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ABSTRACT Multidrug resistance in Escherichia coli has become
a worrying issue that is increasingly observed in human but
also in veterinary medicine worldwide. E. coli is intrinsically
susceptible to almost all clinically relevant antimicrobial agents,
but this bacterial species has a great capacity to accumulate
resistance genes, mostly through horizontal gene transfer.
The most problematic mechanisms in E. coli correspond to
the acquisition of genes coding for extended-spectrum
β-lactamases (conferring resistance to broad-spectrum
cephalosporins), carbapenemases (conferring resistance to
carbapenems), 16S rRNA methylases (conferring pan-resistance
to aminoglycosides), plasmid-mediated quinolone resistance
(PMQR) genes (conferring resistance to [fluoro]quinolones),
and mcr genes (conferring resistance to polymyxins).
Although the spread of carbapenemase genes has been
mainly recognized in the human sector but poorly recognized
in animals, colistin resistance in E. coli seems rather to be
related to the use of colistin in veterinary medicine on a
global scale. For the other resistance traits, their cross-transfer
between the human and animal sectors still remains
controversial even though genomic investigations indicate
that extended-spectrum β-lactamase producers encountered
in animals are distinct from those affecting humans.
In addition, E. coli of animal origin often also show
resistances to other—mostly older—antimicrobial agents,
including tetracyclines, phenicols, sulfonamides,
trimethoprim, and fosfomycin. Plasmids, especially
multiresistance plasmids, but also other mobile genetic
elements, such as transposons and gene cassettes in
class 1 and class 2 integrons, seem to play a major role in
the dissemination of resistance genes. Of note, coselection and
persistence of resistances to critically important antimicrobial

agents in human medicine also occurs through the
massive use of antimicrobial agents in veterinary medicine,
such as tetracyclines or sulfonamides, as long as all those
determinants are located on the same genetic elements.

INTRODUCTION
Escherichia coli is a bacterium with a special place in
the microbiological world since it can cause severe in-
fections in humans and animals but also represents a
significant part of the autochthonous microbiota of the
different hosts. Of major concern is a possible trans-
mission of virulent and/or resistant E. coli between ani-
mals and humans through numerous pathways, such
as direct contact, contact with animal excretions, or via
the food chain. E. coli also represents a major reservoir
of resistance genes that may be responsible for treatment
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failures in both human and veterinary medicine. An in-
creasing number of resistance genes has been identified
in E. coli isolates during the last decades, and many of
these resistance genes were acquired by horizontal gene
transfer. In the enterobacterial gene pool, E. coli acts as a
donor and as a recipient of resistance genes and thereby
can acquire resistance genes from other bacteria but
can also pass on its resistance genes to other bacteria. In
general, antimicrobial resistance in E. coli is considered
one of the major challenges in both humans and animals
at a worldwide scale and needs to be considered as a real
public health concern.

This chapter gives an update of antimicrobial resis-
tance in E. coli of animal origin by focusing on resistance
to those classes of antimicrobial agents mainly used in
veterinary medicine and to which E. coli isolates of ani-
mal origin are known to exhibit resistance.

E. COLI IN ANIMALS: A PATHOGENIC
AND A COMMENSAL BACTERIUM
“Colibacillosis” is a general term for a disease caused
by the bacterium E. coli, which normally resides in
the lower intestines of most warm-blooded mammals.
Hence, E. coli is a versatile microorganism with a num-
ber of pathogenic isolates prone to cause intestinal and
extra-intestinal infections, while most others are harm-
less for their host and refer to commensalism. The path-
ogenic E. coli isolates can be classified into different
pathotypes, or pathovars, where each pathotype causes
a different disease (1). The intestinal pathogenic E. coli
pathovars are responsible for disorders in the gut rang-
ing from mild diarrhea to severe colitis, while the
extra-intestinal pathogenic E. coli pathovars are mostly
asymptomatic inhabitants of the intestinal tract that
cause extra-intestinal diseases after migrating to other
parts of the body, such as the urinary tract or the blood
stream (2). Animal diseases due to E. coli can also be
caused by E. coli isolates originating from the environ-
mental reservoir or other infected individuals. Patho-
genic and nonpathogenic E. coli differ by the acquisition
or loss of virulence-associated traits associated with
E. coli pathogenicity. The number of genes present in the
E. coli genome varies from 4,000 to 5,000 genes, with
approximately 3,000 genes shared by the different iso-
lates, whereas the others mostly correspond to coloni-
zation or virulence determinants. Advanced insights in
the genomic plasticity of E. coli have been possible by
the use of whole-genome sequencing, providing a better
understanding of the core and accessory genomes of
pathogenic and commensal E. coli isolates (3).

In animals, E. coli is one of the leading causes of
diarrhea, together with other pathogens such as rota-
virus, coronavirus, Cryptosporidium parvum, or a com-
bination of these (4). These enterotoxigenic E. coli
(ETEC) strains bind and colonize the intestinal epithe-
lium through adhesins expressed in the context of fim-
briae, such as the F4 (formerly designated K88), F5
(K99), F6 (987P), F17, and F18 fimbriae (5). ETEC also
produces various enterotoxins, of which heat-labile and
heat-stable toxins and/or enteroaggregative heat-stable
toxin 1 (EAST1) lead to diarrhea. ETEC affects various
animal species, mostly young animals, particularly food-
producing animals (piglets, newborn calves, chickens)
but also companion animals such as dogs. In livestock,
diarrhea is considered one of the major diseases, which
can propagate among animals with possibly significant
consequences at the herd/flock level. Diarrhea is ob-
served in pigs and calves during the first 3 to 5 days of
life and in pigs 3 to 10 days after weaning. The trend
toward early weaning in several countries and conti-
nents may have played a significant role in the rising
occurrence of postweaning diarrhea in the pig sector. As
a consequence, lethal ETEC infections in animals can
also occur as a result of severe dehydration and elec-
trolyte imbalance.

E. coli infections in animals are not restricted to young
individuals but occur in adults as well. As mentioned
above, extra-intestinal pathogenic E. coli is responsible
for infections of the lower and upper urinary tract, par-
ticularly in companion animals (6, 7). In poultry, avian-
pathogenic E. coli causes colibacillosis initiated in the
respiratory tract by inhalation of fecal dust before
spreading further in the whole body, causing septicemia,
pericarditis, and mortality (8). In dairy cattle, mastitis
is a common inflammatory response of the mammary
gland, significantly decreasing milk production and
causing dramatic economic losses, with E. coli being
one of the major causes—together with Staphylococcus
aureus, Streptococcus uberis, Streptococcus agalactiae,
and Streptococcus dysgalactiae (9, 10). In particular,
E. coli is responsible for more than 80% of cases of acute
mastitis where the severe clinical signs are induced by
the lipopolysaccharide (LPS) as a primary virulence fac-
tor followed by the subsequent release of inflammatory
mediators (11). Nonetheless, it is broadly considered that
mastitis in dairy cattle due to E. coli is neither associated
with specific E. coli serovars nor involves a common set
of virulence factors shared among E. coli isolates.

