ries of discrete cylindrical compartments. These com- 
partments represent the main branch of the dendrite 
and the head and necks of the dendritic spines. The 
simulator models the electrical flow between com- 
partments by means of equivalent electrical circuits 
(Figs. 1C and D).6-8.23-25 This particular model extends 
previous models26-28 and was constructed to investi- 
gate how nonlinear (voltage-dependent) ion channel 
properties in the dendrite and spines (Fig. 1D) might 
influence coupling between synaptic input and the 
charge spread to more proximal parts of the neuron. 
It is this spread that leads to the generation or mod- 
ulation of impulses in the axon, which constitute the 
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output of the neuron that excites or inhibits other cells 
in the pathway The models demonstrate how this 
particular set of dendritic properties could make im- 
portant contributions to the network properties un- 
derlying cortical functions. 

Computational models serve as precise representa- 
tions of our understanding of studied or, as in this 
case, theoretical circuits, neurons, and neuronal com- 
ponents. This precision not only helps organize what 
is known but also helps make explicit what is un- 
known. It thus provides an extremely useful means 
for experimenters to consolidate their findings. Mod- 
eling does require, however, a significant level of com- 
puting and mathematical sophistication, and it usu- 
ally requires expertise in a particular programmable 
simulation package as well. Therefore, experiments 
and modeling together tend to require more skills 
than are generally possessed by a single individual. 
Consequently, close collaboration has traditionally 
been required between modeler and experimenter. 

The quantity of information that needs to be ex- 
changed between experimenter and modeler in order 
to create these models has often prevented this inter- 
action from extending beyond the confines of individ- 

Figure 2 A schematic of the database 
schema. The three-pronged connectors in- 
dicate a “many” relation, and the single- 
pronged connectors indicate a “one” rela- 
tion. The bridging tables for the 
many-to-many relations are not shown. 
The tables within tables indicate Illustra’s 
support of subtables (analogous to object- 
oriented subclasses). These allow the 
scripts to reference the supertable rather 
than having to explicitly join the two sub- 
tables. An entry is created in the Models 
table for every version of every model. The 
entry references a set of files that define 
the model. When the model is run, the 
Run and Model parameters in each file are 
replaced with their assigned values in the 
Parameters tables. If no value has been as- 
signed, they take on their default values 
from the parameter definitions in the File 
Parameters tables. Each run generates a 
new entry in the Runs table that contains 
the resulting data. Entries in the Graph ta- 
ble are also associated with Models en- 
tries. They specify which variables in the 
resulting data should be graphed together. 
Selecting a pair of Graph and Run entries 
for a particular model allows a helper ap- 
plication to graph the data in the specified 
format. 
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ual laboratories. Consequently, a model seldom en- 
compasses more than the particular expertise of a 
single laboratory. ModelDB attempts to make easier 
the exchange of information between modeler and ex- 
perimenter. Because it is based on Web technology, 
ModelDB can operate independent of the collabora- 
tors’ locations. It thus allows a distributed group of 
multidisciplinary experts to work together on devel- 
oping a single model. 

Design of the Environment 

In the initial stage of this project, there were three pri- 
mary goals. The first was to provide a system for ar- 
chiving models in order to maintain a structured, con- 
tinuous record of the models that were created as well 
as to maintain an ongoing record of the parameters 
that were tested on these models. The second goal 
was to provide a mechanism for experimenters who 
were not primarily modelers to run existing models 
and test new parameter sets. The third goal was to 
create a system that encouraged collaboration by 
making it independent of the simulator, the operat- 
ing system, and the physical location of the collabo- 
rators. 

Modified Date 
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Name 

7 
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Default Value 
Units 
Constraints 

.Modlfied Date 

/ Va,uarameters / 
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Archiving 
Modeling is an art of constant revision, A difficulty in 
this art is maintaining careful records so that the re- 
sults associated with a model that has since under- 
gone many revisions can be recreated by duplicating 
the previous version of the model. The relational da- 
tabase engine used by ModelDB maintains referential 
integrity between a model version and runs related to 
that version, so it is impossible to accidentally delete 
a version on which one or more runs depend. 
ModelDB explicitly maintains synchronization be- 
tween a particular version of a model and the files/ 
parameters that constitute it. In collaborative efforts, 
the database can also help prevent costly duplicative 
efforts. Results from models with parameter sets that 
have already been tested can be presented immedi- 
ately rather than regenerated by running the model 
again. 

