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ABSTRACT Biocides and formulated biocides are used
worldwide for an increasing number of applications despite
tightening regulations in Europe and in the United States.
One concern is that such intense usage of biocides could lead to
increased bacterial resistance to a product and cross-resistance
to unrelated antimicrobials including chemotherapeutic
antibiotics. Evidence to justify such a concern comes mostly
from the use of health care-relevant bacterial isolates,
although the number of studies of the resistance characteristics
of veterinary isolates to biocides have increased the past few
years. One problem remains the definition of “resistance” and
how to measure resistance to a biocide. This has yet to be
addressed globally, although the measurement of resistance is
becoming more pressing, with regulators both in Europe and
in the United States demanding that manufacturers provide
evidence that their biocidal products will not impact on
bacterial resistance. Alongside in vitro evidence of potential
antimicrobial cross-resistance following biocide exposure,
our understanding of the mechanisms of bacterial resistance
and, more recently, our understanding of the effect of biocides
to induce a mechanism(s) of resistance in bacteria has improved.
This article aims to provide an understanding of the
development of antimicrobial resistance in bacteria following
a biocide exposure. The sections provide evidence of the
occurrence of bacterial resistance and its mechanisms of
action and debate how to measure bacterial resistance to
biocides. Examples pertinent to the veterinary field are used
where appropriate.

BIOCIDE USAGE
Chemical biocides have been used for centuries for
making water and foodstuff safe to consume, for treat-
ing wounds, and for preserving materials since well
before the discovery of microorganisms. Today chemi-
cal biocides are heavily used in a wide range of applica-
tions and environments including the consumer product,

water, wastewater, and food industries; goods manu-
facturing; the pharmaceutical industry; the health care
and veterinary sectors; and the oil and gas industries (1).
This wide range of applications reflects the versatility of
biocide products for environmental disinfection, prod-
uct preservation, and antisepsis (2). In Europe it is dif-
ficult to estimate the quantity of chemical biocides that
are used in products or imported (1), although in 2006
the market for biocides was estimated to be €10 billion
to €11 billion (1). It is, however, clear that the usage
of chemical biocides is continuing to increase, particu-
larly in consumer products. This increased usage may
be partly due to consumers’ increased awareness of mi-
crobial contamination and infection. The rise in anti-
biotic resistance in bacteria might also have impacted
on the usage of biocides, at least in the health care and
veterinary settings (3). Widespread media coverage of
issues of hospital cleanliness and “superbugs” have also
contributed to better-informed customers, providing
better marketing arguments for manufacturers and dis-
tributors of biocidal products (3). Alongside a better-
informed public, the global increase in antimicrobial
resistance in bacteria is forcing decision makers to tackle
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this growing issue. One of the recommended interven-
tions is better hygiene and control of bacteria on surfaces
in health care settings but also in animal husbandry (4).

In health care settings biocides are heavily used for
the disinfection of environmental surfaces and medical
devices and for antisepsis. The growing number of stud-
ies highlighting the presence, and at times persistence,
of bacterial pathogens, including multidrug-resistant
ones, on surfaces despite the use of decontamination (5–
14) acknowledges that microorganisms can survive on
surfaces and be transmitted to patients, staff, and inan-
imate objects (15), thus finally emphasizing the impor-
tance of controlling the microbial burden on surfaces.
This newly found appreciation for controlling microbial
pathogens on surfaces has led to an explosion of surface
disinfection products and their marketing (16–18), con-
tributing to a higher concentration of biocides eventually
released in the environment.

The ability of biocides or biocidal products to de-
crease the microbial bioburden on surfaces is also highly
relevant in animal husbandry, farm buildings, barns,
equipment, and vehicles, where their use should con-
tribute to reducing the spread of pathogens. This also
includes their use to prevent infectious outbreaks from
spreading from farms; for example, large quantities of
biocides are being sprayed in the environment and on
vehicles in an attempt to decrease the spread of animal
viral diseases (19). The heavy use of biocidal products
where heavy soiling is present, in particular, their use
on vehicle wheels and undercarriages, deserves better
scrutiny of its efficacy in preventing potential outbreaks.

The use of biocidal products also includes the disin-
fection of various environmental surfaces, antibiofoul-
ing, the preservation of building materials, and water
and wastewater treatment. Biocides play an important
role as food preservatives and for controlling micro-
bial contaminants that may enter the food chain during
food production. As mentioned previously, one growing
area for biocide manufacturers is consumer products,
including the preservation of cosmetics, but more re-
cently, personal care products, household products, and
textiles.

