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ABSTRACT Bacteria of the genus Stenotrophomonas are found
throughout the environment, in close association with soil,
sewage, and plants. Stenotrophomonas maltophilia, the first
member of this genus, is the predominant species, observed
in soil, water, plants, animals, and humans. It is also an
opportunistic pathogen associated with the increased number
of infections in both humans and animals in recent years.
In this article, we summarize all Stenotrophomonas species
(mainly S. maltophilia) isolated from animals and food products
of animal origin and further distinguish all isolates based on
antimicrobial susceptibility and resistance phenotypes. The
various mechanisms of both intrinsic and acquired antimicrobial
resistance, which were mainly identified in S. maltophilia isolates
of nosocomial infections, have been classified as follows:
multidrug efflux pumps; resistance to β-lactams,
aminoglycosides, quinolones, trimethoprim-sulfamethoxazole,
and phenicols; and alteration of lipopolysaccharide and
two-component regulatory systems. The dissemination,
coselection, and persistence of resistance determinants
among S. maltophilia isolates have also been elaborated.

INTRODUCTION
The genus Stenotrophomonas comprises 16 character-
ized species (Table 1), and 13 validated species are in-
cluded in the List of Prokaryotic names with Standing in
Nomenclature (1). The first Stenotrophomonas species
—Stenotrophomonas maltophilia—was isolated in 1943
from human pleural fluid. It was classified as Bacte-
rium bookeri and subsequently renamed Pseudomonas
maltophilia/Xanthomonas maltophilia (1, 2). Another
12 Stenotrophomonas species were first identified re-
siding in soil, sewage, or plants. Of the remaining three
species, Stenotrophomonas sp. D-1 and Stenotropho-
monas koreensis were first isolated from deer fur and

animal compost, respectively, and Stenotrophomonas
africana was initially isolated from a sample of cere-
brospinal fluid from a human immunodeficiency virus
seropositive Rwandan refugee with primary meningo-
encephalitis (3). S. maltophilia is the most widely dis-
tributed bacterium of the Stenotrophomonas spp. in the
environment and is isolated from soil, water, plants,
animals, and humans. Moreover, the number of noso-
comial infections caused by this opportunistic pathogen
is increasing (4). Therefore, various studies of Steno-
trophomonas in both animals and humans focus on the
emergence, infections, treatment, and antimicrobial re-
sistance of S. maltophilia as an opportunistic pathogen
(4, 5). The main purpose of this article is to describe the
antimicrobial resistance of S. maltophilia isolated from
animals.

The earliest study of S. maltophilia reported its iso-
lation from sources associated with rabbits, raw milk,
and frozen fish in 1961 (6). It is the predominant bac-
terial species in swine and chicken feces (7), as well as
in composted swine manure (8). S. maltophilia isolates
have been found to coexist with influenza virus in the
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TABLE 1 Characterization of Stenotrophomonas species

Species

Year of first
identification/
designation Host when first identified Characterization

Countries/
continents Ref.

S. maltophilia 1943 Human S. maltophilia, a new bacterial genus for X. maltophilia, is first identified
from a specimen of pleural fluid

England/Europe 99

S. africana 1997 Human Opportunistic pathogen from cerebrospinal fluid Rwanda/Africa 3

S. nitritireducens 2000 Ammonia-supplied biofilters It reduced nitrite, but not nitrate, without production of nitrogen Germany/Europe 100

S. sp. D-1 2002 Animal (deer fur) A keratin-degrading bacterium isolated from soil containing deer fur;
16S rDNA revealed it has only 90.6% homology with S. nitritireducens

Japan/Asia 101

S. acidaminiphila 2002 Upflow anaerobic sludge blanket
(UASB) reactor

A strictly aerobic, mesophilic bacterium isolated fromUASB reactor treating
a petrochemical wastewater

Burkina Faso/Africa 102

S. rhizophila 2002 Environment (plant) Plant-associated bacterium with antifungal properties Germany/Europe 103

S. dokdonensis 2006 Environment (soil) The levels of 16S rDNA sequence similarity between S. dokdonensis and the
type strains of Stenotrophomonas species ranged from 95.5 to 97.5%

Korea/Asia 104

S. koreensis 2006 Environment (animal compost) A Gram-negative, rod-shaped, non-spore-forming bacterium was isolated
from compost near Daejeon city

Korea/Asia 105

S. humi 2007 Environment (soil) The nitrate-reducing bacterium was isolated from soil Belgium/Europe 106

S. terrae 2007 Environment (soil) The nitrate-reducing bacterium was isolated from soil Belgium/Europe 106

S. chelatiphaga 2009 Environment (sewage) An EDTA-utilizing gammaproteobacterial strain was isolated from
municipal sewage sludge

Russia/Europe 107

S. ginsengisoli 2010 Environment (soil) A Gram-negative, non-spore-forming, rod-shaped bacterium was
isolated from soil from a ginseng field

Korea/Asia 108

S. daejeonensis 2011 Environment (sewage) Comparative 16S rDNA analysis showed it was related most closely to
S. acidaminiphila (97.9% similarity)

Korea/Asia 109

S. pavanii 2011 Environment (plant) A Gram-negative, rod-shaped, non-spore-forming, and nitrogen-fixing
bacterium was isolated from stems of a Brazilian sugar cane variety

Brazil/South America 110

S. tumulicola 2015 Environment (spot and gels) A major contaminant of the stone chamber interior in blackish moldy spots
and viscous gels (biofilms) collected from both tumuli

Japan/Asia 111

S. sp. DDT-1 2016 Environment (contaminated soil) A novel bacterium capable of utilizing 1,1,1-trichloro-2,2-bis
(p-chlorophenyl)ethane (DDT) as the sole carbon and energy source.

