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dscape of CH–p interactions in
protein–carbohydrate binding†

Allison M. Keys, abc David W. Kastner, bcd Laura L. Kiessling *cef

and Heather J. Kulik *bce

CH–p interactions between carbohydrates and aromatic amino acids play an essential role in biological

systems that span all domains of life. Quantifying the strength and importance of these CH–p

interactions is challenging because these interactions involve several atoms and can exist in many

distinct orientations. To identify an orientational landscape of CH–p interactions, we constructed

a dataset of close contacts formed between b-D-galactose residues and the aromatic amino acids,

tryptophan, tyrosine, and phenylalanine, across crystallographic structures deposited in the Protein Data

Bank. We carried out quantum mechanical calculations to quantify their interaction strengths. The data

indicate that tryptophan-containing CH–p interactions have more favorable interaction energies than

those formed by tyrosine or phenylalanine. The energetic differences between these amino acids are

caused by the aromatic ring system electronics and size. We use individual distance and angle features

to train random forest models to successfully predict the first-principles computed energetics of CH–p

interactions. Using insights from our models, we define a tradeoff in CH–p interaction strength arising

from the proximity of galactose carbons 1 and 2 versus carbons 4 and 6 to the aromatic amino acid. Our

work demonstrates that a feature of CH–p stacking interactions is that numerous orientations allow for

highly favorable interaction strengths.
1. Introduction

Glycans coat the surface of all cells on Earth, serving as
protection and identication to other cells and
macromolecules.1–4 Glycan-binding proteins, including lectins,
engage specic carbohydrate residues on these glycans to acti-
vate downstream functions.4–7 The proteins distinguish struc-
turally similar monosaccharides within glycans through non-
covalent binding interactions.8,9 However, saccharides, unlike
other small-molecule ligands, are largely hydrophilic and, as
a result, oen form weak, micromolar interactions with
proteins. Carbohydrate-binding proteins rely on binding motifs
that involve three key intermolecular interaction types:
hydrogen bonding, metal-ion bridges, and carbohydrate–
aromatic interactions.9–22 While the rst two are relatively well
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understood, there is no consensus on the energetic favorability
of carbohydrate–aromatic interactions nor the relationship
between their orientation and energetics.23,24 Thus, modeling
carbohydrate–aromatic interactions is essential to under-
standing their role in enabling selective recognition. Doing so
will increase our understanding of protein–glycan interactions
in biology and assist in the development of glycomimetic
therapeutics.

Many experimental techniques, such as isothermal titration
calorimetry (ITC), bio-layer interferometry (BLI), and nuclear
magnetic resonance (NMR) spectroscopy, have been used to
provide key insights into protein–small molecule binding.
NMR, in particular, has been useful in evaluating the energetics
of carbohydrate–aromatic interactions.22,25–33 However, the use
of these experimental techniques is limited by the time required
to produce each candidate system, the low binding affinities of
the candidate interactions, and the inability to probe and
compare specic interaction orientations. Alternatively,
computational rst-principles methods, including density
functional theory (DFT) and symmetry-adapted perturbation
theory (SAPT), enable rapid energetic assessments of numerous
instances of intermolecular interactions from many distinct
biological systems.34–40 While limited by the approximations
inherent to the electronic structure methods used, the difficulty
of computing entropic differences, and the effects of the full,
Chem. Sci.
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solvated protein environment, these methods are essential tools
in the analysis of carbohydrate–aromatic interactions.

Carbohydrate–aromatic interactions can involve CH–p

interactions, which are favorable contacts formed by electron
donation from the p-system of an aromatic moiety into the
antibonding orbital(s) of a carbon–hydrogen (C–H) bond.24

Individual CH–p interactions, like cation–p and p–p interac-
tions, are considered weaker than hydrogen bonding interac-
tions and typically thought to involve only dispersive
forces.36,41–44 They are present inmany systems and can facilitate
protein folding and protein-ligand binding. Notably, they are
especially prevalent in protein–carbohydrate interactions.25,45–50

Unlike other systems containing CH–p interactions, carbohy-
drate–aromatic interactions are made up of multiple CH–p

interactions formed between distinct CH groups on the carbo-
hydrate that are stacked upon the p system of an aromatic
amino acid. The resulting CH–p stacking interactions are
believed to be more favorable than some hydrogen bonds and
play an essential role in protein–carbohydrate recognition.22,23

Nevertheless, the overall range of interaction strengths of CH–p

interactions in comparison to more conventional non-covalent
interactions, such as hydrogen bonds, remains poorly
understood.

Toward the goal of characterizing CH–p interactions in
known glycan-binding proteins, a bioinformatic analysis of the
Protein Data Bank (PDB), determined that 39% of all protein
entries with a carbohydrate contained at least one CH–p

stacking interaction formed between the protein and carbohy-
drate.51 However, it is worth noting that this analysis included
both covalently and non-covalently bound carbohydrates.
Because carbohydrates that are covalently bound to the protein
have a lower propensity for favorable non-covalent stabilization,
this analysis may be a signicant underestimate of the
frequency of CH–p stacking interactions in non-covalent
protein–carbohydrate interactions.23

Prior computational and experimental analyses have probed
the energetic favorability of certain carbohydrate–aromatic
interactions. Most NMR evaluations observed that the carbo-
hydrate–aromatic CH–p stacking interaction free energies
range from 1–2 kcal mol−1,52–55 while calorimetry and compu-
tational studies of these interactions observe electronic inter-
action energies ranging from 3–8 kcal mol−1.35,51,56–62 However,
all CH–p stacking interactions are not equivalent. The stereo-
chemistry of each carbohydrate informs the orientation of CH
bonds and the polarization of these bonds by the neighboring
hydroxyl groups. For example, electron-poor C–H bonds should
result in more stabilizing CH–p interactions, and hydroxyl
group stereochemistry inuences the electronics of the glycan
C–H bonds. NMR studies have demonstrated that b-D-galactose
forms particularly favorable CH–p stacking interactions with
indoles,23 yet detailed energetics of these interactions and those
formed by other amino acid side chains have not been evalu-
ated. Further study is required to determine the energetic
favorability of these interactions and the orientational factors
that inuence their strength.