In Europe, the incorporation of biocides in products
and the use of chemical biocides in general is heavily
regulated (20), with the consequence that fewer biocides
are available for manufacturers to use. This restriction
on the number and type of chemical biocides available
for manufacturers has, however, not reduced the num-
ber of biocidal products and biocide applications. On
the contrary, awareness of the role of microorganisms in
contamination, infection, or the production of odors,

together with the growing threat of bacterial resistance
to chemotherapeutic antibiotics, has resulted in the bio-
cidal product market expanding. In Europe, the amounts
of chemical biocides used per application is difficult
to measure (1). Chemical biocides used in diverse appli-
cations eventually find their way to the environment
(1). For example, high concentrations of triclosan have
been found in river and wastewater effluents (1.4 to
40,000 ng/liter in surface water, up to 85,000 ng/liter in
wastewater, and up to 133,000 μg/kg in biosolids from
wastewater treatment plants) (20–23). There should be
little doubt that chemical biocides even at a low con-
centration (i.e., sub-MIC level) will exert a selective
pressure on microorganisms (18, 24–26), which should
be monitored where biocidal products are heavily used
(18, 27). The increase in the use of biocides and biocidal
products might aggravate the possible link between bio-
cide usage and emergence of antimicrobial resistance in
bacteria (1, 3, 18, 28), although there is no doubt that
overall biocide usage has brought immense benefit to
human and animal health (1–3, 29).

This article explores reports of bacterial resistance
to biocides and our current knowledge of the mecha-
nisms of bacterial resistance. It also reflects on the effect
of biocides’ interactions with bacteria that may lead to
a change in susceptibility to antimicrobials. This article
does not cover bacterial biofilms.

BIOCIDE RESISTANCE:
A QUESTION OF DEFINITIONS
One of the main issues when dealing with bacterial re-
sistance is the definition of “resistance.” This definition
is linked with the test protocols to measure resistance,
and these protocols are described later. There are many
definitions of resistance to biocides, some of which de-
scribe only a small decrease in susceptibility (18, 28, 31–
34). This contrasts with the definition of bacterial re-
sistance to chemotherapeutic antibiotics, which reflects
clinical resistance. With biocides the terms “resistance,”
“tolerance,” “decreased susceptibility,” “reduced sus-
ceptibility,” “insusceptibility,” and “acquired reduced
susceptibility” are used. Such diversity in terms reflects
a lack of consensus within the scientific community and
is contributing to a degree of confusion in our under-
standing of bacterial resistance to biocides. From a
practical point of view, a bacterium surviving in a bio-
cidal product is resistant to that product, whatever the
concentration of biocide is in the product.

Many papers have used the term “reduced suscepti-
bility,” which is based on the measurement of the MIC
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or the minimum bactericidal concentration. A biocide or
biocide product at its in-use concentration may, how-
ever, still be effective (18, 35). One of the main diffi-
culties is to determine what fold-difference in MIC or
minimum bactericidal concentration reflects a change
that will be significant in practice, i.e., a decrease in
biocide effectiveness. This is likely to be biocide/biocidal
product dependent.

From an academic perspective, other definitions of
bacterial resistance have been used: (i) a bacterial strain
that is not killed by a biocide concentration to which
the majority of the bacterial species are susceptible and
(ii) bacterial cells in a culture that survive biocide expo-
sure that kills the majority of the bacterial population in
that culture. This latest definition has been used mainly
to identify specific mechanisms of biocide resistance in
bacteria following stepwise exposure to a specific biocide.

Empirically, bacterial resistance to biocides has been
labeled as intrinsic, a natural property of the bacterium,
or acquired, following the acquisition of resistance genes
or following mutations (36). These definitions still hold
true, although the concept of transient resistance, fol-
lowing the expression of a mechanism(s) in response to a
direct selective pressure, recognizes that the effect of a
biocide on a bacterium may be more complex and short-
lived as long as the biocide, exerting a selective pressure,
is present (24, 25).

What appears to be more of a concern is the abil-
ity of a bacterium to become clinically resistant to an
antibiotic(s) following exposure to a biocide/biocidal
product. Such cross-resistance has been raised by the
European Commission following reports from the Sci-
entific Committee on Emerging and Newly Identified
Health Risks (1, 37) and the Scientific Committee on
Consumer Safety (38). The Biocidal Product Regulation
(20), which regulates the commercialization of biocidal
products on the European market, now mentions the
potential issue of bacterial resistance and cross-resistance
following biocide application. In the United States, the
Federal Drug Administration (FDA) recently proposed
several rules based on the concern about bacterial re-
sistance linked to the use of certain chemical biocides
(39). Demonstrating that a chemical biocide or a biocidal
product will not give rise to resistance in bacteria is a
question not only of definition but also of methodology.

