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ABSTRACT The genus Streptococcus includes Gram-positive
organisms shaped in cocci and organized in chains. They are
commensals, pathogens, and opportunistic pathogens for
humans and animals. Most Streptococcus species of veterinary
relevance have a specific ecological niche, such as S. uberis,
which is almost exclusively an environmental pathogen causing
bovine mastitis. In contrast, S. suis can be considered as a true
zoonotic pathogen, causing specific diseases in humans after
contact with infected animals or derived food products.
Finally, Streptococcus species such as S. agalactiae can be
sporadically zoonotic, even though they are pathogens of both
humans and animals independently. For clarification, a short
taxonomical overviewwill be given here to highlight the diversity
of streptococci that infect animals. Several families of antibiotics
are used to treat animals for streptococcal infections.
First-line treatments are penicillins (alone or in combination
with aminoglycosides), macrolides and lincosamides,
fluoroquinolones, and tetracyclines. Because of the selecting
role of antibiotics, resistance phenotypes have been reported
in streptococci isolated from animals worldwide. Globally,
the dynamic of resistance acquisition in streptococci is slower
than what is experienced in Enterobacteriaceae, probably due
to the much more limited horizontal spread of resistance
genes. Nonetheless, transposons or integrative and conjugative
elements can disseminate resistance determinants among
streptococci. Besides providing key elements on the prevalence
of resistance in streptococci from animals, this article will also
largely consider the mechanisms andmolecular epidemiology of
the major types of resistance to antimicrobials encountered in
themost important streptococcal species in veterinarymedicine.

TAXONOMIC OVERVIEW OF
STREPTOCOCCI
More than 60 Streptococcus species have been rec-
ognized so far. Some of these, such as S. pyogenes,
S. agalactiae, S. equi, S. canis, and S. iniae, produce
hemolytic factors and, when cultivated on solid media

containing blood, can be classified as beta-hemolytic.
However, nonhemolytic variants can also be observed
(1). Isolates belonging to other species, such as S. dys-
galactiae subsp. dysgalactiae, S. pneumoniae, S. mutans,
S. salivarius, S. sanguinis, S. gordonii, S. mitis, and S.
oralis, produce hydrogen peroxide that partially lyses
the erythrocytes, with the subsequent oxidation of the
heme group resulting in a greenish pigment in the me-
dium that is often interpreted as alpha-hemolysis. This
oxidation process is influenced by several cultivation
conditions and is variably evident. For this reason, it is
preferable to consider those latter-mentioned species as
nonhemolytic. The truly nonhemolytic species, mainly
encompassing S. gallolyticus (formerly S. bovis), were
also named gamma-hemolytic. A classification of Strep-
tococcus species proposed by Rebecca Lancefield in
the 1930s was based on the antigenic reaction of the
cell wall-associated carbohydrates and remains classi-
cally used (2). On the basis of this approach, strepto-
cocci are distributed into groups ranging from A to W,
depending on the antibodies recognizing the specific
carbohydrates of a definite streptococcal species. Nev-
ertheless, the whole picture is sometimes complicated
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by the fact that several antibodies can react with isolates
belonging to the same species. For instance, depending
on the isolates, S. dysgalactiae subsp. equisimilis may be
classified as belonging to the C or G group, while it may
also be classified, even though less commonly, as group A
or L (3); isolates from S. phocaemay belong to either the
C or G group; isolates from S. infantarius are sporadi-
cally considered as group D; isolates from S. anginosus
are indifferently classified as group A, C, G, F, or N;
isolates from S. constellatus subsp. constellatus belong
to either group F or N; sporadic isolates belonging to
S. constellatus subsp. pharyngis can be considered as
group C; isolates from the S. intermedius species can be
considered as group N; and finally, isolates belonging
to S. porcinus are classified in either group P, U, or V.

In the following sections, the most relevant Strepto-
coccus species responsible for diseases in animals and/
or humans will be summarized. The relative resistances
to selected antibiotics will be discussed in the sections on
macrolides-lincosamides-streptogramins B tetracyclines,
beta-lactam resistance, fluoroquinolone resistance, and
integrative and conjugative elements (ICEs).

Group A
Streptococci have diverse ecological origins, and cer-
tain species are exclusively adapted to a unique host as
exemplified by the beta-hemolytic S. pyogenes, which
is considered as the most pathogenic type of strepto-
coccus for humans, together with S. pneumoniae, and
is responsible for pharyngitis, erysipelas, and other in-
vasive diseases such as soft tissue infection, rheumatic
fever, glomerulonephritis, and streptococcal toxic shock
syndrome (STSS) (4, 5). The finding of S. pyogenes in
animals has been debated. According to Copperman (6),
pets could have been the source of contagious pharyn-
gitis (6), but no expansion of these findings has been
reported, supporting the hypothesis that humans are the
exclusive reservoir of S. pyogenes.

Group B
The beta-hemolytic S. agalactiae, or group B strepto-
cocci, according to the Lancefield’s classification, is a
commensal of the human intestinal and urogenital tract
and is infamous as a human pathogen causing severe
diseases such as pneumonia, sepsis, and meningitis
in newborns and pregnant women; recently, its patho-
genic importance in elderly and immunocompromised
patients has been re-evaluated (7). S. agalactiae is also an
animal pathogen and has been reported from a variety of
hosts such as fish with meningoencephalitis (8), camels
with mastitis and joints infections (9), and horses with

unspecified disease or death (10). Classically, S. agalac-
tiae has been associated with mastitis in cows (11),
and the zoonotic potential of S. agalactiae is debated. On
one side, genomic comparative approaches highlight a
specific host adaptation of S. agalactiae isolates causing
infections (12); on the other side, infections of humans
from consumption of fish infected by S. agalactiae has
recently been documented (13). Also, experimental in-
fections of fish with S. agalactiae isolates of human
origin have resulted in fish death (14). Globally, the
hygienic control measures implemented for controlling
contagious bovine mastitis have contributed to a sharply
decreased prevalence of S. agalactiae in the veterinary
sector (15, 16).

Group D
Group D streptococci were divided into two diverging
groups in the early 1980s: S. feacalis and S. faecium,
which were renamed Enterococcus faecalis and Entero-
coccus faecium (17). Since then, several new species have
been added to the Enterococcus genus (18), which will
not be discussed in this review.

Formerly, S. bovis was included in the viridans group
of streptococci, and its taxonomy has been reviewed
in several studies. Overall, several previously identified
S. bovis isolates were classified as group D according
to Lancefield’s reaction, as shown in Table 1. Mole-
cular evidence has provided the basis for the classifi-
cation of the former S. bovis isolates into five species:
S. gallolyticus subsp. gallolyticus, S. gallolyticus subsp.
pasteurianus, S. gallolyticus subsp. macedonicus, S. in-
fantarius subsp. infantarius, and S. lutetiensis (19). Iso-
lates belonging to S. gallolyticus subsp. gallolyticus have
been found as commensals of the gastrointestinal tract
of humans and animals but also cause invasive diseases
such as sepsis, endocarditis, arthritis, and meningitis in
both humans and animals (Table 1). The transmission
of S. gallolyticus subsp. gallolyticus between animals
and humans has been reported (20), highlighting the
zoonotic potential of this species. S. gallolyticus subsp.
pasteurianus is an emergent infective agent in human
medicine that is responsible for sepsis, bone and joint
infections, and meningitis (21–23). In birds, this bac-
terium is responsible for similar diseases (24, 25).
S. lutetiensis has rarely been associated with infective
endocarditis and sepsis (26).

Group E
In Lancefield’s group E, S. porcinus is typically associ-
ated with sepsis, endocarditis, pneumonia, and lymph-
adenitis in swine (27). Infections sustained by S. porcinus
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have also occurred in humans (28); however, S. porcinus
isolates infecting humans seem to have a different origin
when compared to S. porcinus isolates of nonhuman
sources (29).

