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Abstract

INTRODUCTION: Neuroanatomical normative modeling captures individual variabil-

ity in Alzheimer’s disease (AD). Here we used normative modeling to track individuals’

disease progression in people with mild cognitive impairment (MCI) and patients with

AD.

METHODS: Cortical and subcortical normative models were generated using healthy

controls (n ≈ 58k). These models were used to calculate regional z scores in 3233

T1-weighted magnetic resonance imaging time-series scans from 1181 participants.

Regions with z scores < –1.96 were classified as outliers mapped on the brain and

summarized by total outlier count (tOC).

RESULTS: tOC increased in AD and in people with MCI who converted to AD and

also correlated with multiple non-imaging markers. Moreover, a higher annual rate of

change in tOC increased the risk of progression from MCI to AD. Brain outlier maps

identified the hippocampus as having the highest rate of change.

DISCUSSION: Individual patients’ atrophy rates can be tracked by using regional

outlier maps and tOC.
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Highlights

∙ Neuroanatomical normativemodelingwas applied to serial Alzheimer’s disease (AD)

magnetic resonance imaging (MRI) data for the first time.

∙ Deviation from the norm (outliers) of cortical thickness or brain volume was

computed in 3233 scans.

∙ The number of brain-structure outliers increased over time in people with AD.

∙ Patterns of change in outliers variedmarkedly between individual patients with AD.

∙ People with mild cognitive impairment whose outliers increased over time had a

higher risk of progression fromAD.

1 BACKGROUND

The pathologies underlying Alzheimer’s disease (AD) interact with an

individual’s distinct genetics, environmental exposures, and comor-

bidities, leading to idiosyncratic patterns of brain atrophy that change

dynamically as the disease progresses.1–4 Heterogeneity in atrophy

is likely to impact individual differences between patients with AD,

including timing and focality of initial symptoms and the pattern and

progression of symptoms.3 This heterogeneity creates challenges in

the clinic (e.g., when predicting prognosis and planning care), and com-

plicates research recruitment and clinical trial design.5–10 Therefore,

there is a need to quantify disease heterogeneity at the individual

level.11

Neuroimaging provides insights into brain structure in vivo, and

has long been used to study AD; however, most studies focus

on group-average or subtype effects and overlook the individual

variability between patients.12,13 Neuroanatomical normative model-

ing, an emerging technique that captures individual-level variability

in the brain, has been developed to overcome reliance on group

averages.14,15 Based on the well-established normative modeling con-

cept, for example, height and weight growth charts for children,16 the

neuroanatomical version builds separate normative models per brain

region, based on a large independent reference dataset. An individ-

ual’s brain scan can then be compared to this reference database to

determine whether their brain volume or cortical thickness is lesser or

greater than expected for someone of their age and sex. This deviation
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from normality can be quantified using z scores, fromwhich brain-wide

z score maps can be generated, providing a unique fingerprint of an

individual’s brain health.3 Neuroanatomical normative modeling has

the potential to detect specific patterns of brain changes in individ-

ual patients with AD, paving the way for personalized health care and

precisionmedicine approaches.

Using neuroimaging data from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) we have previously shown the heterogeneous

nature of cortical thinning patterns between individuals with AD.17

Here, the individualized brain-wide z score maps revealed heteroge-

nous atrophy patterns in the AD group; the extent of cortical thinning

(i.e., in terms of deviation from the norm) in mild cognitive impairment

(MCI) was predictive of conversion to AD and was also related to cog-

nitive function, amyloid beta, phosphorylated tau, and apolipoprotein

E (APOE) genotype. In a further study, individualized atrophy patterns

were shown to relate to disease severity, presenting phenotypes and

comorbidities in amyloid-positive AD patients in a “real-world” mem-

ory clinic setting.18 Insights from these studies have so far been based

on cross-sectional neuroimaging data. Understanding how patterns of

atrophy changeover timemayprovide insights into causalmechanisms,

and aid in prognostication on an individual patient basis and when

monitoring disease progression for clinical trials.

Here, we apply neuroanatomical normative modeling to quantify

regional changes in brain structure as AD progresses, using serial mag-

netic resonance imaging (MRI) data. The neuroanatomical normative

modeling can also be optimized by including controls scanned at the

same site of the research cohort (adaptive learning) to reduce the

impact of scanner effects.14 We assess whether markers of regional

brain atrophy derived from normative modeling (1) can track disease

trajectories in people with MCI and patients with AD; (2) can be used

to predict progression from MCI to AD; and (3) are related to other

common imaging and non-imaging ADmarkers.