E. coli infections in animals are subjected to various
pharmaceutical treatments including antimicrobials.
For instance, ampicillin, streptomycin, sulfonamides,
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or oxytetracyclines are commonly used to treat bovine
mastitis, but broad-spectrum cephalosporins and fluo-
roquinolones also have indications through systemic
or local administration depending on the severity of
the clinical symptoms (12) and the resistance properties
of the causative E. coli isolates. Nonetheless, the role of
antimicrobials in the treatment of coliform mastitis is
becoming more and more open to debate. Recommen-
dations provided for veterinarians refer to the prefera-
ble use of first-line antimicrobial agents and avoidance
of antimicrobial therapy during the dry-off period of
dairy cattle. Global data and trends on the antimicro-
bial resistance of E. coli in mastitis have been highlighted
in several national reports and vary among countries
even though relevant comparisons are difficult. To date,
the global picture indicates that antimicrobial suscepti-
bility of E. coli in mastitis remains high. In particular,
extended-spectrum β-lactamases (ESBLs) or overex-
pressed cephalosporinases (AmpCs) produced by E. coli
and conferring resistance to broad-spectrum cephalo-
sporins have been sporadically isolated from milk sam-
ples (13–16). Those families of antimicrobial agents may
also be prescribed in newborns affected by diarrhea.
Again, action plans against antimicrobial resistance in
the animal sector constantly advise veterinarians to use
antimicrobials prudently and emphasize the need to con-
sider all other preventive and therapeutic options and
restrict the use of antimicrobial agents to those situations
where it is indispensable (17). For instance, strategies
to prevent and treat neonatal diarrhea should include
not only the prescription of antimicrobials but also good
colostrum management practices to ensure adequate
passive immunity and appropriate oral or intravenous
fluid therapy to compensate for dehydration, acidosis,
and electrolyte imbalance (18). Global hygiene proce-
dures at the farm level and vaccinations are also essential
measures for improvement in antimicrobial stewardship.
In contrast to mastitis, ESBL/AmpC genes have been
abundantly reported in E. coli originating from the di-
gestive tract in animals. This includes pathogenic E. coli
recovered from diarrheic samples of young animals, yet
it remains highly difficult to confirm that a specific
E. coli isolate is responsible for the intestinal disease.
More importantly, ESBL/AmpC genes have been widely
recognized in commensal E. coli isolated from fecal
samples of various food-producing and companion
animals through selective screenings using cephalospo-
rin-containing media (19–21). High prevalence rates of
ESBL/AmpC-producing E. coli were found in certain
settings and countries, such as in the veal calves sector in
Europe and in broiler production worldwide. In those

cases, it more likely reflects the selective impact of the use
of antimicrobials—and particularly of broad-spectrum
cephalosporins such as ceftiofur—on the commensal
E. coli microbiota. In broilers, such a situation has be-
come a point of major concern on a global scale since
broad-spectrum cephalosporins are both of critical im-
portance in human medicine and not authorized for use
in poultry. In addition to national actions taken, mostly
in Europe, to restrict the use of critically important an-
timicrobial agents in animals, the use of antimicrobial
agents as growth promoters has been banned in animals
in Europe since 2006, but it is still common practice in
most countries. Altogether, since antimicrobial agents
have a major impact on the gut microbiota where E. coli
resides, multidrug-resistant E. coli, such as ESBL/AmpC-
producing E. coli, has become one of the main indicators
to estimate the burden of antimicrobial resistance in
animals and other sectors in a One Health perspective.

RESISTANCE TO β-LACTAMS
There are numerous genes in E. coli of human and ani-
mal origin that confer resistance to β-lactams. Some
of them, such as blaTEM-1, are widespread in E. coli
from animals but code only for narrow-spectrum
β-lactamases that can inactivate penicillins and amino-
penicillins. However, in recent years, genes that code
for ESBLs/AmpCs have emerged in E. coli from humans
and animals. Most recently, genes coding for carbapen-
emases have also been detected occasionally in E. coli
of animal origin. Because of the relevance of these latter
two groups of β-lactamases, the following subsections
provide more detailed information on ESBLs, AmpCs,
and carbapenemases.

Clavulanic-Acid Inhibited Class A ESBLs
ESBLs belong mostly to class A of the Ambler classifi-
cation (22) and group 2be according to the updated
functional classification of β-lactamases by Bush and
Jacoby (23). ESBL-producing strains of E. coli are clin-
ically relevant in veterinary medicine since they confer
resistance to penicillins, aminopenicillins, and cephalo-
sporins, including the third-generation cephalosporins
ceftiofur and cefovecin and the fourth-generation ceph-
alosporin cefquinome, which are approved veterinary
drugs. Thus, ESBLs may be the cause of treatment fail-
ures and limit the therapeutic options of veterinarians,
because they have been identified in increasing numbers
in E. coli of food-producing and companion animals
worldwide (24, 25). ESBL-producing E. coli from ani-
mals has been isolated not only from infection sites, but
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also from the feces of healthy individuals (26–29).
Moreover, ESBL-producingE. coli has also been detected
in wild animals, emphasizing the wide distribution of
these resistance determinants (30).

TEM- and SHV-ESBLs were among the first described
ESBLs in the 1980s, and they were predominant until
2000. Since then, CTX-M-ESBLs emerged and have
been predominantly identified in commensal and path-
ogenic ESBL-producing E. coli isolates of human and
animal origin around the world (31, 32). The reason for
this shift remains unknown, despite many investigations
and surveillance studies. It is difficult to compare prev-
alence data of ESBL-producing E. coli isolates because
several resistance-monitoring programs register the re-
sistance rates for cephalosporins in E. coli isolates of
animal origin but do not necessarily confirm whether

this resistance is based on ESBL production or another
β-lactamase. Moreover, the molecular identification of
ESBL genes in monitoring programs is not systematic.
The nonharmonized methodology is also reflected in
sampling plans and therefore in the origin of the E. coli
isolates, e.g., healthy or diseased animals (33). Never-
theless, the European Food Safety Authority compiled
a scientific opinion which states that the prevalence
of resistance to cefotaxime in food-producing animals
varies by country and animal species. In addition, the
ESBL genes blaCTX-M-1, blaCTX-M-14, blaTEM-52, and
blaSHV-12 were identified as the most common ones
along with a wide range of other blaCTX-M, blaTEM, and
blaSHV variant genes (34) (Table 1).