Groups C and G
S. dysgalactiae subsp. dysgalactiae belongs to Lancefield's
group C andG and plays a major role inmastitis (30). On
rare occasions, it has also been found in necrotic tissues
of fish and in humans, as responsible for various diseases
(Table 1). In the same Lancefield’s groups, S. dysgalactiae
subsp. equisimilis is a beta-hemolytic bacterium found
associated with strangles-like diseases in horses and with

arthritis and endocarditis in swine. Unfortunately, this
species is also associated with invasive diseases in hu-
mans, such as STSS and sepsis (Table 1). S. equi subsp.
zooepidemicus organisms react with group C and G
Lancefield’s antigens as well. This organism is commonly
found in bovine mastitis (90, 94, 137; also see Table and
Table 3) and has sporadically been found associated with
mastitis in sheep (31) and is most prevalent in equine
infective diseases as the causative agent of joint and res-
piratory tract infections (32). This species also causes
severe infections in humans in association with the con-
sumption of contaminated dairy products (33). Trans-
mission of S. canis isolates belonging to Lancefield’s

TABLE 1 Overview of streptococci causative of infections in humans and animalsa

Lancefield
group Hemolysin Species Host Associated disease References

B Beta S. agalactiae Human Sepsis, meningitis, pneumonia,
joint and urinary tract infections

7, 11, 199, 200

Cows, camels, horses,
dolphins, fish

Mastitis, joint infection, meningitis, death

C Alpha S. dysgalactiae subsp.
dysgalactiae

Humans Endocarditis, joint infection, cellulitis 48, 201, 202

Fish, cows Tissue necrosis, mastitis

Beta S. dysgalactiae subsp.
equisimilis

Humans STSS, sepsis, soft tissue infections,
pneumonia, pharyngitis

33, 203–210

Swine, seals, horses Arthritis, endocarditis, lymphadenitis,
joint infection, strangles-like disease,
respiratory tract infection

Beta S. equi subsp. equi Horses Strangles disease 32

Beta S. equi subsp.
zooepidemicus

Humans Nephritis, STSS 33

Sheep, horses Mastitis, lymphadenitis, joint and
respiratory infections, endometritis

31, 32, 211

Beta S. phocae Fish, seals Respiratory infections, abortions, sepsis 212

D S. gallolyticus spp.
gallolyticus

Humans Sepsis, endocarditis, arthritis, meningitis 213–216

Koalas, birds Intestinal colonizer, endocarditis, sepsis
S. gallolyticus spp.
pasteurianus

Humans Sepsis, bone and joint infections, meningitis 21–25

Birds Sepsis, meningitis

E Beta S. porcinus Humans Urinary tract, placenta, and wound infections,
sepsis

27, 28, 217, 218

Swine Endocarditis, respiratory tract infection, sepsis

G Beta S. canis Humans Skin, soft-tissue and respiratory
infections, sepsis

34, 35, 219, 220

Dogs, cats Skin, soft-tissue, and urinary tract infections,
otitis, arthritis, STSS

R Nonhemolytic/
beta

S. suis Humans Sepsis, meningitis, endocarditis, STSS 37, 221–225

Swine, boars, rabbits Sepsis, meningitis, pneumonia, arthritis

Undefined Beta S. iniae Humans Soft-tissue infection 48, 49

Dolphins, fish Abscess, streptococcosis, sepsis 226–231

S. uberis/S. parauberis Cows, horses Mastitis 11, 16, 30, 43

aIsolates belonging to S. dysgalactiae subsp. equisimilis react with antigen G with comparable prevalence of antigen C reaction, whereas reaction with antigens A and L are
less common; isolates belonging to S. phocae react also with antigen G; isolates belonging to S. porcinus react also with antigens P, U, and V. Nonhemolytic variant can be
recovered among isolates of S. agalactiae and S. dysgalactiae subsp. equisimilis.
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group C and G between pets and humans seems con-
ceivable (34). This bacterium is responsible for arthritis
in cats and humans (35) and endocarditis and skin, soft
tissue, and urinary tract infections in dogs and humans.
Skin lesions seem to represent the entry portal for estab-
lishing infections in humans (34, 36). In contrast, S. equi
subsp. equi, belonging to Lancefield’s groups C and G
and responsible for strangles disease in horses, is exclu-
sively animal adapted (32).

Group R
S. suis is a major pathogen for swine and causes men-
ingitis, endocarditis, sepsis, arthritis, and pneumonia. In
humans, S. suis is mostly responsible for meningitis and
STSS. It is a well-recognized zoonotic agent, and indeed,
human exposure to swine and swine-derived food prod-
ucts is a risk factor for infection by S. suis (37, 38). The
production of a capsule seems to have a major role in
pathogenesis, and capsular types 2 and 14 are the most
prevalent among S. suis isolates that cause disease in
humans (39).

Non-Lancefield Streptococci
All other streptococci lacking the Lancefield antigens are
thus considered non-Lancefield (or nontypable) strep-
tococci. Several are frequently encountered in animals
and are detailed below.

S. uberis
If hygienic measures have been effective to control the
dissemination of S. agalactiae, the same cannot be said
for S. uberis, which remains a major animal pathogen
and a leading cause of mastitis in cattle (15, 16). This
nonserotypable organism has an environmental origin,
possesses a flexible metabolism, and is almost exclu-
sively adapted to cattle (40). Infections can occur by
a variety of strains, which in some cases are able to per-
sist and propagate among different cows within a herd
(41, 42). Rarely, it has been responsible for mastitis in
heifers, and even more rarely it has been isolated from
shrimps (43–45). The control of S. uberis propagation is
more challenging than that of other Streptococcus spp.
probably because of its ability, among others, to survive
on bedding material (46, 47).

S. iniae
Another nonserotypable species is S. iniae, which was
primarily isolated from diseased dolphins and was sub-
sequently confirmed as a major fish pathogen and as
responsible for soft tissue infections in humans with
zoonotic features (Table 1) (48–52).

S. pneumoniae
S. pneumoniae is a major streptococcal pathogen of
humans and is responsible for serious infections such
as pneumonia and meningitis; reports of infections in
animals are extremely rare and concern horses with
respiratory tract infections (53). A recent publication
also reported S. pneumoniae, probably of human origin,
in wild and captive chimpanzees (54). The spread of
this pathogen due to the migration of infected animals
to other communities or the reintroduction into wild
populations of formerly captive animals might be a real
danger.

Viridans streptococci
These organisms were defined as viridans because of
the hemolytic features described above that produce a
greenish pigmentation on blood agar, their absence of
Lancefield antigens, and their resistance to the chem-
ical compound optochin. Generally, viridans strepto-
cocci are implicated in the establishment of dental
caries, arthritis, and infective endocarditis in humans
(50–52).

Certain Streptococcus species, including S. sobrinus
and S. mutans, the first representative of the mutans
group; S. salivarius, S. vestibularis, and S. infantarius
from the salivarius group; the anginosus group, includ-
ing S. anginosus, S. constellatus, and S. intermedius;
the sanguinus group, including S. sanguinis, S. parasan-
guinis, and S. gordonii; and most species of the mitis
group, including S. mitis, S. oralis, S. cristatus, S. in-
fantis, and S. peroris, have exclusive human adapta-
tion; others have been found only in animal hosts,
such as S. macacae from monkeys, S. ferus from wild
rodents, S. orisratti from rats, and S. hyointestinalis
and S. hyovaginalis from swine, with no associated
diseases (55–59). Three species of the viridans group,
namely S. sobrinus, S. criceti, and S. ratti, have been
reported from humans and experimental rats, whereas
S. alactolyticus has been found in swine, dogs, and
humans (56, 60, 61); S. downei was isolated first
from a monkey and more recently from human dental
plaque (62, 63). Another species of the viridans group,
S. pluranimalium, has been reported rarely. It was
first reported in 1999 from bovine mastitis, and few
clinical human cases have been reported since then (64,
65).

This brief introduction does not pretend to be ex-
haustive. The reviews by Póntigo et al. and Facklam
provide a comprehensive nomenclature and classifica-
tion of streptococci based on molecular and phenotypic
features, respectively (1, 66).
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EVOLUTION OF ANTIMICROBIAL
RESISTANCE IN VETERINARY
STREPTOCOCCI
Monitoring Programs
Prevalence data on antimicrobial resistance were prin-
cipally obtained through dedicated studies performed
at the scale of a region, a country, or a consortium of
countries. However, only monitoring programs can give
an evolutionary picture of antimicrobial resistance rates
over time. Consequently, surveillance systems are highly
valuable to follow trends and detect emergent resistant
phenotypes.