Because carbohydrates can have multiple interacting CH
groups, a number of CH–p stacking orientations can form
Chem. Sci.
between a given carbohydrate–amino acid pair. Attempts to
determine preferred orientations for certain carbohydrates
interacting with aromatic systems have been explored.51,56–58

Analyses of protein–carbohydrate interactions in the PDB
showed that there is a propensity for glycan CH groups to be
positioned at consistent distances and angles relative to the
center of the interacting aromatic ring.51 However, no complete
orientational energetic landscape for CH–p stacking interac-
tions has been determined. Thus, to effectively evaluate
protein–carbohydrate interactions, it is essential to develop
a comprehensive understanding of CH–p stacking interaction
energetics and the orientational features that lead to their
favorability.

We compiled a dataset of over 500 CH–p stacking interac-
tions formed between b-galactose residues and tryptophan,
tyrosine, or phenylalanine from the PDB. We conducted rst-
principles calculations using DFT and SAPT0 benchmarked
against the domain-localized pair natural orbital coupled
cluster singles doubles with perturbative triples (DLPNO-
CCSD(T)) level of theory. We subsequently trained random
forest machine learning models to predict interaction energies
and identied an energetic landscape that denes these CH–p

stacking interactions. We found that they are energetically
favorable and therefore contribute signicantly to the energy of
protein–carbohydrate binding, thereby playing a key role in
protein–carbohydrate complexation. The energetic landscape
for these interactions demonstrates that they have high orien-
tational exibility and explains the difference in energetics of
CH–p stacking interactions formed by tryptophan, tyrosine,
and phenylalanine. This information is essential for under-
standing protein–carbohydrate binding interactions and the
rational design of new therapeutics that target these binding
sites.

2. Dataset curation

We built a dataset of CH–p interactions formed by b-D-galactose
(galactose) residues and aromatic amino acids in protein–
carbohydrate binding pockets to assess their orientational
dependence and energetics. We used the advanced search tool
in the Protein Data Bank (PDB)63 on 11.19.2021 to identify
protein structures containing a galactose residue in a carbohy-
drate lacking any covalent bond to the protein. For inclusion in
our analysis, we required that the protein structure determined
by X-ray crystallography has an R factor of at most 20% and an
overall resolution of no worse than 2 Å. We rst identied close
contacts between galactose and three aromatic amino acids:
tryptophan, tyrosine, and phenylalanine by selecting all amino
acid–galactose pairs in which the centroids of the two species
were within 7 Å of one another. Histidine was excluded from
this dataset because it is believed to primarily form hydrogen
bonding interactions, not CH–p interactions.23 We obtained the
electron density score for individual atoms64 (EDIA) and its
combination for molecular fragments (EDIAm) for each relevant
protein residue and carbohydrate monomer. We retained close
contacts for those species that had EDIAm scores of at least 0.8,
the previously suggested cutoff,64 to ensure that all heavy atoms
© 2024 The Author(s). Published by the Royal Society of Chemistry
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are well resolved. Finally, because we included structures with
monomeric galactose or with galactose as a component of
a larger polysaccharide ligand, the anomeric oxygen substituent
(O1) atoms oen participated in glycosidic linkages and were
assigned to another carbohydrate monomer. Thus, we omitted
any attached O1 atoms when processing the PDB structures and
reinserted them by adding an oxygen atom bound to C1 by
a 1.43 Å sp3 bond along the PyMOL v. 2.5.2 (ref. 65)-inserted
equatorial C–H bond vector (ESI Fig. S1†). In total, this screen
identied 351 tryptophan, 154 tyrosine, and 45 phenylalanine
side chains with close contacts to galactose (ESI Table S1†).

Due to the structural similarity between tyrosine and
phenylalanine and the small size of those datasets, we
augmented our data by transforming tyrosine into phenylala-
nine and vice versa to generate additional close contacts. We
removed the phenol group moiety from the set of tyrosine–
galactose pairs to generate new phenylalanine interactions and
carried out the reverse operation on the phenylalanine inter-
actions, creating a 1.38 Å C–O bond para to the b carbon (ESI
Fig. S2†). For all close contacts, hydrogen atoms were added by
PyMOL v. 2.5.2 and optimized using DFT (see Computational
methods). Two structures that formed residue–carbohydrate
interatomic clashes (i.e., dened as having a distance relative to
the sum of van der Waals radii of <0.75 for any pair of atoms)
aer the addition of the tyrosine phenol group were removed
from the dataset of newly generated tyrosine–galactose close
contacts (ESI Fig. S2†). The resulting dataset contains 351
tryptophan, 197 tyrosine (i.e., 43 non-native), and 199 phenyl-
alanine (i.e., 154 non-native) close contacts.

Because some close contacts in this dataset do not contain
CH–p interactions, we grouped each contact into one of the
following three categories: CH–p stacking interactions,
hydrogen bonding interactions, or all other non-specic
contacts (Fig. 1). CH–p stacking interactions are dened as
instances in which the galactose stacks on top of the amino acid
and three ormore CH bonds are localized over the aromatic ring
system (Fig. 1). CH bonds are considered localized over the
aromatic ring when the carbon atom is positioned within 4.15 Å
of a heavy atoms in the aromatic system of the protein residue
(Fig. 1). The resulting dataset contained 272 tryptophan, 69
tyrosine, and 69 phenylalanine CH–p stacking interactions.
Fig. 1 Visualization of one example for each of the three categories of
and other, non-specific close contacts. Atomic contacts are shown in
hydrogen in white, and nitrogen in blue.

© 2024 The Author(s). Published by the Royal Society of Chemistry
Hydrogen bonding interactions formed between the galactose
and the aromatic side chain were identied, aer hydrogen
positions were optimized with DFT, by using the polar contacts
function in PyMOL, which annotates potential hydrogen
bonding interactions that have a maximum acceptor–donor
distance of 3.6 Å and a minimum acceptor–hydrogen–donor
angle of 120° (Fig. 1 and ESI Fig. S3†). There were 29 tryptophan
and 4 tyrosine sidechains that formed hydrogen bonds that met
these criteria. In these cases, the N–H and O–H atoms on the
sidechains primarily acted as hydrogen bond donors to oxygen
atoms on the galactose. The remaining 50 tryptophan, 124
tyrosine, and 130 phenylalanine side chains formed non-
specic interactions that did not meet either criterion. These
sidechains had two or fewer C–H bonds localized over the
aromatic ring system and no hydrogen bonds (Fig. 1). Thus,
from 550 native close contacts, 62% of the close contacts form
a CH–p stacking interaction, 6% form a hydrogen bond, and the
other 32% are in proximity but form non-specic close contacts
(ESI Fig. S4 and Table S2†).