Interface 
Many modeling programs require that a fairly com- 
plex language be learned before an actual model can 
be implemented. Programming models in such envi- 
ronments requires a considerable investment of time. 
Once the model is built, however, the code can be 
effectively hidden from experimenters to whom it has 
no meaning. Experimenters are provided with an in- 
terface that allows them to directly manipulate famil- 
iar parameters and to initiate runs. The results are eas- 
ily accessible, so experimenters can determine how 
well the output of the model reflects the particular 
system that they are studying. 

ModelDB uses a Web interface that affords a series of 
advantages. Because browsers are available on almost 
every platform, this interface is effectively platform 
independent. Only minor modifications need to be 
made by the environment developers to support new 
simulators. The interface, however, need not change; 
thus, from the point of view of those running the 
models (experimenters) rather than those developing 
them (modelers), the system can appear to be simu- 
lator independent as well. Finally, since the system is 
accessible over the Internet, it makes running and 
demonstrating models possible from almost any- 
where in the world; i.e., the system is also location 
independent. 

Database Structure 
The database schema in ModelDB is centered on the 
Models table (Fig. 2). An entry in this table references 
a set of files that the simulator uses to run the corre- 
sponding model. Each file has two sets of parameters 
associated with it: Model and Run parameters. Values 

for the Model and Run parameters are defined when 
the model is created and run, respectively. Dividing 
parameters into these two groups is left to the discre- 
tion of the modeler and depends on the aspect of the 
model being tested. In short, Run parameters are 
those whose influence on the model are being tested 
and are thus modified often, whereas the Model par- 
ameters are those that define the attributes of the 
model. When the model is run, an entry in the Run 
table that holds the resulting data is created and as- 
sociated with the model. Entries in a Graph table can 
also be associated with a model. These entries define 
what parameters of the run data should be graphed 
together. 

ModelDB uses an Entity-Attribute-Value (EAV) rep- 
resentation for the Run and Model parameters. A file 
is the entity, the Run and Model parameters for each 
file are its attributes, and each parameter has an as- 
signed value. The EAV approach, originally pioneered 
in the List Processing (LISP) language in the form of 
association lists9 has been widely used to represent 
knowledge in medical databases, most notably by the 
Columbia Informatics group30J1 to represent signifi- 
cant positive and negative findings in clinical patient 
records. 

The EAV design approach gives a great deal of flexi- 
bility in the way that files can be parameterized, from 
simply representing numerical values as parameters 
as described in this paper to representing variable sec- 
tions of code as parameters, Because of this inherent 
flexibility, we believe that ModelDB will be able to 
support several kinds of simulators. While ModelDB 
has thus far been used for neural circuitry modeling, 
there is nothing within its schema that contains hard- 
coded neurocircuitry concepts (voltage, resistance, 
number of compartments, etc.). The only explicit as- 
sumption made in ModelDB is that a neural circuitry 
model is characterized by a particular set of parame- 
ters, some of which will change often during simu- 
lations, while others will remain stable. In practice, 
however, the EAV approach does have some signifi- 
cant inherent inefficiencies (notably in retrieval speed 
and the task of building easy-to-use, fault-resistant 
user interfaces) that limit its use as a panacea for da- 
tabase design. Therefore, similar domains in which 
the number of parameters to be tested is relatively 
modest are likely to be the most practical for adap- 
tations of this environment. 

Running in the Environment 
ModelDB was created using cgi-bin scripts written in 
Per1 that are accessed via an NCSA Web server. These 
scripts access an Illustra database (Fig. 3).32 Illustra is 
a hybrid database system that combines relational and 
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Figure 3 The environment is implemented 
via a Web server. The client uses a Web 
browser to access the server. The server in- 
vokes scripts that access the database as well 
as the simulation software. 
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object-oriented features. The current modeling envi- 
ronment primarily uses the relational features and 
could easily be ported to other relational databases. 
In the future, the object-oriented features will be em- 
ployed for allowing analysis-based searches of mod- 
eling and experimental data. 

Creating a Model 

The principal reason for associating multiple files with 
a model is that this allows modularization of function 
and reuse of code. Many required functions are used 
in every model, and these can be grouped into library 
files. Including these files in the model simply in- 
volves selecting the file names from a list of files in 
the database. The files can be assigned to a class (e.g., 
library) to simplify locating them. 

In the dendritic models described above, the remain- 
ing function of the models was defined with two ad- 
ditional files, one describing the morphology of the 
dendrite and the other containing the code that im- 
plements the experimental test conditions. 