Several national surveillance and monitoring pro-
grams in veterinary medicine exist in Europe (67), in-
cluding the Monitoring of Antimicrobial Resistance
and Antibiotic Usage in Animals in the Netherlands
program, the Swedish Veterinary Antimicrobial Re-
sistance Monitoring program (SVARM), the Danish
Integrated Antimicrobial Resistance Monitoring and
Research Program, the German Resistance Monitoring
in Veterinary Medicine program, and the French sur-
veillance network for antimicrobial resistance in path-
ogenic bacteria of animal origin (RESAPATH). Two
similar programs cover the North American continent,
the National Antimicrobial Resistance Monitoring Sys-
tem for Enteric Bacteria in the United States and the
Canadian Integrated Program for Antimicrobial Resis-
tance Surveillance, and one reports Japanese data (the
Japanese Veterinary Antimicrobial Resistance Moni-
toring program). An additional industry-based pan-
European monitoring program commissioned by the
Executive Animal Health Study Center investigates
pathogens from farm (VetPath) and companion animals
(ComPath). In addition to the recurrently criticized lack
of harmonization (67, 68), a major feature of most
programs is their main focus on bacteria of animal origin
but of relevance for human health, such as zoonotics
and commensal indicators. Accordingly, streptococci
of animal origin were poorly included, and data on their
resistance to antimicrobials remain limited at a global
scale. Indeed, only two monitoring programs reported
data on a long-term basis: the Monitoring of Anti-
microbial Resistance and Antibiotic Usage in Animals
in the Netherlands program from 2002 to 2008 and
RESAPATH from 2006 until today. Other programs
such as the Swedish Veterinary Antimicrobial Resis-
tance Monitoring program (in 2002), the German Re-
sistance Monitoring in Veterinary Medicine program,
and ComPath/VetPath have also documented anti-
microbial resistance in streptococci, but on a sporadic
basis.

Different Methodologies to
Determine Antibiotic Resistance
Standard surveillance programs rely on phenotypic
methods that are used in routine diagnostic laboratories.
The most frequently used methods are antibiograms per-
formed by disc diffusion and MIC performed by broth
microdilution. These techniques generate qualitative
or quantitative results, respectively, that are then inter-
preted according to official guidelines (EUCAST, CLSI,
Antibiogram Committee of the French Microbiology
Society (CA-SFM), etc.) so that the studied isolates can
be classified as susceptible, intermediate, or resistant to
the tested antibiotics. In the surveillance systems, the
genotypic techniques are only optionally implemented as
a second-line characterization.

This traditional approach may be disrupted by the de-
mocratization of next-generation sequencing methodolo-
gies. Recently, several publications proved the usefulness
of large-scale genomic analyses for the efficient detection
of resistance mechanisms and capsular types (69), for the
sequence-based prediction of beta-lactam resistance using
the penicillin-binding protein (PBP) transpeptidase sig-
natures (70), and for the prediction of the antimicro-
bial profile and its potential evolution toward resistance
over time (71). This is, of course, not an exhaustive list of
publications using next-generation sequencing, especially
in a field that is progressing very rapidly. There are still a
couple of drawbacks to the direct implementation of next-
generation sequencing in diagnostic laboratories, includ-
ing the time needed to generate results (which exceeds the
48 hours traditionally needed for phenotypic testing) and
the price. However, this methodology is so powerful that
it will undoubtedly be used in monitoring programs, at
least for long-term surveillance purposes.

Evolution of Resistance in Streptococcus spp.
The main Streptococcus species studied through moni-
toring programswere S. uberis and S. dysgalactiae isolated
from bovine mastitis. S. agalactiae is also still considered
a major streptococcal pathogen associated with bovine
subclinical and mild to moderate clinical mastitis, but its
incidence has drastically fallen in the past 20 years due
to hygiene measures and guidelines for good practices.
Consequently, S. agalactiae is now only rarely isolated
from cattle mastitis, and the numbers are too small to be
reliably reported. The evolution of antimicrobial resis-
tance thus focuses on S. uberis and S. dysgalactiae. Here,
we review data on resistance to the main antibiotics used
in the treatment of animal infections due to S. uberis and
S. dysgalactiae, i.e., penicillin G, tetracyclines, erythro-
mycin, lincomycin, enrofloxacin, and streptomycin.
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Evolution of Antimicrobial
Resistance in the Netherlands
The Monitoring of Antimicrobial Resistance and Anti-
biotic Usage in Animals in the Netherlands program
reported antimicrobial resistance data on streptococci
isolates collected from milk in the context of intramam-
mary infections, but the monitoring of these pathogens
stopped in 2008. From 2002 to 2008, the overall prev-
alence of resistance was quite stable for most antibi-
otics, with a seemingly upward trend for a few (72).
Resistance to beta-lactams (represented by penicillin G
and cefalotin) was only detected in rare cases of S. uberis
and was absent in S. dysgalactiae. The highest rates
of resistance were for tetracyclines (around 40% for S.
uberis and 70% for S. dysgalactiae) and lincomycin (also
around 40% for S. uberis and 25% for S. dysgalactiae).
The discrepancy between the prevalence of tetracycline
resistance in S. dysgalactiae compared to S. uberis is
in accordance with what has been reported in other
monitoring programs (see below) and numerous studies
(see “Prevalence of Resistance to Macrolides among
Streptococci of Bovine Origin” below). Resistance to
erythromycin (around 20% for S. uberis and 10% for
S. dysgalactiae) was systematically lower than for lin-
comycin, suggesting a significant prevalence of non-erm-
mediated mechanisms of resistance.

RESAPATH, the Ongoing
French Monitoring Program
RESAPATH is the only ongoing and long-term moni-
toring program for, among other topics, resistance to
antimicrobials in streptococci in Europe. For S. uberis,
from 2006 to 2015, antimicrobial resistance was tested
on 600 to 1,500 isolates, depending on the nature of the
antibiotics, and the global trend was quite stable for all
antibiotics (Fig. 1). The highest prevalence of resistance
was observed for enrofloxacin, which may be explained
by the intrinsic low-level resistance of streptococci to
fluoroquinolones. Indeed, in the RESAPATH network,
resistance is defined as the addition of both resistant and
intermediate phenotypes, which may lead to the over-
estimation of the prevalence of resistance in the case of
fluoroquinolones. For erythromycin and lincomycin, the
resistance rates decreased from 24% to 17% between
2006 and 2007, were stable during next 6 years until
2013, and increased again in 2014 to 2015 up to around
22% of resistant isolates. Both curves matched perfectly,
indicating a cross-resistance to macrolides-lincosamides
involving erm genes (see “Resistance to Macrolides, Lin-
cosamides, and Streptogramin B” below). Tetracycline
resistance is following a very slow upward trend (from

14% in 2006 to 21% in 2015), to be confirmed in the
coming years. Finally, streptomycin is the antibiotic
presenting the lowest prevalence of resistance (from 11
to 16% over the 10-year period of 2006 to 2015), albeit
the highest among resistance to aminoglycosides. In-
deed, rates of resistance to kanamycin and gentamicin
only reached 5% and 3%, respectively, in 2015. How-
ever, these resistances are of major importance since
they may result in the loss of synergy between amino-
glycosides and beta-lactams, which is a frequently used
combination in veterinary practice. Taken together,
these data show globally high basal levels of resistance
of streptococci to antimicrobials in 2006 and a slight
but increasing prevalence, which will have to be moni-
tored in the near future.

The number of S. dysgalactiae isolates that can be
considered for global trends in prevalence is around
10 times lower than for S. uberis (25 compared to 235
isolates), so that the prevalence rates are subject to wider
variations. However, the rates observed are different
though more stable than for S. uberis. The antibiotic
with the highest prevalence of resistance by far was
tetracyclines. Up to 85% of the S. dysgalactiae isolates
were resistant to this drug, which is in accordance
with what has been reported in other studies (see “Preva-
lence of Resistance to Macrolides among Streptococci
of Bovine Origin” below). Enrofloxacin presents fluc-
tuating resistance rates of around 50%. Finally, eryth-
romycin, lincomycin, and streptomycin present a stable
prevalence of around 22%, 12%, and 6%, respectively.
The 10% discrepancy between erythromycin and lin-
comycin resistance rates deserves special attention since
it may signal a divergence in the resistance mechanisms
involved compared to S. uberis.

Though originating from two countries only, these
evolution rates constitute a starting point to address the
issue of resistance in Streptococcus spp. in veterinary
medicine. In line with these trends, the next sections will
detail the epidemiology and mechanisms of resistance
of the antibiotics mentioned above.