2 METHODS

2.1 Participants and research dataset

Participants were derived from two datasets (Figure 1): (1) a reference

(training) dataset comprised of healthy people across the human lifes-

pan, and (2) a research dataset that included people with AD or MCI

in addition to age-matched cognitively unimpaired controls. The ref-

erence dataset was made by combining T1-weighted MRI scan data

on healthy people from multiple publicly available sources,19 includ-

ing Open Access Series of Imaging Studies (OASIS), Adolescent Brain

Cognitive Development (ABCD) study, and UK Biobank (UKB), total-

ing 58,836 individuals from 82 sites. Data collection, data processing,

and participant demographics of the reference dataset were described

previously.14

The research data used in the preparation of this article were

obtained from ADNI—http://adni.loni.usc.edu. Inclusion criteria were

the availability of T1-weighted MRI scans (acquired using 1.5T and 3T

MRI scanners) from ADNI-1, -GO, -2, and -3 (n = 1849, a total of 4540

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using traditional (e.g., PubMed) sources. Alzheimer’s dis-

ease (AD) atrophy is heterogeneous at the individual level

throughout the disease course—neuroanatomical norma-

tive modeling is a quantitative technique to capture this.

Relevant literature is cited.

2. Interpretation: Neuroanatomical normative modeling

can generate personalized brain atrophy markers which

can map changes over time in AD.We illustrate that neu-

rodegeneration rates are heterogeneous over the disease

course and reveal what cannot be seen using traditional

group-average statistics. This is consistent with previous

AD and normativemodeling research.

3. Future directions: Further validation of our personalized

brain atrophy marker could be conducted in community-

based samples that comprise patients with both early-

and late-stage AD (to capture the full disease course).

Future studies should assess if these individualizedmark-

ers are sensitive to (1) capturing the deceleration of

atrophy with disease-modifying therapies and (2) being

implemented as a decision-making tool in clinical settings.

scans). Participants had either a diagnosis of MCI or AD or were a cog-

nitively unimpaired control, of which their diagnosis record date was

matched± 12weeks after the scan date (see Table 1 for diagnosis sam-

ple sizes). Here participants with AD fulfilled the National Institute of

Neurological and Communicative Disorders and Stroke–Alzheimer’s

Disease and Related Disorders Association criteria for probable AD,20

and patients were defined as having MCI or as cognitively unimpaired

controls as described previously.21 Patients with MCI who developed

AD during longitudinal follow-up were classified as “MCI progressive”

(n= 98) and the remainder as “MCI stable.” “MCI stable” excludedMCI

regressors.

Furthermore, additional variables were obtained from the research

dataset (ADNI) and linked to each MRI assessment, assuming these

additional data were acquired within 12 weeks of the scan. This

included cognitive data: memory using ADNI memory (MEM) or

executive function using ADNI executive function (EF),22 and theMini-

Mental State Examination (MMSE) total score23; amyloid and tau

markers: for amyloid, florbetapir, a summary positron emission tomog-

raphy (PET) standardized uptake value ratio (SUVR),24 and tau, a PET

summary SUVR flortaucipir25; and genetic markers: APOE ε4 status

(determined by either being APOE ε4 homozygous, APOE ε4 heterozy-

gous, or APOE ε4 non-carrier), and previously generated polygenic risk
score (PRS).26

In addition, we included a numerical index designed to reflect the

AD stage, the so-called amyloid-cognition score (AC score). AC scores

were calculated using latent time disease progression modeling of

http://adni.loni.usc.edu
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F IGURE 1 Flow diagram of methods pipeline, study inclusion criteria, and sample sizes. Diagnostic groups include cognitively unimpaired
controls, participants withMCI, and patients with dementia. *Study course is between baseline scan (0months) and 115months/9.5 years. ADNI,
Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E;MCI, mild cognitive impairment; MMSE,Mini-Mental State Examination;
PET, positron emission tomography; SUVR, standardized uptake value ratio.
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longitudinal amyloid PET SUVR and cognitive clinical scores, using

methods previously detailed.27,28 AC scores have been proposed as

a natural timescale to compare biomarker trajectories and have pre-

viously been shown to stage patients along the AD continuum more

precisely than conventional measures (e.g., early or lateMCI).27,28

2.2 MRI acquisition

For ADNI, T1-weighted images were acquired at 62 study sites using

1.5T or 3TMRI scanner visits across ADNI-1, -GO, -2, -3. DetailedMRI

protocols for T1-weighted sequences are available online (http://adni.

loni.usc.edu/methods/documents/mri-protocols/). The quality of raw

scans was evaluated at the Mayo Clinic for technical problems and

significant motion artifacts and clinical abnormalities.29

2.3 Estimation of cortical thickness and
subcortical volumes

T1-weighted scans from both the reference and the research

dataset were processed using FreeSurfer recon-all cross-sectional,

to extract the cortical thickness of 148 cortical regions and gray

matter tissue volume of 20 subcortical volumes from the Destrieux

parcellations.30,31 For the reference dataset FreeSurfer version 6

was used; for ADNI, FreeSurfer versions 5 or 6 were used. Quality

control of FreeSurfer processing for the reference dataset relied on

both manual and automated filtering, as described previously.14 For

the research dataset, quality control was based on a visual review of

each cortical region performed at University of California San Fran-

cisco (https://adni.bitbucket.io/reference/docs/UCSFFSX51/UCSF%

20FreeSurfer%20Methods%20and%20QC_OFFICIAL.pdf).