China/Asia 112
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oral, nasal, and tracheal tissues of pigs and horses (9,
10). S. maltophilia is a predominant bacterial species in
raw milk, milk processing plants, and milk products
such as cheese (11–13) and is likely a constituent of the
normal microflora of the mouth and cloacae of squirrels
and captive healthy snakes (14, 15). In aquaculture,
Stenotrophomonas spp. are predominant members of
bacterial communities found in the internal organs of
cultured snow crabs (Chionoecetes) (16) and are com-
monly isolated from cultured yellowtail (17), shrimp
(18), and samples taken from salmon farms (19, 20).

Although Stenotrophomonas spp. are less frequently
considered as primary pathogens, S. maltophilia is the
major cause of the bacteriospermia in porcine or bovine
semen in the United States and United Kingdom (21–23),
as well as the infection of Xenopus laevis oocytes (24).
It was also found to be associated with an outbreak of
lymphadenitis in Omani goats (25) and causes fleece rot
in sheep (26). Closely related S. maltophilia strains were
isolated from an outbreak of bovine mastitis (27), which
may be explained by the higher adhesion of these iso-
lates to bovine mammary gland epithelial cells (28).
S. maltophilia was identified as a cause of pyogranulo-
matous hepatitis in a female buffalo (Bubalus bubalis)
in a herd in Serres, Greece (29), as well as the cause
of necrosis and friability of the nictitating membrane
of the giant panda (Ailuropoda melanoleuca) (30). It is
also associated with chronic respiratory disease among
horses, dogs, and cats (31, 32), as well as septicemia
in pigs and crocodiles (33, 34). Moreover, the DNA of
S. maltophilia is identified most frequently in the knee
joints of dogs with inflammatory arthritis (35).

ANTIMICROBIAL SUSCEPTIBILITY
The susceptibility testing methods for S. maltophilia in-
clude disk diffusion, agar/broth dilution, commercially
available microdilution strips, and microtiter panels
(Table 2). Although the Clinical Laboratory Standards
Institute (CLSI) has not defined breakpoints for S. mal-
tophilia isolated from animals, the breakpoints for
human isolates of S. maltophilia for sulfamethoxazole/
trimethoprim (SXT), minocycline, levofloxacin, ticarcillin-
clavulanic acid, ceftazidime, and chloramphenicol have
been commonly adopted (36). The breakpoints for
Enterobacteriaceae and Pseudomonas spp. are also fre-
quently employed to interpret the susceptibility data
for S. maltophilia (29, 32). Other breakpoints, such as
those specified by the National Reference Laboratory for
Antibiotics (National Institute of Public Health, Prague,
Czech Republic) and the Antibiogram Committee of

the French Microbiology Society, have also been used
(13, 15).

Available data are limited for the antimicrobial sus-
ceptibility of S. maltophilia, because it is not considered
as a major pathogen in animals. However, S. maltophilia
isolates from animals are resistant to numerous anti-
microbials that are commonly used in human and
veterinary medicine, including β-lactams (penicillins and
cephalosporins), aminoglycosides, macrolides, and tet-
racyclines (except minocyline) (Table 2). In contrast,
they are often susceptible to fluoroquinolones, poly-
myxins (mainly including polymyxin B and polymyxin
E [colistin]), and SXT. The antibiotic resistance of
S. maltophilia varies among different animal species.
For example, one isolate from swine in China showed
high resistance to most antimicrobials, including fluo-
roquinolones, polymyxins, and SXT (33), whereas iso-
lates from Omani goats were susceptible to all tested
antimicrobials except β-lactams (25). Despite its intrinsic
resistance to β-lactams, the resistance rates of S. malto-
philia isolates from captive snakes to these antimicro-
bials range from 36.2 to 95.7% (15, 37). Moreover,
antimicrobial resistance varies with the incubation
temperature and time. For instance, the MICs at 37°C
and 30°C (after 24 h or 48 h) of 24 antibiotics were
determined (microdilution method) for S. maltophilia
isolates from captive snakes, but resistance rates in-
creased when the strains were incubated at 30°C or for
48 h (37). However, SXT and levofloxacin were the most
effective drugs at both temperatures. In addition, the
S. maltophilia isolates from animal products also exhibit
a multidrug-resistant (MDR) phenotype. For example,
S. maltophilia was the most frequently isolated species
among a large collection of Gram-negative bacteria iso-
lated from milk and cheese in France. These S. malto-
philia isolates showed high resistance rates to β-lactams,
chloramphenicol, and tetracycline (13), representing a
potential risk to food safety and public health.

