Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Aug 15;198(2):249–258. doi: 10.1042/bj1980249

Prolyl-tRNA-based rates of protein and collagen synthesis in human lung fibroblasts.

J N Hildebran, J Airhart, W S Stirewalt, R B Low
PMCID: PMC1163242  PMID: 6915781

Abstract

Knowledge of the dynamics of collagen turnover requires information regarding rates of synthesis of this group of connective-tissue proteins. The relationship of various amino acid pools to the tRNA precursor pool used for protein synthesis is known to vary between different cell types and tissues, even for essential amino acids. We studied extracellular, intracellular and tRNA-proline pools in cultured human lung IMR-90 fibroblasts to determine the relationship between them as candidate proline precursor pools for total protein and collagen synthesis. Time-course experiments showed that the three proline pools attained distinctly different steady-state specific radioactivities (extracellular greater than intracellular greater than tRNA) at the extracellular proline concentration of 0.2 mM. The kinetics of radioisotope incorporation into cell protein and collagenase-digestible protein indicated that the intracellular free proline pool could not be used reliably as a precursor for calculating synthetic rates. However, tRNA-proline behaved isotopically as if it were the precursor and provided synthesis rates 2-3-fold higher than those calculated by using either free proline pool. The incorporation of labelled lysine and leucine was constant over a wide range of extracellular proline concentrations. Fractional rates of protein synthesis based on tRNA-amino acid were the same with [3H]phenylalanine as with [3H]proline. The specific radioactivity of cell-associated hydroxyproline reached a steady-state value 8-10h after radioisotope administration which matched the mean tRNA-proline specific radioactivity, suggesting that tRNA-proline is not isotopically compartmentalized. A model of cellular proline-pool relationship is presented and discussed.