OCCURRENCE OF BACTERIAL
RESISTANCE TO BIOCIDES
Bacterial resistance to biocides and biocidal prod-
ucts has now been well documented in the literature,

although examples are often anecdotal where a specific
product was investigated. Biocides are a very diverse
group of chemicals (1). Surprisingly, bacterial resistance
has been studied with only a few biocides. For biocidal
products, the formulation will help and hopefully opti-
mize the delivery of the biocide(s) and/or negate some
undesirable effects such as corrosiveness of surfaces,
pungent smell, poor stability, or toxicity. Components
of the formulations may also have a profound effect on
biocide efficacy, either increasing or, on occasion, de-
creasing efficacy. In the peer-reviewed literature, for-
mulations have rarely been studied in the past, although
recently, several studies concerned the effect of formu-
lated biocides on bactericidal efficacy (3, 18, 40, 41).
Bacterial resistance has been investigated in vitro against
several chemical classes, including phenolics (e.g., tri-
closan) (42–49), cationic biocides (e.g., chlorhexidine,
quaternary ammonium compounds, particularly cetyl-
pyridinium chloride, and benzalkonium chloride) (50–
56), isothiazolinones (57), and more reactive biocides
such as iodophors (58), alkylating agents (e.g., glutar-
aldehyde) (59–64), and several oxidizing compounds
(65–68). Studies often differed in their methodology,
rendering the comparison of results difficult (1, 18).
Using realistic in vitro protocols to generate bacteria re-
sistant to a specific biocide is not straightforward either
(69). Investigations can generally be divided into four
categories:

1. In vitro testing of bacterial resistance to a specific
biocide, often involving training the bacteria to
survive increasing concentrations of a biocide (46–
48, 57, 69–73)

2. Studies reporting the isolation of environmental
isolates resistant to specific biocides. These inves-
tigations principally concern environmental bacte-
rial isolates from, for example, health care settings,
manufacturing, and slaughterhouses and include
biocides such as glutaraldehyde (59–62, 74), chlo-
rine dioxide (65), chlorhexidine (75–79), triclosan
(48, 80), quaternary ammonium compounds (79,
81–83), alcohol, and iodine (75)

3. Studies reporting the contamination of biocidal
products principally used in health care settings
and possible associations with infection outbreaks
and pseudo-outbreaks (74, 84–89)

4. In situ studies reporting the impact on bacterial re-
sistance of using specific biocidal products (90–93)

One criticism of in vitro studies is that they might not
reflect the way bacteria encounter a biocide/biocidal
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product in practice (3, 69). For example, the use of
stepwise training, i.e., the passaging of bacteria in in-
creasing concentrations of a biocide, does not reflect
conditions in situ. These studies have, however, yielded
many insights on bacterial resistance mechanisms (46–
48, 57, 69–71, 94). Another issue is that the develop-
ment and nature of resistance to a biocide depend on
the bacterial isolates investigated. Ciusa and colleagues
(95) reported that bacterial strains from standard cul-
ture collection were not necessarily appropriate to study
mechanisms of resistance to triclosan because they did
not reflect the level and type of mutations observed
with clinical isolates when exposed to bisphenol. This
study also highlighted that valuable information is being
learned through the study of large numbers of isolates
(in this study 1,388 Staphylococcus aureus isolates were
used) and questioned studies reporting the use of a single
isolate (95).

The study of environmental isolates rather than
standard culture collection strains yields important and
probably more relevant information in terms of ex-
pressed mechanisms of resistance. Such investigations
reiterate that bacteria can express multiple mechanisms
at the same time and that some mechanisms responsi-
ble for a stable biocide-resistant phenotype are still un-
known. Martin et al. (96) described a vegetative Bacillus
subtilis endoscope washer isolate with stable resistance
to the in-use concentration of chlorine dioxide and hy-
drogen peroxide, but also to peracetic acid (96, 97).
Although this isolate is a good biofilm producer, the
mechanisms responsible for the observed level of resis-
tance to these oxidizing agents have not all been iden-
tified (96). Other studies that have isolated bacteria from
environments where antimicrobials are heavily used
identified a decrease in biocide susceptibility (81, 82, 95,
98) in some but not all isolates when compared to coun-
terpart bacteria from standard culture collection (95,
98).

Studies reporting bacterial growth in biocidal prod-
ucts and subsequent infections or pseudo-infections
have been very helpful in identifying the risks associated
with some products and practices (89). Reported in-
cidents often result from the inappropriate applica-
tion of a product or the inappropriate preparation of a
product, including the use of contaminated tap water,
topping up of stock solutions, use of diluted products or
inappropriate dilution, and inappropriate storage con-
ditions. Some microorganisms, notably Pseudomonas
spp., Burkholderia spp., and atypical mycobacteria can,
however, contaminate the stock solution of a product
because of their intrinsic resistance to the product (89).

The preconceived idea that bacterial resistance occurs
more readily in less reactive biocides such as phenolics
(e.g., triclosan) and cationic biocides (e.g., chlorhexi-
dine) rather than reactive ones such as alkylating and
oxidizing agents does not hold true. For example, there
have been many studies on atypical mycobacterial
(Mycobacterium chelonae) resistance to 2% glutaralde-
hyde, which is used for the high-level disinfection of
medical devices (59–64). It was speculated that these
bacteria arose from a decrease in the effective concen-
tration of glutaraldehyde (i.e., <2%) (60). Fisher et al.
(99) reported the presence of glutaraldehyde-resistant
atypical mycobacteria associated with endoscope re-
processing systems. Outbreaks of M. chelonae linked
to endoscope reprocessing using glutaraldehyde have
been described since 1991 (100). The more recent noso-
comial outbreaks of Mycobacterium abscessus subsp.
massiliense in Brazil, however, identified an isolate that
was resistant to both 2% glutaraldehyde and first-line
antimycobacterial antibiotics, highlighting the existence
of cross-resistance mechanisms that remain to be iden-
tified (74).