MOLECULAR MECHANISMS OF
ANTIMICROBIAL RESISTANCE
S. maltophilia employs an array of mechanisms that
singularly or collectively, intrinsic or acquired contribute
to antimicrobial resistance (Table 3). The following
subsections provide detailed descriptions of the major
mechanisms.

Multidrug Efflux Pumps
The genome of S. maltophilia encodes multidrug
efflux pumps, which contribute to intrinsic or acquired
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TABLE 2 Antimicrobial resistance of S. maltophilia isolated from animals and animal products

Origin
Year of
identification Country

Strain
no.

Standards and methods
of susceptibility testinga

β-Lactams (penicillins,
cephalosporins,
carbapenems) Macrolides

Swine semen 2000 USA 6 NCCLS M31-A, 1999; disk diffusion AMP (100) ERY (100) and
TIL (100)

Omani goats 2003 Oman 15 NCCLS M2-A4, 1992; disk diffusion PEN, AMP, AMC, and TIC (100)
CAZ, CTX, and CEP (100)

ERY (0)

Salmon farm 2003 Chile 1 NCCLS M7-A5, 1998; agar dilution

Yellowtail (Seriola
quinqueradiata)

2005 Japan 6 Sensi-Disks (Showa, Tokyo, Japan);
disk diffusion

AMP (100)CTX and CAZ (100)

13-lined ground
squirrel

2007 USA 1 Clinical Microbiology Procedures
Handbook; broth microdilution

AMP and AMX (R)

Captive snakesc 2007 Czech
Republic

47 NCCLS M2-A8, 2003; breakpoints
from National Reference
Laboratory for Antibiotics (National
Institute of Public Health, Prague,
Czech Republic); broth
microdilution

AMP (87.2), ATM (89.4), CAZ
(68.1), CFP (63.8), CFZ (95.7),
CPS (51.1), CTX (85.1), CXM
(95.7), FEP (80.9), FOX (95.7),
MEM (74.5), PIP (48.3), SAM
(68.1), TZP (36.2)

Horse, cat, dog,
and python

2009 Germany 7 Automated susceptibility test strips
ATB PSE 5 and ATB VET strips
(BioMérieux); microdilution

TIC, PIP, IPM, and CAZ (100)

Giant panda 2010 USA 1 Unknown AMC, AMP, CAZ, CTX, CEF,
and CEP (R)

AZI (R)

Captive snakes 2010 Czech
Republic

45 CLSI M100-S19, 2009;
broth microdilution

CAZ (44.4)

Buffalo (Bubalus
bubalis)

2010 Greece 1 CLSI M100-S15, 2005; breakpoints
of Pseudomonas spp. used;
broth microdilution

TIC and PIP (R)CAZ and
IPM (R)

Horse 2010 Denmark 7 CLSI M100-S13, 2003;
broth microdilution

PEN, AMP, and AMC (100)CF,
CPD, and IPM (100)

ERY (100)

Oocytes of
Xenopus laevis

2011 USA 5 Unknown; disk diffusion AMX, AMC, and TIC (100), CZ,
CF, CTX, CPD, CEF, CXM,
and CN (100) CRO (80),
CAZ and IPM (0)

Milk and Cheese 2012 France 3 Antibiogram Committee of the
French Microbiology Society
(CA-SFM), 2008/2009;
disk diffusion

AM, PIP, AMX, AMC, TIM, CTX,
and CAZ (100)IPM (66.7)

Pig 2012 China 7 Unknown; disk diffusion AMP, AMX, and novobiocin
(100) CTX and CAZ (100)

Bovine mastitis 2012 Japan 13 CLSI M31-A3 (2008) and M100-S21
(2011); commercially prepared
microtiter panel (Opt Panel MP)
and disk diffusion

MOX (0), CAZ (92.3)

Pig 2015 China 1 CLSI VET01-A4 (2013) and
M100-S24 (2014);
broth microdilution

AMP, AMC, CEF, CAZ,
and MEM (R)

ERY and AZI (R)

aFor more than one strain, the resistance rate was calculated, and the susceptibility results were interpreted as resistant/intermediate/susceptible (R/I/S) for single strains.
CLSI breakpoints were only available for S. maltophilia from humans for SXT, MIN, LEV, TIM, CAZ, SXT, and CHL determined using disk diffusion or dilution methods.
For other antimicrobials, the breakpoints for Enterobacteriaceae or Pseudomonas spp. were used to interpret the susceptibility results for S. maltophilia.