RESISTANCE TO MACROLIDES,
LINCOSAMIDES, AND STREPTOGRAMIN B
Erythromycin was the first macrolide discovered in
1952 by McGuire as a natural product originating from
Streptomyces erythreus. The other macrolides were de-
rived from erythromycin by semi-synthesis, and their
core unit consists of a lactone ring that can be consti-
tuted by 14, 15, and 16 carbon atoms. These molecules
are bacteriostatic in staphylococci and bactericidal in
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FIGURE 1 Ten-year evolution of resistance in France in (A) S. uberis and (B) S. dysgalactiae.
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streptococci, inhibiting the protein translocation by
binding to the 23S or 50S ribosomal subunit at peculiar
residues (i.e., the guanine 2505, the uridine 2609, and
the adenines 2058, 2059, and 2062) (73). Macrolides
have a broad spectrum of action, being effective against
Gram-positive and Gram-negative bacteria and intra-
cellular pathogens, and are reputed as valuable agents
for their good pharmacodynamics properties, their rel-
atively few side effects, and their good penetration in
tissues. Lincosamides, including lincomycin and clinda-
mycin, together with streptogramin B, including pris-
tinamycin and quinupristin, are structurally unrelated to
macrolides, but they have a common mechanism of ac-
tion and, as a consequence, resistance to all these classes
of antibiotics is crossed. In addition to the treatment of
infections caused by intracellular pathogens, the usage
of macrolides and lincosamides in human clinics is
principally dedicated to the treatment of uncomplicated
infections in patients who are allergic to beta-lactams. In
veterinary medicine, macrolides and lincosamides are
available as in-feed and injectable formulations and are
used for the treatment of a variety of diseases ranging
from respiratory tract infections to infective mastitis in
food-producing animals, especially swine and cattle (74,
75). Frequently, macrolides and lincosamides are used in
combination with other drugs such as aminoglycosides,
ampicillin, colistin, tetracyclines, sulfonamides, and tri-
methoprim (76). Certain macrolides were also used as
growth promoters (council regulation EC2821/98, 17
December 1998). Unfortunately, shortly after the intro-
duction of macrolides in human therapy, resistant iso-
lates were recovered; the emergence of resistant isolates
has also occurred in animals. In the following subsec-
tions we will describe the most common mechanisms
of resistance to macrolides, lincosamides, and strepto-
gramins B found in streptococci of animal origin.

Macrolides, Lincosamides, and Streptogramins
B Resistance Determinants
Target modification
Ribosomal mutation in the residues crucial to the bind-
ing of macrolides results in cross-resistance to all mac-
rolides, lincosamides, and streptogramins B conferring
the so-called MLSb phenotype. Human clinical isolates
with such mutations have been sporadically observed,
probably because this mechanism requires mutations in
all the operon copies encoding the ribosomal subunits.

Target protection
The methylation of the adenine at position 2058 is
enough to confer an MLSb resistance phenotype. This

reaction is mediated by the methylases encoded by the
erm (erythromycin ribosome methylation) gene family,
originated by the natural producers of macrolides. In
the presence of an Erm methylase, resistance to lincos-
amides and streptogramin B can be either constitutive or
induced by the presence of erythromycin (73). Overall,
this mechanism is the most prevalent method conferring
resistance to macrolides in human and veterinary clini-
cal isolates. Currently, about 40 variants of the erm gene
have been reported, with erm(B) gene being the most
prevalent (77). It is often located on mobile genetic
elements (MGEs) and associated with genes conferring
resistance to tetracyclines (see below). These two fac-
tors have consistently contributed to the dissemination
of resistance to macrolides (78).

Efflux
The second most common mechanism of resistance to
macrolides in streptococci is represented by the efflux
mediated by the Mef efflux pumps. The mefA gene was
described for the first time in S. pyogenes, and other
variants have been reported since then that are princi-
pally represented by mefE and mefI (79). These efflux
systems confer resistance to 14- and 15-carbon atom
macrolides only, determining an M phenotype. Tran-
scription of mef genes is coupled with the expression
of msr genes encoding for an ATP-dependent efflux sys-
tem. The presence of mef genes seems to be necessary to
confer macrolide resistance (80). Genes of themef family
are often located on genetic units that can transfer by
transformation, such as the MEGA (macrolide efflux
genetic assembly) element harboring the mefE gene and
conjugative transposons such as the Tn1207.3 harbor-
ing themefA variant and the 5216IQ composite element
harboring the mefI gene (81–83). With a lower preva-
lence, the mreA efflux pump has been reported as well
(84). Finally, genes of the lsa family have been described,
conferring cross-resistance to lincosamides, strepto-
gramin A and pleuromutilins. These genes, encoding
ATP-binding proteins, most likely promote the efflux of
the antibiotics (192).

Drug modification
Lincosamides can be inactivated by adenylation in po-
sition 3 by a 3-lincosamide-O-nucleotidyltransferase
encoded by the linB gene conferring an L phenotype
(85). The linB gene was first found in a clinical isolate
of E. faecium. Its origin remains unknown because
no similar sequence has been found in natural lincos-
amide producers. The linB gene was reported sporadi-
cally; however, its transfer to S. agalactiae has occurred
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and has been reported from a human clinical isolate
in Canada (86). After the first description, the linB
gene was renamed lnuB. Later, Achard et al. unveiled
the mechanism behind the lincomycin resistance in
an S. agalactiae isolate that was surprisingly susceptible
to clindamycin. It consisted of a novel nucleotidyl-
transferase encoded by the lnuC gene (87). The LnuD-
adenylating clindamycin was later discovered in S.
uberis (88).

Inactivation of macrolides can also be caused by
phosphotransferases encoded by the mph gene families
with differential affinity for the different macrolide types
and lincosamides according to the variant of the mph
gene expressed (89).

Prevalence of Resistance to Macrolides
among Streptococci of Bovine Origin
Studies of the resistance to macrolides in streptococci
of bovine origin have focused on isolates responsible for
clinical and subclinical mastitis. During an investigation
of different streptococcal species from bovine masti-
tis during 2002 to 2003 in Portugal, Rato et al. found
a constitutive MLSb phenotype in 11/60 S. agalactiae
isolates; among those, 10 isolates were positive for the
presence of an erm(B) gene and one harbored an erm(A)
gene (90). Among S. dysgalactiae subsp. dysgalactiae
isolates, 4/18 demonstrated a constitutive MLSb phe-
notype, with the presence of erm(A) and erm(B) in 1 and
3 isolates, respectively, whereas all the MLSb-resistant
S. uberis isolates (8/30) harbored an erm(B) gene. An
L phenotype was demonstrated in 11 isolates, 3 be-
longing to S. dysgalactiae subsp. dysgalactiae and 8 to
S. uberis species, all of them harboring an lnuB gene.
In 2005, Duarte et al. found that 8.5% (9/38) of S.
agalactiae isolates from Brazil were resistant to eryth-
romycin with a constitutive MLSb phenotype. All of
the isolates harbored an erm(B) and an mreA gene; six
of these coharbored erm(A) and were co-resistant to
tetracyclines (29). Contemporaneously, Dogan et al.
reported a 3.6% prevalence of erythromycin-resistant
isolates among 83 S. agalactiae from bovines in New
York. The resistance was mediated by Erm(B) in all iso-
lates, and coresistance to tetracyclines was observed
as well (91). A study from China was published in 2012
on 55 S. agalactiae isolates recovered from bovine
mastitis during an undetermined period and reported
a 23.5% rate of resistance to erythromycin. All iso-
lates harbored the erm(B) gene (92). Pinto et al. analyzed
29 S. agalactiae isolates collected between 1980 and
2006 in Brazil. They found that 27% of the isolates were
resistant to erythromycin, with erm(B) as the most

prevalent gene, followed by the erm(A) variant. In this
study, the presence of a mef allele was reported as well
(93).

More recently, our investigation of 76 S. agalactiae
isolates demonstrated an MLSb phenotype in eight iso-
lates, including four isolates with a constitutive pheno-
type and four with an inducible phenotype. Six isolates
harbored an erm(B) gene, and the two remaining ones
harbored the erm(A) variant. In the same study, 4/32
isolates of S. dysgalactiae demonstrated the presence
of an erm(B) gene; in this case also, the constitutive or
inducible phenotypes were equally distributed (94). The
erm(B) gene has also been confirmed as the most com-
mon gene conferring resistance to macrolides among
S. dysgalactiae isolates; for instance, it was present in
4/4 isolates detected in dairy herds in the southwestern
United States (95). We conducted a study to characterize
the erythromycin resistance of 125 isolates of S. uberis
collected from bovine mastitis during 2007 to 2008
in France. Overall, 111/125 isolates demonstrated an
MLSb phenotype, constitutive in 42.3% of the isolates
and inducible in the remaining ones. An erm(B) gene was
present in all isolates. In this collection, 14 isolates dem-
onstrated an L phenotype and harbored an lnuB gene.
In one isolate, the less common lnuD gene was found
as well (96). Contemporaneously, another study, con-
ducted on dairy cows in Mayenne, France, confirmed
MLSb resistance in 12 (12/55, 22%) S. uberis isolates,
which all were positive for the erm(B) gene. An lnuB
gene was present in four isolates with the L phenotype
(97). In S. uberis, emergence of the mphB gene was
documented in 2008 (98), but propagation of this mech-
anism has not occurred in a large scale.