The code was first tested on a single instance of the 
model with a single set of parameters to verify that it 
works. This step is necessary because debugging is 
easier within the simulator environment than within 
ModelDB. The next step is to parameterize the files 
and to enter them into the database. This critical step 
involves replacing values that might change from 
model to model with Model parameters, and replac- 
ing those values whose effect on the model are to be 
tested with Run parameters. Run parameters are eas- 
ier to change, but, because they define a run, too 
many of them can make searching for and displaying 
runs cumbersome. In the morphology file (Fig. 4), the 
dimensions of every compartment were parameter- 
ized. The shapes of the main dendrite and the spine 
head compartments were rarely changed, so they 
were defined as Model parameters. On the other 
hand, the shapes of spine necks were critical variables 

in determining function, and thus they were defined 
as Run parameters so that they could be modified of- 
ten. 

After the files were entered into ModelDB, they were 
added to a model. Before the model was run, it was 
further defined by setting the values of the Model pa- 
rameters. If a Model parameter value is not set, it as- 
sumes its default value. Once a run is generated, the 
values of these parameters can not be changed be- 
cause they are part of the model definition. 

Running the Models 
After a model has been defined by selecting files and 
setting the Model parameters, it is ready to run. Be- 
fore each run, ModelDB presents an interface that al- 
lows the Run parameters to be modified. When these 
are submitted, ModelDB creates a local work space for 
the current user and places the files within this space 
while replacing the Run and Model parameters within 
these files to their currently assigned values. It then 
calls the simulator to run the model. Currently, the 
environment waits for the run to complete and then 
puts the results into the database. In the future, in 
order to support larger models, a queuing system will 
be created so that the user can submit a model but 
not necessarily have to wait for it to finish before go- 
ing on to other tasks. 

This issue was not addressed initially because our ap- 
proach had been to develop small canonical models, 
not large-scale models containing thousands of com- 
partments. Both types of models have advantages for 
dealing with the complexity of neuronal systems. Ca- 
nonical models attempt to define the minimum com- 
plexity required to simulate essential neural opera- 
tions. As discussed elsewhere,33” this approach is 
critical for incorporating more realistic neurons into 
neural networks without adding more computational 
complexity to the neural nodes than is absolutely nec- 
essary. Developing such models could lead to close 
collaborations between system and neuronal model- 
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ers. This process could be facilitated by ModelDB be- 
cause it provides a convenient mechanism for these 
modelers to share and run models over the Web. 

Web-based technologies make it possible to present a 
consistent interface to experimenters for assigning 
values to parameters, independent of the simulator 
being used. An interface for starting a run on a simple 
model with four spines is shown in Figure 5. In this 
example, the Run parameters are the conductance in- 
creases induced by active synapses on two spine 
heads, the time delay between the activation of the 
two synapses, and the diameters of the necks of the 
four spines. Clicking on the “Submit” button begins 
the run. Information about the run, including the-re- 
sulting data, are then entered into the database. 

Handling Versions 
One main advantage over using a simulator and the 
operating system file system is that ModelDB allows 

Figure 4 Parameterization 
of the model. Each compart- 
ment is represented by a 
cylinder with a length and 
diameter (A). One file in the 
model is used to represent 
this morphology. When this 
file is defined, a list is gen- 
erated that gives the param- 
eter names and default val- 
ues and indicates whether 
the parameter is a Run or 
Model parameter (B). This 
list is associated with the 
parameterized file contents 
(C). The approach taken 
here is to precede parameter 
names with “##,’ so that it is 
unlikely that a file would 
contain one by accident, but 
no restrictions on parameter 
names are enforced. Before a 
run, the parameters are re- 
placed to create a working 
file (D). In this example, all 
parameters except for the 
spine neck diameters have 
been defined as Model pa- 
rameters. 

you to maintain previous versions, so models that 
have been used to create stored data are never lost. In 
order to be viewed as an asset, this maintenance must 
not significantly slow the modeling process. Parame- 
terization of the files provides a mechanism for the 
modeler to pay a very low price for this maintenance. 
It only requires a little foresight in the design so that 
any item in a file that is likely to change is parame- 
terized. Furthermore, those items likely to have many 
values tested on each model should be defined as Run 
parameters and the rest should be defined as Model 
parameters. 