The close contacts in this dataset are initially derived from
499 protein structures that have a non-covalently bound b-
galactoside. Analysis of the types of protein structures con-
tained in the set reveals that 42% were carbohydrate-binding
proteins, 20% hydrolases, 16% viral proteins, 7% toxins, 7%
transferases, and 8% other miscellaneous types. For 169 of
these structures, we did not observe close contacts between
galactose and an aromatic amino acid with good density
support (i.e., from EDIA scores), whereas we identied 550 well-
resolved close contacts for the other 330 structures (i.e., 1 or
more per protein). All unique close contacts were retained,
including those where multiple amino acids interact with the
same carbohydrate (i.e., multiple close contacts), and cases
where contacts were found on repeated protein subunits (ESI
Fig. S5 and Table S3†).

3. Results and discussion
3.1 Energetic evaluation of b-galactoside–aromatic amino
acid interactions

We evaluated the interaction strength of the close contacts
between galactose and aromatic amino acids to assess the
contacts; CH–p stacking interactions, hydrogen bonding interactions,
yellow. Atoms are colored as follows: carbon in gray, oxygen in red,

Chem. Sci.



Fig. 2 Unnormalized distributions of B3LYP-D3 DFT interaction
energies for the three categories of galactose–aromatic amino acid
close contacts shown as translucent histograms with bin width
0.65 kcal mol−1: CH–p stacking interactions (blue), hydrogen bonding
interactions (red), and other, non-specific contacts (gray), of the full
dataset. Interaction energies were evaluated using the aug-cc-pVDZ
basis set and implicit solvent corrections were computed using the
conductor-like polarizable continuum model (C-PCM) and reported
in kcal mol−1. Atoms are colored as follows: carbon in gray, oxygen in
red, hydrogen in white, and nitrogen in blue.
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contribution of individual side chains to non-covalent protein–
carbohydrate binding. We computed interaction energies using
low-cost hybrid DFT (i.e., B3LYP-D3)66,67 and performed ener-
getic decomposition analysis using symmetry-adapted pertur-
bation theory (SAPT0),68,69 and functional group SAPT (F-SAPT)70

for the full dataset of close contacts (ESI Fig. S6†). These
methods were selected for computational efficiency. Still,
B3LYP-D3 has important limitations in evaluating long-range
dispersion interactions from rst-principles and SAPT0 has
limitations in energetic accuracy given truncations in the per-
turbative expansion. Some prior analyses of computational
method accuracy have been carried out for the study of CH–p

interactions,71–77 yet these generally focused on alkane-
containing interactions. Thus, further validation of B3LYP-D3
and SAPT0 method accuracy on these carbohydrate aromatic
interactions was necessary.

We assessed the validity of B3LYP-D3 and SAPT0 by
computing interaction energies using solvent-corrected
DLPNO-CCSD(T) and SAPT2 on a benchmarking set of 50 CH–

p stacking interactions (see Computational methods and ESI
Fig. S6–S11†). Using this same set, we also conrmed that
B3LYP-D3 and SAPT0 energies were not dependent on the
number of intramolecular hydrogen bonds formed aer
hydrogen optimization (ESI Fig. S12†). Comparisons between
B3LYP-D3 with implicit solvent and solvent-corrected DLPNO-
CCSD(T) show a good agreement with an R2 of 0.91. We found
more favorable B3LYP-D3 interaction energies by 1 kcal mol−1,
on average (ESI Fig. S7†). Comparing gas-phase SAPT0 and
SAPT2 gives an R2 of 0.96, while the analogous gas-phase
DLPNO-CCSD(T) energetics give an R2 of 0.90 (ESI Fig. S8 and
S9†). As expected, comparing SAPT0 interaction energies to
solvated DLPNO-CCSD(T) energies yields a lower R2 of 0.75, and
SAPT0 interaction energies are roughly 1.5 times more favorable
than DLPNO-CCSD(T) counterparts (ESI Fig. S10†). These limi-
tations of SAPT0 primarily derive from the lack of solvent
treatment to mimic the screening effect of the protein envi-
ronment. Nevertheless, we use SAPT0 and F-SAPT for energetic
decomposition analysis rather than DFT-based energy decom-
position analysis (EDA) schemes because the former methods
recover dispersive interactions from rst-principles and enable
energetic decomposition to understand the contributions of
protein functional groups (i.e., with F-SAPT, see Section 3.2). We
report total interaction energy comparisons using values
computed with B3LYP-D3. It was selected for its ability to
incorporate solvent and its good reproduction of solvent-
environment-corrected DLPNO-CCSD(T) interaction energies.

The B3LYP-D3 DFT interaction energies in the full data set of
both native and non-native 774 close contacts range from −10.1
to −0.6 kcal mol−1. Comparing the three general categories,
CH–p stacking interactions, hydrogen bonding interactions,
and all other close contacts, we observe that the categories have
distinct, albeit overlapping, DFT interaction energy distribu-
tions (ANOVA p-value = 9 × 10−145, Fig. 2). On average, the CH–

p stacking interactions have B3LYP-D3 interaction energies of
−6.1 kcal mol−1, whereas hydrogen bonding interactions have
interaction energies of −4.4 kcal mol−1 and the other close
contacts have an average of −3.2 kcal mol−1 (Fig. 2 and ESI
Chem. Sci.
Table S4†). Thus, CH–p stacking interactions are the strongest
interactions formed between galactose and isolated tryptophan,
tyrosine, or phenylalanine side chains.