Among others, the German Resistance Monitoring
in Veterinary Medicine program has provided exten-
sive data from Germany from 2007 to 2010 (Table 2).
Several other studies from different parts of the world
and based on the phenotypic characterization of mas-
titis isolates provided a comprehensive picture of the
problematic link to the rise of resistance to macrolides
in streptococci causing mastitis. An overview is pro-
vided in Table 2, and for exhaustive reports on temporal
and geographical evolution of macrolide and lincos-
amide resistance in streptococci, we suggest the re-
ports from Hendriksen et al. in 2008 and Thomas et al.
in 2015 (99, 100). Overall, the lowest prevalence of
macrolide and lincosamide resistance was observed in
Sweden (101), and large differences in prevalence were
observed among countries. However, no major varia-
tion was observed from one year to another in a single
country.
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TABLE 2 Erythromycin and lincosamide resistance in streptococci in animal hostsa

Animal
host Country Year

Bacterial
species

No. of
isolates

Genetic determinants
Percentage of

resistance (%) to

ReferencemefA mefE msr ermA ermB lnuB lnuD mph mreA M L

Cattle USA ND S. dysgalactiae 152 10 25.6 136

S. uberis 133 9 42.9

Cattle France S. uberis 55 0 12 4 22 97

Cattle USA ND S. dysgalactiae 4 0 0 0 4 100 95

S. uberis 20 0 0 0 12 60

Cattle China ND S. agalactiae 55 0 0 13 23.5 92

Cattle Brazil 1980–2006 S. agalactiae 29 5 4 7 0 31 20.7 93

Cattle France 1984–2008 S. agalactiae 76 0 2 6 10.1 94

S. dysgalactiae 32 0 0 4 ND

S. uberis 101 0 0 75 5 1 ND

Cattle Brazil 1995–2000 S. agalactiae 38 0 6 9 0 9 8.5 8.5 29

Cattle France 1995–2000 S. agalactiae 8 0 0 134

S. dysgalactiae 41 16.7 11.9

S. uberis 50 28 36

Cattle Argentina 1999–2003 S. agalactiae 36 16.7 19.4 232

S. dysgalactiae 8 12.5 12.5

Cattle USA 2000–2002 S. agalactiae 83 0 0 3 3.6 91

Cattle Portugal 2002–2003 S. agalactiae 60 0 1 10 0 18.3 18.3 90

S. dysgalactiae 18 0 1 3 3 22.2 38.9

S. uberis 30 0 0 8 8 26.7 26.7

Cattle Sweden 2002–2003 S. agalactiae 6 16.7 16.7 133

S. dysgalactiae 152 0 0.7

S. uberis 113 0 0
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Cattle Korea 2004–2008 S. agalactiae 5 0 60 233

S. bovis group 24 12.5 33.3

S. uberis 99 34.3 41.4

S. oralis 30 36.7 36.7

S. salivarius 13 0 69.2

S. intermedius 7 42.8 71.4

Cattle Turkey ND S. agalactiae 5 0 40 169

S. uberis 18 11 17

Cattle France 2007–2008 S. uberis 125 0 0 111 3 0 ND ND 96

Cattle Estonia 2007–2009 S. agalactiae 1.3 6.2 168

S. dysgalactiae 6.7 7.8

S. uberis 8.2 6.6

Cattle Germany 2007–2010 S. agalactiae 101 2 13 0 15 16.8 ND 234

S. dysgalactiae 100 2 1 0 10 11 ND

S. uberis 102 2 2 0 5 17.6 ND

Cattle Switzerland 2010–2012 S. dysgalactiae 46 2.2 2.2 238

S. uberis 208 10.6 10.6

Cattle Switzerland 2011–2013 S. dysgalactiae 213 ND 37.4 167

S. uberis 1,228 ND 49.7

Swine EU 1987–1997 S. suis 404 55.3 139

Swine Denmark 1989–2002 S. suis 103 39 40.8 237

Swine France 1996–2000 S. suis 110 78.2 78.2 235

Swine Belgium 1999–2000 S. suis 87 0 62 71 71 236

Swine Spain 1999–2001 S. suis 151 90.7 87.4 143

Swine Italy 2003–2007 S. suis 57 0 44 81 81 140

Swine China 2005–2007 S. suis 421 67.2 68.4 142

Swine China 2005–2012 S. suis 96 18 0 35 0 38.5 38.5 170

Swine China 2008–2010 S. suis 106 51 51 70 67.9 67.9 146

Swine Brazil 2009–2010 S. suis 260 46.5 84.6 144

Swine Korea 2010–2013 S. suis 227 39 218 94 95.6 104

aND, not determined; M, macrolides; L, lincosamides.
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Prevalence of Resistance to Macrolides
among Streptococci of Porcine Origin
Macrolides, lincosamides, and streptogramins B are
widely used for the treatment of infections in swine.
Unfortunately, it appears that the usage of these drugs
has influenced the emergence of resistance in S. suis
(102). High rates of resistance to these drugs were ob-
served over time, ranging from 52% (11/21 isolates)
in the first observation in Norway in 1986 (103) to
94% (216/226 isolates) in Korea during 2010 to 2013
(104). The most prevalent genetic determinant is the
erm(B) gene, whereas mefA/E were sporadically de-
tected in human isolates (105). Often, such resistances
occur together with tetracycline resistance (see below).
S. suis may also act as a reservoir of lincosamide resis-
tance genes, as exemplified by the emergence of the
lnuE gene, previously identified in S. suis, in staphylo-
coccal isolates (106). The report from Hendriksen
et al. shows a certain variability of erythromycin re-
sistance in S. suis among European countries during
2002 to 2004 (107). In addition, other streptococcal
species were rarely found to cause diseases in swine.
Within the framework of the BfT-GermVET program,
Lüthje and Schwarz reported the presence of S. dys-
galactiae subsp. equisimilis in diseased swine, with 21
isolates demonstrating resistance to macrolides. Among
those, 13 harbored an erm(B) gene, one an erm(B) gene
together with mefA and msrD, and one a lnuB gene
(108).

In all, such an alarming prevalence of macrolide re-
sistance in a relevant zoonotic pathogen such as S. suis
highlights the need to prevent infections through ap-
propriate hygienic measures.

Prevalence of Resistance to Macrolides
among Streptococci from
Non-Food-Producing Animals
In Brazil, six isolates of S. dysgalactiae subsp. equisimilis
from horses were included in a study of antimicrobial
resistance in humans, and prevalence data on resistance
to macrolides were similar in isolates from the two
sectors (109). In Germany, an S. equi subsp. zooepide-
micus isolate with an M phenotype was recovered from
a horse and harbored amefA and anmsrD gene. S. canis
resistant to macrolides, mostly with an MLSb pheno-
type, has been reported from diseased dogs in Denmark
and Germany (110). From dogs and cats, six S. dys-
galactiae subsp. equisimilis macrolide-resistant isolates
were found in Germany with five isolates harboring an
erm(B) gene and one harboring amefA and amsrD gene
(108).

TETRACYCLINES
Tetracyclines, which were discovered in the late 1940s,
are bacteriostatic antibiotics that block bacterial protein
synthesis by preventing the attachment of aminoacyl-
tRNA to the ribosomal acceptor A site (111). Because
of their broad-spectrum activity against both Gram-
positive and Gram-negative bacteria, they rapidly be-
came one of the most widely used antibiotics (112), and
consequently, the first resistant isolate was reported in
1953 in Shigella dysenteriae (113). Tetracycline resis-
tance rapidly and broadly disseminated in bacteria of
human, animal, and environmental origin and is now
considered one of the most frequently seen resistances
to antimicrobials (114). In humans, tetracyclines have
largely been supplanted by beta-lactams, while they re-
main one of the main classes of antibiotics used in vet-
erinary medicine (115–117). In animals, tetracyclines
are also considered as growth-promoting factors when
mixed with food at subtherapeutic levels, in order for
food-producing animals to gain weight more quickly
(111). This practice was banned in Europe at the latest
on 1 January 2006 since it can promote resistance se-
lection, as exemplified by the increase of vancomycin-
resistant enterococci in animals through the use of the
glycopeptide avoparcin (118). However, growth pro-
moters are still authorized in many countries world-
wide, such as in the United States, and tetracycline is
again the most frequently used antibiotic class (117).
The past and present excessive use of tetracyclines first
of all hampers the efficacy of these molecules, but may
also have unexpected side effects such as the selection
of hypervirulent S. agalactiae clones worldwide and in-
creasing numbers of neonate infections (119).