Studies of the effect of biocidal product applications
on emerging bacterial resistance in the community or
health care settings remain scarce. These studies usually
highlight the difficulty in data interpretation, notably
in relation to the definition of “bacterial resistance.”
The few in situ studies nevertheless provide interest-
ing insight on the long-term usage of selected biocidal
products. Two studies fromCole and colleagues failed to
show any cross-resistance between antibiotics and anti-
bacterial wash products (91, 92). Likewise, Aiello et al.
(90) failed to show any statistically significant correla-
tion between the use of triclosan-containing product
and reduced susceptibility to antibiotics. A study of ben-
zalkonium chloride-containing product usage in house-
holds, however, found a correlation between elevated
QAC MIC and bacterial resistance to antibiotics (93).

There should be no doubt that bacteria have a great
ability to survive biocide exposure and that the in-
appropriate use or preparation of biocidal products
can result in bacterial resistance. The reporting of cross-
resistance between biocides and unrelated chemicals
such as chemotherapeutic antibiotics is increasing as
scientists focus more on this possibility.

MECHANISMS OF BACTERIAL RESISTANCE
Biocides and biocidal products induce stress on the
bacterial cell. In response, a bacterium expresses several
mechanisms to prevent the detrimental effect caused by
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a biocide. These mechanisms aim to decrease the biocide
concentration sufficiently that it is no longer damaging
to the bacterial cells and include the ability of the bac-
terium to repair damages. If damage cannot be repaired
efficiently or worsens, for example, because of high
metabolic activity, the bacterial cell will be committed to
a lethal pathway (Table 1). By some accounts that the
maintenance of the cytoplasmic pH is key in that path-
way (101, 102). Overall, our understanding of the bac-
terial mechanisms in place to decrease the susceptibility
of a bacterium to biocides has improved, but they re-
main poorly studied. There is no doubt that bacteria
have a plethora of mechanisms at their disposal and that
often several mechanisms contribute together to the ob-
served resistance phenotype. Our understanding of the
effect of biocide interaction with bacteria and especially
the stress response effect on gene expression remains
poor. Examples given in the literature are often anec-
dotal. Understanding and measuring the expression of
mechanisms following a biocide or biocidal product in-
teraction with a bacterium has become important be-
cause it underlies the principle of the observed transient
phenotypic changes in bacteria and the cross-resistance
mechanisms between antimicrobials.

Mechanisms that Decrease the Concentration
of Antimicrobials in Bacteria
Bacteria can use several mechanisms to decrease the
lethal or inhibitory concentration of a biocide. Biocides
have multiple target sites against the bacterial structure
and as such they are often regarded as nonspecific. The
sum of the damage caused to multiple target sites and the
importance of the target sites defines whether the inter-
action will lead to a lethal or inhibitory effect (Table 1)
(3, 101–105). Decreasing a damaging concentration of a

biocide/biocidal product will enable the target bacteria
to survive. It should be recognized that a low concen-
tration (sub- MIC) of a biocide will affect the bacteria
and, notably, trigger mechanisms to further decrease
the biocide concentration. It is now well established in
in vitro laboratory experiments but also in practice that
a low concentration of a biocide will give rise to bacteria
that are less susceptible to the biocide, enabling at times
the survival of the bacteria in products (60, 89, 96).

Furthermore, biocides are used in complex formula-
tions (i.e., the biocidal product) in practice, yet the effect
of a biocidal product on bacterial resistance is not often
tested (3, 18, 41, 76, 81). Excipients such as surfactants,
chelators, and wetting agents may have a direct effect on
the bacterial cell structure and increase the efficacy of a
biocide. Arguably, there is sometimes incompatibility
between a biocide and an excipient, effectively reducing
the bactericidal activity of the product.

Reducing biocide penetration
The effect of bacterial cell structure to prevent or re-
duce the penetration of antimicrobials has been well
established, notably with bacterial endospores (106),
Gram-negative bacteria, and mycobacteria (103, 104).
The presence of the lipopolysaccharide layer in Gram-
negative bacteria has been well documented for its role
in decreasing the activity of several membrane active
agents such as quaternary ammonium compounds and
biguanides. Evidence of the role of lipopolysaccharide in
decreasing the activity of a membrane active agent has
often been indirect with the use of permeabilizing agents
such as chelators and the use of bacterial protoplasts
(103, 105, 107, 108). Genetic alterations of the bacterial
membrane with, for example, transposon mutagene-
sis have also provided some important information on

TABLE 1 Levels of biocide interactions with a bacterial cell

Exposure Interactions Types of damage Events

Short exposure Disruption of the transmembrane PMF leading to an uncoupling
of oxidative phosphorylation and inhibition of active transport
across the membrane