A large study conducted in Germany analyzed
ESBL-producing E. coli isolates collected from diseased

TABLE 1 Examples of acquired ESBL genes in E. coli of animal origin from Europe, the U.S., Latin America,
Africa, and Asia

ESBL gene Geographical origin Source Sequence type(s) Reference

blaCTX-M-1 Denmark Pig 10, 189, 206, 453, 542, 744, 910, 1406, 1684 2739,
4048, 4052, 4053, 4056,

257

Sweden Poultry 57, 135, 155, 219, 602, 752, 1594, 1640 258

Great Britain Poultry 4, 10, 57, 88, 155, 371, 1515, 1517, 1518, 1549, 1550 259

Switzerland Poultry, cattle, pig 48, 83, 305, 525, 528, 529, 533, 534, 536, 540 260

The Netherlands Veal calves 10, 58, 88, 117, 162, 224, 354, 448, 617, 648, 744, 973 21

France Dairy cattle 23, 58 13

Germany Dairy cattle 10, 117, 540, 1431, 5447 14

Germany Swine, cattle,
poultry, horse

10, 23, 83, 100, 131, 167, 362, 453, 648,
925, 973, 1684, 2699

43

Germany Dog 10, 23, 69, 160, 224 28

U.S. Dog, cat 23, 38, 44, 68, 69, 131, 167, 405, 410, 443,
648, 1011, 1088, 5174, 5206, 5220

261

blaCTX-M-14 The Netherlands Veal calves 10, 57, 952 21

France Dairy cattle 10, 23, 45, 58 13

China Pig, poultry 10, 155, 206, 224, 359, 405, 602, 648, 2929, 2930, 2962 262

China Dog 10, 38, 104, 131, 167, 405, 648, 146, 3630 97

blaCTX-M-15 UK Poultry 57, 156 259

UK Dog 131, 410, 1284, 2348, 4184 99

The Netherlands Veal calves 58, 59, 88, 361, 410, 648 21

Germany Livestock 10, 88, 90, 167, 410, 617, 648 263

Germany Dairy cattle 10, 361, 1508 14

Germany, Denmark, Spain,
France, the Netherlands

Dog, horse 131 264

Germany, Italy Dog, cat, cattle, horse 648 96

Germany Dog 410, 3018 28

U.S. Dog, cat 23, 38, 44, 68, 69, 131, 167, 405, 410, 443, 617, 648,
1011, 1088, 5174, 5206, 5220

261

Mexico Dog 410, 617 138

China Dog 10, 38, 44, 69, 73, 75, 131, 302, 405, 648, 1700, 2375 97

Nigeria Poultry 10, 405 221

blaSHV-12 Spain, Germany Wild bird, dog, poultry 23, 57, 117, 155, 362, 371, 453, 616, 1564, 2001 39

China Dog 10, 75, 131, 167, 405, 648, 2375, 3058 97
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food-producing animals in the GERM-Vet monitoring
program from 2008 to 2014 (35). This study detected
the gene blaCTX-M-1 in 69.9% of the ESBL producers,
followed by blaCTX-M-15 in 13.6%, blaCTX-M-14 in
11.7%, blaTEM-52 in 1.9%, and blaSHV-12 in 1.4%. The
genes blaCTX-M-3 and blaCTX-M-2 were identified in 1.0%
and 0.5%, respectively. The distribution of ESBL genes
varies with regard to the different animal hosts and the
isolation sites; for example, ESBL-producingE. coliwere
isolated more frequently from cases of enteritis in calves
than from cases of bovine mastitis (35). Moreover, the
geographical location also plays a role. For instance,
the study by Day and co-workers identified the gene
blaCTX-M-1 as the most common among bovine ESBL-
producing E. coli from Germany, while the gene
blaCTX-M-15 was most frequent in E. coli isolates of bo-
vine origin from the United Kingdom (36). In ESBL-
producing E. coli isolates from European companion
animals, the gene blaCTX-M-1 was most common, but the
gene blaCTX-M-15 was also frequently identified (24, 37).
In the United States, the gene blaCTX-M-15 was predom-
inant among ESBL-producing E. coli from urinary
tract infections of companion animals (38). The gene
blaCTX-M-14 was less frequent in Europe, but in Asia
among the most common ESBL genes in poultry, com-
panion animals, and humans (24). The ESBL gene
blaSHV-12 was not frequently reported but was identified
in ESBL-producing E. coli from poultry, dogs, and wild
birds in Spain and Germany (39).

Worldwide, the most common ESBL gene in E. coli
isolates of human origin is blaCTX-M-15, which is mainly
associated with the pandemic E. coli clone O25:H4-
ST131 (40). This clone has been rarely identified
in animals and if so, mostly in companion animals (24,
25, 41, 42). The production of various ESBLs has been
demonstrated in animal E. coli isolates of a wide vari-
ety of multilocus sequence types (24, 35, 36, 43) (Table
1). According to Ewers and colleagues, an exclusive
linkage of a specific bla gene or a distinct host with a
certain sequence type (ST) is not evident (24). Never-
theless, ESBL-producing E. coli belonging to certain
STs have been more frequently detected among animals
and humans than others, namely ST10, ST23, ST38,
ST88, ST131, ST167, ST410, and ST648, which are
supposed to facilitate the spread of ESBL genes (25, 36,
43, 44).

The dissemination of ESBL genes among E. coli from
animals is mainly driven by horizontal gene transfer.
ESBL genes are associated with several insertion se-
quences (ISs), such as ISEcp1, ISCR1, IS26, and IS10,
transposons such as Tn2, and integrons (43, 45, 46). The

majority of ESBL genes are plasmid-located, whereas
the integration of ESBL genes in the chromosomal DNA
of E. coli of animal origin has been rarely described (47–
49). The most prevalent replicon types identified among
ESBL-carrying plasmids from E. coli are IncF, IncI1,
IncN, IncHI1, and IncHI2, but plasmids of other repli-
con types also play a role in the dissemination of ESBL
genes (47). The study by Day and co-workers identified
16 ESBL genes on 341 transferable plasmids, belonging
to 19 replicon types (36). Despite this complexity, some
plasmids that carry ESBL genes seem to be more suc-
cessful than others. Plasmids carrying blaCTX-M-15 and
belonging to the IncF family had been detected in
the pandemic E. coli clone O25:H4-ST131 (47). The
ESBL gene blaCTX-M-1 was frequently identified on
plasmids belonging to the IncN or IncI1 families,
while blaCTX-M-14 was detected on IncK plasmids, and
blaCTX-M-3 on IncL/M plasmids (47). IncI1, IncK, and
IncX plasmids carried the ESBL gene blaSHV-12 (39). A
plasmid multilocus sequence typing scheme assigns
members of the most common plasmid families to pSTs
to trace epidemic plasmids (47). Some plasmids harbor
additional resistance genes besides the ESBL gene, which
may facilitate the coselection and persistence of ESBL
gene-carrying plasmids even without the selective pres-
sure of β-lactams, when the respective antimicrobial
agents are used (14, 43).