2.4 Neuroanatomical normative modeling

A non-Gaussian Bayesian regression model was implemented, which

accounts for the non-Gaussian distributions of the cortical thickness

and subcortical volumedata and adjusts for unwanted noise from scan-

ning acquisition across multiple sites.32 This model was trained on

58,836 scans fromdatasets across82 sites to generatenormativemod-

els per region using the covariates age, sex, and site, as previously

described.14,32 Next, these estimates were calibrated to our specific

test data (i.e., ADNI), using an adapted transfer learning approach.19

The distribution parameters of the reference normative model were

calibrated to our ADNI dataset using 70% of cognitively unimpaired

controls per ADNI site, with the aim of reducing site effects and

software version effects (i.e., FreeSurfer v5 or v6). The controls for

calibration were randomly selected with stratification to ensure all

sites and sexes were present in the adaptation set. The data from

the remaining 30% of cognitively unimpaired controls, plus partici-

pants with MCI and patients with AD, were then compared to these

normativemodels, generating z scores per region for each scan. A sum-

mary of this pipeline and a breakdown of the respective sample sizes

included are detailed in Figure 1. The final sample used in z score anal-

ysis is n = 1181, which included 3233 scans (Figure 1 and Table 1).

The modeling steps and models trained on the reference dataset are

openly available: https://github.com/predictive-clinical-neuroscience/

braincharts.

2.4.1 Individualized brain markers

Extreme deviations from the norm, or “outliers,” with lower cortical

thickness and subcortical volumes were identified for each region,

defined as Z< –1.96. Here ventricular z scores were inverted to reflect

volumetric expansion. The number of outliers was summed across all

168 regions to give a total outlier count (tOC) for each participant.

Brain surface mapping was conducted using the Destrieux (148 corti-

cal regions) and aseg (20 subcortical regions) atlas via the R package

ggseg. All statistical analyses were implemented in R version 3.6.2.

2.5 Disease course analysis

2.5.1 Outliers at three cross-sectional snapshots
over a 24-month period

For these analyses, longitudinal datawere subset into three timepoints

representing a cross-sectional snapshotmeasure of baseline,month12

(in a range of ± 12 weeks), and month 24 (in a range of ± 12 weeks).

Brain outlier maps for each diagnostic group were mapped across the

three time points. This enabled visualization of the extent towhich pat-

terns of outlier regions overlap or are distinct in each of these three

time points.

2.5.2 Rate of change in tOC and regional z scores

To assess longitudinal atrophy, we took two related approaches. First,

we calculated the rate of change in tOC as the difference in baseline

and final tOC (up to 115 months). A linear model was used to test for

differences in the rate of change in tOC between diagnostic groups

while adjusting for age, sex, and predicted AD stage (AC score, see Sec-

tion 2.1).28,33 Second, we calculated the rate of change in z score per

region. Here, we calculated the difference between the baseline and

final z score, and then we defined a new “normative model” based on

the distribution of rates of change in scans of cognitively unimpaired

controls reserved for analysis (661 scans). “Rate of z score change out-

liers” was then defined if a rate of change was more than two standard

deviations away from the mean in the ADNI controls (which was Z = –

0.0009). Then, the neuroanatomical patterns of the “rate of z score

change outliers” were mapped onto brain surfaces for visualization

purposes. As a final step, to provide more detail, we focused on the

region of the highest rate of change (in this case, the left hippocampus),

and compared patients with ADwho had a “rate of z score change out-

liers” to those thatwere not, based on their totalMMSE score and their

AD stage (AC score), age, sex, and APOE ε4 status.

http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://adni.loni.usc.edu/methods/documents/mri-protocols/
https://adni.bitbucket.io/reference/docs/UCSFFSX51/UCSF%20FreeSurfer%20Methods%20and%20QC_OFFICIAL.pdf)
https://adni.bitbucket.io/reference/docs/UCSFFSX51/UCSF%20FreeSurfer%20Methods%20and%20QC_OFFICIAL.pdf)
https://github.com/predictive-clinical-neuroscience/braincharts
https://github.com/predictive-clinical-neuroscience/braincharts
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TABLE 1 Demographics and AD-related characteristics of ADNI participants used in the study.