Tetracycline Resistance Determinants
A total of 46 tet or otr genes have been identified as
tetracycline resistance determinants in 126 genera (120,
121). They are commonly divided into two main groups
characterized by their mode of action: the genes coding
for efflux proteins and those coding for ribosomal pro-
tection enzymes (120). In Streptococcus spp., tet(K),
tet(L), tet(M), tet(O), tet(Q), and tet(T) are the most
frequently reported genes (111, 113, 121). Tet(K) and
Tet(L) code for membrane-associated efflux systems
that share nearly 60% amino acid identity (111) and
confer resistance to tetracycline but not to minocycline.
The tet(K) gene was discovered on a pT181 plasmid
in Staphylococcus aureus (122), whereas tet(L) was
found associated with small non-conjugative plasmids in
streptococci (123). In contrast, Tet(M), Tet(O), Tet(S),
Tet(Q), Tet(T), and the more recently identified Tet(W)
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are enzymes that protect the ribosome from the action
of tetracycline, a mechanism conferring resistance to
all available antibiotics of the tetracycline family. The
tet(M) gene was concomitantly identified with tet(L)
on streptococcal plasmids (123). It has now been ex-
tensively detected and studied in both Gram-negative
and Gram-positive species and is often found on ICEs of
the Tn916-Tn1545 family (124–127). Since the Tn916-
Tn1545 elements also encode, among others, resistance
to erythromycin and kanamycin, these mobile determi-
nants promote the emergence of multiresistant isolates,
as exemplified by their frequent association with the
tet(M) and erm(B) resistance genes in streptococci iso-
lates (120). The dissemination of the remaining pro-
tecting enzymes—Tet(O) (which was first discovered in
Campylobacter coli [128]), Tet(S) (discovered in Listeria
monocytogenes [129]), Tet(Q) (first described in Bacte-
roides species [130]), and the closely related Tet(T) (first
detected in S. pyogenes [131])—was less efficient than
the diffusion of Tet(M), probably because of the locali-
zation of the corresponding genes, which have never
been reported on conjugative transposons such as Tn916
and Tn1545, mentioned above. Of note, Tet(M), Tet(O),
Tet(S), and Tet(Q) are closely related since they share
around 78% sequence identity (113), even though they
can easily be differentiated using specific primers. Tet(W)
is the latest protection enzyme detected in streptococci
and was first identified in Butyrivibrio fibrisolvens (132).

Prevalence of Tetracycline Resistance among
Streptococci of Bovine or Ovine Origin
Most studies reporting tetracycline resistance in isolates
of bovine or ovine origin were performed on S. uberis,
S. dysgalactiae, and S. agalactiae in the context of clin-
ical or subclinical mastitis. Tetracycline is often the an-
tibiotic presenting the highest prevalence of resistance.
When considering the CLSI breakpoints which catego-
rize as tetracycline resistant all isolates presenting an
MIC of >4 mg/liter, resistance rates in S. uberis ranged
from 1.8 to 4% in Sweden between 2002 and 2009 up
to 60% in Portugal in 2003 (90, 101, 133), with inter-
mediate prevalence of 12.9 to 22% in France, 15% in
England, 27.1% in the United States (1997 to 1999), and
44% in Italy (99, 134–136). In S. dysgalactiae preva-
lence is overall higher, ranging from 6% in Sweden to
76.6% in the Netherlands and 100% in Portugal and
France (90, 94). Prevalence rate figures are less fre-
quently available for S. agalactiae but also suggest a very
high frequency of tetracycline resistance, with 33.4% in
Sweden in 2002 and 37.5% in France in 2000 (133,
134).

Only a few studies have reported the molecular char-
acterization of tet resistance genes (Table 3) in strepto-
cocci of bovine origin. When reported, the tet genes did
not have a bacterial specificity and were often described
in combination, such as tet(M)/tet(O), tet(M)/tet(K), or
tet(O)/tet(K) (90, 94, 137, 138).

Most studies detailed here were performed in Europe
in the 2000s. Having a better and updated view of the
evolution of resistance in veterinary streptococci would
require monitoring of tetracycline resistance in bacteria
from animal origins at a larger scale.

Prevalence of Tetracycline Resistance
among Streptococci of Porcine Origin
In line with S. suis being the major Streptococcus spp. in
swine, numerous publications have reported antimicro-
bial resistance in this pathogen, mostly in diseased ani-
mals. Tetracycline, as already noted for streptococci of
bovine or ovine origin, is often the antibiotic presenting
the highest prevalence of resistance. The lowest rates were
reported in the oldest European isolates studied (no re-
sistance in Danish isolates collected in 1967 to 1981 and
7.7% in Swedish isolates collected in 1992 to 1997) and in
the context of the ARBAO-II study performed in 2002 to
2004 (48% resistance in the Netherlands and 52.2% in
Denmark in 2003) (102, 107). Higher rates were then re-
ported in the United States (66.7% in 1986), Spain (68.0%
in 2004), Poland (64.0% in 2004), Japan (86.9%), Italy
(89.5%), and a pan-European study (75.1%) (107, 139–
141). Several studies showed resistance rates greater than
90%, with 91.7%, 95.4% and 97.9% in China, Spain,
and Brazil, respectively (142–144).

A few molecular studies detailed the tet genes re-
sponsible for the phenotypic resistance detected. Tet(O)
is by far the most commonly detected enzyme in S. suis,
while Tet(M) has also been reported (Table 3), either
alone or in association with other Tet determinants,
in particluar Tet(O). The distribution of these tet genes
may also vary depending on the serotype, but further
work on larger cohorts is needed to have statistically
relevant data. The tet(W) gene was repeatedly reported
in S. suis, initially in a human patient in Italy, but then
also in pig isolates (140, 145, 146). Of note, the only
occurrence of tet(B) in streptococci was reported in 17
S. suis isolates (17/111, 15%) in the United States (147).

Tetracycline Resistance among
Other Streptococci
Tetracycline resistance in S. canis was reported from
diseased cats and dogs, with a prevalence of 32.1% in
France, 23.5% in Japan, and 27% in Portugal (including
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TABLE 3 Distribution of the tetracycline resistance genes in streptococci in animal hosts

Animal host Country Year
Bacterial
species

No. of
isolates

Tetracycline genes

No. of TetR
isolatesb

Percentage of
resistance (%) Reference

Efflux
Ribosomal
protection

tet(K) tet(L) tet(M) tet(O) tet(S)

Cattle USA 1990 S. agalactiae 39 0 0 NTa 7 NT 10 25.6 137

S. dysgalactiae 21 1 1 NT 1 NT 9 42.9

S. uberis 11 1 NT 1 NT 2 18.2

Cattle France 1984–2008 S. agalactiae 76 NT NT 16 13 1 30 39.5 94

S. dysgalactiae 32 NT NT 5 4 4 32 100.0

S. uberis 101 NT NT 23 36 3 62 61.4

Cattle Portugal 2002–2003 S. agalactiae 60 34 NT 13 20 0 34 56.7 90

S. dysgalactiae 18 0 NT 6 6 0 18 100.0

S. uberis 30 0 NT 2 9 8 18 60.0

Ovine Italy 2004–2014 S. uberis 51 9 NT 12 12 NT 18 35.3 138

Pig USA 1986 S. suis 21 0 0 5 NT NT 14 66.7 103

Pig Denmark 1989–2002 S. suis 103 NT 0 11 6 0 25 24.3 237

Pig Italy 2003–2007 S. suis 57 0 0 2 38 0 51 89.5 140

Pig China 2005–2012 S. suis 62 NT NT 53 42 NT 57 91.9 170

34 NT NT 24 9 NT 28 82.4

Pig China 2008–2010 S. suis 106 NT 2 16 86 1 105 99.1 146

Dog/cat France 2010 S. canis 112 NT 1 31 16 5 36 32.1 148

Dog/cat Japan 2015 S. canis 68 0 0 13 10 NT 16 23.5 149

Dog/cat/horse/
humanc

Portugal 2000–2010 S. canis 85 NT 1 11 8 1 23 27.0 34

aNT, not tested.
bDiscrepancies between the number of tetracycline-resistant isolates and the genes identified may be due to either unidentified genes or to isolates presenting an association of two or three tet genes.
cHuman isolates could not be individualized.
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a few isolates from horses and humans) (34, 148, 149).
In these studies, tetracycline resistance was due princi-
pally to the presence of the tet(M) and tet(O) genes,
alone or in combination. A study performed in Belgium
on healthy individually owned cats and groups of cats
noted a higher prevalence of tetracycline resistance in a
cattery (52%) compared to individual animals (22.2%),
most likely due to the clonal transmission of resistant
strains in the cattery (150).