Reversible

Inhibition of respiration or catabolic/anabolic reactions

Prolonged exposure Disruption of metabolic processes Reversible

Disruption of replication

Loss of membrane integrity resulting in leakage of essential
intracellular constituents (K+, inorganic phosphate, pentoses,
nucleotides and
nucleosides, proteins)

Imbalance of pHi Irreversible

Coagulation of intracellular materials Commitment to cell death
(autocidal pathway)

Lysis Cell death
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biocide/bacterial cell interactions (109). In mycobac-
teria, in the presence of mycolic acid associated with the
arabinogalactan/arabinomannan cell wall, the lipid-rich
outer cell wall is responsible for the lack of penetration
of many antimicrobials (61, 104, 110–113). Likewise,
porins have been shown to play an important role in the
activity of glutaraldehyde and ortho-phthalaldehyde in
mycobacteria (114). Reducing the expression of porins
has been associated with reduced biocide and antibiotic
efficacy (115, 116). Changes in bacterial cell membrane
and cell wall composition following biocide exposure
have been associated with a reduction in biocide activ-
ity (94, 115–120). Membrane alterations include mem-
brane protein composition (57, 115, 121, 122), fatty
acids (115, 123–127), and phospholipid content (128).
A change in membrane potential has also been associ-
ated with a decrease in biocide susceptibility in Pseu-
domonas aeruginosa (129).

Efflux pumps
Efflux pumps, which are widespread in bacteria, con-
tribute to decreasing the concentration of antimicro-
bials that penetrate the bacterial cells. The effect of active
efflux on antimicrobial activity has been particularly
well documented in S. aureus (130–139), P. aeruginosa
(140–145), Escherichia coli (46, 82, 94, 146–149), Sal-
monella enterica serovar Typhimurium (150, 151), and

Acinetobacter baumannii (116, 152). Five main classes
of efflux pumps have been reported (Fig. 1) (153; 160):
the drug/metabolite transporter superfamily, the major
facilitator superfamily, the ATP-binding cassette family,
the resistance-nodulation-division family, and the mul-
tidrug and toxic compound extrusion family.

The ability of efflux pumps alone to confer resistance
to biocides/biocidal products is questionable, and it is
likely that efflux pumps are part of several mechanisms
used by a bacterium to survive biocide/biocidal product
exposure (3, 83, 155). Some studies investigating tri-
closan claimed, however, that efflux was responsible for
high-level resistance to the bisphenol (142, 144). Studies
of bacterial isolates from environments where antimicro-
bials are heavily used, notably biguanides and QAC,
have identified a high prevalence of efflux genes (e.g.,
qacA/B, norA, nor B, smr) in isolates that showed a
decreased susceptibility to biocides (77–79, 82, 135).

Efflux can be induced by some antimicrobials (153,
156, 161). The expression of an efflux pump can in-
crease following antimicrobial exposure, not necessarily
by inducing the efflux pumps but by affecting global
gene regulators, notably marA and soxS (46, 162). The
effect of triclosan on bacteria has been particularly
well studied with regard to efflux (46, 49, 140–142,
163, 164). In S. enterica serovar Typhimurium, over-
expression of efflux results in decreased antimicrobial

FIGURE 1 Diagrammatic comparison of the five families of efflux pumps (reproduced
from reference 153). MATE, multidrug and toxic compound extrusion; MFS, major
facilitator superfamily; SMR, •••; RND, resistance-nodulation-division; ABC, ATP-binding
cassette.

6 ASMscience.org/MicrobiolSpectrum

Maillard

http://www.ASMscience.org/MicrobiolSpectrum


susceptibility (162–165). Overexpression of efflux
pumps resulting in decreased biocide efficacy has also
been described in Stenotrophomonas maltophilia with
the overexpression of SmedEF (166); in E. coli with the
overexpression of acrAB, marA, or soxS (46, 49, 162);
and in Campylobacter jejuni overexpressing CmeB
(167). The extent of efflux pumps and their role in bac-
teria are continuously evolving in the literature. Trig-
gering overexpression of efflux in bacteria following
biocide exposure is a concern that is debated later in this
article.

Enzymatic degradation
Some bacteria can produce enzymes that degrade bio-
cides. The presence of catalase and superoxide dismutase,
for example, has been shown to decrease bacterial sus-
ceptibility to oxidizing agents (66, 168). The production
of enzymes alone conferring resistance to a biocide is,
however, doubtful. This would suggest that enzymatic
activity is high and that enzymes are not themselves
affected by the biocide. It is more likely that the pro-
duction of detoxifying enzymes contributes to the battery
of mechanisms available to the bacteria to survive biocide
injuries (96).

Other examples of enzymatic activity conferring de-
creased susceptibility to a biocide include the parabens
(169, 170), aldehydes (171), and metallic ions. In the
latter case the ions are reduced to the inactive metal (34).