Controls MCI AD Total

Statistical

differences

n 291 682 208 1181 –

Total of scans* 661 1999 573 3233 –

Median (IQR) of scans per

participant

3 (2) 4 (3) 3 (2) 4 (3) –

Follow-up time in time series data

(months) mean± SD

41.5

± 28.2

32.2

± 25.5

23.8

± 21.4

32.1

± 25.9

F(2, 767)= 23.2, p=
1.5× 10-10

Sex (M:F) 121:170 381:301 106:102 608:573 X2 = 16.68, p=
0.0002

Baseline agemean± SD& range 73.9± 6.2

(56–93)

72.2± 7.8

(54–97)

74.1± 8.1

(55–90)

72.9± 7.6

(54–97)

F(2, 1172)= 8.42,
p= 0.0002

Baseline AC score (years)† mean±
SD& range

–5.17± 5.83

(–15.3–9.8)

7.0± 4.0

(–7.0–14.6)

12.9± 2.1

(2.5–16.5)

4.3± 8.3

(–15.3–16.5)

F(2, 724)= 934.97,

p= 2.2 × 10-16

BaselineMMSE scoremean± SD

total & range

29.07± 1.3 (22–30) 27.8± 1.9

(19–30)

22.6± 3.2

(7–30)

27.8± 1.9 (7–30) F(2, 1017)= 561.3,

p= 2.2 × 10-16

Baseline ADNImemorymean± SD

total & range

1.2± 0.6

(–0.7–3.3)

0.3± 0.6

(–1.5–2.4)

–0.9± 0.6

(–2.9–0.4)

0.3± 0.9

(-2.8–3.3)

F(2, 1074)= 590.5,

p= 2.2 × 10-16

Baseline ADNI executive function

mean± SD total & range

1.0± 0.8

(–1.2–2.9)

0.3± 0.8

(–2.3–2.9)

–0.9± 1.0

(–3.0–2.6)

0.3± 1.1

(–3.0–2.9)

F(2, 1070)= 248.9,

p= 2.2 × 10-16

Baseline amyloid PET SUVRmean±
SD total & range

1.1± 0.2

(0.9–2.7)

1.2± 0.2

(0.8–2.0)

1.4± 0.2

(0.9–1.8)

1.4± 0.2

(0.8–2.7)

F(2, 630)= 54.6, p=
2.2× 10-16

Baseline tau PET SUVRmean± SD

total & range

1.5± 0.2

(1.2–2.0)

1.6± 0.3

(1.2–2.6)

1.8± 0.4

(1.5–2.8)

1.6± 0.2

(1.2–2.8)

F(2, 138)= 7.9, p=
0.0005

APOE ε4 non-carrier (percentage in
group sample & sample size)

32.6%

(n= 194)

55.6% (n= 332) 11.7% (n= 70) 53% (n= 596) **X2 = 107.5, p=
2.2× 10-16

Note: Key: **X2 of APOE ε4 status.
Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E; IQR, interquartile range; MCI, mild

cognitive impairment; PET, positron emission tomography; SD, standard deviation; SUVR, standardized uptake value ratio.
†Disease stage (AC) score represents predicted years since amyloid PET positivity.

2.5.3 Growth models

Growth models were used to understand individual trajectories of

tOC over time using the lme4 package in R. Here, separate uncon-

ditional linear mixed models were generated for each of the three

diagnostic groups; tOC is considered a dependent variable and time

as the independent variable. The “control to MCI” and “MCI to

AD” converters were removed from this model to ensure the diag-

nostic group data is distinct across each individual timeline (total

n = 181 removed; Figure 1). Individual participants were consid-

ered variables acting as a random intercept (which allows subjects

to vary randomly in terms of their intercept) and therefore mod-

els each participant’s tOC linearly with time, taking into account

how individual participants vary in the slopes and intercepts of this

relationship.34

2.5.4 MCI to AD progression analysis

Data were subset for participants who had MCI diagnosis at baseline

and also had follow-up data for 3 years (36months) since their baseline

visit (n = 365). Using this subset, we ran a survival analysis using Cox

proportional hazards regression to assess whether the tOC difference

between baseline and 12 months was related to the risk of progres-

sion from MCI to AD in 36 months. The tOC change was thresholded

according to the median tOC change between baseline and 12months

(median= 3) to signify a low or high rate of change in the first year and

a Kaplan–Meier plot was used to illustrate the progression from MCI

to AD. We also compared the first-year change in tOC between MCI

stable and MCI progressive groups. Furthermore, we added baseline

tOC to our Cox proportional hazards regression model (alongside tOC

change in the first year) to explore the relationship of baseline tOC to

risk of progression.