Turning to SAPT0 to quantify interaction energy components
(i.e., electrostatic versus dispersion) further highlights differ-
ences between the categories of close contacts. The non-specic
contacts behave most similarly to the weakest CH–p stacking or
hydrogen bonding interactions, suggesting that they may
include some favorable dispersive and electrostatic contacts
without forming stacking interactions or hydrogen bonds. CH–

p stacking interactions have a favorable one-to-one relationship
between the electrostatic and dispersion energies (Fig. 3). Thus,
although CH–p stacking interactions are predominantly
thought to be dispersive, the electrostatic contribution is
signicant. In contrast, hydrogen bonding interactions are
stabilized more by the electrostatic contribution, which
outweighs the dispersion component by a factor of two on
average (Fig. 3). While both interaction types have energetic
contributions from dispersion and electrostatics, we previously
noted that CH–p stacking interactions are more favorable
overall than the hydrogen bonding interactions we examined.
Although both interactions have a similar electrostatic contri-
bution, the CH–p stacking interaction has a considerably larger
favorable dispersion contribution. All other close contacts that
form two or fewer C–H interactions (i.e., less than our criteria
for CH–p stacking) or a non-specic contact have an interme-
diate contribution from dispersion and electrostatic energies.
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 Comparison of SAPT0 dispersion and electrostatic energies for
the three categories of interactions: CH–p stacking interactions (blue),
hydrogen bonding interactions (red), and non-specific interactions
(gray), of the full dataset. Best-fit lines for the CH–p stacking inter-
actions (blue), hydrogen bonding interactions (red), and other close
contacts (gray) are shown. All energies are reported in kcal mol−1.
SAPT0 energies were evaluated using the aug-cc-pVDZ basis set.
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Next, we compared the interaction strengths of CH–p

stacking interactions formed by tryptophan, tyrosine, and
phenylalanine. While the 410 relevant interactions in our
dataset have hybrid DFT interaction energies that range from
−10.1 to −2.1 kcal mol−1, the strongest are those formed with
tryptophan, the most highly enriched amino acid in protein–
carbohydrate binding pockets23 (Fig. 4). These CH–p stacking
interactions are more energetically favorable on average by
3 kcal mol−1 than those formed with tyrosine and phenylala-
nine (Fig. 4). Tryptophan has a larger and more electron-rich
aromatic ring system enabling more favorable CH–p contacts
and stronger dispersion and electrostatic energy contributions
(ESI Fig. S13†). These highly favorable CH–p stacking interac-
tions are essential along with other electrostatic interactions
(e.g., hydrogen bonding and metal-mediated interactions) to
stabilize protein–carbohydrate binding (see ESI Table S5,
Fig. S14, and ESI data†).

Both the native and non-native, constructed CH–p stacking
interactions formed with tyrosine have comparable energetics
to those involving phenylalanine, indicating that the effect of
the neutral alcohol group on the overall interaction energy is
minimal when evaluating CH–p stacking interactions (Fig. 4).
However, when the phenol group of tyrosine is fully
© 2024 The Author(s). Published by the Royal Society of Chemistry
deprotonated (pKa 10.1) or hydrogen bonded to negatively
charged amino acids, the increased electron density in the
aromatic ring could lead to stronger CH–p interactions. To
examine the potential impact of increased electron density on
CH–p stacking interaction strength, we converted the 51 native
tyrosine CH–p stacking interactions to phenoxide CH–p

stacking interactions by deprotonating the acidic hydrogen and
coordinating an explicit water molecule to the charged oxygen
atom for charge stabilization (see Computational methods and
ESI Fig. S15†). The resulting energetics indicate that phenoxide
can form more stable CH–p stacking interactions than neutral
tyrosine by 1.1 kcal mol−1. This value was calculated at the low
dielectric conditions (3 = 10) representative of a buried binding
pocket, and the enhancement is more limited in the high
dielectric conditions (3 = 80) representative of exposure to
aqueous solution (Fig. 4 and ESI Fig. S15†). Thus, increasing the
electron density in aromatic ring systems can stabilize CH–p

stacking interactions, demonstrating the importance of the
electrostatic contribution. These observations provide some
rationale for the increased propensity of tyrosine, but not
phenylalanine, in glycan binding sites23 and may enable
rational design of more favorable protein–carbohydrate binding
interactions in therapeutic efforts.
3.2 Evaluating individual CH–p contributions

The identied CH–p stacking interactions involve multiple
glycan C–H bonds positioned over the aromatic ring. Thus, we
used functional group SAPT (i.e., F-SAPT) to decompose the
interaction energies into the energetic contributions from
different regions of galactose. This analysis provides a measure
of interaction strength between distinct functional groups (i.e.,
portions of a molecule). For galactose residues, we dened each
“functional group” as containing one galactose heavy atom
(either carbon or oxygen) and any bonded hydrogen atom(s)
(Fig. 5). For the amino acids, we distinguished only the aromatic
and aliphatic regions (Fig. 5). We compared this analysis
against second-order perturbative estimates of donor–acceptor
interactions in the NBO basis and found that F-SAPT had better
performance (see Computational details and ESI Fig. S16–S18†).

Using F-SAPT, we demonstrated that CH–p stacking inter-
actions involve favorable contributions from the aromatic
ring(s) and multiple CH and OH groups on galactose (Fig. 5).
They can also include one or more weakly repulsive interactions
between the aromatic ring system and closely interacting CH
groups from the galactose in which the repulsive exchange
energy outweighs the favorable dispersion energy. As a result,
optimizing the total energy of a CH–p stacking interaction can
require a tradeoff where interacting atoms in too close prox-
imity to the aromatic ring have energetics dominated by an
unfavorable exchange repulsion energy that is offset by favor-
able dispersion and electrostatic energies of other, connected
atoms (Fig. 5). Notably, the CH–p stacking interactions involve
favorable contributions from more participating atoms on
galactose than hydrogen bonding or other non-specic inter-
actions, demonstrating the cohesive nature of the interactions
(Fig. 5). Additionally, CH–p interactions are also favorable at
Chem. Sci.



Fig. 4 Box and whisker plot comparisons with all data points shown of B3LYP-D3 DFT interaction energies computed with C-PCM implicit
solvent corrections of (left) CH–p stacking interactions formed with tryptophan (blue), tyrosine (green), and phenylalanine (light orange); and
(right) CH–p stacking interactions formed with tyrosine with 3 = 10 (green), deprotonated tyrosine in its phenoxide form with 3 = 10 (purple),
tyrosine with 3 = 80 (light green), and phenoxide with 3 = 80 (light purple). Each box is bounded by the upper and lower quartiles of the dataset
and split by the median. The whiskers extend up to 1.5 times the interquartile range on either side of the box. All points that lie outside that range
are defined as outliers and shown as filled diamonds on the left plot and filled circles on the right plot. The IEs were evaluated using the aug-cc-
pVDZ basis set and are reported in kcal mol−1.