Full text

PDF
249

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airhart J., Arnold J. A., Bulman C. A., Low R. B. Protein synthesis in pulmonary alveolar macrophages. Source of amino acids for leucyl-tRNA. Biochim Biophys Acta. 1981 Mar 26;653(1):108–117. doi: 10.1016/0005-2787(81)90109-x. [DOI] [PubMed] [Google Scholar]
  2. Airhart J., Kelley J., Brayden J. E., Low R. B., Stirewalt W. S. An ultramicro method of amino acid analysis: application to studies of protein metabolism in cultured cells. Anal Biochem. 1979 Jul 1;96(1):45–55. doi: 10.1016/0003-2697(79)90552-9. [DOI] [PubMed] [Google Scholar]
  3. Airhart J., Vidrich A., Khairallah E. A. Compartmentation of free amino acids for protein synthesis in rat liver. Biochem J. 1974 Jun;140(3):539–545. doi: 10.1042/bj1400539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andrulis I. L., Arfin S. M. Methods for determining the extent of tRNA aminoacylation in vivo in cultured mammalian cells. Methods Enzymol. 1979;59:268–271. doi: 10.1016/0076-6879(79)59089-2. [DOI] [PubMed] [Google Scholar]
  5. Bienkowski R. S., Baum B. J., Crystal R. G. Fibroblasts degrade newly synthesised collagen within the cell before secretion. Nature. 1978 Nov 23;276(5686):413–416. doi: 10.1038/276413a0. [DOI] [PubMed] [Google Scholar]
  6. Bienkowski R. S., Cowan M. J., McDonald J. A., Crystal R. G. Degradation of newly synthesized collagen. J Biol Chem. 1978 Jun 25;253(12):4356–4363. [PubMed] [Google Scholar]
  7. Booth B. A., Polak K. L., Uitto J. Collagen biosynthesis by human skin fibroblasts. I. Optimization of the culture conditions for synthesis of type I and type III procollagens. Biochim Biophys Acta. 1980 Mar 28;607(1):145–160. doi: 10.1016/0005-2787(80)90228-2. [DOI] [PubMed] [Google Scholar]
  8. Bradley K. H., McConnell S. D., Crystal R. G. Lung collagen composition and synthesis. Characterization and changes with age. J Biol Chem. 1974 May 10;249(9):2674–2683. [PubMed] [Google Scholar]
  9. Bradley K., McConnell-Breul S., Crystal R. G. Collagen in the human lung. Quantitation of rates of synthesis and partial characterization of composition. J Clin Invest. 1975 Mar;55(3):543–550. doi: 10.1172/JCI107961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Breul S. D., Bradley K. H., Hance A. J., Schafer M. P., Berg R. A., Crystal R. G. Control of collagen production by human diploid lung fibroblasts. J Biol Chem. 1980 Jun 10;255(11):5250–5260. [PubMed] [Google Scholar]
  11. Carpousis A., Christner P., Rosenbloom J. Preferential usage of glycyl-tRNA isoaccepting species in collagen synthesis. J Biol Chem. 1977 Apr 10;252(7):2447–2449. [PubMed] [Google Scholar]
  12. Collins J. F., Jones M. A. Connective tissue proteins of the baboon lung: concentration, content and synthesis of collagen in the normal lung. Connect Tissue Res. 1978;5(4):211–215. doi: 10.3109/03008207809152275. [DOI] [PubMed] [Google Scholar]
  13. Drabkin H. J., Lukens L. N. Preferential use in collagen synthesis of the same glycyl-tRNA species that is elevated in collagen-synthesizing tissues. J Biol Chem. 1978 Sep 10;253(17):6233–6241. [PubMed] [Google Scholar]
  14. Faris B., Snider R., Levine A., Moscaritolo R., Salcedo L., Franzblau C. Effect of ascorbate on collagen synthesis by lung embryonic fibroblasts. In Vitro. 1978 Dec;14(12):1022–1027. doi: 10.1007/BF02616217. [DOI] [PubMed] [Google Scholar]
  15. Finerman G. A., Downing S., Rosenberg L. E. Amino acid transport in bone. II. Regulation of collagen synthesis by perturbation of proline transport. Biochim Biophys Acta. 1967;135(5):1008–1015. doi: 10.1016/0005-2736(67)90071-5. [DOI] [PubMed] [Google Scholar]
  16. Fulmer J. D., Bienkowski R. S., Cowan M. J., Breul S. D., Bradley K. M., Ferrans V. J., Roberts W. C., Crystal R. G. Collagen concentration and rates of synthesis in idiopathic pulmonary fibrosis. Am Rev Respir Dis. 1980 Aug;122(2):289–301. doi: 10.1164/arrd.1980.122.2.289. [DOI] [PubMed] [Google Scholar]
  17. Jackson S. H., Heininger J. A. Proline recycling during collagen metabolism as determined by concurrent 18O2-and 3H-labeling. Biochim Biophys Acta. 1975 Feb 13;381(2):359–367. doi: 10.1016/0304-4165(75)90241-x. [DOI] [PubMed] [Google Scholar]
  18. KIPNIS D. M., REISS E., HELMREICH E. Functional heterogeneity of the intracellular amino acid pool in mammalian cells. Biochim Biophys Acta. 1961 Aug 19;51:519–524. doi: 10.1016/0006-3002(61)90608-4. [DOI] [PubMed] [Google Scholar]
  19. Kao W. W., Berg R. A., Prockop D. J. Kinetics for the secretion of procollagen by freshly isolated tendon cells. J Biol Chem. 1977 Dec 10;252(23):8391–8397. [PubMed] [Google Scholar]
  20. Khairallah E. A., Mortimore G. E. Assessment of protein turnover in perfused rat liver. Evidence for amino acid compartmentation from differential labeling of free and tRNA-gound valine. J Biol Chem. 1976 Mar 10;251(5):1375–1384. [PubMed] [Google Scholar]
  21. Kruse P. F., Jr, Miedema E. Production and characterization of multiple-layered populations of animal cells. J Cell Biol. 1965 Nov;27(2):273–279. doi: 10.1083/jcb.27.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Laurent G. J., Sparrow M. P., Bates P. C., Millward D. J. Turnover of muscle protein in the fowl. Collagen content and turnover in cardiac and skeletal muscles of the adult fowl and the changes during stretch-induced growth. Biochem J. 1978 Nov 15;176(2):419–427. doi: 10.1042/bj1760419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lewis J. A., Ames B. N. Histidine regulation in Salmonella typhimurium. XI. The percentage of transfer RNA His charged in vivo and its relation to the repression of the histidine operon. J Mol Biol. 1972 Apr 28;66(1):131–142. doi: 10.1016/s0022-2836(72)80011-1. [DOI] [PubMed] [Google Scholar]