2.6 Relationship to other disease markers

2.6.1 AC score

The AC score, representing predicted years since amyloid PET posi-

tivity, was used as an approach for staging AD (see Section 2.1). This

continuousmeasurewas used as a covariate to adjust for disease stage
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when exploring how tOC relates to cognitive, amyloid, and tau AD

diseasemarkers.

2.6.2 Cognitive markers

Linear regression adjusting for age, sex, and years of education exam-

ined the relationship between tOC rate of change and cognitive

composite scores (memory using ADNI MEM or executive function

using ADNI EF).34 We then assessed the interaction between the diag-

nostic group and cognitive composite score. Total MMSE scores were

only used when comparing regional rates of change (Figure 1).

2.6.3 Amyloid and tau markers

Florbetapir and flortaucipir SUVR were used to index cerebral amy-

loid and tau deposition, respectively. A linear regression adjusting for

age and sex examined the relationship between the rate of change

in tOC and amyloid and tau PET markers. We assessed the interac-

tion between the diagnostic group and amyloid and tau markers in a

subsequent regression.

2.6.4 Genetic markers

APOE ε4 status was determined by either being APOE ε4 homozygous,

APOE ε4 heterozygous, or APOE ε4 non-carrier. Group differences in

the rate of change in tOC were assessed as a linear regression, adjust-

ing for age and sex. The relationship between PRS and the rate of

change in tOCwas examined using linear regression, adjusting for age,

sex, and APOE ε4 status. We assessed the interaction between the

diagnostic group and PRS in a subsequent regression.

3 RESULTS

3.1 Participants

The final research dataset amounted to a total of 1181 participants

with a total of 3233 scans at least 12 weeks apart between scanning

visits and had a maximum interval between baseline and final visit of

9.5 years (115months; Figure 1 and Table 1).

3.2 The change in neuroanatomical outliers
between baseline and 24 months

Patterns of cortical thickness and subcortical volume outliers differed

between AD, MCI, and control groups and varied over time (Figure 2).

The proportion of outliers in each group wasmapped cross-sectionally

at baseline, 12 months, and 24 months. In patients with AD, the region

with the highest proportion of the group having outliers was consis-

tently the left hippocampus, with 47% at baseline, 60% at 12 months,

and 72% at 24 months. Generally, the number of regions that con-

tained at least one participant with an outlier remained stable; at

baseline, there were 134 cortical regions and 13 subcortical regions

with outliers, 128 and 12 at 12 months and 131 and 11 at 24 months,

respectively.

3.3 Higher rate of atrophy in patients with AD

Overall, patients with AD showed a greater number of “rate of z

score change” outliers (see Section 2.5.2), compared to people with

MCI or controls. The region with the highest proportion of rate of

z score change outliers was the left hippocampus at 53%; therefore,

47% of patients with AD patients do not follow this trend (Figure 3).

Comparing patients with AD that did versus did not have rate of z

score change outliers in the left hippocampus, there were no statis-

tical differences in age, total MMSE score, and AC score at baseline

(p > 0.05), and no statistical differences in APOE ε4 carrier status or

sex (X2 P > 0.05). In the 47% of patients who did not show rate of

z score change outliers in the left hippocampus, the regions with the

highest proportion of patients with outliers were the left amygdala

(29%), the right amygdala (28%), and left and right lateral ventricles

(both 11%).

3.4 tOC increases with time in AD and in
individuals with MCI who progress to AD

Increased tOC over time (i.e., accumulation of outliers) was observed

in the AD group (β = 0.38, p = 9.8 × 10-13) and in the MCI group

(β = 0.001, p = 0.004) but not in controls (β = –0.001, p = 0.81;

Figure 4A,B). Linear regression revealed that there was a significant

increase in the rate of tOC change over time (Figure 4C). This differed

between groups when adjusting for baseline AC score, baseline age,

and sex (F(5, 490) = 12.99, p = 6.9 × 10-12). Interestingly, when including

a quadratic term for time (i.e., time2) to model the non-linear effects

of time, this was significant (β = –31.0, p = 0.0005). When assessing

the interaction between group and time2 we saw that this effect was

stronger in AD patients (β = –35.5, p = 0.06) than in people with MCI

(β = –84.07 p = 0.0005). Pairwise group comparisons (Tukey post hoc

tests) of the different group trajectories over time were significant

(p ≤ 0.001) for AD versus controls and AD versus MCI, but not con-

trols versus MCI (p = 0.518). The rate of change in tOC was highest in

the AD group (mean = 5.26, standard deviation [SD] = 9.85), interme-

diate in theMCI group (mean= 0.59, SD= 4.57), and lowest in controls

(mean = –0.01, SD = 1.90). AC score was significantly associated with

the rate of change in tOC across the whole sample when adjusting for

age and sex (β= 0.24, p= 7.5 × 10-09).