Many studies have tried to figure out whether ESBL-
producing E. coli identified in humans might originate
from animal reservoirs. Most of those studies could
not find an obvious link, and most often, it was clearly
shown that there was no link at all, animals and humans
representing reservoirs of different clonal lineages that
possessed various ESBL determinants (50, 51). Never-
theless, a Dutch study showed that a significant number
of either human- or poultry-associated ESBL-producing
E. coli isolates harbored genetically indistinguishable
ESBL-encoding plasmids, suggesting that plasmids might
be common vehicles that are likely transmitted through
the food chain (52). Indeed, numerous studies have
pointed out that chickens may represent a significant
reservoir of ESBLs, which has become a considerable
concern worldwide, although broad-spectrum cephalo-
sporins are not approved for use in the poultry sector.
ESBL-producing E. coli has been reported as a cause of
infections in broilers and laying hens but also as a col-
onizer of living chickens and a contaminant of chicken
meat at retail in several European and non-European
countries, including countries in which the use of anti-
microbial agents has been reduced following national
action plans in veterinary medicine (53).
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Acquired AmpC Cephalosporinases
Although class A ESBL enzymes are the most com-
mon sources of acquired resistance to broad-spectrum
cephalosporins in E. coli, class C β-lactamases, also
known as AmpC-type enzymes, confer high-level resis-
tance to those antimicrobial agents (54). The main
plasmid-encoded AmpC enzymes are CMY-, DHA-,
and ACC-type β-lactamases, with a higher prevalence
of CMY-type enzymes worldwide (55). In animals, the
majority of identified AmpC enzymes have been of the
CMY type (Table 2) (25, 56). A recent study performed
in Denmark identified CMY-2-producing E. coli isolates
from poultry meat, poultry, and dogs (57). The study
showed that the dissemination of blaCMY-2 was mainly
due to the spread of IncI1-γ and IncK plasmids. In
Sweden, though there are, in general, low rates of re-
sistance to broad-spectrum cephalosporins, the occur-
rence of CMY-2-producing E. coli was demonstrated
when Swedish chicken meat, Swedish poultry, and im-
ported chicken meat were examined (58). The occur-
rence of CMY-2-producing E. coli in the Swedish broiler
sector has been attributed to importation of 1-day old
chicks from the United Kingdom, where broad-spectrum
cephalosporins had been administered prophylactically
to the young birds before exportation (59). It has also
been shown that migratory birds may be colonized with
CMY-2-positive E. coli (60). In a study conducted in
Florida, a series of clonally unrelated CMY-2-producing
E. coli isolates were recovered from feces of seagulls
(61). They belong mainly to phylogroup D, correspond-
ing to human commensal isolates, but some STs had

previously been identified from human bacteremia. The
blaCMY-2 gene was mainly found on IncI1 plasmids,
as reported with human isolates. Therefore, there was a
significant correlation between the genetic features of
those isolates and those known for human isolates in the
United States, showing that seagulls were likely colo-
nized by human isolates. This is an example showing
that migratory birds crossing long distances, such as
along the eastern United States coastline, may be reser-
voirs and therefore sources of such multidrug-resistant
isolates, as is also exemplified in South America and
Europe (62, 63).

Acquired Carbapenemases
Carbapenemases have been rarely identified in animal
E. coli. This is likely the consequence of a very weak
selective pressure (if any) by carbapenems, since those
antimicrobial agents are not (or only in rare cases for
individual non-food-producing animals) prescribed in
veterinary medicine. Nevertheless, there has been some
concern in recent years since carbapenemase-producing
bacteria, including E. coli, have been isolated from ani-
mals worldwide (64–66).

The first carbapenemase determinant identified in an
animal E. coli isolate was VIM-1, which was recovered
from a pig in Germany (67) (Table 3). Since then, other
VIM-1-producing E. coli isolates have been identified
in different pig farms in the same country (68, 69). This
carbapenemase has so far never been found elsewhere
in animal isolates. Other identified carbapenemases in
E. coli are NDM-1 and NDM-5. NDM-1 has been iden-

TABLE 2 Examples of acquired blaCMY-2 genes in E. coli of animal origin from Europe, the North and South America,
Asia, and Africa

Geographical origin Source Sequence type(s) Reference

Germany Pig 625 265

Spain Wild bird
(yellow-legged gull)

10 266

Denmark, Germany,
France

Poultry and poultry
meat, dog

10, 23, 38, 48, 68, 69, 88, 93, 115, 117, 131, 206, 212, 219, 297, 350,
361, 372, 405, 410, 428, 448, 457, 546, 616, 746, 754, 919, 963,
1196, 1056, 1303, 1518, 1585, 1594, 1640, 1775, 2040, 2144,
2168, 2196, 2558, 3272, 3574, 4048, 4124, 4125, 4240, 4243

57

Portugal Poultry 57, 117, 429, 2451 267

Switzerland Poultry meat 38, 1564 268

Switzerland Poultry 3, 9, 61, 527, 530, 535, 539

Austria Wild bird (rook) 224 60

U.S. Poultry meat 131 269

Brazil Poultry 453, 457, 1706 270

China Pig, poultry 10, 48, 69, 101, 155, 156, 354, 359, 362, 457, 648, 1114, 1431,
2294, 2690, 3014, 3244, 3245, 3269, 3376, 3402, 3403, 3404

271

Japan Cattle 1284, 2438 272

Japan Dog 10, 354, 493, 648, 3557 273

Tunisia Poultry 117, 155, 2197 274
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tified in the United States and in China, in isolates re-
covered from dogs, cats, and pigs (70, 71). NDM-5 has
been detected in China, India, and Algeria, from cattle,
poultry, dogs, cats, and fish (72–75). The gene encoding
IMP-4 has been identified in E. coli isolates recovered
from silver gulls in Australia (76). Interestingly, the
OXA-48 carbapenemase, which is the most prevalent
carbapenemase in human enterobacterial isolates in
Europe, has been found in E. coli isolates recovered from
dogs, cats, and chickens in Germany, France, Lebanon,
Algeria, and the United States (37, 77–79). Finally, the
OXA-181 enzyme, which is a variant of OXA-48 in-
creasingly reported in humans, has recently been iden-
tified in animals as well, being found in clonally
unrelated E. coli isolates recovered from pigs in Italy
(80). Even though the class A β-lactamase KPC is one
of the most commonly identified carbapenemases in
human isolates in some parts of the world, including in
North America, China, and some European countries
(Italy, Greece, Poland), it has not yet been identified in
animal E. coli isolates so far (81, 82), except for a single
blaKPC-2-carrying isolate from a dog in Brazil that suf-
fered from a urinary tract infection (287).