Fig. 5 (left) Delineation of selected F-SAPT functional groups. 14 functional groups are shown that are differentiated by ovals that each contain
one functional group. Oxygen-containing functional groups are shown in red ovals, the aromatic ring functional group is shown in a blue oval,
and all other carbon-containing functional groups are shown with gray ovals. Atoms are colored as follows: carbon in gray, oxygen in red, and
nitrogen in blue. (right) F-SAPT visualizations of interaction energy contributions (in kcal mol−1) for representative structures from each of the
three categories of tryptophan close contacts with functional groups colored by their interaction energy following the inset colorbar and defined
corresponding to the groupings on the left.

Chemical Science Edge Article
longer distances than hydrogen bonding and other electrostatic
interactions.

Given the range of contributions of individual CH and OH
groups to the stabilization of carbohydrate–aromatic CH–p

stacking interactions, we aimed to quantify the relationship
between orientation and energetic contribution for all dened
functional groups (Fig. 5). We evaluated the orientation of each
galactose CH group by computing the distance of the galactose
carbon atom (Cn) to the centroid (Ctr) of the nearest aromatic
ring (dCn–Ctr), and the angle between the distance vector, dCn–Ctr,
and the projection of Cn onto the aromatic ring plane (qProj–Cn–
Ctr), as proposed by Houser and coworkers51 (Scheme 1). Using
the previous maximum distance cutoff of 4.6 Å, we observe that
the CH–p interactions in our data set preferentially occupy
angles between 5° and 50° (ESI Fig. S19†). The angles and
Chem. Sci.
distances are linearly correlated, with shorter distances associ-
ated with more acute angles (ESI Fig. S19†).

Using these orientational features, we analyzed the F-SAPT
energetics of all 1706 carbon atoms capable of forming a CH–

p interaction. These include carbon atoms within the distance
cutoff of 4.6 Å for which the covalently-bound hydrogen atom is
closer to the aromatic ring than the covalently-bound oxygen
atom (i.e., carbon atoms C1, C3, C4, C5, and C6). However, all
galactose CH–p donors are also polarized by a neighboring
oxygen atom. Depending on glycan stereochemistry, some of
these will engage in hyperconjugative interactions with neigh-
boring hydroxyl groups. Thus, for each potential CH group (Cn),
we evaluated the energetic contributions from three functional
group sets: Cn, containing the carbon atom only; On, contain-
ing the bound oxygen atom only; and Cn + On, containing the
two together (Fig. 6).
© 2024 The Author(s). Published by the Royal Society of Chemistry



Scheme 1 Visualization of carbon distance and angle features used to
train random forest models. The feature dCn–Ctr (green) is the distance
between a carbon atom (n) on galactose and the centroid of the
nearest aromatic ring. The feature qProj–Cn–Ctr (red) is the angle
between the distance vector and the vector ProjCn (blue) formed by
the projection of Cn onto the plane of the aromatic ring system.

Edge Article Chemical Science
Comparing the position–energy relationships for each
carbon atom, we found notable differences in the energetic
landscapes of endocyclic carbon atoms (C1, C3, C4, and C5)
versus exocyclic carbon atoms (C6) (Fig. 6). Exocyclic carbon
atoms have more favorable energetic contributions, with an
average contribution of −0.5 kcal mol−1, whereas endocyclic
carbons have less favorable energy contributions, with an
average of +0.5 kcal mol−1 (Fig. 6 and ESI Table S6†). These
energetic differences can be attributed to two factors. First,
exocyclic carbon atoms have two alkyl hydrogen atoms capable
of forming favorable contacts, and second, the exocyclic CH
groups can rotate to form more optimal CH–p interactions,
unlike the more conformationally restricted endocyclic CH
groups (ESI Fig. S20 and S21†).

In analyzing all CH–p donors, some C–H groups (Cn)
contribute favorable energetic contributions, while others
(59%) have unfavorable interaction energies, (ESI Table S6†). In
contrast, the oxygen groups (On) have nearly exclusively (99%)
favorable energetic contributions, with an average value of
−1.6 kcal mol−1, and therefore play a signicant role in stabi-
lizing CH–p interactions (ESI Table S6†). The trend is consis-
tent: the most favorable On contributions and the least
favorable Cn contributions occur at positions with the shortest
observed distances for each angle (Scheme 1 and Fig. 6). This
behavior is driven for the Cn groups by a repulsive exchange
energy contribution and for the On groups by a stabilizing
electrostatic energy contribution (ESI Fig. S22–S25†). Summing
these to get the total Cn + On contribution, we observe a range
of favorable local minima, which indicates that polarized CH–p

interactions found in galactose–aromatic interactions
contribute favorable energetics in a range of orientations.
3.3 Predicting CH–p interaction energies from orientations

Given the observed dependence of the component interaction
energies on the orientation of a given CH–p interaction, we
examined the relationship between orientation and energetics
for the full set of carbohydrate–aromatic CH–p stacking
© 2024 The Author(s). Published by the Royal Society of Chemistry
interactions. We used random forest regression models to learn
this relationship due to their strong performance on small
datasets and good interpretability. We trained these models to
predict total interaction energies from B3LYP-D3 and SAPT0 as
well as the SAPT0 energetic components (i.e., dispersion, elec-
trostatic, exchange, and induction). As inputs to our model, we
used features that dened the CH–p stacking orientation
without requiring any knowledge of hydrogen atom positions.
These features include the distance (dCn–Ctr) and angle (qProj–Cn–
Ctr) of each carbon (i.e., where n corresponds to 1–6 for C1–C6)
in galactose to the centroid of the interacting aromatic ring
(Scheme 1). While these features are correlated, they fully dene
the locations of the galactose atoms relative to the aromatic ring
centroids, capturing the variability in the observed orientations
(ESI Table S7†).