Growth models showed that an increase in tOC over time was

observed in both the MCI progressive group (β = 0.10, p = 7.4 × 10-05,

which equates to 1 additional tOC every 10 months) and the MCI sta-

ble group (β= 0.017, p= 0.004; Figure 5A,B). Linear regression showed
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F IGURE 2 Mapped are the percentage of outliers present in (A) cognitively unimpaired controls, (B) mild cognitive impairment, and (C)
Alzheimer’s disease at baseline, 12months, and 24months, for cortical (left) and subcortical (right) areas. The color bar reflects the outlier
proportion from 2.5% to 100% (thresholding of z scores). Zero percent (gray) represents that no participants have outliers in those respective
regions.
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F IGURE 3 Mapped is the proportion of participants with a high rate of atrophy in cortical (left) and subcortical (right) areas. AD, Alzheimer’s
disease; MCI, mild cognitive impairment.

that the MCI progressive group had a significantly higher rate of tOC

change over time (mean = 3.97, SD = 11.27) compared to theMCI sta-

ble group (mean = 0.53, SD = 4.61), when adjusting for age, sex, and

AC score (F(4, 214) = 2.622, p = 0.03; Figure 5C). There was a signifi-

cant difference in the rate of change in the first 12 months between

the MCI stable and progressive groups (β = 4.47, p = 3.1 × 10-15). Sur-

vival analysis indicated that for every three outliers increase in tOC in

the first 12 months, the risk of progression from MCI to AD between

12 months and 36 months (i.e., in the following 2 years) increased by

30.2% (hazard ratio [HR] = 1.09, 95% confidence interval [CI]: [1.06,

1.12], p=1.4×10-14; Figure5D).Whenaddingbaseline tOCas another

predictor to our Cox proportional hazards regression model (along-

side tOC change in the first year), survival analysis indicated that for

every three outliers increase in baseline tOC, the risk of progression

fromMCI to AD between 12months and 36months increased by 9.7%

(HR= 1.03, 95%CI: [1.01, 1.05], p= 0.003).

3.5 Rate of change in tOC correlates with
cognitive, amyloid, and tau markers

The rate of change in tOC across the whole sample was signif-

icantly associated with poorer memory performance (β = –1.99,

p = 2.0 × 10-16), and executive function (β = -1.77, p = 2.0 × 10-16)

in separate linear regression models, controlling for age and sex

(Figure 6A,B). Here interactions between the diagnostic group and

memory (F(2, 730 = 4.95, p = 0.007) and diagnostic group and execu-

tive function (F(2, 722) = 4.44, p= 0.012) were both significant andwere

driven by patients with AD (memory [β = –2.52, p = 0.011], execu-

tive function β = –1.73 p = 0.013]). The rate of change in tOC across

the whole sample was significantly associated with an increase in amy-

loid PET summary SUVR (β = 0.006, p = 0.001) and an increase in tau

PET summary SUVR (β = 0.03, p = 0.0001) when adjusting for age and

sex (Figure 6C,6D). Interactions between group and SUVR were not

significant (p> 0.05).

3.6 Rate of change in tOC is associated with
APOE ε4 status

APOE ε4 status showed differences in the rate of change in tOC, in

an analysis of variance adjusting for age and sex (F(2, 755) = 10.06,

p = 4.8 × 10-05), which was not influenced by diagnostic group x

APOE ε4 status interaction (p > 0.05). This association was driven by

higher accumulation of outliers in APOE ε4 homozygotes (β = 2.33,

p = 0.003) and APOE ε4 heterozygotes (β = 5.77, p = 0.018) com-

pared to APOE ε4 negative participants (β= –0.65, p= 0.185; Figure 7).

Linear regression showed no significant association between PRS and

rate of change of tOC when adjusting for age, sex, and APOE ε4 status

(F(1, 707) =1.41, p=0.23), whichwas not influenced by diagnostic group

x PRS interaction (p> 0.05).

4 DISCUSSION

In this study we used neuroanatomical normative modeling to cap-

ture individual patient trajectories of brain structure changes during

MCI and after AD diagnosis. Our normative modeling approach gener-

ates patient-specific regional outliermaps, and summary outlier scores

(tOC), which we analyzed using serial MRI data acquired up to 9.5

years (mean follow-up time 2.4 years) as part of ADNI. Our findings

illustrate that AD affects patients in a non-uniform way as the disease

progresses.

A key advantage of neuroanatomical normative modeling is that it

provides region-level information, with separate normativemodels per

brain region. We observed that patterns of outliers vary over time in
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F IGURE 4 Change in tOC according to diagnostic group. A, Spaghetti plot of tOC according to diagnostic group. Each colored line represents
an individual participant’s trajectory of tOC scores over the scanning period. B, Linear growthmodel for each diagnostic group. C, The density
spread of the rate of change in tOC for each diagnostic group. AD, Alzheimer’s disease; MCI, mild cognitive impairment; tOC, total outlier count.

theADgroup; for instance, the percentageof patientswithAD that had

outliers in the hippocampus increased from 47% to 72% in 24 months,

suggesting the presence of atrophy in the hippocampus is more het-

erogenous in earlier stages of the disease and becomes more common

as the disease progresses (Figure 2).