Overall, and notably, the different carbapenemase
genes that have been identified among animals in dif-
ferent countries reflect the types of carbapenemases
known to be the most prevalent in human isolates in
those countries. Considering that carbapenems are not
used in veterinary medicine, it remains to be determined
which antimicrobial selective pressure is responsible for
the selection of such carbapenemase producers in ani-
mals. Penicillins, however, are excellent substrates for
any kind of β-lactamases, including carbapenemases,
and therefore their use might correspond to a selective
pressure anyhow. In addition, it remains to be evaluated
whether animals may act as potential sources of trans-
mission of those resistance traits toward humans or if,

conversely, this epidemiology just reflects the conse-
quence of a higher prevalence in humans that may
eventually target animals through an environmental
dissemination. Since the occurrence of carbapenemase-
producing Enterobacteriaceae in animals is marginal, it
therefore does not correspond to a significant threat to
human medicine (65).

RESISTANCE TO QUINOLONES
AND FLUOROQUINOLONES
Quinolones and fluoroquinolones are important anti-
microbial agents for treating various types of infections
in both humans and animals. They are known to be
bactericidal against virtually all bacteria. Resistance to
these antimicrobial agents is usually due to mutations in
the drug targets, namely, the genes for DNA gyrase and
topoisomerase IV, but other mechanisms such as re-
duced permeability of the outer membrane, protection of
the target structures, or upregulated efflux pumps may
also play a role (83).

Resistance to (Fluoro)Quinolones by
Chromosomal Target Site Mutations
The primary target of (fluoro)quinolones in E. coli is
the gyrase, which consists of two GyrA subunits and
two GyrB subunits. Topoisomerase IV constitutes a sec-
ondary target in Gram-negative bacteria. This enzyme
consists of two ParC and two ParE subunits. Most
mutations were found within the quinolone resistance-
determining region, which is between Ala67 and Gln107
in GyrA, and most frequently mutations occur at codons
83 and 87 (83). Single mutations in the gene gyrA may
confer resistance to quinolones, but for resistance to
fluoroquinolones, further mutations within gyrA and/or
parC are needed. Most parC mutations occur at codons
80 and 84 (83). In clinical E. coli isolates from com-

TABLE 3 Examples of acquired carbapenemase genes in E. coli of animal origin from Europe, North and South America,
Africa, Australia, and Asia

Carbapenemase
gene Geographical origin Source Sequence types Reference

blaNDM-1 China, U.S. Dog, cat, pig 167, 1695, 1585, 1721, 359 70, 275, 276

blaNDM-5 China, Algeria, India Dog, pig, cow, duck 48, 54, 90, 156, 165, 167, 410, 648, 1114, 1178,
1234, 1437, 2439, 3331, 4429, 4463, 4656

74, 75, 277–279

blaVIM-1 Germany Seafood, pig 10, 88 67, 68, 280, 281

blaIMP-4 Australia Silver gull 48, 58, 167, 189, 216, 224, 345, 354, 541, 542, 744,
746, 1114, 1139, 1178, 1421, 2178, 4657, 4658,

76

blaOXA-48 Germany, U.S., France,
Lebanon, Algeria

Dog, cat, chicken 38, 372, 648, 1196, 1431 77–79, 261

blaOXA-181 Italy Pig 359, 641 80
blaKPC-2 Brazil Dog 648 287
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panion animals, different combinations of mutations
were detected at codons 83 and 87 in gyrA and at
codons 80 and 84 in parC (84, 85). Mutations within
gyrA and parC were also described in E. coli isolates
originating from diseased food-producing animals
(86, 87).

Resistance to (Fluoro)Quinolones by
Plasmid-Borne Resistance Mechanisms
Since the identification of the first plasmid-mediated
quinolone resistance (PMQR) determinant, qnrA1, in
1997, there is serious concern about the global dis-
semination of PMQR genes (88, 89). Several plasmid-
encoded resistance mechanisms have been identified,
including (i) Qnr-like proteins (QnrA, QnrB, QnrC,
QnrD, and QnrS) which protect DNA from quinolone
binding, (ii) the AAC(6′)-Ib-cr acetyltransferase that
modifies certain fluoroquinolones such as ciprofloxacin
and enrofloxacin, and (iii) active efflux pumps (QepA
and OqxAB). Overall, these resistance determinants
do not confer a high level of resistance to quinolones (or
fluoroquinolones), but rather, confer reduced suscepti-
bility to those antimicrobial agents. However, they
might contribute to the selection of isolates exhibiting
higher levels of resistance through additional chromo-
somally encoded mechanisms (89).

PMQRs have been identified widely among human
isolates but also among animal isolates. Especially in
China, numerous studies have shown high prevalences
of Qnr, AAC(6′)-Ib-cr, and QepA determinants among
food-producing animals (86, 90), and some studies
highlighted an increased prevalence through the years
(91). A Europe-wide retrospective study identified the
genes qnrS1 and qnrB19 in E. coli isolates from food-
producing animals, namely, poultry, cattle, and pigs
(92). PMQRs were detected not only in food-producing
animals, but also in companion animals. In E. coli iso-
lates from diseased companion animals, the genes qnrS1,
qnrB1, qnrB4, and qnrB10 were identified (84). The
gene qnrB19 was described in equine E. coli isolates
(93, 94). The replicon types often associated with plas-
mids that carried the PMQR genes qnrS1 and qnrB19
are IncN and IncX but also include several others (47,
94, 95).

In E. coli belonging to several STs of companion an-
imal origin, the gene aac(6′)Ib-cr was identified (96–99).
This gene was located on plasmids of the IncF family,
and a blaCTX-M ESBL gene, usually blaCTX-M-15, was
often colocated (96, 98). Furthermore, aac(6′)Ib-cr was
described in E. coli isolates from the feces of French
cattle, where it was also colocated with blaCTX-M-15 on

plasmids belonging to the IncF family (100). The gene
qepA was identified in E. coli of companion animal or-
igin belonging to different STs (97). Plasmids of the IncF
family harbored qepA in E. coli from food-producing
and companion animals (101). The PMQR gene oqxAB
was identified in unrelated E. coli isolates from food-
producing animals and located on different plasmids
belonging to the IncF and IncHI2 families (102). The
case of OqxAB is peculiar since this resistance determi-
nant confers reduced susceptibility not only to quino-
lones (such as flumequine), but also to other drugs such
as trimethoprim and chloramphenicol that are also used
in veterinary medicine. Therefore, this resistance deter-
minant encompasses different families of antimicrobial
agents to which resistance (or reduced susceptibility) can
be coselected (103).

RESISTANCE TO AMINOGLYCOSIDES
Aminoglycosides are drugs of natural origins whose
producers can be found in the genus Streptomyces (104,
105) and Micromonospora, and they are often used
in combination with another antimicrobial (mostly a
β-lactam) to exploit their rapid bactericidal action for
treating complicated infections such as sepsis, pneumo-
nia, meningitis, and urinary tract/abdominal infections,
both in humans and animals, including food-producing
animals and companion animals (106). The most fre-
quently used molecules in veterinary medicine are
neomycin and derivatives of streptomycin. Gentamicin,
kanamycin, and paromomycin are used as well. Amikacin
is reserved for the treatment of infections in pets and
horses (106).