bPEN, penicillin G; AMP, ampicillin; AMX, amoxicillin; PIP, piperacillin; TIC, ticarcillin; TIM, ticarcillin/clavulanic acid; AMC, amoxycillin/clavulanic acid;
SAM, ampicillin/sulbactam; TZP, piperacillin/tazobactam; CAZ, ceftazidime; CTX, cefotaxime; CEF, ceftiofur; CEP, cephalothin; CFZ, cefazolin; CFP, cefoperazone;
CN, cephalexin; CRO, ceftriaxone; CPS, cefoperazone/sulbactam; CF, cephalothin; CXM, cefuroxime; FEP, cefepime; FOX, cefoxitin; CPD, cefpodoxime; CZ, cefazolin;
MOX, moxalactam; IPM, imipenem; MEM, meropenem; ERY, erythromycin; TIL, tilmicosin; AZI, azithromycin; CHL, chloramphenicol; FFC, florfenicol; GEN, gentamicin;
KAN, kanamycin; AMK, amikacin; SPT, spectinomycin; STR, streptomycin; NEO, neomycin; TOB, tobramycin; TET, tetracycline; DOX, doxycycline; OTC, oxytetracycline;
MIN, minocycline; CIP, ciprofloxacin; LVX, levofloxacin; OFX, ofloxacin; ENO, enrofloxacin; MAR, marbofloxacin; DIF, difloxacin; OFX, ofloxacin; OBX, orbifloxacin;
CL, colistin; CLI, clindamycin; VAN, vancomycin; S3, sulfonamides; SMX, sulfamethoxazole; TMP, trimethoprim; SXT, trimethoprim-sulfamethoxazole.

cResistance rates varied with incubation temperature (30°C or 37°C) and time (24 h or 48 h). Susceptibility data presented here were determined when isolates were
incubated at 37°C for 24 h.
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Antimicrobial agents used for susceptibility testing (resistance rates, %)b

Ref.Phenicols Aminoglycosides Tetracyclines Fluoroquinolones Polymyxins
Lincosamides/
glycopeptides Sulfonamides

GEN and SPT (100) OTC (100) CL (0) Triple sulfa (100) 21

CHL (0) KAN, GEN, and AMK (0) TET (0) ENO (0) SXT (0) 25

OTC (R), DOX (R),
MIN (S)

19

17

CHL (R) GEN and SPT (R) TET (R) 14, 113

CHL (61.7) AMK (31.9), GEN (25.5),
TOB (57.4)

TET (89.4) LVX (0), OFX (2.1),
CIP (42.6)

CL (21.3) SXT (2.1) 15

CHL (28.6) AMK (42.9), GEN (71.4),
TOB (57.1)

TET (100) CIP and ENO (0) CL (0) SXT (14.3) 31

CHL (S) GEN, NEO, and TOB (R) DOX (S)
OTC and TET (R)

CIP and ENO (S) CL (R) CLI and VAN (R) SXT (I) 30

CHL (28.9) LVX (0) SMX (2.2) 37

CHL (S) AMK, GEN, and TOB (R) TET (R) CIP and ENO (S) CL (S) SXT (S) (29)

GEN and AMK (100) TET (0) MAR and ENO (0) SXT (0) 32

CHL (100) GEN and TOB (100)
AMK (0)

TET (100) CIP (0)DIF, ENO, OFX,
and OBX (100)
MAR (80)

24

CHL (100) TET (100) 13

GEN and STR (100) S3 and TMP (100) 10

CHL (7.7) CIP (7.7)ENO (0) SXT (15.4) 27

CHL and
FFC (R)

GEN, STR, and SPT (R) TET and DOX (R) ENO (R), LVX (I), CIP (R) CL (R) SMX and SXT (R) 33
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TABLE 3 Molecular mechanisms of antimicrobial resistance of S. maltophiliaa

Resistance mechanisms
and related genes Products Antibiotic resistance phenotype

Intrinsic/
acquired
resistance

Gene
location Ref.

Multidrug efflux pumps
smrA ABC-type efflux pump Fluoroquinolones, tetracycline, doxorubicin NK/yes C 38
fuaABC ABC-type efflux pump Fusaric acid Yes/no C 41
macABCsm ABC-type efflux pump Macrolides, aminoglycosides, polymyxins Yes/NK C 39
emrCABsm MFS-type efflux pump Nalidixic acid, erythromycin No/yes C 40
mfsA MFS-type efflux pump Aminoglycosides, cephalosporins, fluorpquinolones,

erythromycin, rifampicin, tetracycline, chloramphenicol
Yes/NK C 50

smeABC RND-type efflux pump β-lactams, aminoglycosides and quinolones No/yes C 42
smeDEF RND-type efflux pump Quinolones, tetracyclines, macrolides, chloramphenicol,

novobiocin, SXT
Yes/yes C 43, 53

smeVWX RND-type efflux pump Chloramphenicol, quinolones, tetracyclines No/yes C 44
smeIJK RND-type efflux pump Aminoglycosides, tetracyclines, fluorpquinolones, leucomycin Yes/yes C 46, 55
smeYZ RND-type efflux pump Aminoglycosides, SXT Yes/yes C 45, 46,

54
smeOP-TolCSm RND-type efflux pump Nalidixic acid, doxycycline, aminoglycosides, macrolides Yes/no C 47

β-lactamases
blaL1 Metallo-β-lactamase β-Lactams except monobactams Yes/yes C or P 56, 97
blaL2 Cephalosporinase Penicillins and cephalosporins Yes/yes C 57, 97
blaTEM-2, blaTEM-116, blaTEM-127,
blaCTX-M-1, blaSHV-1 and blaCTX-M-15