The trained random forest models predicted all target
energies with a mean absolute error (MAE) of less than
1.2 kcal mol−1 and a mean absolute percentage error (MAPE) of
less than 16% (ESI Table S8 and Fig. S26†). Using R2 as a gure
of merit, the SAPT0 component dispersion, electrostatics, and
exchange energies were predicted most accurately (R2 values of
0.83, 0.73, and 0.75, respectively), while B3LYP-D3 and SAPT0
interaction energies were predicted less accurately (R2 values of
0.47 and 0.59, respectively, Fig. 7). Nevertheless, the MAE of
0.51 kcal mol−1 for B3LYP-D3 and 0.69 kcal mol−1 for SAPT0 are
still lower than the expected error of the underlying methods
(ESI Table S8†). All models underestimate the strongest inter-
actions, likely due to the small dataset size and limited number
of structures with these interaction strengths (Fig. 7 and ESI
Fig. S26†). Comparing these results to models trained on
interactions containing only tryptophan or only tyrosine and
phenylalanine, the models trained on all data perform as well as
or better than models trained on specic data subsets (ESI
Tables S9, S10 and Fig. S27, S28†).

In evaluating the feature importance for each model (see
Computational methods), we identied the features most crit-
ical for predicting the energetic strength of a given CH–p

stacking orientation. Despite differences in the most important
features for each model, four features, dC2–Ctr, dC3–Ctr, dC5–Ctr,
and dC6–Ctr, consistently rank among the most important (ESI
Table S11†). These features involve carbon atoms that are
distributed across the carbohydrate. These descriptors effec-
tively capture the interaction proximity via dC3–Ctr and dC5–Ctr,
because C3 and C5 participate in all galactose CH–p stacking
interactions. These descriptors also capture the participating
CH groups via dC2–Ctr and dC6–Ctr, which quantify which face of
the carbohydrate is participating in the interaction (ESI
Fig. S29†). Surprisingly, no angle features are critical across
models, suggesting that the distance features effectively capture
the interaction orientation.
3.4 Mapping the relationship between the CH–p interaction
energy and orientation

Motivated by the limited number of features selected by random
forest feature importance analysis, we aimed to further identify
a minimal set of features that dene an energy landscape for
Chem. Sci.



Fig. 6 Scatter plots showing the dependence of F-SAPT energy contributions on the orientations of the listed galactose atoms to the aromatic
ring centroids in CH–p stacking interactions, reported in kcal mol−1. Rows are separated by the included carbon atoms: (top row) endocyclic
galactose carbon atoms in the pyranose ring for which the attached hydrogen is closer to the aromatic ring than the attached hydroxyl and
(bottom row) exocyclic galactose carbon atom 6, which is outside of the pyranose ring. Columns are separated by the F-SAPT “functional groups”
included in the energy contribution reported: (left) the sum of the contributions from the carbon atom's group and its attached oxygen atom's
group, (center) the carbon atom's group, and (right) the oxygen atom's group. The F-SAPT contribution is shown according to the color scale at
the far right. Molecule insets show example functional groups included for each plot, with atoms included in the functional group shown in
a sphere representation with saturated coloring. Atoms are colored as follows: carbon in gray, oxygen in red, and hydrogen in white.

Fig. 7 Parity plots of test set (left) SAPT0 total energy, (top center) dispersion, (upper right) electrostatics, (bottom center) exchange, and (bottom
right) induction energy predicted by random forest models. All energies are reported in kcal mol−1. R2 values are reported in the bottom right of
all plots.

Chem. Sci. © 2024 The Author(s). Published by the Royal Society of Chemistry
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galactose–aromatic CH–p interactions. Because carbon atoms
C3 and C5 consistently participate in component CH–p inter-
actions, they do not distinguish between the different systems
in our set. In contrast, carbon atoms C1, C4, and C6 are involved
in some but not all CH–p stacking interactions (ESI Fig. S29†).
For this reason, we used the distances dC1–Ctr, dC4–Ctr, and dC6–Ctr
to dene which portion of the ring participates in the CH–p

stacking interaction. This analysis indicated only dC6–Ctr is
universally essential in our feature set (see Section 3.3). Since
the identity of the aromatic ring system inuences the strength
of the CH–p stacking interaction, we considered features that
are sums of multiple distances to capture the number and
proximity of CH groups interacting with the aromatic ring
system and differentiate interactions formed by tryptophan
from those formed by tyrosine and phenylalanine.

Finally, we selected two composite features to delineate the
CH group proximity, dC1–Ctr+dC2–Ctr and dC4–Ctr+dC6–Ctr. These
features capture an energetic landscape for CH–p stacking
interactions, effectively differentiating interactions by their
energetic favorability (Fig. 8). Importantly, these features
contain no direct information regarding the face or orientation
of the aromatic ring system. The relative facial positioning and
rotation of the aromatic ring(s) has no intrinsic inuence on the
energetics of the interaction. Conversely, CH group proximity
Fig. 8 Scatterplots of the orientations of CH–p stacking interactions form
(right) only tyrosine and phenylalanine. Each data point is plotted accor
B3LYP-D3 DFT interaction energy computed using the aug-cc-pVDZ bas
far right. Five data points (A–E) are highlighted on the plots and the corre
follows: carbon atoms in gray, oxygen atoms in red, nitrogen atoms in b
with dCn–Ctr < 4.6 Å and qProj–Cn–Ctr < 50° is visualized by a dotted yellow l
centroid.

© 2024 The Author(s). Published by the Royal Society of Chemistry
informs the interaction strength (Fig. 8). That is, the most
favorable interactions have the smallest dC1–Ctr + dC2–Ctr and
dC4–Ctr + dC6–Ctr values. However, the conformation of galactose,
the size of the aromatic ring systems, and the exchange energy
prevent the minimization of both features to very small values,
giving rise to an energetic tradeoff (Fig. 8). Exploring this
tradeoff, we nd that it is possible to form CH–p stacking
interactions with maximal interaction strength by minimizing
either or both features, and thus, bringing any subset of 3 or
more galactose C–H groups into close proximity of the aromatic
ring. This demonstrates that CH–p stacking interactions do not
have one energetic minimum, but rather, multiple relative
orientations give rise to highly favorable CH-p interactions.