Aminoglycosides affect a broad spectrum of patho-
gens among Gram-negative and -positive bacterial spe-
cies, interfering with translation (107). Twomajor issues
could limit the therapeutic power of these important
molecules: the first is linked to their toxicity. Never-
theless, this issue is managed by opportune therapeutic
regimens based on recent advances in the understanding
of aminoglycoside pharmacodynamics (108). The sec-
ond issue is the emergence of bacterial resistance linked
to the usage of aminoglycosides, which has disseminated
globally. The following subsections provide an overview
of mechanisms of resistance toward aminoglycosides
and their epidemiology in E. coli of animal origin.

Resistance to Aminoglycosides
by Target Modifications
Resistance to aminoglycosides can develop by target
mutations involving the 16S RNA and/or the S5 and
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S12 ribosomal proteins (107, 109, 110). However, this
strategy is successful in conferring high-level resistance
only in bacterial species with a limited number of copies
of 16S RNA encoding operons. E. coli harbors seven
copies of such operons, making the establishment of
aminoglycoside resistance by point mutations rather
improbable.

Modification of the target site of aminoglycosides
can be achieved also by methylation of residues G1405
and A1408 of site A of the 16S RNA, resulting in high-
level resistance to amikacin, tobramycin, gentamicin,
and netilmicin (109). The 16S RNA methylases, includ-
ing ArmA, RmtA/B/C/D/E/F/G/H, andNmpA, originated
from natural aminoglycoside producers as self-defense
against antimicrobial production (104). The first detec-
tion of ArmA dates back to 2003, when Galimand
and colleagues reported the enzyme in a Klebsiella
pneumoniae isolate from a human and the respective
gene on a conjugative plasmid (111). Since then, the
armA gene has been reported in several enterobacteria,
Acinetobacter baumannii, and Pseudomonas aeruginosa
isolates (112–116). The dissemination of the armA gene
is favored by its location on the composite transposon
Tn1548, which also carries genes coding for sulfonamide
resistance, which in turn is located on self-transmissible
plasmids belonging to several incompatibility groups
(117). Emergence of ArmA in E. coli from animals was
reported in 2005 in Spain in one pig (118), whereas the
first report of E. coli producing RmtB was in 2007 in
China by Chen and co-workers who reported a preva-
lence of 32% (n = 49/152) among healthy pigs in farms
(119). In an investigation conducted in China in 2008,
Du et al. reported the presence of ArmA and RmtB in
E. coli from diseased poultry, with an occurrence of 10%
(n = 12/120) (120). Later, Liu et al. reported the presence
of E. coli ArmA and RmtB producers among various
food-producing animals in 2009 to 2010, with an oc-
currence of 1.27% and 11.5% for ArmA and RmtB,
respectively (n = 2 and 18/157) (121). RmtBwas found in
E. coli isolates associated with bovinemastitis in China in
2013 to 2014, with an occurrence of 5.3% (n = 13/245)
(122). Yang and colleagues reported the presence of E.
coli producing RmtD in diseased chickens in 2012 to
2014 in China. The enzyme co-occurred with RmtB with
a prevalence of 8.3% (n = 3/36). In the same study, other
methylases were found, namely, RmtB together with
ArmA in 8.3% of isolates (n = 3/36), RmtB alone in
72.2% of isolates (n = 26/36), and ArmA in 11.1% of
isolates (n = 4/36) (123).

More recently, a scattered porcine E. coli isolate
harboring the armA gene was detected in Italy. The

isolate was multidrug-resistant, notably harboring the
blaCMY-2, blaOXA-181, and mcr-1 genes (80). Recently,
two E. coli isolates producing RmtB were reported from
diseased bovines in France. The gene colocalized on an
IncF33:A1:B1 plasmid with blaCTX-M-55 and in one
isolate also with the fosA3 gene (124). The RmtD vari-
ant has been found less frequently. Other than the report
from Yang et al. (123), another recent report has been
published from Brazil, on one E. coli isolate from a dis-
eased horse producing RmtD and harboring the blaCTX-

M-15 and aac(6′)-Ib-cr genes (125). The RmtE methylase
was reported for the first time from commensal E. coli
isolates from healthy calves in the United States (126).
Later, two E. coli isolates were identified as RmtE pro-
ducers in diseased food-producing animals in China,
from 2002 to 2012 (127). Reports on RmtA are also
quite infrequent, with a recent one from Zou et al., who
found a frequency of 10% of rmtA gene occurrence
among 89 E. coli isolates from giant pandas in China
(128). To the best of our knowledge, RmtF/G/H en-
zymes have not yet emerged in E. coli, and NmpA has
never been reported from animals. Overall, it can be
stated that methylases have not widely disseminated
since their discovery, probably for reasons related to
fitness (129, 130). An exception is in China, where
probably the antimicrobial usage, not only relative to
aminoglycosides, may play a role in the emergence
and dissemination of these enzymes. On the contrary,
aminoglycoside-modifying enzymes have disseminated
globally, and an overview of those most frequently en-
countered in animals is provided in the next subsection.

Resistance to Aminoglycosides
by Enzymatic Inactivation
The inactivation of aminoglycosides is conducted by
enzymes which modify the molecules so that they become
unable to reach or bind to the target site. Currently, three
types of aminoglycoside-modifying enzymes are known,
and according to the modifying group that is linked to the
aminoglycosides, they are classified as acetyltransferases,
nucleotidyltransferases, and phosphotransferases.

The aminoglycoside acetyltransferases catalyze the
addition of an acetyl group (CH3CO) to an amine group
(–NH2) at positions 1, 2, 3, or 6 of the aminoglycoside
structure, which determines the subgroup of the enzyme
(131). For each enzyme, several variants have been re-
ported, and they are usually defined by a roman number.
AAC(3)-II/IV and AAC(6)-Ib are the most frequently
encountered acetyltransferases among E. coli of human
and animal origins. They have been globally reported
from several hosts (128, 132–140).

ASMscience.org/MicrobiolSpectrum 9

Antimicrobial Resistance in Escherichia coli

http://www.ASMscience.org/MicrobiolSpectrum


Among aminoglycosides, the nucleotidyltransferases
ANT(2″) and ANT(3″) are most commonly found in
Gram-negative bacteria. ANT(2″) and ANT(3″) are
encoded by the genes aadB and aadA, respectively (131),
which are both frequently located on gene cassettes in
class 1 integrons. These genes have also spread globally,
and they have been found in E. coli from animals in-
cluding pets, wild animals, and food-producing animals
(134, 141–148).