Physiological and Metabolic Changes
Bacterial metabolism can be associated with antimicro-
bial efficacy in that bacteria with a high metabolism
are more susceptible to antimicrobials than those with
no metabolic activity (172). Exposure of a bacteria to a
physical or chemical process, such as a biocide/biocidal
product, results in a mixed population of dead, injured,
and uninjured bacteria. In the food industry, the re-
covery of injured bacteria is considered essential (173).
This is not so when the efficacy of a biocide treatment is
measured. Standard efficacy tests do not consider the
effect of the recovery media and incubation conditions
post-biocide treatment. The impact of resuscitated in-
jured bacteria following treatment has been exempli-
fied by the dual use of traditional plate counting on a
rich nonselective recovery media such as tryptone soy
agar and the use of the Bioscreen microbial growth an-
alyzer, which measures bacterial growth in liquid (174).
The ability of a bacterium to repair injuries is likely
to play an important role when resistance is considered.
As shown in Table 1, initial damage caused by a biocide
is reversible. In practice, where incubation conditions

posttreatment favor recovery from injury, repairs can
be visualized with an extended lag phase (173). Bio-
cide exposure has, however, been linked to a decreased
growth rate and extended lag phase in bacteria (172,
175–177) because of a direct action of the biocide on
the bacterial cells, although in many studies the ability
of bacteria to repair injuries was not considered. Change
in metabolic pathways has been particularly well exem-
plified with S. enterica exposure to triclosan. The bis-
phenol at a low concentration has been shown to target
specifically the enoyl acyl carrier reductase in bacteria,
which affects fatty acid lipid synthesis in the target
bacteria (47, 177–179). Webber et al. (180) showed that
S. enterica could alter its metabolic pathway to produce
pyruvate and fatty acids following triclosan exposure.
This change was part of a “triclosan resistance network”
involving the expression of distinct mechanisms (180).
Curiao and colleagues reported similar findings, evoking
multiple pathways in the adaptation of S. enterica to
triclosan and other biocides such as chlorhexidine and
benzalkonium chloride (181).

Codling and colleagues (109) showed that in Serratia
marcescens, the disruption of biosynthetic andmetabolic
pathways of the bacterium increased bacterial suscepti-
bility to a QAC. A change in metabolic processes fol-
lowing exposure to biocides has also been observed in
other bacteria, including S. aureus (182) and P. aeru-
ginosa (183). The full impact of a change in metabolic
pathways on decreasing biocide/biocidal product effi-
cacy has not been assessed, nor has the reproducibility of
such a change when exposed to specific antimicrobials.
At present, such observations have been bacteria/biocide
specific.

Mutations
Mutations in bacteria are by nature random but can be
driven by the continuous presence of a selective pressure,
notably the presence of antimicrobials. Although it is
widely recognized that the presence of chemotherapeutic
antibiotics will drive target site mutations, there are
far fewer examples with biocides. Mutations resulting
from a biocide exposure have been mainly described
with triclosan in several bacteria (43, 178, 180, 184–
190). Mutations are linked to the use of triclosan at a
low concentration and concern the enoyl-acyl reductase
carrier protein (47, 179, 186, 191–193). In Salmonella
biocide exposure resulted in mutations included de-
repression of multidrug efflux pump AcrAB-TolC, and
rpoA, which controls the RNA polymerase α-subunit
(190). Interestingly, the investigation of 1,388 S. aureus
clinical isolates’ response to triclosan exposure identified
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several mutations that were similar among the isolates
(Fig. 2) but not comparable to those observed with the
standard culture collection strain (95). Recent obser-
vations questioned the choice of a culture collection
strain to study biocide resistance. Standard strains have
been widely used in biocide resistance studies with the
comparability of results between studies in mind. From
Ciusa et al. (95), it appears that standard strains and
clinical isolates do not behave the same way. Stepwise
training protocols that rely on passaging bacteria in in-
creasing concentrations of biocides have yielded bacte-
ria with decreased susceptibility or resistance to a given
biocide but may be criticized for not reflecting real-
world conditions (3). Many in vitro studies have inves-
tigated genetic changes in standard culture collection
strains following biocide exposure. The work of Ciusa
et al. (95) addresses the appropriateness of this approach
and would favor the use of environmental isolates that
have been exposed to a biocide/biocidal product.