We explore optimal orientations by examining examples of
galactose–tryptophan CH–p stacking interactions formed by
three proteins, a Bacteroides thetaiotaomicron glycoside hydro-
lase (BtGH97, PDB ID 5E1Q78), an Escherichia coli heat-labile
enterotoxin (PDB ID 2XRS79), and Marasmius oreades agglu-
tinin (MOA) an M. oreades lectin (PDB ID 3EF2 (ref. 80)). All
three CH–p stacking interactions determined from the carbo-
hydrate–amino acid pair from these proteins have highly
favorable interaction energies. The B3LYP-D3 interaction
energy of the CH–p stacking interaction formed by BtGH97 is
−8.3 kcal mol−1, that of the enterotoxin is −9.6 kcal mol−1, and
ed by (left) all three aromatic amino acids, (center) only tryptophan, or
ding to dC1–Ctr + dC2–Ctr versus dC4–Ctr + dC6–Ctr and colored by the
is set reported in kcal mol−1, according to the color scale shown at the
sponding CH–p stacking interactions are shown. Atoms are colored as
lue, and hydrogen atoms in white. Each component CH–p interaction
ine between the interacting carbon atom and the nearest aromatic ring
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that of the MOA lectin is −9.4 kcal mol−1. Each protein-
carbohydrate interaction has a distinct orientation and value
along the dC1–Ctr + dC2–Ctr and dC4–Ctr + dC6–Ctr landscape (Fig. 8).
BtGH97 forms CH–p component interactions with carbon
atoms C1, C3, and C5, while the enterotoxin and MOA lectin
form component interactions with carbon atoms C3, C4, C5,
and C6, each at a unique interaction angle (Fig. 8). These
differences in the CH–p stacking orientation enable each
carbohydrate ligand to form optimal hydrogen bonds to
neighboring amino acid residues while maintaining a favorable
carbohydrate–aromatic stabilization (Fig. 9 and ESI Fig. S30–
S32†).

Next, comparing the CH–p stacking interactions formed by
each of the different amino acids, we observe that while the
lowest-energy stacking interactions formed by tyrosine and
phenylalanine occupy overlapping regions of the conforma-
tional space as those formed by tryptophan, the galactose–
tryptophan interactions tend to have shorter values for dC1–Ctr +
dC2–Ctr and dC4–Ctr + dC6–Ctr than tyrosine and phenylalanine
interactions, with minima at 7.7 Å and 6.9 Å versus 8.1 Å and 7.6
Å, respectively (Fig. 8). This indicates that the same minimiza-
tion of dC1–Ctr + dC2–Ctr and dC4–Ctr + dC6–Ctr possible for the
bicyclic indole on tryptophan is not possible for smaller, uni-
cyclic aromatic rings on tyrosine and phenylalanine and
conrms that the size of the aromatic ring system is a driving
factor that enables tryptophan to make stronger interactions.

Evaluating the distribution of tyrosine and phenylalanine
CH–p stacking interactions, we note that, although distinct
from tryptophan interactions, these do follow the same ener-
getic tradeoff with multiple optimal orientations (Fig. 8). Two
representative proteins, Lactococcus lactis galactose mutarotase
(PDB ID 1NSM81) and Vatairea macrocarpa seed lectin (PDB ID
4WV8 (ref. 82)), form CH–p stacking interactions with similar
energetic favorability. The CH–p interaction formed by
a phenylalanine in galactose mutarotase has an interaction
energy of−6.6 kcal mol−1, while the one formed by a non-native
tyrosine in the seed lectin is −7.0 kcal mol−1 (Fig. 8). The
galactose mutarotase forms component interactions with
carbon atoms C1, C3, C4, and C5, while the seed lectin forms
Fig. 9 Protein-carbohydrate interactions of (left) Bacteroides thetaiotaom
with their carbohydrate ligands. CH–p interactions are shown as yellow
interactions are shown as purple dashed lines. The surface of the protein
gray, oxygen in red, hydrogen in white, nitrogen in blue, and calcium in gre
< 50° are visualized as dotted yellow lines between the interacting hydro
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component interactions with carbon atoms C3, C4, C5, and C6
(Fig. 8 and 9). Examining the structures of these protein binding
pockets reinforces that carbohydrate binding is stabilized by
hydrogen bonds to nearby amino acids that further inuence
the galactose orientation. Thus, the orientational exibility of
the CH–p stacking interactions enables the optimization of all
involved interactions, while still contributing to the selectivity
of protein–carbohydrate recognition by requiring a proper
orientation of C–H bonds (Fig. 9 and ESI Fig. S33, S34†). This
analysis provides insight into the role of carbohydrate–aromatic
interactions in enzyme processivity,83–85 demonstrating their
ability to stabilize a bound substrate through the range of
orientations that must occur during processive catalysis.

4. Computational methods

A total of 550 close contacts between b-D-galactose and aromatic
amino acids, tryptophan, tyrosine, and phenylalanine, were
identied from a search of the Protein Data Bank (PDB).63 To
obtain coordinates for electronic structure calculations of each
close contact, the heavy atom positions of b-D-galactose and the
amino acid sidechain were obtained from each PDB structure.
Protein backbone atoms (C, Ca, O, and N) were not included to
reduce the computational complexity. From these structures,
hydrogen atoms were added using PyMOL v. 2.5.2.65 Final
geometries were obtained by freezing heavy atom coordinates
and performing a DFT geometry optimization on all hydrogen
atoms to preserve the close contact observed in the protein
structure. These geometry optimizations were performed using
the developer version 1.9–2018.11 of TeraChem86 with the
global hybrid B3LYP66,67 DFT functional and the aug-cc-pVDZ
basis set. The semiempirical DFT-D3 (ref. 87) dispersion
correction with default Becke–Johnson damping88 was applied.
To approximate the contribution of the protein environment,
the implicit conductor-like polarizable continuum model (C-
PCM),89,90 as implemented in TeraChem,91 was used with 3= 10.
The L-BFGS algorithm, as implemented in DL-FIND92 was used
to perform the optimizations. The default thresholds of 4.5 ×

10−4 hartree bohr−1 for the maximum gradient and 1 × 10−6

hartree for self-consistent eld (SCF) convergence were
icron glycoside hydrolase and (right) Vatairea macrocarpa seed lectin
dashed lines, and calcium ion coordinating and hydrogen bonding

structure is shown in light gray. Atoms are colored as follows: carbon in
en. Component CH–p interactions with dCn–Ctr < 4.6 Å and qProj–Cn–Ctr
gen atom and nearest aromatic ring centroid.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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employed. All calculations were closed-shell singlet
calculations.