Among the aminoglycoside phosphotransferases,
APH(6)-Ia and APH(6)-Id encoded by the strA and strB
genes, respectively, are most commonly encountered in
E. coli worldwide. They mediate resistance to strepto-
mycin and are frequently associated with a unique mo-
bile element, sometimes together with the aph(3″)-I/II
genes mediating kanamycin resistance. These resistance
mechanisms have been found in several hosts including
wild rabbits (145), cattle (149–152), poultry (153, 154),
and swine (155–157).

RESISTANCE TO FOSFOMYCIN
Fosfomycin inhibits the MurA enzyme, which is in-
volved in peptidoglycan synthesis. The use of fosfo-
mycin in veterinary medicine is limited to the treatment
of infections caused by a number of Gram-positive and
Gram-negative pathogens, including E. coli, mainly in
piglets and broiler chickens (158, 159). Two major fos-
fomycin resistance mechanisms have been described:
(i) mutations in the glpT and uhpA/T genes encoding
proteins involved in the fosfomycin uptake system and
(ii) the acquisition of fosfomycin-modifying enzymes
such as the metalloenzymes FosA, FosB, and FosX or
the kinases FomA and FomB (160). Most of the fos-like
genes are plasmid-borne, and plasmids carrying the fos
genes commonly carry additional resistance genes (124,
161, 162) that increase the risk of coselection of fosfo-
mycin resistance under the selective pressure by other
antimicrobial agents.

A considerable number of studies report acquired
fosfomycin resistance among E. coli of animal origin.
Isolates carrying the plasmid-mediated fosA gene have
been reported from companion animals. The first cases
were reported in China in 2012 and 2013 from dogs and
cats (163). Another study described a high prevalence
of FosA3-producing E. coli in pets and their owners,
highlighting the transmission of fosfomycin-resistant
E. coli isolates between humans and animals (164).
Another Chinese study described the fosA3 gene in
E. coli from fresh pork and chicken meat (165). In that
study, the fosA3 gene was often found together with

ESBL genes (blaCTX-M-55, blaCTX-M-15, or blaCTX-M-123)
on plasmids of 78 to 138 kb in size. In a recent French
study, the emergence of plasmids carrying multiple re-
sistance determinants including fosA3, blaCTX-M-55,
rmtB, and mcr-1 was reported in various animal species
(124). In that study, it was speculated that this plasmid
could have an Asian origin since blaCTX-M-55 is the sec-
ond most prevalent ESBL gene in that part of the world.
In 2013, the complete sequence of the 76,878-bp plas-
mid pHN7A8 from a dog in China was determined. This
plasmid represents a F33:A–:B–-type epidemic plasmid
that carried the resistance genes blaCTX-M-65, fosA3, and
rmtB (166). Plasmids with similar fosA3 regions were
reported from E. coli isolates of pig (167), duck (168),
and chicken origin (169). The widespread occurrence
of the fosA3 gene in China was demonstrated in a study
that identified 12/892 E. coli isolates as fosA3-positive.
These isolates originated from pigs, chickens, ducks, a
goose, and a pigeon (170). Furthermore, the analysis of
1,693 E. coli isolates from various animal species iden-
tified 97 fosA3-positive isolates from beef cattle, pigs,
broiler chickens, stray cats, stray dogs, and wild rodents
in China (171). Recently, several epidemic fosA3-
carrying multiresistance plasmids of diverse incompati-
bility groups have been identified to be disseminated
among E. coli from pigs, dairy cattle, and chickens in
northeast China (162). Some of these plasmids have been
sequenced completely, including the plasmids pECM13
from cattle (113,006 bp, IncI1, and coharboring blaCTX-

M-14, rmtB, aadA2, and blaTEM-1), pECB11 from chicken
[92,545 bp, F33:A–:B–, and coharboring blaCTX-M-55,
floR, cfr, blaTEM-1, tet(A), strA, and strB], and pECF12
from chicken [77,822 bp, F33:A–:B–, and coharboring
blaCTX-M-3, rmtB, tet(A), strA, and strB]. E. coli isolates
from pigs harboring the fosA3 gene were also detected in
Taiwan (172).

RESISTANCE TO TETRACYCLINES
Tetracyclines are widely used in veterinary medicine.
A summary of sales data in the 25 European Union
and European Economic Area countries revealed that
tetracyclines accounted for 37% of the total sales of
veterinary antimicrobial agents, followed by penicillins
(23%) (173). As a consequence of the selective pressure
imposed by the widespread use of tetracyclines, many
bacteria—including E. coli—have developed tetracy-
cline resistance. According to the tetracycline resistance
gene nomenclature center (https://faculty.washington
.edu/marilynr/), nine tetracycline efflux genes [tet(A),
tet(B), tet(C), tet(D), tet(E), tet(G), tet(J), tet(L), and
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tet(Y)], two tetracycline resistance genes encoding ribo-
some protective proteins [tet(M) and tet(W)], and one
gene coding for an oxidoreductase that inactivates tet-
racyclines [tet(X)] have been identified in E. coli. The
major mechanisms of tetracycline resistance encoun-
tered in E. coli of animal origin include (i) the active
efflux by proteins of the major facilitator superfamily
and (ii) ribosome protection. A PubMed search for tet-
racycline resistance genes in E. coli of animal origin
revealed that not all of these 12 tet genes occur in E. coli
from animal sources. The following examples provide
an overview of the distribution of tet genes amongE. coli
from various animal sources.

Among 155 E. coli isolates from fecal samples of
cattle in Korea, the genes tet(A), tet(B), and tet(C) were
detected in 72, 70, and nine isolates, respectively. Two
isolates each carried tet(A) + tet(B) or tet(B) + tet(C)
(174). In 99 E. coli isolates from bovine mastitis in the
United States collected from 1985 to 1987 and in 2009,
the genes tet(A), tet(B), and tet(C) were detected, with
tet(C) being present in more than half of the investigated
isolates in each of the two time periods (175). Of 129
E. coli isolates from cases of bovine mastitis in the
United States, 68 carried the gene tet(C), while another
14 isolates harbored tet(C) + tet(A) (176). A study in
Switzerland identified the genes tet(A), tet(B), and tet(A)
+ tet(B) in 24, 16, and two E. coli isolates from bovine
mastitis (177). In the same study, the genes tet(A), tet(B),
tet(C), and tet(A) + tet(B) were detected in 60, five, one,
and two E. coli isolates, respectively, from diarrhea and
enterotoxemia in pigs (177). In 99 tetracycline-resistant
E. coli isolates from pigs in Spain, the genes tet(A) (n =
46), tet(B) (n = 12), and tet(A) + tet(B) (n = 28) but also
tet(A) + tet(M) (n = 11) and tet(A) + tet(B) + tet(M) (n =
2) were detected (178). The tet(M) gene was shown by
Southern blot hybridization to be located on plasmids.
In a study in Germany, either the genes tet(A) (n = 71),
tet(B) (n = 46), and tet(C) (n = 3) alone or the
combinations of the genes tet(A) + tet(B) (n = 2), tet(A) +
tet(C) (n = 2), tet(A) + tet(D) (n = 3), tet(A) + tet(M) (n =
1), tet(B) + tet(M) (n = 2), tet(B) + tet(C) (n = 2), and tet
(B) + tet(D) + tet(M) (n = 1) were detected in E. coli from
pigs (179). Among 283 tetracycline-resistant extra-in-
testinal pathogenic E. coli isolates from pigs in China,
the genes tet(A) (n = 68), tet(B) (n = 141), tet(C) (n = 3),
tet(D) (n = 1), and tet(G) (n = 108) were identified (156).
A wide variety of tet genes was also seen among 73
tetracycline-resistant E. coli isolates from broilers in
Iran, including the gene tet(E) alone (n = 1) or in the
combinations tet(E) + tet(C) (n = 4), tet(E) + tet(D) + tet
(M) (n = 2), tet(E) + tet(D) + tet(A) + tet(G) (n = 3), and