BETA-LACTAM RESISTANCE
Beta-lactams are the largest family of antibiotics available in
both human and veterinary medicine. All members of this
family act on the bacterial cell wall by covalently blocking
the PBPs and thus impairing the continuous building of this
protecting structure. Currently, bacterial resistance to the
last generations of beta-lactams is one of the most chal-
lenging issues in both human and animal medicine. The
key threats are the worldwide emergence and dissemina-
tion of inactivating enzymes such as extended-spectrum
beta-lactamases, cephalosporinases (AmpCs), and carba-
penemases in Gram-negative bacteria. All these resistance
determinants are carried by plasmids and thus display a
high capacity to efficiently disseminate in an intra- or in-
terspecies manner. In Gram-positive bacteria, methicillin-
resistant S. aureus—which possesses an additional PBP2A
presenting a decreased affinity to beta-lactams—remains
an issue in human medicine, despite the fact that its prev-
alence in hospitals has been considerably reduced in the
past decades with improvements of hygiene measures. In
veterinary medicine, methicillin-resistant Staphylococcus
pseudintermedius is known to cause serious treatment
challenges because of its associated multiresistance. How-
ever, the success of both methicillin-resistant S. aureus and
methicillin-resistant S. pseudintermedius is more due to
epidemic bursts of successful clones than to the mobiliza-
tion of the mecA-carrying cassette.

Streptococci are unique among the major pathogens
in the sense that they are incapable of acquiring any
exogenous beta-lactam resistance genes. However, they
can progressively mutate their own PBPs. Indeed, no
isolate carrying a beta-lactamase (such as Gram-negative
bacteria) or a new PBP (such as staphylococci) has been
described yet, and a few species, including S. pyogenes,
are even unable to develop decreased susceptibility to
beta-lactams in vitro (151).

Beta-Lactam Resistance in Streptococci
To achieve beta-lactam resistance, streptococci sequen-
tially modify their PBPs, specifically the class B PBP2B

and PBP2X (and the class A PBP1A in the more re-
sistant isolates). This was particularly exemplified in
S. pneumoniae, the only Streptococcus spp. for which
penicillin-resistance was successfully achieved and widely
disseminated, where both mutated and mosaic PBPs were
reported. Other less-documented genes were sporadic-
ally reported as PBP-independent penicillin-resistance
mechanisms. These include theMurMN operon encoding
enzymes that are responsible for the biosynthesis of
branched muropeptide components (152), the ciaRH
operon, a two-component signal-transducing system
(153), the adr gene coding for a peptidoglycan O-
acetyltransferase (154), the stkP gene encoding a serine/
threonine kinase (155), the pstS gene encoding a subunit
of a phosphate ABC transporter (156), and the spr1178
gene encoding for a putative iron permease (157).
Penicillin-resistant S. pneumoniae has widely disseminated
through the success of a limited number of serotypes, se-
lected mainly by the excessive use of antibiotics (158),
but the prevalence of this resistance has considerably de-
creased since the early 2000s by both the reduced con-
sumption of antibiotics and the marketing of efficient
vaccines (159, 160). The presence and characterization
of mutated PBPs in isolates presenting decreased suscep-
tibilities to beta-lactam were also reported in S. agalactiae
of human origin (69, 161, 162). Recently, a classification
of S. agalactiae was proposed which takes into account
the different mutations in the PBPs (163).

In veterinary medicine, Streptococcus isolates pre-
senting full penicillin resistance have only rarely been re-
ported, and only a fewmolecular studies were conducted
either on laboratory strains or on field isolates present-
ing reduced susceptibility to beta-lactams. The presence
of three groups of PBPs (PBP 1, PBP 2, and PBP 3) was
demonstrated in S. suis, and PBP modifications were
strongly suggested to be responsible for penicillin G-
resistant phenotypes in both in vitro mutants and field
isolates (164). In S. uberis, Haenni et al. (165) showed
that both a quality control strain and field strains were
capable of developing a 60-fold MIC increase after 30
cycles of exposure to penicillin G. This increase was due
to the accumulation of mutations in the class B (PBP
2B and PBP 2X) and A (PBP 1A) enzymes, including the
systematic presence of the two specific E381K and Q554E
mutations in the PBP 2X. Interestingly, PBP analysis
of seven field strains collected in Switzerland, France,
and Holland and presentingMICs of 0.25 to 0.5 mg/liter
also revealed the systematic presence of these two key
mutations (165). However, none of the tested strains
(selected either in vitro or by treatment on farms) could
achieve full resistance, since their MICs only reached
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0.25 to 2 mg/liter, which is still considered intermedi-
ately resistant.

Phenotypic Reports on Beta-Lactam
Activity in Bovine Mastitis
In veterinary medicine, beta-lactam resistance has
mostly been documented in bovine streptococci, namely
S. uberis, S. dysgalactiae, and S. agalactiae. Data were
gathered in cases of clinical and subclinical mastitis,
a pathology for which the first-line treatment is beta-
lactams. Comparison between studies can be difficult
because of the heterogeneity of the methods (disc diffu-
sion, agar diffusion, broth microdilution) and the guide-
lines used. If no interpretation was inferred, an isolate
was considered resistant when the MIC was ≥4 mg/liter
according to the CLSI breakpoints.

Most studies based on the determination of MICs
report the absence of penicillin G resistance in S. uberis
and S. dysgalactiae, even though isolates presenting
decreased susceptibilities (0.25 to 0.5 mg/liter) were
regularly reported. In France, such nonsusceptible iso-
lates were reported in 2002, with 14.0% of the S. uberis
showing an MIC of 0.25 mg/liter (134), and a shift to-
ward decreased susceptibilities was suggested in 2010
based on the comparison of disk diffusion and MIC
results (166). In Sweden, two studies performed suc-
cessively in 2003 (133) and 2008 to 2009 (101) showed
a slight shift over the years toward decreased suscepti-
bility, with 6.0% of the S. uberis isolates displaying an
MIC of 0.25 mg/liter and 10.0% of the S. dysgalactiae
isolates displaying an MIC of 0.12 mg/liter in 2009,
whereas only 0.9% of the S. uberis isolates had an MIC
of 0.25 mg/liter, and all the S. dysgalactiae isolates were
fully susceptible (MIC, <0.06 mg/liter) in 2003. In the
United States, one true resistant S. dysgalactiae isolate
(MIC, 4 mg/liter) was detected over 152 strains tested,
whereas 6.8% of the S. uberis isolates presented MICs
of 0.5 mg/liter to penicillin, and one strain displayed
an MIC of 1 mg/liter (136). The VetPath data (multi-
center European data) collected between 2002 and 2006
showed no true resistance, but 29.8% of isolates pre-
sented decreased susceptibility (MICs ranging from
0.25 mg/liter to 1 mg/liter) (100). Though without any
MIC values, other studies also reported data on beta-
lactam resistance in veterinary streptococci, often with
a very low prevalence of resistance. One pan-European
study performed in 2002 to 2004 showed very low
levels (0 to 3.9%) of penicillin resistance (99). A Swiss
study detected susceptibilities to ampicillin of 92.3%
for S. uberis and 94.8% for S. dysgalactiae from cows
sampled in 2011 to 2013 (167). Kalmus et al. showed

0 to 0.4% resistance to penicillin G, ampicillin, and
cefalotin in Estonia between 2007 and 2009 (168). In
France, 12.9% of the S. uberis and 1.4% of the S. dys-
galactiae presented resistance patterns to oxacillin, but
these were not confirmed by MIC determination (135).
In Turkey, 94% of the S. uberis isolates showed sus-
ceptibility to penicillin G (169).

These different data confirm beta-lactams as efficient
antibiotics against streptococci isolated from bovine
mastitis. However, this slow but clear shift of strains
from full toward decreased susceptibility will have to be
surveyed in the future. Beta-lactam resistance develop-
ment in streptococci surely does not present the same
dynamic as in Gram-negative bacteria, where plasmids
play a major role. However, this should not hide ram-
pant and silent acquisition of beta-lactam resistance in
streptococci of animal origin, which may one day limit
the therapeutic arsenal available for veterinarians.