Tyrosine phenoxide contacts were generated from initial
structures by deprotonating the acidic phenol hydrogen and
placing a water molecule beneath the oxygen atom of the
resulting phenoxide. The water molecule was optimized in
Avogadro to satisfy a constraint of an O–O distance of 2.8 Å
between water and the phenoxide oxygen using the built in
MMFF94 force eld. Final geometries were again obtained by
freezing all heavy atom coordinates and performing a B3LYP-
D3/aug-cc-pVDZ geometry optimization on hydrogen atoms
only using TeraChem. To explore the effect of solvent on these
interactions, (C-PCM)89 was used with 3 = 10 and 80.

Single-point calculations were carried out to compute DFT-
level interaction energies. Specically, B3LYP-D3/aug-cc-pVDZ
DFT interaction energies (IE) were calculated as follows:

IE = Ecomplex − Ecarbohydrate − Eamino acid (1)

where Ecomplex is the energy of the non-covalently interacting
amino acid and carbohydratemonomer pair, and Ecarbohydrate and
Eamino acid are the energies of each separate component. Energy
decomposition analysis was also performed with SAPT0 (ref. 68
and 69) using Psi4 v. 1.4 (ref. 93) and the aug-cc-pVDZ basis set.94

Superposition of atomic densities (SAD) guess orbitals and
density tting for the SCF computation with the aug-cc-pVDZ-
jkt auxiliary basis set along with resolution of the identity (i.e.,
aug-cc-pVDZ-ri) were employed for the SAPT calculations.

We used higher-cost SAPT2 and DLPNO-CCSD(T)95,96

methods to benchmark B3LYP-D3 DFT and SAPT0 energetics.
The SAPT2 (ref. 97) calculations were carried out in Psi4 with the
aug-cc-pVDZ and aug-cc-pVTZ basis sets and extrapolated to the
augmented complete basis set limit using the two-point
formula.98,99 Single-point DLPNO-CCSD(T) calculations were
carried out using ORCA v. 4.2.1 (ref. 100) with the TightSCF
convergence keyword. Interaction energies were computed
using eqn (1) and were extrapolated to the augmented complete
basis set (CBS) limit using the two-point formula and the aug-cc-
pVDZ and aug-cc-pVTZ basis sets.101 An extrapolation to the
limit of the complete pair natural orbital space (CPS)102 was
performed using a two-point formula and calculations with
paired natural orbital (PNO) cutoffs of 10−6 and 10−7.

Because implicit solvent was not implemented for DLPNO-
CCSD(T) calculations in ORCA v. 4.2.1, a solvent correction
was obtained by evaluating the interaction energy of the
complex via Møller–Plesset second-order perturbation theory
(MP2) with and without implicit solvent as follows:

IEDLPNO-CCSD(T) solvated = IEDLPNO-CCSD(T) + IEMP2 solvated −
IEMP2 (2)

MP2 calculations were performed in ORCA100 using all
DLPNO-CCSD(T) parameters except for the RI approximation,
which was employed with auxiliary basis sets automatically
selected with the AutoAux103 keyword. The MP2 implicit solvent
calculations were carried out with the C-PCM model (3 = 10)
with COSMO-type epsilon functions.
© 2024 The Author(s). Published by the Royal Society of Chemistry
We used Gaussian 16.C.01 (ref. 104) to perform second-order
perturbative estimates of donor–acceptor interactions in the
NBO105 basis treated at the B3LYP/aug-cc-pVDZ level. We ob-
tained the E(2) energy contribution from C–H groups by
summing all E(2) energy contributions attributed to the given
hydrogen Rydberg orbital and the carbon–hydrogen bond and
antibond.

Random forest regression models were trained on 12 orien-
tational features to learn the relationship between conforma-
tion and binding affinity (ESI Table S6†). These models were
implemented using Scikit-learn106 v. 1.1.3 with 200 estimators. A
grid search was performed to identify hyperparameters that
minimize the R2 of the training set while maximizing the R2 of
the test set to avoid overtting. The selected hyperparameters
are as follows: a maximum depth of 8, a minimum of 4 samples
required to split an internal node, a maximum of 20 leaves, and
a minimum of 6 samples per leaf. All models were evaluated
using 5-fold cross-validation and an 80 : 20 train : test split.
Feature importance for each model was calculated based on the
mean decrease in impurity using the sklearn_featur-
e_importances method.

5. Conclusion

Our analysis of non-covalent protein–carbohydrate binding
interactions in the PDB reveals critical attributes of CH–p

interactions between b-D-galactose and tryptophan, tyrosine,
and phenylalanine residues. We found that the single amino
acid–carbohydrate interaction energies are energetically favor-
able by 4 to 8 kcal mol−1 (i.e., more favorable than hydrogen
bonding interactions formed by those same pairs), demon-
strating the importance of CH–p stacking interactions in
protein–carbohydrate binding. The strongest interactions were
formed with tryptophan, while those with tyrosine and
phenylalanine were generally weaker. This effect is predomi-
nantly driven by the size and electronics of the aromatic ring
system, with larger rings and those with higher electron density
enabling more favorable CH–p contacts.

We then trained random forest machine learning models to
predict CH–p stacking interaction energies based on their
orientations and found distances between the galactose carbon
atoms and the aromatic ring centroids to be the most predictive
features. Finally, we identied an energetic landscape for b-
galactose–aromatic CH–p stacking interactions using only the
distances between galactose carbon atoms and aromatic amino
acid ring centroids. This landscape demonstrates that CH–p

stacking interactions have high orientational exibility with
a continuous minimum energy well that corresponds to many
distinct orientations. Optimal CH–p stacking interactions can
be formed by maximizing favorable contacts between different
subsets of hydrogen atoms and the aromatic ring(s).

Many diverse orientations of CH–p stacking interactions
contribute signicant stabilization to protein–carbohydrate
interactions. This observation enables further evaluation of the
role of CH–p stacking interactions in conferring selectivity for
protein–carbohydrate binding and processivity in enzymatic
reactions. In total, our studies reveal the molecular
Chem. Sci.
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underpinnings of protein–carbohydrate binding interactions
and the importance of improving molecular simulation force
elds and docking energy functions to account fully for this
contribution.
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