This is consistent with our finding that the rate of z score change

was highest in the left hippocampus, with 53% of the AD group hav-

ing outliers (i.e., greater than expected changes in z score) in this area

(Figure 3). Hippocampal atrophy is seen as characteristic of AD and

is included in AD diagnostic criteria, as well as being used in clinical

trials.35 However, our results show that in theADNIADsample, 47%of

patients do not have greater-than-expected left hippocampal volume

changes. These results highlight the individual differences between

patients with AD and emphasize the limitation of group-average sta-

tistical designs, which would overlook this within-group variability.

Moreover, we found that age, sex, total MMSE score and AD stage (AC

score), and APOE ε4 status were not associated with either having or

not having a marked rate of z score change outliers (i.e., elevated atro-

phy), which may provide further evidence for a hippocampal-sparing

subtype.36–39

Our results are consistent with previous work on neuroanatomical

variation in dementia. When using a related neuroanatomical nor-

mative modeling technique (hierarchical Bayesian regression40), we

previously found that patients with AD had a higher tOC and large

interindividual differences in regional outliers at baseline, compared

to people with MCI and cognitively unimpaired controls.17,18 Here,

our longitudinal data showed an increase in tOC in patients with AD.

Interestingly, the rate of change in tOC in the AD group increased

in a non-linear way, suggesting an accelerating accumulation of brain

structural outliers over the study period. Therefore, tOC could offer

some utility in tracking neurodegeneration across the disease course

in individuals with AD (Figure 4).

Alongside capturing accumulating atrophy in AD, people with MCI

who later progress to AD have increasing rates of tOC (Figure 5A–C).
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(A) (B)

(D)

(C)

F IGURE 5 Change in tOC according to disease conversion status. A, Spaghetti plot of tOC in eitherMCI stable orMCI progressive. Each
colored line represents an individual change in tOC over the scanning period. B, Linear growthmodel forMCI stable orMCI progressive. C, The
density spread of the rate of change in tOC in people withMCI. D, Kaplan–Meier plot ofMCI progression to AD between 12 and 36months: the
two lines represent amedian split of tOC, with< 3 classed as low tOC (blue), and≥ 3 classed as high tOC (red). Crosses indicate censoring points
(i.e., time from baseline at last diagnosis assessment). Filled colors represent the 95% confidence intervals. AD, Alzheimer’s disease;MCI, mild
cognitive impairment; tOC, total outlier count.

This is consistent with our previous research that showed an increase

of 10 outliers (i.e., +10 tOC) confers a 31.4% chance of clinical

progression within 3 years.17 Here, we also found that the rate of

change in tOC over 1 year (i.e., the difference in tOC between base-

line and 12 months), was associated with progression to dementia

in the subsequent 2 years, with an increase of three outliers in this

first year giving 30.2% increased risk of clinical progression between

12 months and 36 months (Figure 5D). This raises the possibility

that normative modeling approaches to serial scans in patients with

MCI could have utility in detecting those that will progress to AD

dementia and that annual scans for people with MCI to monitor

brain health could benefit the clinical decision-making process (e.g.,

for early AD detection). Interestingly, some individuals showed nega-

tive rates of tOC, thus having fewer outliers over time. This includes

18% of cognitively unimpaired people, 12.7% of people with MCI,

and 10.8% of AD patients, though for the vast majority of these

participants the decrease was < 5 regions, thus could be caused by

noise in the MRI scans leading to minor changes to the FreeSurfer

output.

We observed that the rate of change in tOC was associated

with amyloid and tau PET SUVR (Figure 6C,6D), in line with

previous associations of amyloid and tau with neuroanatomical

changes in AD,41–44 although it is important to note that the amy-

loid/tau/neurodegeneration (ATN) interplay is likely to differ from

individual to individual.45,46 We also assessed how genetic factors

could relate to tOC change over time. We found that an increased

tOC is associated with APOE ε4 homozygosity and heterozygosity

(Figure 7), consistent with other structural imaging markers findings,

and is likely to reflect amyloid load.26,47,48 Likewise, our results indicate

that memory and executive function are associated with the acceler-

ated accumulation of outliers (Figure 6A,B).49,50 This highlights that

participants with outliers are more likely to have (1) a clinical diagno-

sis of AD, (2) to be AD biomarker positive, and (3) to have cognitive

features consistent with AD, reflecting alignment with current clinical

frameworks.51,52

Indeed, accelerated brain atrophy is a widely accepted marker of

AD,4,53 thus rate of change in brain structure outliers (i.e., tOC) may

offer better clinical utility than using raw brain volumes/thicknesses.
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(A) (B)

(C) (D)

F IGURE 6 The relationship between cognitive function and cerebrospinal fluid markers with the rate of change in tOC. Fitted lines are from a
linear regressionmodel per diagnostic group for (A) memory function, (B) executive function, (C) summary SUVR amyloid PET, (D) summary SUVR
tau PET. AD, Alzheimer’s disease; MCI, mild cognitive impairment; PET, positron emission tomography; SUVR, standardized uptake value ratio;
tOC, total outlier count.