β-lactamase Penicillins and/or cephalosporins No/yes P 62–65

blaNDM-1 Metallo-β-lactamase β-Lactams except monobactams No/yes C 66

Aminoglycoside-inactivating enzymes
aac(6′)-Iz Aminoglycoside acetyltransferase Amikacin, netilmicin, sisomicin, tobramycin Yes/no C 67
aph(3′)-IIc Aminoglycoside phosphotransferase Kanamycin, neomycin, butirosin, paromomycin Yes/no C 68
aac(6′)-Iak Aminoglycoside acetyltransferase Amikacin, arbekacin, dibekacin, isepamicin, kanamycin,

neomycin, netilmicin, sisomicin, tobramycin
Yes/no C 69

aac(6′)-Iam Aminoglycoside acetyltransferase NK NK C 45

Qnr family
Smqnr Pentapeptide repeat proteins Low-level quinolone resistance Yes/no C 76–78

SXT resistance
sul1 and sul2 Folate reductase enzyme Trimethoprim/sulfamethoxazole No/yes C or P 82–84
dfrA1, dfrA5, dfrA12, dfrA17,
and dfrA27

Dihydrofolate reductase enzyme Trimethoprim/sulfamethoxazole No/yes C or P 85

Phenicol exporters
floR MFS exporter protein Chloramphenicol, florfenicol No/yes P 83
floRv MFS exporter protein Chloramphenicol, florfenicol No/yes GI in C 33
cmlA MFS exporter protein Chloramphenicol No/yes I-integron 90

Lipopolysaccharide
spgM Phosphoglucomutase Polymyxin B/E, nalidixic acid, gentamicin Yes/NK C 92
phoPQ Two-component regulatory system Polymyxin B, chloramphenicol, ampicillin, aminoglycosides Yes/yes C 96

aNK, not known.
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antibiotic resistance, as follows: ATP-binding cassette
(ABC)-type (SmrA, FuaABC, and MacABCsm), major
facilitator superfamily (MFS)-type (EmrCABsm, MsfA),
and eight predicted resistance nodulation cell divi-
sion (RND)-type efflux systems with SmeABC, SmeDEF,
SmeVWX, SmeIJK, SmeYZ, and SmeOP-TolCSm char-
acterized (38–47) and SmeMN and SmeGH uncharac-
terized (45). Most of the efflux pumps are superficially
quiescent or expressed at low levels (39, 42, 44), and
their overexpression is associated with reduced anti-
biotic susceptibility. Acquired resistance may be due to
mutations in regulatory genes of these efflux systems
(43, 46, 48).

SmrA, the first ABC-type efflux pump identified in
S. maltophilia, confers acquired resistance to fluoro-
quinolones, tetracycline, doxorubicin, and multiple dyes
(38). FuaABC, a fusaric acid (5-butylpicolinic acid, a
mycotoxin) efflux pump, which is classified as a mem-
ber of a subfamily of the ABC-type family, is induced
by fusaric acid and contributes to fusaric acid resistance
when overexpressed (41). The MacABCsm efflux pump
confers intrinsic resistance to aminoglycosides, mac-
rolides, and polymyxins and contributes to oxidative
and envelope stress tolerance as well as biofilm forma-
tion (39). The MFS-type pump EmrCABsm is involved
in the extrusion of hydrophobic compounds, including
the antibiotics nalidixic acid and erythromycin, as well
as the uncoupling agents carbonyl cyanide 3-chloro-
phenylhydrazone, and tetrachlorosalicylanilide (40).
A novel MFS efflux pump (MfsA) with 14 transmem-
brane domains plays an important role in mediating
resistance to paraquat (49), as well as to antibiotics
such as aminoglycosides (kanamycin, streptomycin, and
neomycin), cephalosporins (cefazolin and cefalexin),
fluoroquinolones (ciprofloxacin, norfloxacin, levoflo-
xacin, and ofloxacin), the macrolide erythromycin,
rifampicin, tetracycline, and chloramphenicol (50).

SmeABC is involved in acquired, but not intrinsic,
resistance to β-lactams, aminoglycosides, and quino-
lones. The deletion of smeC (encoding a porin) affects
susceptibility to certain antibiotics, suggesting the rela-
tionship of porin to other unidentified efflux pumps
(42). SmeDEF is involved in intrinsic and acquired (in
the condition of overexpression) resistance to quino-
lones, tetracyclines, macrolides, chloramphenicol, no-
vobiocin, and SXT, as well as acquired resistance to
triclosan (51–53). SmeVWX mediates acquired resis-
tance to chloramphenicol, quinolones, and tetracyclines
and when overexpressed, increases susceptibility to
aminoglycosides (44). SmeYZ mediates intrinsic resis-
tance to aminoglycosides and SXT (45, 54), while

SmeIJK is involved in intrinsic reduced susceptibility to
gentamicin, amikacin, tetracycline, minocycline, cipro-
floxacin, and leucomycin (45, 55). SmeIJK also mediated
acquired resistance to levofloxacin, when overexpressed
alone or in coordinate hyperproduction with SmeYZ
(46). The activity of the SmeOP-TolCSm efflux pump
is associated with the decreases in susceptibility to
nalidixic acid, doxycycline, aminoglycosides (amikacin
and gentamicin), and macrolides (erythromycin and leu-
comycin), as well as several nonantibiotic compounds
including carbonyl cyanide 3-chlorophenylhydrazone,
crystal violet, sodium dodecyl sulfate, and tetrachloro-
salicylanilide (47).

Resistance to β-Lactam Antibiotics
The S. maltophilia genome encodes the inducible β-
lactamases L1 and L2. L1 is a class B Zn2+-dependent
metallo-β-lactamase with substrate preference for peni-
cillins, cephalosporins, and carbapenems, except for
monobactams; and L2 is a class A clavulanic acid-
sensitive cephalosporinase that hydrolyzes penicillins,
cephalosporins, and monobactams (56, 57). The ex-
pression of L1 and L2 is simultaneously regulated by
AmpR, a transcriptional regulator encoded by ampR,
located upstream of blaL2, which acts as a weak repres-
sor or activator of the blaL2 in the presence or absence
of β-lactam antibiotics, respectively (58). The induction
of β-lactamases is inhibited by the deletion of the ampN-
ampG operon, which encodes a permease transporter
(59). The hyperproduction of L1/L2 β-lactamases occurs
when the transcription of mrcA or ampDI (encoding
penicillin-binding protein 1a [PBP1a] and a cytoplasmic
N-acetyl-muramyl-L-alanine amidase [AmpDI], respec-
tively) is inhibited (60, 61). In addition, the β-lactamases
TEM-2, TEM-116, TEM-127, CTX-M-1, SHV-1, and
CTX-M-15 and the globally disseminated metallo-β-
lactamase NDM-1 are present in human clinical and
environmental isolates of S. maltophilia (62–66), sug-
gesting that this pathogen may serve as a reservoir for
mobile genes that encode β-lactamases.

Resistance to Aminoglycosides
The mechanisms employed by S. maltophilia that me-
diate resistance to aminoglycosides primarily involve
aminoglycoside-modifying enzymes and multidrug ef-
flux pumps. These enzymes include the aminoglycoside
acetyltransferase AAC(6′)-Iz (67) and the aminoglyco-
side phosphotransferase APH(3′)-IIc (68), both of which
confer low-level resistance to aminoglycosides, with the
exception of gentamicin. The novel aminoglycoside
acetyltransferase AAC(6′)-Iak, which exhibits 86.3%
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amino acid identity to AAC(6′)-Iz, is expressed by
an MDR S. maltophilia strain isolated from Nepal and
acetylates amikacin, arbekacin, dibekacin, isepamicin,
kanamycin, neomycin, netilmicin, sisomicin, and tobra-
mycin, but not apramycin, gentamicin, or lividomycin
(69). Moreover, AAC(6′)-Iam [84.3% amino acid se-
quence identity to AAC(6′)-Iak], was detected in a clini-
cal isolate of S. maltophilia (45). However, the resistance
phenotype conferred by this enzyme is unknown. In
addition, the efflux pumps SmeABC, SmeYZ, SmeOP-
TolCsm, and MacABCsm are associated with amino-
glycoside resistance (Table 3).

Resistance to Quinolones
Mutations in the quinolone-resistance-determining re-
gion of genes encoding topoisomerases (gyrA, gyrB,
parC, and parE) are associated with the major mecha-
nism of quinolone resistance employed by bacteria
(70). So far, mutations have not been detected in the
quinolone-resistance-determining region of gyrA of
S. maltophilia (71, 72). Amino acid residue substitutions
are present in the quinolone-resistance-determining
region-encoding regions of gyrB, parC, and parE of
clinical isolates of S. maltophilia that cause bacteremia;
however, these alterations have not been directly asso-
ciated with quinolone resistance (73). The specific mech-
anisms associated with the quinolone resistance of
S. maltophilia are mediated by both the efflux pumps
and the chromosomal qnr gene (Smqnr) that protects
gyrase and topoisomerase IV from quinolones (74).
Smqnr and its functional 12 variants belong to the
qnr family (75) and contribute to low-level intrinsic
quinolone resistance (76–78). Genes that encode efflux
pumps that mediate quinolone resistance are as follows:
smeDEF, smeIJK, smeABC, and smeVWX (Table 3).
The most prevalent cause of quinolone resistance
in S. maltophilia is the overproduction of multidrug
efflux pumps, among which the SmeDEF plays the most
important role (79). Furthermore, overexpression of
smeVWX in clinical isolates of S. maltophilia is associ-
ated with high-level resistance to quinolones (80).