INDUCTION OF GENE EXPRESSION
CONFERRING BACTERIAL RESISTANCE
Biocide exposure even at a low concentration produces a
stress on the target bacteria, even if the bacteria are in-
trinsically resistant to the biocide. The bacterial response
to the stress will lead to a change in gene expression (24,
109, 116, 155, 162–167, 181, 194–196), particularly
that of regulatory genes (46, 49, 68, 149, 162, 180,

197). The concentration of a biocide that is available to
interact with the target bacteria is thus paramount (2, 3,
105, 198, 199), since a low, nonlethal concentration will
not kill the bacterium but will undoubtedly produce a
stress response. An indication of stress response is given
by investigating the bacterial growth curve in the pres-
ence of a biocide at different concentrations. Increased
lag phase or decreases in bacterial doubling time are
indicators of a bacteria/biocide interaction and may re-
flect the induction/expression of mechanisms enabling
the bacteria to decrease the toxicity of the biocide (28,
72, 172) and, as mentioned, allow earlier repair of in-
juries. Some bacterial mechanisms that play a role in
decreasing the susceptibility to biocides are controlled by
global regulators such as soxS and marA (46, 49, 146,
162). Antibiotic resistance mechanisms are also con-
trolled by the same regulators (168, 200), which leads to
the concern that biocide exposure can trigger antibiotic
resistance. The induction of gene expression of global
regulators leading to the expression of several mecha-
nisms in bacterial resistance might not, however, be
particularly problematic for the use of biocidal products
since such expression might be transient. Some studies
have shown that a decrease in bacterial susceptibility
to biocides and sometimes to antibiotics was transient
and only observed in the presence of the biocide (24, 25,
155).

As mentioned earlier, the efficient repair of sublethal
injuries may play an important role in bacterial survival

FIGURE 2 Schematic map of mutations in the Staphylococcus aureus fabI (sa-fabI) and
Staphylococcus haemolyticus fabI (sh-fabI) genes. Mutations in sa-fabI are reported on a
schematic map. Mutations detected in clinical isolates are mapped above the sequence,
while mutations selected in vitro are shown below the sequence. (Reproduced from
reference 95.)
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of biocide exposure. However, bacteria’s ability to repair
damage following biocide exposure has received little
attention (195, 201, 202). In E. coli polyhexamethylene
biguanide alters the expression of several genes, notably
rhs, involved in repairing nucleic acid (202). The in-
volvement of effective DNA repair mechanisms has been
proposed to explain the high-level resistance of an en-
vironmental isolate of B. subtilis to several oxidizing
agents (96). Efficient DNA repair mechanisms enable
Deinococcus radiodurans to survive ionizing and UV
radiation and exposure to chemicals that damage nucleic
acid (203). In Lactobacillus pentosus, strains that have
adapted to sublethal concentrations of antimicrobials
overexpressed ribosomal proteins and glutamyl tRNA
synthetase, which was interpreted as a response to dam-
aged proteins directly caused by the antimicrobial ex-
posure (195).

CROSS-RESISTANCE
Exposure to a biocide/biocidal product can lead to a
stress response involving the expression of global gene
regulators and ultimately the expression of nonspecific
mechanisms enabling bacterial survival (116, 155, 156,
162, 181, 190, 200, 204–211). The link between biocide
usage and antibiotic resistance has led to many discus-
sions with conflicting evidence; some studies support a
link, while others fail to identify any cross-resistance (1,
24, 25, 48, 73, 78, 79, 81, 82, 90–93, 98, 196, 212–
220). Where cross-resistance between biocide exposure
and antibiotic resistance was identified, suggested com-
mon resistance mechanisms included overexpression of
efflux (18, 82, 153, 156, 161), changes in bacterial cell
wall permeability (115, 117), and changes in bacterial
metabolism (180). Differences in protocols to (i) grow
test bacteria, (ii) expose test bacteria to the biocide/
biocidal product, and (iii) measure resistance to biocides
and antibiotics contribute to differences in reported
observations of the biocide’s effect on antibiotic resis-
tance (18). Although the evidence is mainly in vitro
based, the few in situ studies conducted also reported
conflicting information about the association between
the usage of biocidal products at home and an increase
in antibiotic resistance among environmental isolates
(89–93). It is worth noting, however, the study from
Duarte and colleagues (74) reporting a postsurgical
outbreak of a M. abscessus subsp. massiliense-resistant
clone resistant to 2% glutaraldehyde and resistant to
frontline antimycobacterial antibiotics.

There should be no doubt that bacteria have the ca-
pacity to express mechanisms that will lead to decreased

susceptibility to both biocides/biocidal products and
chemotherapeutic antibiotics. The question remains as
to how commonly cross- resistance occurs in practice
and what triggers emerging resistance in the first place.
For example, efflux can easily be triggered in bacteria,
not only by biocides but by a wide range of stimuli, such
as spices and essential oil. (221).

MEASURING BACTERIAL RESISTANCE
One of the most important aspects of biocide/biocidal
product resistance is how to measure bacterial resis-
tance and cross-resistance. This has become even more
pressing with the publication in Europe of the Biocidal
Product Regulation (20), which asks manufacturers
to demonstrate that their biocidal product will not
cause emerging bacterial resistance. Likewise, in North
America the FDA (39) issued a final rule on the safety
and effectiveness of antibacterial soaps, effectively ban-
ning the use of certain biocides for that application.
Rules concerning benzalkonium chloride, benzethonium
chloride, and chloroxylenol, biocides that are commonly
used in several products, deferred. One major issue for
manufacturers is that neither the Biocidal Product Reg-
ulation nor the FDA indicate what appropriate tests
should be conducted to demonstrate the safety of bio-
cidal products where bacterial resistance is concerned.