F IGURE 7 The density spread of the rate of change in tOC
according to APOE ε4 status. APOE, apolipoprotein E; tOC, total outlier
count.

Therefore, in a clinical setting, a patient’s tOC could be derived from

serial MRI scans to track brain changes over time. Similar brain struc-

ture measures derived from normative modeling have already been

considered for clinical translation; the Quantitative Neuroradiology

Initiative (QNI) provides a framework to contextualize a dementia

patient’s brain health and provide a personalized score to support

clinical decision making.54,55 Building on this idea, our application of

neuroanatomical normative modeling offers regional information on

brain health (mapped outlier scores), and improved neuroanatomical

normativemodel estimates by using a large reference cohort.56

One setback with translating computational statistical designs in

clinical settings is the technical barriers to application and limits to data

sharing. However, our neuroanatomical normative modeling approach

does not require access to raw scans, as the end user only requires

a pre-trained reference model, which contains no identifiable data.

Scripts to generate individual z scores, tOC, and outlier maps are

openly available.57

Neuroanatomical normative modeling also has the potential to aid

in trials of AD therapeutics. For example, it could be used to strat-

ify people for trial enrolment based on the extent (tOC) and spatial

distribution of their brain atrophy, to identify subgroups based on

different atrophy patterns or as a personalized outcome measure,

for which the impact of the treatment using unique brain “finger-

prints” can be quantified, increasing power and sensitivity to subtle

changes over time.9 Moreover, with further validation, it could war-

rant a run-in period of 12 months in clinical trials, during which

an enrolled participant is stratified by their progression risk, based

on the accumulation of neuroanatomical outliers over the previous

year.

Yet, prior to clinical and drug trial implementation, additional diver-

sificationof datasets is needed.Althoughour referencedataset is large,

it is over-representative of European ancestry due to the datasets

predominantly from research studies (which do not match either

regional or global population demographics).58,59 Though ADNI par-

ticipants are mostly of European ancestry,60 caution should be made

when transferring the model to diverse datasets, or participants from

underrepresented demographics.61 Moreover, ADNI participants are

more likely to be in the early to intermediate stages of AD, and less

likely to have comorbidities.21,61–63 Future work will require the ref-

erence dataset and research/patient datasets to include participants

from non-research studies (e.g., participants from memory clinics,18

which are more likely to include later-stage patients with more
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comorbidities), and different social–economic backgrounds and eth-

nicities to reduce bias andmitigate health-care inequalities.64

Further optimization of neuroanatomical normative modeling is

possible. Although scanner effects and the non-Gaussian distribution

of the neuroimaging phenotypes were accounted for, some within-

subject noise remains in longitudinal data, which may be contributing

to the range in tOC change (Figure 5C and Figure 6C). To assess this,

it will be useful to understand test–retest reliability by calculating

the difference in scans that have been acquired in close succes-

sion (< 1 week).65 Also, the within-subject variability may have been

better modeled by implementing the longitudinal FreeSurfer process-

ing pipeline.66 ADNI data were processed with a variety of FreeSurfer

versions (5 & 6). While impractical to unify the processing retrospec-

tively, these inconsistencies may add noise to the normative models

from potential differences in cortical thickness and subcortical vol-

ume estimates,67,68 although there is evidence for consistencies of

these estimates between some FreeSurfer versions.69 Furthermore,

our model treats brain regions independently, yet it is likely that

regional z scores are intercorrelated, particularly between neighboring

or bilateral regions. Solutions to this could consider the spatial extent

of affected voxels and the magnitude in those voxels,70 and apply nor-

mative models that use brain connectivity data, which have shown

recent promise.58

To conclude, we show that brain structural outliers across MCI and

AD differ at the individual level and that this can be visualized over

time by using outlier maps and quantified by the tOC generated by

neuroanatomical normative modeling. Our study further supports the

potential utility of tOC and brain outlier maps as personalized mark-

ers for patients with AD and to assess the risk of disease progression

in people with MCI. The next steps are to diversify the training and

research/patient data used, and further validate these markers for

future translation into clinical settings and in clinical trial design.
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