This organization leads to four levels of preparing a 
model for the next run. If only a Run parameter needs 
to be changed, then the model can be run immediately 
without modification. If one of the Model parameters 
has to be changed, then the experimenter need only 
ask the system to duplicate the model and then assign 
values to the Model parameters. If something that was 
not parameterized within one of the files has to be 
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changed, the model and file must be duplicated. The 
new file can then be modified (probably by the mod- 
eler rather than the experimenter) and added to the 
new model in place of the previous copy. Finally, com- 
pletely new models require that the modeler create 
new code in a new set of files. The system requires 
very little extra work, and that work is proportional 
to the size of the change being made. This minimal 
overhead is a small price to pay for guaranteed re- 
producibility of the data. 

Viewing the Results 
Once a model has been run one or more times, the 
experimenter must be able to access the results. Often 
the same variables, such as spine head voltages, are 
to be graphed for each run. Assigning a Graph struc- 
ture to a model prevents the experimenter from hav- 
ing to define the variables to be graphed more than 
once. Since a Graph structure can belong to more than 
one model, the structure can be linked to a series of 
models as well as to a series of runs. Once a graph is 
selected for a model, the list of runs for that model is 

presented. When a run is selected, the data from that 
run and the graph definition are sent to a helper ap- 
plication to create a graph (Fig. 6). Currently, this 
helper application has only been written for the Mac- 
intosh, but we are taking steps to make this aspect 
system-independent as well. This independence will 
be achieved either by creating the graphs on the 
server side and outputting them in a browser readable 
format or by converting the graphing routines to Web- 
interpretable code (e.g., Java).35-37 

Collaboration 
The Web interface makes the models accessible via the 
Internet. Collaborators can therefore easily run mod- 
els and view results whether they are working in the 
same office, in different buildings, or on different con- 
tinents. Because computational neuroscience is inter- 
disciplinary, as are other modeling fields, this ease of 
collaboration is important because it allows the co- 
operation of a necessarily diverse set of talents with- 
out being constrained by the physical location of the 
participants. 

Figure 5 Interface for running the 
dendritic spines model. The Run pa- 
rameters for this model are the synapse 
conductances on the first two spine 
heads, the delay between the arrival of 
these inputs, and the four spine neck 
diameters. 
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Two lessons Learned 

Two additional issues arose during this work: achiev- 
ing adequate performance and creating a safe envi- 
ronment. These issues are common, especially in Web- 
based applications. Though workable solutions have 
been achieved, these issues will continue to require 
attention as the project expands. 

Performance 
Using a Web interface can lead to a number of per- 
formance problems. Because this interface does not 
easily allow the saving of state, it can require that the 
database be accessed more frequently. In the original 
implementation, each database access resulted in the 
launching of a large program through which com- 
munication with the database took place. These prob- 
lems were partially alleviated by using Illustra’s text 
capabilities and unlimited Structured Query Lan- 
guage (SQL) command size to allow multiple queries 
to be combined into a single database access, Because 
the cgi-bin scripts are written in Perl, which is a strong 
text-processing language, they could easily parse the 
returned values into separate responses for each 
query. 

Naviserver (NaviSoft),38 an alternative to the cgi-bin 
script interface, is now being investigated. This sys- 
tem allows one to embed C or TCL into the server so 
that the cgi-bin process initiation is avoided. Further- 
more, it maintains constant contact with the database 
so that accesses are very efficient. Because Illustra 
charges per license where a license is needed for each 
connection to the database, a disadvantage of this sys- 

tem is that it requires that at least one Illustra license 
be dedicated to the Web server. 

Providing a Safe User Environment 
It was clear from the beginning of this project that 
some information about users would have to be main- 
tained in order to provide a safe environment for each 
model developer. This was accomplished by giving 
each user a name and a password that permit access 
to the cgi-bin directory via the Web server. Each script 
can then determine the user by accessing the 
REMOTE-USER environment variable. A script can 
also access a separate database that maintains a list of 
the groups to which each user belongs. Similar to files 
in UNIX, files and models within ModelDB are asso- 
ciated with permissions that determine which groups 
can read, modify, and run them. This simple scheme 
makes it easy to develop a model in the privacy of a 
small group, then to make it public after it has been 
tested. 

Running the model can lead to additional problems 
because many simulators allow access to the under- 
lying operating system. Intentional or accidental flaws 
within the modeling code can therefore lead to system 
problems. To help avoid these problems, a dummy 
account was instantiated with minimal permissions 
and limited disk space. The simulator processes were 
assigned to this account by using a program called 
cgiwrap.39 Even with a responsible group of model 
developers, these precautions were well worthwhile. 