  24. Martin A. F., Rabinowitz M., Blough R., Prior G., Zak R. Measurements of half-life of rat cardiac myosin heavy chain with leucyl-tRNA used as precursor pool. J Biol Chem. 1977 May 25;252(10):3422–3429. [PubMed] [Google Scholar]
  25. McKee E. E., Cheung J. Y., Rannels D. E., Morgan H. E. Measurement of the rate of protein synthesis and compartmentation of heart phenylalanine. J Biol Chem. 1978 Feb 25;253(4):1030–1040. [PubMed] [Google Scholar]
  26. Mortimore G. E., Woodside K. H., Henry J. E. Compartmentation of free valine and its relation to protein turnover in perfused rat liver. J Biol Chem. 1972 May 10;247(9):2776–2784. [PubMed] [Google Scholar]
  27. Newman R. A., Cutroneo K. R. Glucocorticoids selectively decrease the synthesis of hydroxylated collagen peptides. Mol Pharmacol. 1978 Jan;14(1):185–198. [PubMed] [Google Scholar]
  28. Peterkofsky B., Diegelmann R. Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry. 1971 Mar 16;10(6):988–994. doi: 10.1021/bi00782a009. [DOI] [PubMed] [Google Scholar]
  29. Peterkofsky B. Regulation of collagen secretion by ascorbic acid in 3T3 and chick embryo fibroblasts. Biochem Biophys Res Commun. 1972 Dec 4;49(5):1343–1350. doi: 10.1016/0006-291x(72)90614-6. [DOI] [PubMed] [Google Scholar]
  30. Phan S. H., Thrall R. S., Ward P. A. Bleomycin-induced pulmonary fibrosis in rats: biochemical demonstration of increased rate of collagen synthesis. Am Rev Respir Dis. 1980 Mar;121(3):501–506. doi: 10.1164/arrd.1980.121.3.501. [DOI] [PubMed] [Google Scholar]
  31. Phang J. M., Finerman G. A., Singh B., Rosenberg L. E., Berman M. Compartmental analysis of collagen synthesis in fetal rat calvaria. I. Perturbations of proline transport. Biochim Biophys Acta. 1971 Jan 26;230(1):146–159. doi: 10.1016/0304-4165(71)90062-6. [DOI] [PubMed] [Google Scholar]
  32. Reeds P. J., Palmer R. M., Smith R. H. Protein and collagen synthesis in rat diaphragm muscle incubated in vitro: the effect of alterations in tension produced by electrical or mechanical means. Int J Biochem. 1980;11(1):7–14. doi: 10.1016/0020-711x(80)90274-8. [DOI] [PubMed] [Google Scholar]
  33. Regier J. C., Kafatos F. C. Absolute rates of protein synthesis in sea urchins with specific activity measurements of radioactive leucine and leucyl-tRNA. Dev Biol. 1977 Jun;57(2):270–283. doi: 10.1016/0012-1606(77)90214-7. [DOI] [PubMed] [Google Scholar]
  34. Robertson J. H., Wheatley D. N. Pools and protein synthesis in mammalian cells. Biochem J. 1979 Mar 15;178(3):699–709. doi: 10.1042/bj1780699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Robins S. P. Metabolism of rabbit skin collagen. Differences in the apparent turnover rates of type-I- and type-III-collagen precursors determined by constant intravenous infusion of labelled amino acids. Biochem J. 1979 Jul 1;181(1):75–82. doi: 10.1042/bj1810075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schneible P. A., Airhart J., Low R. B. Differential compartmentation of leucine for oxidation and for protein synthesis in cultured skeletal muscle. J Biol Chem. 1981 May 25;256(10):4888–4894. [PubMed] [Google Scholar]
  37. Smith R. J., Phang J. M. Proline metabolism in cartilage: the importance of proline biosynthesis. Metabolism. 1978 Jun;27(6):685–694. doi: 10.1016/0026-0495(78)90006-9. [DOI] [PubMed] [Google Scholar]
  38. Sodek J. A comparison of the rates of synthesis and turnover of collagen and non-collagen proteins in adult rat periodontal tissues and skin using a microassay. Arch Oral Biol. 1977;22(12):655–665. doi: 10.1016/0003-9969(77)90095-4. [DOI] [PubMed] [Google Scholar]
  39. Uitto J., Bauer E. A., Eisen A. Z. Scleroderma: increased biosynthesis of triple-helical type I and type III procollagens associated with unaltered expression of collagenase by skin fibroblasts in culture. J Clin Invest. 1979 Oct;64(4):921–930. doi: 10.1172/JCI109558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Van Venrooij W. J., Moonen H., Van Loon-Klaassen L. Source of amino acids used for protein synthesis in HeLa cells. Eur J Biochem. 1974 Dec 16;50(1):297–304. doi: 10.1111/j.1432-1033.1974.tb03898.x. [DOI] [PubMed] [Google Scholar]
  41. Vidrich A., Airhart J., Bruno M. K., Khairallah E. A. Compartmentation of free amino acids for protein biosynthesis. Influence of diurnal changes in hepatic amino acid concentrations of the composition of the precursor pool charging aminoacyl-transfer ribonucleic acid. Biochem J. 1977 Feb 15;162(2):257–266. doi: 10.1042/bj1620257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Watkins C. A., Rannels D. E. Measurement of protein synthesis in rat lungs perfused in situ. Biochem J. 1980 Apr 15;188(1):269–278. doi: 10.1042/bj1880269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wheatley D. N., Inglis M. S. An intracellular perfusion system linking pools and protein synthesis. J Theor Biol. 1980 Apr 7;83(3):437–445. doi: 10.1016/0022-5193(80)90050-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES