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ABSTRACT Conjugative plasmids are the main carriers of
transmissible antibiotic resistance (AbR) genes. For that reason,
strategies to control plasmid transmission have been proposed
as potential solutions to prevent AbR dissemination.
Natural mechanisms that bacteria employ as defense barriers
against invading genomes, such as restriction-modification or
CRISPR-Cas systems, could be exploited to control conjugation.
Besides, conjugative plasmids themselves display mechanisms
to minimize their associated burden or to compete with related
or unrelated plasmids. Thus, FinOP systems, composed of FinO
repressor protein and FinP antisense RNA, aid plasmids to
regulate their own transfer; exclusion systems avoid conjugative
transfer of related plasmids to the same recipient bacteria;
and fertility inhibition systems block transmission of unrelated
plasmids from the same donor cell. Artificial strategies have also
been designed to control bacterial conjugation. For instance,
intrabodies against R388 relaxase expressed in recipient cells
inhibit plasmid R388 conjugative transfer; pIII protein of
bacteriophage M13 inhibits plasmid F transmission by
obstructing conjugative pili; and unsaturated fatty acids
prevent transfer of clinically relevant plasmids in different
hosts, promoting plasmid extinction in bacterial populations.
Overall, a number of exogenous and endogenous factors have
an effect on the sophisticated process of bacterial conjugation.
This review puts them together in an effort to offer a wide
picture and inform research to control plasmid transmission,
focusing on Gram-negative bacteria.

INTRODUCTION
Antibiotics have saved the lives of countless people suf-
fering from bacterial infections since Alexander Fleming
discovered penicillin in 1928 (1). Nevertheless, this suc-
cess was accompanied by the emergence of antibiotic

resistance (AbR). It is thought that AbR arose originally
as a self-protection mechanism of producer organisms
(2). AbR genes rapidly disseminated through the bio-
sphere as a result of the selection pressure established by
human application of antibiotics (3). Resistance mecha-
nisms capable of rendering newly discovered drugs inef-
fective emerged with astonishing speed, rapidly reaching
human pathogens and increasingly invalidating newer
antimicrobial therapies (4). Altogether, >20,000 potential
resistance genes of nearly 400 types have been predicted
from bacterial genome sequences (5). The danger created
by the ever-increasing number of pathogens resistant
to conventional antibiotics is further increased by a sig-
nificant drop in the development of new antimicrobial
compounds (6). This situation demands solutions to
prevent the hundreds of thousands of people dying each
year as a result of AbR from becoming millions (7). Pro-
posed strategies include more-accurate prescription pol-
icies and a controlled use and release of antibiotics in
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animal husbandry and agriculture, restrictions difficult to
implement on a global scale (3).

Alternatives to conventional antibiotics are emerging
to treat this global crisis. For example, inhibitors of
bacterial virulence are promising alternatives with an
advantage over antibiosis in that selection for resistance
might not occur because pathogen growth would not
be impaired (8). Additional lines of attack under devel-
opment are vaccines (9), phage therapy (10), predatory
bacteria (11), and antiplasmid strategies (12–14), among
others. In this context, this review focuses on natural and
artificial strategies that could be employed in Gram-
negative bacteria to control the transmission of conju-
gative plasmids, the main propagation devices involved
in AbR dissemination.

HORIZONTAL GENE TRANSFER
AbR genes are transferred either vertically when bac-
teria divide or laterally from one bacterium to another
through horizontal gene transfer (HGT), an important
source of bacterial variability (15). HGT is mediated by
mobile genetic elements (MGEs), that is, DNA devices
for the intra- or intercellular movement of DNA (16).
Intracellular mobility is produced by transposons, DNA
fragments with the ability to move from one genome
location to another, including different replicons of the
same cell. Intercellular mobility occurs by one of three
main processes: transformation, conjugation, or trans-
duction. Transformation involves extracellular DNA
uptake, integration, and functional expression. Bacteria
must be in a physiological state of competence to acquire
exogenous DNA, which could be natural or artificially
induced. Most naturally transformable bacteria de-
velop competence in response to specific environmental
conditions, such as altered growth conditions, nutrient
access, cell density, or starvation (13). Conjugation re-
quires genetic elements encoding the apparatus needed
for their transfer from a donor to a recipient cell through
direct contact (16). Transduction is mediated by bac-
teriophages when they accidentally pack segments of
host DNA and inject them into a new host. Transduction
may be generalized or specialized, depending on whether
any gene may be transferred or only those located near
the site of prophage integration (17).

BACTERIAL CONJUGATION
Conjugation is arguably the most common mechanism
of HGT (18), and that with the broadest host range (19).
Encoded either in autonomously replicating conjugative

plasmids or in integrative and conjugative elements
(ICEs) inserted in the bacterial chromosome, conjuga-
tion systems allow the transfer of large DNA fragments
containing diverse adaptive traits (20). Indeed, they are
major vehicles for the spread of AbR genes (21, 22).

Either double-stranded DNA (dsDNA) or single-
stranded DNA (ssDNA) molecules can be transported
from donor to recipient cells. dsDNA conjugation was
described in Actinobacteria. The translocation mecha-
nism involves a single protein, a plasmid-encoded septal
DNA translocase similar to the segregation ATPase
FtsK, unlike the complex machinery needed for “classic”
ssDNA conjugation (23). Conjugative systems involved
in ssDNA conjugation carry two sets of genetic compo-
nents: mobility (MOB) for conjugative DNA process-
ing, and mating-pair formation (MPF) for DNA delivery
through the membranes of donor and recipient bacte-
ria. The MOB component includes an origin of transfer
(oriT), a short DNA sequence required in cis for plas-
mid transfer (24); a relaxase to initiate conjugation;
and a type IV coupling protein (T4CP) to interconnect
DNA processing with DNA transport. MPF genes code
for a complex of proteins that build the type IV secretion
system (T4SS).

Plasmids can be classified into three mobility catego-
ries: conjugative, mobilizable, and nonmobilizable. A
conjugative plasmid contains the two sets of components
necessary for its own transfer, whereas a mobilizable
plasmid lacks MPF genes and uses the T4SS of a cores-
ident self-transmissible element, thus escaping from pilus
synthesis burden (20). In general, conjugative plas-
mids are large (>30 kb) and of low copy number, while
mobilizable plasmids are small (<15 kb) and have rela-
tively higher copy number. Plasmids unable to transfer
by conjugation or mobilization are called nonmobiliz-
able (20). Nevertheless, nonmobilizable plasmids may
be transferred by physical association with a transmis-
sible plasmid (the process is called cointegration, if the
resulting plasmid maintains the physical association, or
conduction, if the two plasmids resolve in recipient cells)
(25).

Conjugative Transfer, the Process
The initial requirement for bacterial conjugation is
the expression of MPF genes in donor cells. Four MPF
classes are found in conjugative systems from Proteo-
bacteria: MPFT (whose prototype is T-DNA transfer
system of Agrobacterium tumefaciens pTi plasmid),
MPFF (exemplified by conjugative plasmid F), MPFI (ex-
emplified by IncI plasmid R64), and MPFG (related to a
broad family of ICEs whose prototype is ICEHin1056 of
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Haemophilus influenzae) (20). The MPFT class encodes
the simplest T4SS, consisting of 11 proteins called VirB1
to VirB11 from A. tumefaciens T4SS (26). The T4SS
complex can be divided in four parts: the pilus, the core
channel complex, the inner membrane platform, and the
cytoplasmic ATPases that supply the energy for pilus
biogenesis and substrate transport (27). The conjugative
pilus is the appendage that extends from the donor
cell to reach the recipient cells within its proximity and
subsequently retracts it to facilitate cell-to-cell contact
(28). Retraction has not been demonstrated for all types
of pili (29). Pilus morphology determines the ability of
plasmids to transfer in liquid media or on solid surfaces

(such as biofilms). Plasmids that determine rigid pili (Inc
groups M, N, P, and W) or thick flexible pili (Inc groups
C, D, F, H, J, T, V, and X) transfer better on solid media,
while plasmids encoding thin flexible pili (Inc groups I,
B, and K) transfer equally well in both situations (30,
31). This feature, added to plasmid host range (32), and
the contribution of pili to establishing bacterial biofilms
(33), are important determinants for plasmid dissemi-
nation in the environment (22). Once donor-recipient
contact is established, the next step in conjugation is
DNA processing (Fig. 1), driven by the MOB proteins.
Based on MOB sequences and DNA-processing mecha-
nism, transmissible plasmids are classified into six MOB

FIGURE 1 DNA processing during bacterial conjugation. (1) The relaxase (R) cleaves
plasmid DNA at the nic site and forms a covalent intermediate with the 5′ end of the oriT.
(2) The T4SS protein machinery recruits the relaxosome through interaction with the
T4CP, while the donor DNA is replicated using the uncleaved DNA strand as a template.
(3) The relaxase releases the T-strand by a second cleavage reaction at the nic site and
acts as pilot protein for the ssDNA to be transferred through the T4SS, helped by the T4CP
pumping activity. (4) In the recipient cell, the relaxase carries out the reverse nicking
reaction to recircularize the T-strand. (5) The transferred ssDNA is replicated to generate a
complete copy of the original plasmid.
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families: MOBF, MOBH, MOBQ, MOBC, MOBP, and
MOBV (34). The key protein for DNA transfer initiation,
present in all transmissible plasmids, is the relaxase.
Together with specific auxiliary factors, the relaxase
assembles a nucleoprotein complex on the oriT called the
relaxosome. The relaxase is directed to the nic site within
the oriT by auxiliary factors, such as TrwA and the
chromosomally encoded integration host factor (IHF) in
the case of plasmid R388 (35), where the relaxase cleaves
the phosphodiester bond of the DNA strand to be
transferred (T-strand) (36). The transesterification reac-
tion results in a covalent link between relaxase and
ssDNA (37), followed by DNA replication from the 3′
end of the cleaved strand, using the complementary cir-
cular strand as a template. A helicase domain, usually
present at the C terminus of the relaxase domain (34),
unwinds DNA to displace the T-strand (38). Then, the
relaxase produces a second cleavage at the nic site to
release the T-strand from the newly formed strand (39).

After the nicking reaction, the T4CP recruits the
relaxosome to the T4SS (40) in order to start the DNA
transfer process. Then, the nucleoprotein complex is
delivered to the inner membrane platform at the base of
the T4SS to cross the channel that connects donor with
recipient cells (29). According to the shoot-and-pump
model (40), once the relaxase is shot through the channel
acting as a pilot protein for the T-strand, T4CP pumps
remaining ssDNA using the energy derived from ATP
hydrolysis. When a complete copy of plasmid ssDNA
reaches the recipient cell, the relaxase recognizes the
nic site as a termination site and carries out the reverse
nicking reaction, resolving the covalent intermediate
relaxase-DNA and resulting in recircularization of the
T-strand in the recipient cell (41, 42). Finally, a second
strand is synthesized by rolling-circle replication to
generate a copy of the original conjugative plasmid in
the recipient cell, thus turning it into a new donor.

NATURAL STRATEGIES THAT
CONTROL CONJUGATION
Several strategies, called eco-evo (based on an ecological
and evolutionary perspective), have been explored with
the aim of restoring antibiotic susceptibility in the en-
vironment (14). Since conjugation is a key mechanism
involved in AbR dissemination (18, 22), this review
focuses on both natural and artificial strategies to con-
trol this process (Fig. 2). Natural strategies can be de-
fined as mechanisms that bacteria already employ in
the environment to prevent conjugation (for instance,
exclusion systems), while artificial strategies are human-

based strategies not used by nature for this purpose (for
example, antibodies targeting conjugative relaxases).
It is worth noting that environmental factors like tem-
perature, pH, chemical and physical composition, redox
status, or moisture, as well as anthropogenic factors
(e.g., organic or inorganic pollutants), significantly in-
fluence conjugation rates (43–45). Besides, the type
of environment (human and animal microbiota, rhizo-
sphere, manure, soil, wastewater treatment plants,
aquatic environments that receive waste streams, etc.)
is also an essential factor determining conjugation dy-
namics (17, 46). However, these factors are out of
this review’s scope due to the variability of effects in
different conjugative systems and the difficulty of de-
signing a strategy to control conjugation based on en-
vironmental factors. The genetic determinants that are
the basis of natural strategies can be located in the host
chromosome (host strategies) or in the plasmid genome
(plasmid strategies). Among host strategies, restriction-
modification (RM) and CRISPR-Cas systems are the
most common mechanisms to prevent stable acquisition
of foreign DNA in bacteria. Conjugative plasmids dis-
play mechanisms that regulate their own transfer, block
the entry of related plasmids into the same cell, or inhibit
conjugative transfer of plasmids present in the same
donor bacteria. Regulatory networks for bacterial con-
jugation comprise a set of complex responses to maxi-
mize DNA transport and minimize the burden to cells
carrying the conjugative machinery (47). However,
plasmid regulatory factors are diverse between differ-
ent groups of conjugative systems. To give an example,
the regulatory proteins encoded by prototype plasmids
F, RP4, and R388 bear no homology relationship what-
soever. Another example of this diversity could be the
specific antagonistic signaling of the pair cCF10/iCF10
pheromone-inhibitor peptides in the regulation of the
conjugative plasmid pCF10 of Enterococcus faecalis
(48). Therefore, our analysis of plasmid barriers will focus
on exclusion and fertility inhibition systems, which are
more conserved between different conjugative plasmids.

Host Strategies: Restriction
Restriction was first observed in the 1950s when bac-
teriophage λ, propagated in Escherichia coli B, was
found to grow poorly on E. coli K-12 (49). RM systems
code for a diverse group of enzymes, ubiquitous among
prokaryotes, involved in defense against invading ge-
nomes, such as phages or plasmids (50). They comprise
two opposing enzymatic activities, restriction endonu-
clease (REase) and methyltransferase (MTase) (51). The
REase recognizes and cleaves foreign DNA at a specific
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site, whereas the MTase confers protection from cleav-
age to host genome by methylating a defined adenine or
cytosine residue within the specificity site. Due to their
ability to recognize self from nonself DNA, RM systems
are considered a primitive, innate immune system (52).
They are classified in four types, based on molecular
structure, sequence recognition, cleavage position, and
cofactor requirements (53).

RM systems are major players in the coevolutionary
interaction between MGEs and their hosts (54). RM
systems may have additional roles (51). For example,
MGE-encoded RM systems act as toxin-antitoxin sta-
bility systems. During cell division, the failure to segre-
gate RM systems efficiently results in postsegregational
killing of the progeny lacking the RM-containing
plasmids. This is due to the higher stability of the REase
(toxin), which attacks the unmodified host genome of
the progeny lacking the MTase (antitoxin) (55). Thus,
the MGE is stabilized by the RM system and the RM

system acquires the ability to be transferred. Although
this role contributes to the stability of RM-containing
plasmids instead of being a barrier to conjugation, it
seems to be a minor role, since only 10% of the plasmids
encode RM systems, whereas 69% of the chromosomes
do so (54).

While host defense against bacteriophage infection
has been extensively described (56), inhibition of bac-
terial conjugation by RM systems has been reported to a
lesser extent. Several reports revealed that inactivation
of restriction systems in recipient cells (57–62) or dele-
tion of methylation systems in donor cells (63) increases
conjugation frequency, while others showed a reduction
in conjugative transfer when the number of restriction
sites in the donor plasmid was increased (64–66). Ac-
cordingly, the ability of phages and plasmids to escape
restriction highlights the importance of RM systems as
defense devices against foreign DNA. The mechanisms
used in this coevolutionary arms race between bacteria

FIGURE 2 Natural and artificial mechanisms that control the transmission of con-
jugative plasmids.Natural mechanisms include RM and CRISPR-Cas systems (encoded by
the recipient chromosome), exclusion systems (used to prevent the entrance of related
plasmids in the same recipient), and fertility inhibition systems (encoded by plasmids in
donor bacteria). Artificial mechanisms interfere with key components of the conjugative
process, such as the relaxase, the pilus, or conjugation-related ATPases.

ASMscience.org/MicrobiolSpectrum 5

Strategies To Control Conjugative Transmission

http://www.ASMscience.org/MicrobiolSpectrum


and parasitic DNAmolecules to avoid restriction include
four different strategies (Table 1). A number of con-
jugative plasmids encode antirestriction proteins, named
Ard (alleviation of restriction of DNA). ArdA and ArdB,
encoded by conjugative transposons and plasmids of
the IncN, IncI, and IncF groups, are examples of direct
inhibitors of REases that mimic DNA after their rapid
expression in recipient cells (67, 68). ArdC protein from
IncW plasmid pSa protects incoming T-strand by tran-
sient occlusion of restriction sites after being pumped
into recipient cells (69). Another strategy is the selection
of plasmid variants that lost restriction sites, as seems to
happen in the case of plasmid RP4 (70). A combination
of more than one antirestriction strategy is exemplified
by the case of the E. faecalis Tn916-like conjugative
transposons, which confer antimicrobial resistance to
both Gram-positive and Gram-negative bacteria. Two
reasons for Tn916’s broad host range are the presence
within the element of ardA antirestriction systems and
few restriction sites (71). This observation highlights
the importance of antirestriction strategies to counter-
act RM systems of potential hosts, thus increasing the
ability of conjugative elements to spread to a greater
variability of bacteria.

Host Strategies: CRISPR-Cas
Additional defense systems, sometimes operating syner-
gistically with RM systems, are CRISPR-Cas systems
(72). Unlike RM systems, which provide a primitive in-
nate immunity, CRISPR-Cas systems can be thought of as
providing adaptive immunity, sequence-directed against
foreign elements (73). CRISPR loci, present in 45% of
bacterial and 84% of archaeal sequenced genomes (74),
consist of an array of repetitive sequences of 30 to 40 bp,
partially palindromic, and interspersed by equally short
spacer sequences of viral or plasmid origin (75).

The CRISPR-Cas defense mechanism can be divided
in two phases: immunization and immunity (76). In
the immunization phase, also known as adaptation or
spacer acquisition, sequences from the invading genome

integrate into the CRISPR array. The acquisition of new
spacers provides an efficient response against phages
that escape immunity by mutating the target site (77).
In the immunity phase, immunity is accomplished in two
steps: guide RNA biogenesis, where a CRISPR array is
transcribed and processed to generate small CRISPR
RNAs (crRNAs); and targeting, in which the spacer in
the crRNA serves as a guide to direct cleavage of the
complementary sequence at the invading DNA (proto-
spacer) by the Cas nucleases.

Bacteria must distinguish between protospacers of
invading genomes and spacers of their CRISPR arrays to
avoid cleavage of their own chromosome (78). CRISPR-
Cas systems can be classified into three types, based on
their Cas content, crRNA biogenesis mechanism, and
targeting requirements (79). In type I and II systems,
autoimmunity is prevented through a sequence called
protospacer adjacent motif (PAM), only present in the
invading DNA, upstream of the protospacer. The pres-
ence of this sequence is essential for foreign DNA cleav-
age by Cas nucleases (80). No PAM requirements have
been described in type III systems, where autoimmunity
inhibition is thought to occur through differential base
pairing between crRNA and protospacer, preventing
cleavage when full complementarity is detected (81). In
addition, Chi sites (8-nucleotide motifs highly enriched
in bacterial genomes) limit the acquisition of chromo-
somal fragments, favoring the acquisition of foreign
elements, also more likely fragmented during replication
(82). A failure in autoimmunity prevention leads to host
death, a consequence that is being exploited for the use
of CRISPR-Cas systems as genome-editing tools in both
prokaryotes and eukaryotes (83, 84).

Among the numerous emerging applications of
CRISPR-Cas systems (85), their ability to attack plasmid
DNA during conjugation provides new weapons against
AbR dissemination. In their first work, Marraffini and
Sontheimer showed that a spacer from a clinical isolate
of Staphylococcus epidermidis, which matched a re-
gion of the relaxase gene of staphylococcal conjugative

TABLE 1 Antirestriction strategies

Mechanism Antirestriction strategy Examples Reference(s)

Incoming genomemodification Reduction or reorientation of restriction sites T3 or T7 phages, RP4 plasmid 70, 254, 255

Incorporation of unusual bases or methylation Mu or SPβ phages 256

Restriction site occlusion Transient occlusion of restriction sites by proteins
cotransported with the DNA

P1 phage DarA/DarB, IncW plasmids ArdC 69, 257

Host RM system alteration MTase stimulation to modify incoming DNA λ phage Ral protein 258

Destruction of REase cofactors T3 phage SAMase 259

REase inhibition Direct inhibition of REases through mimicking
DNA size, shape, and electric charge

T7 phage Ocr protein, IncN, IncF,
and IncI plasmids ArdA/ArdB

68, 260
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plasmids, prevented transfer of plasmids containing
this sequence by conjugation and transformation (78).
Moreover, the CRISPR-Cas target was shown to be
DNA instead of RNA by placing a self-splicing intron
in the relaxase target sequence. In this line of research,
the analysis of CRISPR spacers related to conjugative
plasmids revealed that protospacers are not randomly
distributed but display a MOB family-dependent bias.
Whereas MOBP plasmids are usually targeted within the
lagging regions, protospacers of the MOBF family are
mostly located in the leading region (the first plasmid
section entering the recipient cell). Nevertheless, when
conjugative transfer of the MOBF plasmid F was in-
hibited using a type I CRISPR-Cas system, the level of
protection was independent of the protospacer position
and the DNA strand, suggesting that the observed bias
depends either on the spacer acquisition phase or on the
first regions becoming double-stranded (86). Additional
studies demonstrate the conjugation-interfering role of
CRISPR-Cas in different bacteria (87) and highlight the
importance of these systems in preventing the acquisi-
tion of MGEs carrying AbR genes (88). In addition to
plasmid transfer inhibition, spacers of plasmid origin
could target AbR genes to induce plasmid loss (89) or
even trigger AbR pathogen death (90, 91), among other
interesting alternatives with countless possibilities.

Other Host Factors Involved in
the Control of Conjugation
Recently discovered defense systems against phage in-
fection and bacterial transformation might also be in-
volved in protection against bacterial conjugation. This
is the case for prokaryotic Argonaute proteins, homologs
to the eukaryotic nucleases involved in RNA interference
(92, 93), or bacteriophage exclusion, a mechanism that
protects bacteria from phage replication (94, 95).

Besides the previously described defense barriers
against incoming DNA, several studies aimed to find ad-
ditional host barriers to conjugation or potential targets
to control the process. Early studies demonstrated the
contribution of the basic cellular machinery (replication,
protein synthesis, or energy supply) in bacterial conjuga-
tion (96). In particular, DNA polymerase III was shown
to be required in recipient cells for the synthesis of the
transferred complementary strand (97), as well as in
donors to replace the transferred strand (98). Another
example is helicase PcrA of Bacillus subtilis, needed for
ICEBs1 DNA unwinding after nicking (99). Although its
E. coli homolog, UvrD, is not essential for growth, PcrA is
a second helicase essential for B. subtilis viability (100).
Nevertheless, targeting essential enzymes as a barrier to

conjugation would kill the host, acting therefore like
a conventional antibiotic (101). To avoid the selective
pressure that increases the probability of AbR emergence,
nonessential functions are preferred to control bacterial
conjugation. This may be the case of the stationary-phase
sigma factor RpoS, which regulates ICEclc excision in
Pseudomonas knackmussii and is required for its con-
jugative transfer (102).

A mechanism potentially deleterious for conjugation
as well as for recipient cell viability is the SOS response.
The SOS response is stimulated by the appearance
of ssDNA and its interaction with the RecA protein,
which inactivates the LexA repressor, thereby inducing
several genes involved in DNA repair, recombination,
and mutagenesis (103). Some conjugative plasmids
are adapted to counteract the SOS response through a
plasmid SOS interference (psi) system that inhibits RecA
binding to ssDNA (104). Similarly, the SOS response to
DNA damage inactivates the LexA repressor homolog,
present in several ICEs, that controls integrase expres-
sion and ICE propagation (105). Therefore, the SOS
response can be a positive or a negative regulator of
bacterial conjugation.

Host factors involved in regulation of bacterial con-
jugation are exemplified by the case of plasmid F,
a narrow-host-range plasmid well adapted to E. coli
(106). While broad-host-range plasmids regulate their
transfer mostly through plasmid-encoded repressors
(107), narrow-host-range plasmids rely on several host-
encoded regulatory factors that act at DNA, RNA, or
protein levels (Table 2).

The first systematic screening for host genes involved
in conjugation was carried out by Pérez-Mendoza and
de la Cruz (108) using two collections of E. colimutants
as recipient cells: the Keio collection of 3,908 single-gene
deletion mutants and a collection of 20,000 random
transposon insertion mutants, which covered >99%
of the E. coli nonessential genome. They studied the
transfer of the broad-host-range IncW plasmid R388 on
solid media through an automated conjugation assay
based on the emission of luminescence by transconju-
gant bacteria. The work indicated that no nonessen-
tial recipient genes play a crucial role in conjugation.
Therefore, required genes can be either essential for
cell growth or redundant. The latter could be the case
for the uvrD mutant, which showed 41% of wild-type
conjugative transfer. UvrD is DNA helicase II, involved
in rolling-circle replication of many plasmids (109).
Despite being an interesting candidate, its barely sig-
nificant effect suggested the involvement of an alterna-
tive helicase. Besides uvrD mutation, only mutations in
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lipopolysaccharide (LPS) biosynthesis showed a signifi-
cant but modest decrease in R388 transfer (6 to 32%
of wild type). A more drastic effect was observed on
F plasmid liquid transfer, suggesting a role for LPS in
mating-pair stabilization. Accordingly, several mutants
were described that affect membrane integrity and were
defective in recipient ability while increasing suscepti-
bility to antibiotics, detergents, or phages. Among them
were particular mutants of LPS biosynthesis or the outer
membrane protein OmpA (110–117). Other reports
characterized the effect of rfa (LPS synthesis) and ompA
mutants on conjugation, proposing an adhesin at the
F pilus tip as the receptor of its specific LPS group (118).
More recently, recipient LPS was established as the
specific receptor for the PilV adhesin of IncI plasmid
R64 during liquid conjugation (119), while OmpA was
shown to interact with F plasmid TraN for mating-pair
stabilization (120).

Additional approaches using transposon mutagenesis
revealed the nitrogen-related phosphotransferase system
as the responsible mechanism for conjugative transfer
inhibition of IncP-9 naphthalene catabolic plasmid
pNAH7 from E. coli to Pseudomonas putida (121). Be-
sides, combining transposon mutagenesis and massive
sequencing (122), Johnson and Grossman found that
there were no nonessential genes crucial for B. subtilis
ICEBs1 conjugation (123). Functions slightly affecting
the process were associated with membrane composi-
tion, agreeing with previous reports.

Although this review focuses on conjugative plas-
mids from Gram-negative bacteria, Gram-positive hosts

also provide useful data on conjugation control. Gram-
negative bacteria display a complex T4SS spanning
two membranes with a cell-surface-attached filamentous
pilus. In contrast, Gram-positive systems display a sim-
pler T4SS for ssDNA translocation across their single
cytoplasmic membrane, with a peptidoglycan hydro-
lase for local digestion of the cell wall, and adhesins
that mediate cell contact (124). The signal for initiating
conjugal transfer remains unknown in Gram-negative
bacteria (125). On the contrary, many plasmids from
Gram-positive bacteria rely on secreted signaling pep-
tides called pheromones to initiate conjugation (for
instance, E. faecalis plasmids pAD1 and pCF10). These
pheromones, and the machinery needed for their pro-
cessing and secretion, are encoded by the chromosome
of recipient bacteria (126). The previously mentioned
ICEBs1 fromB. subtilis uses an opposite mechanism that
requires the uptake of inhibitory peptides by recipient
cells, using a host-encoded oligopeptide permease (127).

Plasmid Strategies: Exclusion
The exclusion phenomenon was first observed when
exponentially growing cells harboring plasmid F acted
as poor conjugation recipients (128). This phenotype,
later called “superinfection immunity” (129), was the
combination of two independent mechanisms, plasmid
incompatibility and exclusion. Both phenomena refer to
an interference between related sex factors, associated
with replication and conjugation, respectively (130).
Plasmid F contains two exclusion systems, surface ex-
clusion and entry exclusion, later considered as proto-

TABLE 2 Host-encoded factors involved in conjugative transfer of IncF plasmids

Level Host factor Regulatory function Reference(s)

DNA ArcA/ArcB Two-component regulatory system that activates transfer in response to oxygen levels 261

SdhABCD Succinate dehydrogenase that has a repressive effect under aerobic conditions,
probably by regulating transcription of the activator TraJ

261

Dam Methylase that modifies certain promoter regions, changing their sensitivity to binding of activators,
such as the leucine regulator Lrp to traJ promoter

262

H-NS Global repressor that silences newly acquired DNA, including transfer genes 263

RpoS/RpoH Alternate sigma factors that stimulate transcription from H-NS silenced promoters 264, 265

FIS Activator or repressor, depending on whether it acts alone or in competition with H-NS 266

IHF Transcriptional activator of transfer genes, besides its primary role as part of the relaxosome
architecture

35, 267

CRP The cyclic AMP receptor is also a positive regulator of traJ expression in response to glucose levels 268

Unknown Host-encoded regulator involved in F transfer repression during stationary phase 269

RNA RNase E Ribonuclease that cleaves the antisense RNA FinP (downregulates the translation of the
activator TraJ)

139

Hfq Global regulator that binds traJ mRNA, promoting its degradation 270

Protein HslV/HslU Heat shock protease-chaperone pair involved in TraJ degradationmediated by the two-component
system CpxAR in response to extracytoplasmic stress

271

GroEL Chaperonin that interacts with TraJ, promoting its proteolysis 272
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types for all others. Surface exclusion acts through the
outer membrane protein TraT, by reducing the ability of
recipient cells (∼10-fold) to form stable mating aggre-
gates, whereas entry exclusion involves the recipient inner
membrane protein TraS, which inhibits DNA transfer
(∼100-fold) after mating pairs have stabilized (131, 132).
The precise mechanism of action remains unclear in both
cases. Some hypotheses proposed candidates for the TraT
receptor in donor cells, including pilins, a hypothetical
adhesin at the pilus tip, or the mating-pair stabilization
protein TraN. However, none was confirmed (118, 133).
The mechanism of TraS exclusion involves the inner
membrane protein TraG in donor cells (134). TraG-TraS
recognition was later confirmed, suggesting that TraG is
translocated into recipient cells for transfer initiation, a
process blocked by TraS (135). However, the interacting
partner in conjugative plasmids not related to F is un-
known, although TraG-VirB6 similarities point to VirB6
as the TraS counterpart (136).

All conjugative plasmids contain at least one exclu-
sion gene, usually TraS-like, indicating their importance
for the conjugative element. Exclusion systems may be
used to prevent competition among identical plasmid
backbones, for donor cells to avoid uneconomical excess
of DNA transfer, or for recipient cells to prevent death
by lethal zygosis (an excess of conjugative cell contacts
causing membrane damage). Interestingly, only IncF
and IncH plasmids, which produce pili that are firmly
attached to the donor cell, encode both types of exclu-
sion systems, while plasmids whose pili detach easily
from the cell express only entry exclusion (136).

Plasmid Strategies: Fertility Inhibition
Fertility inhibition was discovered when certain plas-
mids carrying multiple AbR determinants were intro-
duced in cells containing plasmid F (137). These R
plasmids were IncFII plasmids that produced protein
FinO. FinO reduced F transfer by increasing intra-
cellular levels of the antisense RNA FinP (138). FinP
RNA specifically downregulates traJ mRNA transla-
tion, whose product is a transcriptional activator of
the transfer region. FinO binds FinP and traJ mRNA
helping duplex formation, which triggers traJ mRNA
cleavage by RNase III and protects FinP from degrada-
tion by RNase E (139, 140). The F plasmid is naturally
derepressed due to finO insertional inactivation by
insertion sequence IS3, resulting in low levels of FinP
(141). Therefore, the FinOP system results in a small
fraction of cells being transfer competent, contributing
to regulate the balance between conjugative transfer
and plasmid burden (including metabolic overhead of

constitutive expression and vulnerability to pilus-specific
phages) in IncF plasmids. The absence of FinOP regu-
lation in early transconjugant cells produces a transient
epidemic spread that ensures infection of the recipient
cell population (106).

Besides the FinOP autoregulatory mechanism, which
also affects other IncF plasmids due to FinO trans activ-
ity, additional fertility inhibition systems were identified
that reduce conjugative transfer of unrelated coresident
plasmids (142). These mechanisms may play a role as
competition tools for colonization of new hosts (143).
Eleven functions from different plasmid groups have
been associated with fertility inhibition of IncF, IncW,
IncP, and T-DNA of A. tumefaciens pTi plasmid, as
schematized in Fig. 3.

Transfer Inhibition of IncF Plasmids
Similar to the FinOP system, the FinQ and FinW systems
act at the RNA level but independently of the main
regulator TraJ. FinQ is encoded by IncI1 plasmids and
acts via Rho-independent transcription termination at
several sites of the tra operon (142–146). FinW is present
in IncFI plasmids such as R455 and reduces transcrip-
tion of TraM (142, 143, 145), a regulator activated by
TraJ and essential for DNA processing during F transfer
(147). FinC, FinU, and FinV fertility inhibition systems
act posttranscriptionally. FinC is expressed by the mobi-
lizable plasmid CloDF13 (which uses its own T4CP),
probably to inhibit the function of the helper F T4CP
during CloDF13 transfer (148). FinU and FinV are en-
coded by IncI1 plasmid JR66a and IncX plasmid R485,
respectively. Since FinU inhibited both pilus assembly
and entry exclusion, it was suggested to affect transcrip-
tion of the tra operon (143). Since transcription reduc-
tion was not proportional to the observed effect, the
primary target of FinU was suggested to be the transla-
tion or function of one or more transfer proteins (145).
FinV reduced pilus formation but did not produce an
effect on surface exclusion (143). Therefore, it was sug-
gested to act posttranscriptionally, affecting the activity
of one of the proteins required for pilus assembly (145).

Transfer Inhibition of IncW Plasmids
The elements fiwA and fiwB, encoded by IncP1α plas-
mids such as RP1, inhibit transfer of IncW plasmids
(149–151). When acting together, they reduce R388
conjugation 1 million times. While fiwA affects only
R388 transferability, fiwB also affects pilus production,
conferring resistance to PR4 bacteriophage (150). Un-
identified genes in the IncX plasmid R6K also inhibited
the fertility of IncW plasmid R388 (149) and IncN
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plasmid R46 (152). Similarly, IncP plasmid RP4 reduced
conjugal transfer of the rhizobial plasmids pRmeGR4a
and pRmeGR4b (153).

Transfer Inhibition of IncP Plasmids
IncP plasmids are targets of fertility inhibition as well.
The IncI plasmid R64 encodes a function that inhibits
IncP plasmid RP4 conjugative transfer up to 100-fold
(154). IncX plasmid R6K and IncP plasmid RP1 showed
reciprocal fertility inhibition through an unknown
mechanism that resembled the FinOP regulation system
(149). The first IncN plasmids reported to inhibit IncP
plasmids’ fertility were pN3 (149) and R390, which
also inhibited transfer of IncW plasmid pSa (155). Fer-
tility inhibition of IncP plasmids (or fip) was localized
in IncN plasmid pKM101, which reduced RP1 transfer
by 10,000-fold (156). The absence of effect in pilus
synthesis or entry exclusion suggested that fip acted in
a different way than the FinOP system. An apparently
independent function was found in F plasmid that
inhibits plasmid RP4 conjugative transfer 1,000-fold
(157). It was identified as pifC (or repC), a gene involved
in the initiation of F replication (158) and in the regu-

lation of pif operon expression (phage interference
function) (159). PifC inhibited both RP4 conjugation
and RP4-assisted mobilization (160). As occurred with
FipA of pKM101, PifC inhibition did not affect ex-
clusion or pilus synthesis. A pifC functional homolog
named tir (transfer inhibition of RP4) was discovered in
the replication region of IncF plasmid R100 (161). The
target of FipA and PifC in IncP plasmids was TraG,
the T4CP that connects the relaxosome with the T4SS.
Both proteins inhibited RSF1010 mobilization (which
uses TraG of RP1), while CloDF13 mobilization (which
codes for its own T4CP) was not affected. In addition,
IncN-assisted RSF1010 mobilization enhanced by over-
expression of traG was lost in the presence of fipA or
pifC (162).

Transfer Inhibition of pTi Plasmid’s T-DNA
IncW plasmid pSa abolished the plant tumor-inducing
activity of the pTi’s T-DNA of A. tumefaciens (163,
164). This suppressive activity was attributed to the osa
gene (oncogenic suppression activity) (165). In contrast,
the oncogenic suppression caused by IncQ mobilizable
plasmids seemed to act by recruiting T-DNA’s MPF for

FIGURE 3 Network of interactions between conjugative plasmids that affects their
conjugation capacity. Plasmid incompatibility groups are represented by colored circles.
Continuous lines show fertility inhibition systems caused by genes in colored rectangles
from plasmids in white boxes. Dashed lines show fertility inhibition systems caused by
unidentified genes from plasmids in white boxes. See text for further details.
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mobilization and competing for transfer more efficiently
than T-DNA (166–169). Osa protein shows homology
to FiwA from RP1 (170), responsible for IncW fertility
inhibition (151), and was located at the bacterial inner
membrane (171). Osa mode of action was related to
export inhibition of VirE2 (172), a protein involved in
T-DNA endonuclease protection and transport (173).
Export of VirE3 and VirF virulence proteins was blocked
by Osa (174). Afterwards, IncQ plasmid RSF1010 mo-
bilization by T-DNA’s transfer system was confirmed to
be reduced by Osa (169). By the use of a transfer DNA
immunoprecipitation assay, Cascales et al. (175) dis-
covered that both IncQ mobilizable plasmids (which use
the same pathway as T-DNA) and Osa fertility inhibitor
suppressed plant tumorigenesis through inhibition of
T-DNA and VirE2 binding to the T4CP (VirD4) recep-
tor, blocking their passage throughA. tumefaciens T4SS.
In contrast to IncQ plasmids, which were proposed to
block T-DNA’s T4CP as a competing substrate with
higher copy number and affinity for T4SS than T-DNA
(167), Osa exerted its effects by modulating VirD4 re-
ceptor activity through direct protein-protein interac-
tion. As occurred with FipA and PifC, Osa only inhibited
mobilization of plasmids lacking their own T4CP (such
as RSF1010), whereas mobilization of plasmids carrying
their own T4CP (such as CloDF13) was not affected,
thus confirming previous results (175). Recently, Osa
crystal structure was solved and shown to belong to
the ParB/Srx superfamily (176). ATPase and DNase
activities were discovered within its active site, activities
that were common to their homologs (fertility inhibi-
tion protein ICE1056Fin of H. influenzae ICEHin1056
and partition system elements KorB from IncP1α plas-
mid RK2 and ParB from bacteriophage P1). In addition,
it was shown that T-DNA transfer was inhibited by
Osa homologs ICE1056Fin and FiwA, and even by the
unrelated fertility inhibition factors FipA and PifC. Im-
munoprecipitation and Western blot analysis showed
Osa interaction with two other T4SS components, VirB4
and VirB11 ATPases. By in vitro reconstitution of a par-
tial T4SS (comprising VirB4, VirB11, and Osa), degra-
dation of T-DNA covalently bound to VirD2 relaxase
was observed. This observation has placed Osa DNase
activity as a key function of a fertility inhibition mech-
anistic model (176).

ARTIFICIAL STRATEGIES TO
CONTROL CONJUGATION
Conjugation inhibitors (COINs) have been employed to
target specific components of the conjugation machin-

ery, such as conjugative relaxases or the pilus tip. Other
compounds considered to be COINs inhibited conju-
gative transfer of several plasmids in different hosts
either indirectly, by affecting bacterial growth, or di-
rectly, by targeting a common conjugative function,
such as T4SS.

Relaxase Inhibitors
Garcillán-Barcia et al. obtained intracellular antibodies
(intrabodies) able to inhibit conjugal transfer of plasmid
R388 by blocking relaxase activity in recipient cells (42).
After mice were immunized with TrwC relaxase, im-
munoglobulin variable sequences were PCR-amplified
from mice mRNA, assembled as scFv (single-chain var-
iable fragment) antibodies, and cloned into an M13
phagemid vector fused to pIII protein. The resulting li-
brary of phagemids was submitted to rounds of panning
against the purified relaxase immobilized onto ELISA
plates, to select antibodies that bind the relaxase more
efficiently. The antibody with higher affinity for TrwC
was expressed in an E. coli strain carrying mutations in
the major disulfide bond reduction systems to allow
intrabody folding and stability in the reducing cyto-
plasm of bacteria. It was used as a recipient in an R388
mating experiment, obtaining a 20-fold reduction in
transfer frequency compared to a control expressing an
unrelated intrabody. To search in vivo for more-potent
intrabodies able to directly inhibit R388 conjugation, a
second library from the first round of panning was ex-
pressed in recipient cells. The screening was performed
by the use of a high-throughput conjugation assay that
relies on the emission of luminescence in transconjugant
cells (177). Several intrabodies inhibited R388 conju-
gation from 40- to 10,000-fold, confirming that R388
relaxase carried out an important function in recipient
cells that could be blocked as a viable strategy to prevent
plasmid transmission. When CloDF13 mobilization by
R388 was tested, no change was detected, due to the
usage of its own relaxase (MobC). An interesting broad-
range intrabody was discovered that also reduced
conjugative transfer of MOBF plasmids pKM101 and F,
whose relaxase domains are 51 and 37% identical to
TrwC, respectively. In addition, bymapping the epitopes
recognized by one of the intrabodies, the R388 mecha-
nism to terminate conjugative DNA processing was
clarified, establishing the second catalytic tyrosine of
the relaxase as an important player in this reaction. Al-
though intrabodies are not the most suitable therapeutic
candidates for conjugation control due to the pharma-
cokinetic problems of any macromolecule as a drug,
the recognized epitopes of the relaxase could be targeted
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by other means in order to generate better applicable
COINs.

Relaxase activity of F plasmid TraI was targeted
in vitro by bisphosphonates, a set of small molecules that
could apparently interfere with the relaxase active site
by mimicking a covalent phosphotyrosine intermediate
(178). Two of the most potent compounds were prom-
ising hits because they had already been approved for
bone loss treatment, a fact that would facilitate their
inclusion into the market. However, besides inhibition
of F transfer in vivo, they also caused unexpected
selective death of bacteria containing both a catalyti-
cally active TraI and F plasmid. Moreover, it was later
concluded that bisphosphonates act as mere chelating
agents that could affect any metal-dependent cellular
process (179).

Pilus Blockers
Donor-recipient contact, the first step for plasmid con-
jugative transmission, can be inhibited by interfering
with the function of the conjugative pilus (Fig. 4). The
best-known inhibitors of conjugation by blocking con-
jugative pili are bacteriophages. Some DNA and RNA
bacteriophages use conjugative pili as receptors to infect
bacteria containing certain plasmids. The attachment
of these phages to conjugative pili can obstruct poten-
tial donor-recipient contacts. This section will focus on
COIN activity of male-specific bacteriophages without
lytic activity, although phages inducing bacterial lysis
possess high potential as antimicrobials against AbR
bacteria. In fact, the male-specific phage PRD1, with
lytic activity against bacteria containing IncP plasmids,
was described as an effective plasmid-curing agent. It
reduced the frequency of AbR bacteria even under se-
lective pressure for plasmid maintenance, which pro-
moted the emergence of conjugation-deficient mutants
resistant to PRD1 (180, 181). Furthermore, lytic phages
cause faster extinction of conjugative plasmids in bac-
terial populations, probably due to selection for phage
resistance mutations that increase genetic burden, indi-
rectly affecting plasmid stability (182). Although lytic
phages have been amply studied for their use in phage
therapy, nonlytic bacteriophages infecting Pseudomonas
aeruginosa, such as the filamentous Pf3 and Pf1 phages,
could also be effective as antimicrobial adjuvants thanks
to their ability to increase susceptibility to antibiotics
(183). A similar effect was observed when Boeke et al.
(184) expressed the pIII protein of F-specific filamentous
phages, involved in pilus recognition. pIII causes pleio-
tropic effects in bacterial membranes, including in-
creased sensitivity to detergents, antibiotics, and colicins

and even a reduction in F conjugation and male-specific
phage infection, probably by blocking pilus retraction.

The first report about the COIN activity of bacterio-
phages originates from an investigation on pilus func-
tion. After Brinton et al. (185) suggested an association
between RNA phage receptors and transport of genetic
material, Knolle (186) found that an inactivated RNA
phage (called fr) interfered with F conjugation in the
same way that mating partially prevented phage inva-
sion. Similar results were obtained with phages f1 and
f2 as mating inhibitors, which attach to the tip and the
sides of the F pilus, respectively (187). F-specific DNA
and RNA phages (M13 and R17) were employed by
Novotny et al. (188) to prevent the formation of mating
pairs, providing evidence that supports F pilus as the
common element involved in an early step of both phage
infection and conjugation. To discard nonspecific in-
hibition of bacterial growth caused by phages, trans-
fer of IncF or IncI plasmids from the same donor cell
was blocked by inactivated F- or I-specific bacterio-
phages, respectively (189). Using a cell counter to mea-
sure mating pairs, Ou (190) demonstrated that phage
f1 inhibited MPF function completely, while MS2 did
so only partially. Since the filamentous DNA phage f1
attaches to the F pilus tip while the RNA bacteriophage
MS2 attaches laterally along the pilus, the pilus tip was
established as the specific attachment mating site. Schreil
and Christensen (191) confirmed that MS2 interfered
with F conjugation, but not due to competition for a
common transport channel. Moreover, they disagreed
with the reverse effect stated by Knolle (186), noticing
that conjugation did not affect MS2 invasion.

A more recent study (192) revealed that M13 inhi-
bition of F conjugation involved physical occlusion of
the conjugative pilus by phage particles. Exogenous
addition of pIII soluble fragment inhibited conjugation
at nanomolar concentrations, whereas addition of the
nonspecific protein bovine serum albumin did not. This
result suggested that the effect was mediated by the
phage coat protein pIII, known to interact with the F
pilus (193). The concentration of pIII needed to inhibit F
conjugation was 1,000-fold higher than the number
of nonreplicating phage particles. The apparent higher
affinity of phage particles when compared to isolated
pIII protein could be due to cooperation between more
than one pIII protein monomer to bind the pilus when
they are attached to the phage structure, or to the irre-
versibility of the binding reaction in the case of phage
particles. Lin et al. (192) also observed a 5-fold re-
duction in donor ability when bacteria were infected
with replicating phages, probably due to decreased pilus

12 ASMscience.org/MicrobiolSpectrum

Getino and de la Cruz

http://www.ASMscience.org/MicrobiolSpectrum


elaboration. This effect could be important at low phage
concentrations, when physical occlusion is less relevant.
By constructing a chimeric phage in which the M13
N-terminal domain of pIII was substituted by the ho-
mologous sequence of If1 phage, M13 binding specific-
ity was changed from F pilus to I pilus. Consequently,
the chimeric phage inhibited conjugative transfer of IncI
plasmids instead of F. They also presented a quantitative
model for conjugation in the presence of phages that
accurately described their COIN effect. Unlike other
COINs, bacteriophages have the advantage of potential
coevolution in case resistant bacteria appear.

A kinetic competition study between conjugation
and M13 infection suggested that phage multiplicity of
infection has to be high for the phages to act as effective
antagonists to conjugation. At lower phage concentra-
tions, conjugation persists despite phage inhibition, even
in the absence of selective pressure (194). In spatially
structured populations, such as surface-associated col-
onies and biofilms, M13 protein pIII effectively inhibited
F conjugation. Moreover, spatial structure itself sup-
pressed F conjugation due to isolation of donor and
recipient populations, restricting conjugation to boun-
daries between them (195).

FIGURE 4 Artificial inhibitors of donor-recipient contact (pilus blockers). The tran-
quilizer chlorpromazine prevents plasmid conjugation and phage infection, possibly by
modifying membrane topology. Male-specific bacteriophages bind the pilus tip through
their pIII protein, blocking MPF and biofilm formation. Antibodies against conjugative pilus
inhibit conjugation of specific plasmids. Zn2+ in the mating medium blocks F pilus con-
tact with Zn2+-containing receptor sites. Colloidal clay forms a coating on bacterial cells
preventing liquid mating, phage infection, and predation. The opioid levallorphan inhibits
MPF and adsorption of male-specific bacteriophages, probably by damaging pilus or bac-
terial membrane. Sodium periodate alters F pili, inhibiting donor fertility and bacteriophage
infection. See the section on pilus blockers in the text for additional information.
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Besides conjugation and phage infection, conjugative
pili are involved in the elaboration of biofilms, impor-
tant targets in the battle against resistance (33). There-
fore, bacteriophages affecting F conjugation could also
prevent biofilm formation. Actually, male-specific fila-
mentous DNA bacteriophage f1 prevented early biofilm
formation by E. coli carrying F plasmid. Additionally,
the fact that the RNA bacteriophage MS2 did not cause
an inhibitory effect suggested that the pilus tip, not the
sides, was important for early biofilm formation (196).

Antibodies directed against conjugative pili that are
able to inhibit transfer of plasmids even more specifically
than bacteriophages have been used to identify closely
related resistance factors by analyzing the degree of in-
hibition (197). The results of this work agreed with
previous serological analysis of sex pili detected through
antigen-antibody reactions and observed by electron
microscopy (198).

Other COINs could interfere with elaboration of
mating pairs, either by blocking pilus tip in donors or
pilus receptor in recipients or through nonspecific dis-
organization of bacterial membranes. A case in point
is Zn2+, which seemed contradictory at the start. First,
Zn2+ prevented phage M13 adsorption to F pilus (199).
Then, a reduction in F donor fertility was shown, prob-
ably by blocking pilus tip, thus inhibiting its interaction
with recipient cells (200). Conversely, incubation with
Zn2+ before mating enhanced the ability of recipients
to form mating pairs (201). These paradoxical effects
were explained by the use of the Zn2+ chelator ortho-
phenanthroline (202). Zn2+ is probably involved in the
formation of receptor sites on the recipient surface,
and the initial contact could occur between the pilus tip
and Zn2+ of receptor sites. Therefore, pretreatment of
recipient cells increased their fertility through Zn2+ in-
corporation. However, an excess of Zn2+ in the mating
medium would compete for the tips of F pili, hinder-
ing their access to receptor sites. The reduction of Zn2+

availability by the mentioned chelating agent drastically
decreased conjugation, mainly acting during MPF.

Unlike Zn2+, the effect caused by periodate in F donors
was irreversible (203). After donor pretreatment, the
number of transconjugant cells was greatly reduced,
whereas treatment of recipient cells had no significant
effect. Perborate and persulfate also decreased donor
fertility, but to a lesser extent. The fact that addition
of periodate to a mating in progress did not prevent
conjugation between mating pairs already formed sug-
gested an effect onMPF, probably by altering the surface
of donor cells via polysaccharide oxidation. Consistent
with this observation, Dettori et al. (204) showed that

periodate also inhibits the adsorption of RNA bacterio-
phages to the sides of F pili. Consequently, an alteration
of F pili seems to inhibit both donor fertility and bacte-
riophage infection (200).

The morphine derivative levallorphan, like Zn2+ and
periodate, inhibited adsorption of phage MS2 to F pili
(205). This inhibition was comparable to inhibition of
MPF during R-factor transfer from Proteus rettgeri (now
Providencia rettgeri) to E. coli, since both effects can be
observed at the same concentration of levallorphan.
Both inhibitory effects, on phage adsorption and con-
jugation, could be caused by damage of F pilus or the
whole bacterial membrane (206). The tranquilizer chlor-
promazine also reduced both IncF plasmid conjugative
transfer and adsorption of male-specific bacteriophages
(207). Since this is a cationic amphipathic molecule, it
could act by modifying membrane topology through its
insertion in the lipid bilayer. Another COIN probably
affecting MPF is ammonium (153). It inhibited con-
jugative transfer of the rhizobial plasmid pRmeGR4a
and pRmeGR4a-assisted mobilization of pRmeGR4b
between Rhizobium meliloti strains. However, ammo-
nium did not affect transmission of IncP plasmid RP4 or
the rhizobial plasmids to A. tumefaciens. Thus, its effect
seemed to take place on R. meliloti recipient cells, prob-
ably on their surface, but not on the transfer machinery.

An inert barrier between donors and recipients is an
additional possibility to control bacterial conjugation.
Colloidal clay, typically present in natural waters, pre-
vented the transfer of IncF plasmid R1drd19 by forming
a coating on bacterial cells (208). This clay envelope was
also responsible for E. coli protection from bacterio-
phage infection and bacterial predation (209, 210). In
contrast, plasmids that promote conjugation less effi-
ciently in liquid, such as IncP plasmid RP4, enhanced
their transfer in water containing nanoalumina particles.
In the presence of these particles, RP4 upregulated the
expression of genes required for MPF (211). An unspec-
ified component of E. coli cell wall was also described
as an inhibitor of conjugal transfer. In this case, the in-
hibitory mechanism presumably involved competence
between cell wall components and actual partners on the
surface of cells, thereby preventing MPF (212, 213).

Nonspecific COINs
Bisphosphonates were first described as relaxase-specific
inhibitors (178) but then reappraised as chelating agents
(179). Similarly, other reported COINs were later re-
vealed as inhibitors of different cellular processes. For
instance, the ability of some plasmid-curing agents to
inhibit conjugative transfer is easily attributable to their
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antiplasmid effect, which favors the growth of plasmid-
free cells (214). The increased sensitivity of E. coli
containing F plasmid to bile salts and SDS represents
another example of this effect. While plasmid-free cells
are resistant to these toxic detergents, cells with an active
system for pilin secretion are more susceptible to their
entry through the T4SS pore (215). A similar behavior
was found by overexpressing RP4 genes, which caused
enhanced cell permeability (216). Another interesting
antiplasmid effect is mediated by the type VI secretion
system (T6SS). T6SSs are produced by Gram-negative
bacteria to kill prokaryotic and eukaryotic cells through
contact-dependent delivery of toxic effectors (217).
P. aeruginosa T6SS is assembled in response to T6SS
attacks by competing bacteria in microbial communities
(218). Besides T6SS, T4SS structural proteins of plasmid
RP4 triggered P. aeruginosa attacks by T6SS (219). The
work suggested that these donor-directed counterattacks
are induced at MPF-mediated membrane perturbations
in P. aeruginosa recipients to potentially block the ac-
quisition of foreign DNA. Thus, T6SS would represent
a new type of immune system against HGT, through a
mechanism that indirectly inhibits conjugative transfer
by killing donor cells.

Several antimicrobial drugs, even at subinhibitory
concentrations, act as inhibitors of plasmid conjuga-
tive transfer. However, their lethal effects in donors
and recipients, or the absence of COIN activity in
nongrowing bacteria, suggested that these compounds
interfere with essential bacterial functions rather than
recognizing a specific plasmid target (220, 221). In fact,
most of these antibiotics act on cellular functions, such
as DNA replication, transcription, translation, or mem-
brane integrity, which are also involved in conjugation
(43). Similarly, COIN activity of other compounds could
be related to their antibacterial activity. This is the case
with nitrofurans (222) and pipemidic acid (223), which
inhibited transfer of several plasmids in different hosts
by interfering with DNA replication. Moreover, copper
surfaces inhibit conjugal transfer indirectly (224), pre-
sumably by killing bacteria through DNA and mem-
brane damage (225–227). Epigallocatechin gallate, an
antimicrobial component of tea, inhibited conjugative
transfer of plasmid R100 in E. coli (228). In addition,
the phenolic compounds rottlerin and “the red com-
pound” extracted from the plant Mallotus philippensis
inhibit transfer of several plasmids at subinhibitory
concentrations (229). Likewise, Carica papaya seed
macerate, containing a previously detected antibacterial
substance (230), was considered a COIN for a Salmo-
nella enterica serovar Typhimurium conjugative plasmid

in the mouse digestive tract at nonlethal concentrations
(231). Another example could be sodium propionate,
produced by intestinal bacteria and abundant in the
large intestine. It was found to reduce the transfer fre-
quency of IncF plasmid pSLT in the mouse intestine
(232). It also presented antibacterial properties against
several microorganisms (233).

On the contrary, subinhibitory concentrations of
certain antimicrobial agents can indirectly promote con-
jugation (234). For example, DNA damage caused by
ciprofloxacin or mitomycin C induced SOS response,
which is responsible for upregulating the excision and
transfer of SXT ICE from Vibrio cholerae (235). In
an SOS-independent manner, conjugative transposons
from Bacteroides and E. faecalis increased their transfer
when exposed to low concentrations of tetracycline
(236, 237). Similarly, β-lactams stimulated the forma-
tion of bacterial aggregates, thus increasing conjugative
transfer of a plasmid from S. aureus (238).