Resistance to Trimethoprim-
Sulfamethoxazole
The resistance of Gram-negative bacteria to sulfon-
amides is mainly conferred by the acquisition of either
sul1 or sul2, encoding dihydropteroate synthases (81).
The sul1 gene carried by class 1 integrons and sul2,
which is linked to insertion sequence common region
(ISCR) elements, was identified in SXT-resistant S. mal-
tophilia isolates (82–84). The resistance of S. maltophilia

to trimethoprim is mainly conferred by the dihydrofolate
reductase dfr genes. For instance, the dfrA variant genes
(dfrA1, dfrA5, dfrA12, dfrA17, and dfrA27), which are
located within class 1 integrons as part of various re-
sistance gene cassettes, are associated with high-level
trimethoprim resistance in S. maltophilia isolates. Both
types of sul and dfr genes can occur together in high-level
SXT-resistant isolates (85, 86). Moreover, the efflux
pumps SmeDEF, TolCsm, and SmeYZ are associated
with SXT resistance (54, 87, 88).

Resistance to Phenicols
The main phenicol resistance determinant in S. malto-
philia is floR, which encodes an exporter protein of
the MFS family that mediates resistance to chloram-
phenicol and florfenicol (83). Florfenicol is extensively
used in livestock to prevent or cure bacterial infec-
tions (89). In addition, the MFS exporter gene cmlA1
and chloramphenicol acetyltransferase genes catB2 and
catB8, which separately reside in a gene cassette of
class 1 integrons, confer resistance to chloramphenicol
in S. maltophilia (82, 85, 90). Reports of the prevalence
of floR in S. maltophilia are rare. One report that in-
vestigated an international collection of 55 clinical iso-
lates of S. maltophilia found that four strains harbored
floR (83). The novel variant floRv was detected in one
porcine S. maltophilia isolate in China. The floRv gene
encodes an exporter protein of 404 amino acids, which
is 84.1 to 91.8% identical to FloR sequences deposited
in GenBank. This FloR variant mediates resistance to
chloramphenicol and florfenicol (33).

Alteration of Lipopolysaccharide and
Two-Component Regulatory Systems
As in other Gram-negative bacteria, lipopolysaccharide
(LPS) is an important structural component of the outer
membrane of S. maltophilia and forms an effective
barrier to exogenous compounds (91). The spgM gene
encodes a phosphoglucomutase that is associated with
LPS biosynthesis in S. maltophilia (92). Mutants lack-
ing spgM, which produce less LPS compared with the
SpgM+ strain, synthesize shorter O-polysaccharide
chains and exhibit modest increases in susceptibility to
polymyxin B, colistin, nalidixic acid, and gentamicin but
increased resistance to vancomycin (92). The mobile
colistin resistance gene mcr-1, which encodes a phos-
phoethanolamine transferase, couples phosphoethanol-
amine to the lipid A domain of the LPS component of the
outer membrane of Gram-negative bacteria, and negates
the efficacy of polymixins (93), has not been detected in
Stenotrophomonas spp. The two-component regulatory
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system PhoPQ is involved in the resistance of numerous
Gram-negative bacteria, including S. maltophilia, to
cationic antimicrobial polypeptides, i.e., polymyxin B
(94–96). Mutation of S. maltophilia PhoP increases
susceptibility to polymyxin B, chloramphenicol, ampi-
cillin, gentamicin, kanamycin, streptomycin, and spec-
tinomycin (96). Moreover, downregulation of the SmeZ
efflux transporter expressed by a PhoP mutant con-
tributes to increased drug susceptibility, particularly to
aminoglycosides (96).

DISSEMINATION, COSELECTION, AND
PERSISTANCE OF RESISTANCE
DETERMINANTS
As described above, the reduced susceptibility of S. mal-
tophilia to most antibiotics can be attributed to intrinsic
and acquired resistance. The proteins mediating intrinsic
resistance of S. maltophilia include chromosomally
encoded multidrug efflux pumps, antibiotic-inactivating
enzymes (L1/L2 β-lactamases and aminoglycoside-
inactivating enzymes), and the chromosomally encoded

FIGURE 1 Linear representation of the complete GI and its flanking regions in S. malto-
philiaGZP-Sm1. The regions in gray represent the flanking regions of the GI when inserted
into the bacterial chromosome. The arrows indicate the directions of gene transcription,
and truncated genes are indicated by rectangles without arrowheads. Genes are depicted
in different colors, and the regions of particular relevance (≥95% nucleotide sequence
identity) are indicated by the dotted lines (33).
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Qnr pentapeptide repeat proteins (74), which are present
in most, if not all, strains of S. maltophilia, suggest-
ing they did not arise during the recent evolution of
resistance caused by antibiotic therapy. In addition,
S. maltophilia can acquire mechanisms to increase its
resistance through horizontal gene transfer via inte-
grons, transposons, plasmids, and genomic islands (GIs).
The sul1 gene is always associated with the class 1
integron in S. maltophilia, indicating the role of the latter
in the acquisition and dissemination of sul1 within this
species (82–86, 90). The qacEΔ1 gene, which encodes
resistance to quaternary amines, coexists with sul1 at
the 3′-termini of class 1 integrons (83, 85, 90). The gene
cassettes, which comprise the variable regions of inte-
grons, integrate different combinations of drug-resistance
genes donated by other Gram-negative bacteria, includ-
ing those encoding resistance to aminoglycosides [aacA4,
aacA7, aadA1, aadA2, aadA4, aadA5, aadB, aac(6′)-II,
aac(6′)-Ib, aac(3′)-Ia, and ant(3″)-Ia], trimethoprim
(dfrA1, dfrA5, dfrA12, dfrA17 and dfrA27), β-lactams
(blaCARB-8), rifampicin (arr-3), and chloramphenicol
(catB2, catB8, cmlA1) (82, 85, 90).