Beta-Lactam Resistance Outside
the Context of Cattle Mastitis
Antibiotic resistance was also monitored in S. suis iso-
lated from pigs, and several studies reported the absence
of resistance to any beta-lactams. Nevertheless, isolates
presenting particularly high MICs to penicillin G were
also recurrently reported, with unfortunately, no con-
comitant molecular work on the underlying mechanisms
of resistance. Indeed, 4% of the Spanish isolates displayed
MICs ranging from 4 to 16mg/liter, whereas two Chinese
studies reported 2.1% and 9.5% of isolates with an MIC
of ≥4 mg/liter (142, 143, 170). In the Netherlands, 0.5%
and 0.3% of over 1,163 isolates of S. suis tested were
considered resistant to penicillin G and ampicillin between
2013 and 2015 (171). In Japan, Poland, and Portugal,
resistance was reported in 0.9%, 8.1%, and 13.0% of the
isolates, respectively (107, 141). However, despite these
cases, beta-lactams can still be recommended as first-line
antibiotics for the treatment of S. suis.

Aside from S. suis and streptococci isolated from
bovine mastitis, reports of veterinary streptococci are
quite rare. Beta-lactam resistance was described once
in S. dysgalactiae subspecies equisimilis isolated from
swine in Brazil and in four studies of S. canis isolated
from pets and horses in France, Japan, Belgium, and
Portugal (34, 148–150, 172), and these five studies
found full susceptibility of all isolates to penicillin G.

FLUOROQUINOLONE RESISTANCE
Quinolones are not active against streptococci, because
of their intrinsic resistance. However, fluoroquinolones
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may be an alternative to beta-lactam antibiotics to treat
streptococcal infections. The main agents used in veter-
inary medicine are enrofloxacin, marbofloxacin, dano-
floxacin, and the more recent pradofloxacin.

Resistance to fluoroquinolones is generally medi-
ated by point mutations in the quinolone resistance-
determinants regions of the gyrA and parC genes (173).
Furthermore, plasmidic qnr genes participate in the dis-
semination of low-level resistance, but they have never
been reported in streptococci. Efflux pumps also play a
role in fluoroquinolone resistance, as has been proved
for the SatAB, an ABC transporter, in S. suis (174).

Fluoroquinolone-Resistance Phenotypes
Resistance to fluoroquinolones has rarely been reported
in veterinary streptococci. Moreover, in the fluoroquin-
olone family, there is a wide variability of the agents
tested (enrofloxacin and ciprofloxacin are the most fre-
quently used), thus making comparisons among studies
difficult.

A 1.5% prevalence of resistance to enrofloxacin in
S. uberis and 5.5% in S. dysgalactiae was reported in
France in 2010 (135). In the same bacterial species,MICs
ranging from 0.5 to 2 mg/liter were observed in Sweden
(101). These apparently elevated MICs are constitutive
of streptococci, which have a basal MIC higher than
that of Enterobacteriaceae or staphylococci. In a study
performed between 1994 and 2001, the same range
of MICs was reported, and no increase in the resistance
rate was observed over the years (175). Except for three
resistant strains (MIC, 4mg/liter), all S. uberis and S. dys-
galactiae isolates collected in a multicenter European
study presented MICs to marbofloxacin ranging from
0.25 to 2 mg/liter (176). In S. suis, the resistance rates to
enrofloxacin determined in a pan-European study per-
formed in 2009 to 2012 and to ciprofloxacin determined
in Japan in 1987 to 1996 were very similar: 0.7% and
0.3%, respectively (177). Enrofloxacin resistance was
also observed in S. canis in France, where MICs ranged
from 0.25 to 2 mg/liter (148). Streptococcus spp. isolated
from cats and dogs were studied through the ComPath
European network: no resistance was reported in der-
matological samples, whereas 1.8% of the cats and 4.0%
of the dogs presenting with a respiratory tract infection
carried enrofloxacin-resistant streptococci (178, 179).

ROLE OF THE ICES IN THE
EVOLUTION OF RESISTANCE
MGEs play a major role in the dissemination of antibi-
otic resistance genes. MGEs mostly comprise conjuga-

tive plasmids, transposons, phages, and ICEs (initially
named conjugative transposons). ICEs are chromo-
somal, self-transmissible MGEs that are capable of
promoting their excision, conjugation, and site-specific
integration in a recipient cell (180, 181). One of the
most emblematic members of the ICEs is the Tn916-
Tn1545 family, which carries tet(M) and other antibi-
otic resistance genes (126, 127, 182, 183).

ICEs have been widely reported in streptococci,
and they were recently detected in all Streptococcus
spp. for which at least one complete genome was avail-
able, with S. suis being the most “colonized” species
(184, 185). In human clinical streptococcal isolates, erm
and tet resistance genes were recurrently reported on
ICEs, such as erm(B) on ICESp1116 and erm(TR)-tet(O)
on ICESp2905 in S. pyogenes (186, 187), erm(TR) on
ICESagTR7 in S. agalactiae (188), and erm(B) and tet(O)
on ICESsD9 in S. suis (189). Interestingly, resistance
genes can also be mobilized by coresident ICEs, as
demonstrated by the mobilization of an erm(T)-carrying
plasmid in S. dysgalactiae subsp. equisimilis (190). Other
antibiotic resistance determinants can also be found
on ICEs, as exemplified by the presence of tet(M) and a
chloramphenicol acetyl-transferase on ICESp23FST81
from S. agalactiae (191), lincosamide resistance (lsa genes)
on different ICEs in S. agalactiae (192), and a multi-
drug resistance cluster on ICESsuNC28 carried by S. suis
(193). Moreover, ICEs originating from different strep-
tococcal species may form hybrids that can further
transfer in vitro to a third streptococcal species (194). This
illustrates the wide distribution and the plasticity of these
MGEs and thus their role in the dissemination of resis-
tance genes. Finally, resistance determinants may be ad-
jacent to—and not inside—an ICE. This is exemplified by
the first vancomycin-resistance determinants in strepto-
cocci, the vanG operons, which were identified in one
S. agalactiae and two S. anginosus isolates (195). These
vanG operons were immediately followed by a large
chromosomal element named ICE-r (ICE-like sequences).
A plausible hypothesis is that the integration of ICE-r in
the streptococcal chromosome may have favored the
subsequent integration of the vanG element.

Except for elements from the Tn916-Tn1545 family
which were broadly reported in different streptococcal
species originating from diverse animal hosts (9, 94, 170,
196), ICEs carrying resistance genes have rarely been
reported in streptococci from animal origin. Indeed,
only the mosaic tet(O/W/32/O) carried on ICESsu32457
in S. suis, which could then be transferred to S. pneumo-
niae, S. pyogenes, and S. agalactiae (197), as well as the
lincomycin-resistance gene lsa (192) were described on
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such MGEs. This will likely change in the near future,
since new research perspectives are emerging with the
democratized access to high-throughput sequencing tech-
nologies and the subsequent databases (185, 198).

CONCLUSION
In veterinary medicine streptococci are frequent patho-
gens not only in food-producing but also in companion
animals. However, as far as public health is concerned,
there are few situations in which streptococci of animal
origin may cause risk for humans, and vice-versa. Among
those, S. suis and, to a lesser extent, S. agalactiae are
likely the most relevant examples, and are both consid-
ered zoonotic pathogens. Studies of resistance to anti-
microbials in streptococci of animal origin have largely
focused on tetracyclines and macrolides/lincosamides,
which are widely used in the animal sector globally.
Accordingly, high resistance rates to these molecules have
frequently been observed, which is also in line with spe-
cific niches covering major animal diseases, such as cattle
mastitis of streptococcal origin. Molecular investigations
highlighted the diversity of the resistance genes of the
tet and erm families, together with the pivotal role of
the ICEs. Nonetheless, most data originate from Europe,
and there is a need for larger prevalence and molecular
studies on a global scale. Of note, despite the wide use
of penicillins to treat streptococcal infections, resistance
to beta-lactams does not appear to be a crucial issue
in veterinary streptococci, in contrast to what has been
observed with the human-specific S. pneumoniae. In all,
as in humans, antimicrobial resistance in Streptococcus
of animal origin may largely differ depending on the
Streptococcus sp. and therefore should not be considered
as a whole.
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