Unsaturated Fatty Acids
The first systematic search for COINs used conjuga-
tive plasmid R388 in E. coli as a model system (177). A
luminescence-based high-throughput assay was used to
measure R388 conjugation in the presence of >12,000
microbial extracts containing a variety of bioactive com-
pounds. A control assay discarded compounds affect-
ing bacterial growth, plasmid stability, or light emission.
The first hits were oleic and linoleic acids, C18 unsatu-
rated fatty acids (uFAs) containing one or two double
bonds, respectively. The most potent compound was
an atypical fatty acid named dehydrocrepenynic acid
(DHCA), identified in an extract from the fungus
Sistotrema sernanderi. DHCA is a C18 fatty acid with
double bonds at positions 9 and 14 and a triple bond at
position 12. Conjugation analysis using related com-
pounds (including saturated fatty acids), suggested that
a carboxylic group, a long carbon chain, and a double
bond position were important features of COINs. Plas-
mids affected by linoleic acid and DHCA were R388
and pOX38, whereas RP4 or R6K were not. The fact
that some plasmids were not affected argues against
general metabolic disturbances as a cause. In addition,
these results suggested that the inhibition target was in-
volved in DNA processing (MOB), more similar between
R388 and pOX38 than RP4 and R6K (239). However,
the absence of effect on IncN plasmid pKM101, with a
MOB module more similar to R388 and pOX38 than to
RP4, weakened this hypothesis.

Recently, a novel set of natural COINs was discov-
ered by analyzing a collection of bioactive compounds
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isolated from marine microorganisms (240). These com-
pounds, called tanzawaic acids, are fungal polyketides
more complex than uFAs. They are carboxylic acids
with two aromatic rings at the end of an unsaturated
aliphatic chain, thus confirming the importance of these
two chemical characteristics for COIN activity.

2-Alkynoic Fatty Acids
A better understanding of COIN action in relevant
conjugative systems is essential as a first step to treat
complex environments. In order to chemically and bio-
logically characterize the previously reported COIN
activity, a set of 2-alkynoic fatty acids (2-AFAs) was
synthesized (241). 2-Hexadecynoic acid (2-HDA) was
identified as the most effective synthetic COIN, with
similar potency to natural uFAs (177). A clinically rep-
resentative set of conjugative plasmids was tested in
the presence of 2-HDA to determine its activity range.
Similarly to natural uFAs, 2-HDA inhibited transfer
of IncF plasmids, the most common carriers of AbR
genes in pathogenic Enterobacteriaceae (242). Transfer
of IncW, IncF, and IncH plasmids was strongly inhibited
by 2-HDA, while IncI, IncX, and IncL/M plasmid trans-
fer was only moderately inhibited. On the other hand,
IncN and IncP plasmids were resistant to COIN action.
Also interesting for future applications was the fact
that conjugation was inhibited irrespective of the bac-
terial host used as donor. The most remarkable result
was obtained through a liquid mating experiment using
the multiresistant plasmid R1drd19. In the absence of
COINs, the IncF plasmid invaded the entire recipient
population after just four generations. This was due to
the high transmissibility of the plasmid, which caused
plasmid dissemination even though plasmid-containing
cells had slower growth rates than plasmid-free cells.
Conversely, the presence of 2-HDA in the mating me-
dium prevented plasmid conjugative transfer, flipping
over the balance between plasmid transmission and
burden, thus favoring colonization by plasmid-free cells.
Consequently, 2-HDA was able to block plasmid inva-
siveness and reduce the prevalence of plasmid-containing
cells in the bacterial population. Reversion from plasmid
invasion to plasmid loss occurred at 50 μM 2-HDA,
comparable to the observed 50% inhibitory concentra-
tion in R388 transfer. This suggested that 50% inhibi-
tion of conjugation was sufficient to prevent plasmid
spread in the absence of selective pressure. These obser-
vations highlight the potential application of COINs to
prevent AbR dissemination.

A recent study analyzed the activity of conjugative
ATPases in the presence of uFAs (243). The component

of R388MPF system TrwD (VirB11 homolog), involved
in pilus synthesis and DNA translocation (244, 245),
was identified as the potential target. Conjugation fre-
quency correlated with TrwD ATPase activity in the
presence of different compounds, including saturated
fatty acids, uFAs (177), synthetic AFAs, and AFA inac-
tive analogs. Nevertheless, the absence of known TrwD
homologs in IncF plasmids (246) still leaves unanswered
questions. Given that transfer of mobilizable plasmids
by IncF MPF is also affected by these COINs (241), the
target in these plasmids, well adapted to E. coli after a
long history of coevolution, could be an unidentified
chromosomal ATPase involved in F conjugation and
F-helped mobilization. Alternatively, another plasmid
ATPase, such as the TrwK homolog TraC (VirB4), the
only ATPase of plasmid F known to be required forMPF
biogenesis (28), could be responsible.

T4SS Inhibitors Discovered
by Biochemical Analysis
Other approaches to discover COINs take advantage
of newly generated biochemical knowledge concern-
ing related processes, such as T4SS-related virulence
inhibition. For example, VirB11 ATPase was used as a
target for the development of inhibitors, with the aim
of preventing Helicobacter pylori virulence. The first
described inhibitors targeted the H. pylori VirB11-type
ATPase Cagα, blocking CagA toxin transport to host
cells. The most active compound (CHIR-1, identified by
a high-throughput screening that measured ATPase ac-
tivity in the presence of small compound libraries) re-
duced H. pylori pathogenic effects in gastric cells and
the ability of treated bacteria to colonize gastric mucosa
in mice (247). Docking analysis using Cagα allowed
the identification of a series of competitive inhibitors
with potential as antibacterial agents (248). These anti-
virulence compounds could be tested in conjugative
VirB11 homologs, such as TrwD of IncW plasmid R388.

Another example of how a T4SS inhibitor involved
in protein secretion can extrapolate its activity to in-
hibit conjugative T4SS was reported by Shaffer et al.
(249). They started from the structure of pilicides, small
peptidomimetic molecules that target pilin chaperones
and thereby inhibit assembly of type I pili, which me-
diate adhesion of uropathogenic E. coli (250). By screen-
ing a collection of pilicide derivatives with a central
2-pyridone scaffold, they found that compounds C10
and KSK85 disrupted H. pylori cag T4SS, thus inhibit-
ing translocation of the oncogenic protein CagA and
peptidoglycan to gastric cells. In addition, these mole-
cules, in particular C10, effectively inhibited conjugative
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transfer of A. tumefaciens T-DNA to plant cells, and
transmission of plasmids pKM101 and R1-16 between
E. coli strains.

Type III secretion systems (T3SSs) of several patho-
gens were also targeted by new antivirulence drugs.
They generally act as needles to inject virulence effectors
into host cells (251). Several compounds were found to
block T3SSs in different pathogenic bacteria (252). An
interesting work developed a whole-cell high-throughput
screening of T3SS inhibitors based in S. Typhimurium. A
compound was identified that inhibited both T3SSs and
T2SSs, probably by targeting an outer membrane com-
ponent conserved between these two secretion systems
(253). These results provide a proof of concept that
compounds with a broad spectrum of activity against
different bacterial secretion systems could be developed.

CONCLUSIONS
We have reviewed the multiple mechanisms by which
conjugative transmission of plasmids can be affected.
Given that conjugation is a sophisticated multistep
process involving complexes of >15 proteins, it is rea-
sonable that diverse mechanisms have been identified
that disrupt one or more of the various steps. Up to now,
the most efficient blocking mechanisms are the natural
ones, such as RM, CRISPR, etc., that bacteria have used
and perfected for millions of years to avoid "excessive"
plasmid transmission. Artificial mechanisms found by
scientific research are not yet as efficient but have the
advantage over natural mechanisms of being less dis-
criminating, which in our specific case is a valuable
characteristic. The fight against AbR requires blocking
mechanisms that impede its dissemination irrespec-
tive of the plasmid platform in which the resistance
gene lies. Thus, COINs such as 2-HDA or other uFAs
are broad-range inhibitors that can be used as lead
compounds on which the pharmacological industry
could work to obtain effective anticonjugation drugs.
Alternative compounds and genetic devices have been
reviewed that offer potentially different approaches
to achieve the same goal. We hope that this review
can inspire additional work that helps us win the fight
against AbR transmission.
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