ISCR elements are frequently associated with anti-
microbial resistance genes and are always linked to
sul2 in S. maltophilia. For example, seven sul2-positive
S. maltophilia isolates harbor ISCR elements (five ISCR2
and two ISCR3 elements) on a plasmid (83). Moreover,
sul2 and floR are linked to ISCR2 in all sul2-positive
S. maltophilia isolates. Constitutively expressed blaTEM-2

resides within a novel Tn1/Tn3-type transposon in
the genome of S. maltophilia isolate J675Ia (65). The
transposon could mobilize blaTEM-2 onto the broad host-
range conjugative plasmid R388, which is then trans-
ferred to E. coli.

The genes encoding β-lactamases L1 and L2 are in-
variably chromosomal and reside on an approximately
200-kb plasmid present in 10 clinical isolates of S. mal-
tophilia (97). However, the sequences of the L1 and L2
genes diverge from that of the published strain IID 1275,
indicating that the presence of β-lactamase genes on a
plasmid may lead to their relatively quick evolution (97).

A literature search identified only a single report of an
MDRGI in the S. maltophilia isolate GZP-Sm1 in China
(33). GZP-Sm1was isolated from swine with septicemia,
and susceptibility testing revealed that the isolate was
resistant to most antimicrobials employed in human
and veterinary clinical practice (33). Whole-genome se-
quencing identified a GI of 40,226 bp, which contains
an MDR region (19,364 bp) and is flanked by IS26 in
opposite orientations (Fig. 1). Furthermore, six resis-
tance genes exist in this region, including floRv (phenicol

resistance), tet(A)-tetR (tetracycline resistance), strA/
strB (streptomycin resistance), sul1 (sulfonamide resis-
tance), and aadA2 (streptomycin/spectinomycin resis-
tance). The MDR region comprises several segments
with sequence similarity to plasmids or chromosomal
sequences of other Gram-negative bacteria. For exam-
ple, the aadA2 cassette and the 3′-CS region (qacEΔ1-
sul1-Δorf5), which form part of an integron structure
identified in this GI, occur in diverse bacterial species
such as Salmonella spp., Pseudomonas spp., and E. coli.
The 4,766-bp segment of Δsul-floRv-lysR-traG is 86.3%
identical to the corresponding region of plasmid pAB
(accession no. HQ917128) detected in a clinical isolate
of Acinetobacter baumannii from Chile. The composite
transposon comprising IS26-tet(A)-tetR-IS26 flanked
by a direct repeat of GC is 95.1% identical to the cor-
responding region of the plasmid pB12 from uncul-
tivable bacteria (accession no. JX469826). Inverse PCR
showed that the GI could be excised from the chro-
mosome by recombination between the direct repeats
to generate a circular extrachromosomal form (Fig. 1).
The emerging resistance of S. maltophilia to numerous
antimicrobials raises the concern that the presence of
resistance genes in the novel MDR GI drastically limit
therapeutic options and may enhance their coselection
when antimicrobials are administered.

S. maltophilia could acquire antibiotic resistance from
Gram-positive bacteria. For example, a gene cluster in-
volved in resistance to antibiotics and heavy metals was
detected in a clinical isolate of S. maltophilia (98). These
genes encode a macrolide phosphotransferase (mphBM)
and a cadmium efflux determinant (cadA), as well as its
transcriptional regulator (cadC), encoding its cognate
transcriptional regulator. The cadC-cadA region is
flanked by a truncated IS257 sequence and a region
coding for a bin3 invertase. The sequences of these ge-
netic elements are highly similar to those of Staphylo-
coccus aureus, indicating their Gram-positive origin.

CONCLUSION
S. maltophilia is the most widely distributed environ-
mental species among Stenotrophomonas, and it is
also an opportunistic pathogen associated with the in-
creased number of infections in both humans and
animals. S. maltophilia isolates from animals are resis-
tant to most antimicrobials used in both human and
veterinary medicine, which compromise the design of
optimal therapeutic strategies in clinical chemotherapy.
The antimicrobial resistances in S. maltophilia are con-
ferred not only by intrinsic mechanisms, but also by
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multiple acquired resistance mechanisms, which are
commonly associated with mobile genetic elements such
as integrons, transposons, and plasmids. Moreover,
for the first time, the transmission mechanism conferred
by MDRGI was identified in a porcine S. maltophilia
isolate. Therefore, continued surveillance of MDR
S. maltophilia from animals is warranted for not only
optimizing treatment of infections caused by this bacte-
rium, but also tackling the transmission of antimicrobial
resistance from animals to humans by either food-chain
or environmental routes.
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