MIC determination has often been used as a marker
for resistance (18, 28, 69–71, 183, 219), although the
validity of MIC to measure bacterial resistance has been
questioned (1, 3, 18) mainly since in practice, biocides
are often used at concentrations exceeding the MIC
(120) and biocides are used as part of a formulation
whose ingredients will impact on product efficacy (3,
18, 76). MIC could, however, be used as a trend indi-
cator (3, 18, 25, 28, 76, 198, 199, 222, 223). It is thus
unfortunate that some studies measure an increase in
bacterial resistance in terms of MIC (28, 224). Other
studies have used a prevalue biocide concentration above
which the environmental isolates were considered to be
resistant. For example, Lavilla Lerma and colleagues
used a threshold biocide concentration of 0.025 μg/ml at
which any bacterial growth was considered bacterial
resistance to the biocide (81). Furthermore, resistance
has sometimes been defined as a small increase (e.g.,
2-fold) in MIC. This definition remains questionable, es-
pecially when using a standard protocol such as a broth
microdilution method (225) because a 2-fold change
might only reflect a 1-dilution difference. The determi-
nation of changes in minimum biocidal concentration
might be more appropriate, because this indicates a
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change in the lethal effect of the biocide (18, 223). Some
studies have looked at a change in inactivation kinetics.
Such protocols, although very useful because they de-
termine the ability of a biocide/biocidal product to kill
target bacteria over time, are very cumbersome and time-
consuming and would not be able to be used routinely
(3, 18).

The determination of a change in the susceptibility
profile to chemotherapeutic antibiosis is somewhat eas-
ier to perform because the protocols used can follow
well-established standards that provide clear guidance
but also breakpoints for selected bacteria/antibiotics
(226, 227). It is, however, clear that the clinical signifi-
cance should be reported rather than reporting a mere
change in the antibiotic zone of inhibition.

Measuring a change in the susceptibility profile to
determine a prediction of the risk associated with bio-
cidal product usage is acceptable if the exposure of the
target bacterium to the biocidal product is realistic, i.e.,
if it reflects in situ exposure of bacteria with the biocidal
products, encompassing dilution of the product upon
usage if necessary, extended contact time for residual
activity, etc. (18, 25). The test bacterial inoculum prep-
aration needs to be strictly controlled to ensure repro-
ducibility of the assay. When a significant change (here
significant means a ≥10-fold change) in susceptibility
profile is recorded (25, 222), the nature of this change,
whether transient or permanent, needs to be established
(18, 25, 223).

A protocol to predict the change in susceptibility
profile of target bacteria following exposure to a biocide/
biocidal product has been proposed (18). The use of
such a protocol established the effect of various biocidal
products on S. enterica (223), E. coli, and S. aureus (25).
In these studies, triclosan was used as a positive control
(25, 223). Triclosan is the most studied biocide in terms
of interaction with bacteria. Studies have repeatedly show
amended bacterial susceptibility profile to triclosan and
antibiotics following exposure to the bisphenol. (23, 25,
228).

CONCLUSIONS
Biocidal products are useful compounds to control mi-
crobial contamination and kill pathogens. A biocidal
concentration that will not kill the target bacteria will,
regardless of the method of application, cause a stress
response, which will lead to the expression of mecha-
nisms that enable bacterial survival (3, 18, 28, 173).
The concentration of biocide available to interact with
the target bacteria is thus paramount. In the veterinary

field, the presence of organic matter at the point of
the biocidal product application, contributes to reduce
the efficacy of the product, and therefore, cleaning the
animate or inanimate surface prior to use of the bio-
cidal product should be indicated but might not be
practical.

Biocidal products are heavily used for veterinary ap-
plications, notably in animal husbandry, disinfection of
udders in dairy animals, and in fish farming (1). Despite
an increasing use of biocidal products, information re-
lated to the occurrence of bacterial resistance in these
environments remains scarce (55, 73, 150, 229, 230).
Nevertheless, with the growing knowledge and evidence
of bacterial resistance in environments where biocides/
biocidal products are heavily used, environmental sur-
veillance has been timidly proposed to study the poten-
tial spread and occurrence of resistant bacteria (27, 73,
77).

With an increase in biocidal product usage, emerging
bacterial resistance is possible, but to date, the risk as-
sociated with biocidal product usage has not been mea-
sured, mainly because of the lack of standard protocols.
The only protocol to date has not yet been widely used
against a small number of bacteria (18, 25, 223). The
reproducibility of the data obtained may also depend
on the bacterial species investigated (24). Such a pre-
dictive protocol also relies on using appropriate test
parameters that reflect the biocidal product usage in
practice (25, 223). Overall, investigating the biocidal
effect on bacterial resistance should be welcome because
it provides a better understanding of the biocide-bacteria
interactions and should contribute to the development
of more performant and safer biocidal products. This is
particularly pertinent with the increased usage of biocidal
products and the usage conditions in animal husbandry.
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