Future Directions 
The initial goal for ModelDB was to create an envi- 

Spine Head And Dendritic Voltages 

-head, -vm 
max y = 25 1 at 3 4ms 

-hWdZ-Vm 
mrry=462atZSms 

-head3-Vm 
mu y = 25 8 at 3 4ms 

herd4Jm 
max y = 23 3 at 3 5ms 

-dcndZ-Vm 
mrxy=122at39ms 

dend4eVm 
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-dend8-Vm 
mrx y = -54 7 at 5 3ms 

Figure 6 Viewing results from a run. 
A helper application is used to graph 
the voltages in the spine heads and in 
three of the main dendritic branch com- 
partments. 
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ronment that satisfied an immediate set of needs for 
creating models. ModelDB was also designed so that 
its capabilities could be easily extended along a num- 
ber of fronts. These included extending the number of 
supported simulators, providing complex search 
mechanisms for models and runs, and, finally, in the 
context of the Human Brain Project, incorporating this 
database into a set of interrelated databases that allow 
information to be shared. The first two of these exten- 
sions have been discussed within the context of this 
paper and are fairly straightforward; the last exten- 
sion is more complex and merits further discussion, 

Linking Multiple Databases 
The Web provides a simple mechanism for represent- 
ing knowledge as links between related material. 
These links can be predefined database queries. As the 
system is expanded, links will be used to connect the 
model and its parameters to other databases currently 
under construction (Fig. 7A). These databases include 
citation and researcher databases. This simple linking 
scheme could provide, for example, a list of citations 
and their abstracts relevant to a particular value cho- 
sen for one of the model parameters. It could lead to 
contact information for researchers working on this 
aspect of the system. 

In the next stage of development, links will be used 
to reference relevant data in experimental databases 
(Fig. 7B). Because data from the models and experi- 
ments can be coerced into a common datatype, these 
databases could share a number of features. One of 
these shared features could be a common set of tools 
for display and analysis purposes that could be ac- 
cessed via the browsers by defining Multipurpose In- 
ternet Mail Extension (MIME) types for the data. Fur- 
ther extension of capabilities will be possible by using 
Illustra’s support for object-oriented database design. 
This support allows new data types to be defined 
along with corresponding functions for operating on 
those types. Incorporating aspects of current analysis 
tools into these functions will allow sophisticated 
searches based on analysis of model and/or experi- 
mental data. For example, one might search for model 
and experimental data in which most of the energy in 
the spike train is at a spike frequency of between 30 
and 50 Hz, a frequency range that may be involved 
in feature binding.” 

This proposed system is a fairly straightforward step 
from our current one. If there is one lesson to be learned 
from the Web it is that the best way to collect and con- 
nect large quantities of data is to distribute the task over 
many users. Our key focus therefore will be to develop 
frameworks that will aid the development of these 
databases and subsequent knowledge representations. 

Miscellaneous DBS 
Citat ions, People, etc. 

A 

1 Model DEI 1 

Miscellaneous DBs 
Citat ions, People, etc. 

B 

1 Experimental DB 1 
I I 

Figure 7 An overview of the progressive development 
of multiple databases proposed as a future research di- 
rection (see text). These databases will be extensively in- 
terlinked to help produce a useful research and clinical 
tool. 

The Direction of the Human Brain Project 
Within the Human Brain- Project, the different labo- 
ratory groups share many common goals and strate- 
gies for reaching them, but there are differences in the 
details. At this early stage in the project, a broad over- 
lap in general design with differing details of imple- 
mentation is a healthy means for the research com- 
munity to weigh the strengths and weaknesses of each 
approach. 

In the second stage of this project, it will be important 
for standards to be created so that systems, tools, and 
data can be consolidated. This approach will allow a 
critical mass of information to accumulate, leading to 
the formation of a truly useful set of databases for 
both the research and clinical communities. 

Summary 

We have created an environment for building and 
running models within a database context. The data- 
base provides the means for storing and searching for 
models and their results in a structured manner. It 
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also provides the means for ensuring that all results 
in the database are associated with the model that cre- 
ated them. The environment uses a Web interface that 
provides machine, simulator, and location indepen- 
dence. This independence simplifies the organization 
of collaborative modeling efforts. Because models en- 
capsulate what is known about a system, this data- 
base provides an initial focus to which information 
from experimental and citation databases can be 
linked. In the future, a more abstract representation 
of the knowledge of systems under study will be used 
to bridge the modeling databases and these other da- 
tabases. This system will provide a powerful tool for 
synthesizing what is known and exposing what is not. 
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