tet(E) + tet(M) + tet(A) + tet(B) + tet(C) (n = 1) (180). In
33 E. coli isolates from cases of septicemia among laying
hens in Switzerland, the genes tet(A) and tet(B) were
found in 21 and 10 isolates, respectively, while two
isolates carried neither tet(A), tet(B), nor tet(C) (177). In
the same study, the genes tet(A) and tet(B) were detected
in eight and nine E. coli isolates from urinary tract
infections in dogs and cats, respectively. The same two
tet genes were also found in E. coli isolates from healthy
dogs and cats in Spain (181). A large-scale study of tet
genes in 325 nonclinical E. coli isolates from various
animal sources in the United States identified the gene tet
(B) in isolates from a goose, a duck, and a deer; the genes
tet(A) and tet(B) in isolates from turkeys, cats, goats, and
cows; tet(A), tet(B), and tet(C) in isolates from dogs,
sheep, and horses; and tet(A), tet(B), tet(C), and tet(M)
in isolates from pigs and chickens (182). However, in
that study neither tet(E) nor tet(G), tet(L), or tet(X) were
detected in the 325 E. coli isolates. Among 58 tetracy-
cline-resistant E. coli isolates from giant pandas, the
genes tet(A), tet(E), and/or tet(C) were detected in 33, 24,
and four isolates, respectively (128).

These examples show that different tet genes—alone
or in combination with others—occur at different fre-
quencies in E. coli isolates from different animal sources
and/or geographic regions. In general, the genes tet(A)
and tet(B) were the most prevalent tetracycline resistance
genes in E. coli of animal origin. Both of these genes
are part of small nonconjugative transposons, Tn1721
[tet(A)] (183) and Tn10 [tet(B)] (184), which are often
integrated into conjugative and nonconjugative plas-
mids. Several of the aforementioned examples revealed
the presence of more than a single tet gene in the same
isolate. This might be explained by the observation
that several tet genes are frequently found on plasmids
or other mobile genetic elements which may have been
acquired by the respective E. coli isolates at different
times and under different conditions. When other resis-
tance genes are colocated with a tet gene on the same
plasmid, such a plasmid can be acquired under the se-
lective pressure imposed by the use of antimicrobial
agents other than tetracyclines. Multidrug resistance
plasmids that also carry tet genes have been detected in
E. coli from bovine mastitis in Germany. Here, the gene
tet(A) was located on IncHI2/IncP plasmids of ca. 225 kb,
which also harbored the resistance genes blaCTX-M-2,
blaTEM-1, sul1, sul2, dfrA1, and aadA1 (14). IncI1 plas-
mids that range in size from 90 to 120 kb and carry the
resistance gene tet(A) along with the genes blaSHV-12,
aadA1, cmlA1, and aadA2 or the genes blaSHV-12, qacG,
and aadA6 were identified in E. coli isolates from wild
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birds, dogs, and poultry in Spain or Germany (39). In
canine E. coli isolates from Brazil, several multiresis-
tance plasmids were identified. These included (i) a ca.
250-kb IncFIB/IncHI2 plasmid that carried the gene
tet(B) together with the resistance genes blaCTX-M-2,
sul1, aadA29, strA, and strB; (ii) a ca. 240-kb IncFIC
plasmid that harbored the tet(A) gene together with the
resistance genes blaCMY-2, cmlA, floR, strA, strB, sul1,
sul3, and aadA7; (iii) a 240-kb IncHI2 plasmid with
the resistance genes blaCTX-M-2, sul1, aadA29, strA, and
strB; and (iv) a 40-kb IncFIB/IncN plasmid with the
resistance genes tet(A), sul1, dfrA16, and dfrA29 (185).
Lastly, an 81-kb plasmid that carried the resistance
genes qnrS1, blaCTX-M-14, blaTEM-1, floR, and tet(A) was
found in an E. coli isolate from a pig in China (186).
These few examples illustrate that tet gene-carrying
multiresistance plasmids occur in E. coli of different
animal species in different parts of the world. Given the
widespread use of tetracyclines in veterinary medicine,
such plasmids not only facilitate the dissemination of
certain tet genes, but also support the coselection and
persistence of other resistance genes.

RESISTANCE TO PHENICOLS
Phenicols are broad-spectrum antimicrobial agents of
which nonfluorinated (e.g., chloramphenicol) and fluo-
rinated (e.g., florfenicol) derivatives are used in veteri-
nary medicine. Due to its toxicity and important adverse
effects in humans, such as dose-unrelated irreversible
aplastic anemia, dose-related reversible bone marrow
suppression, and Gray syndrome in neonates, chloram-
phenicol and its derivatives thiamphenicol and azidam-
fenicol were banned in 1994 in the European Union
from use in food-producing animals (187). Currently,
the use of nonfluorinated phenicols in animals is limited
to the treatment of companion animals and pets. How-
ever, the fluorinated derivative florfenicol is licensed for
the treatment of bacterial infections in food-producing
animals (187).

Phenicol resistance in E. coli of animal origin is me-
diated by three major mechanisms: (i) enzymatic inac-
tivation of nonfluorinated phenicols by chloramphenicol
acetyltransferases encoded by cat genes, (ii) active efflux
of nonfluorinated phenicols (cmlA genes) or fluorinated
and nonfluorinated phenicols (floR genes) by major facil-
itator superfamily proteins, and (iii) target site methylation
by an rRNA methylase encoded by the multiresistance
gene cfr, which confers resistance to five classes of anti-
microbial agents, including fluorinated and nonfluorinated
phenicols (187).

Among 102 E. coli isolates from pigs in China, 91
(89%) were resistant to chloramphenicol. The genes
catA1 and catA2 but also the cassette-borne gene cmlA
were detected in 58%, 49%, and 65%, respectively, of
the chloramphenicol-resistant isolates. In addition, the
gene floRwas detected in 57%of the florfenicol-resistant
isolates and in 52% of chloramphenicol-resistant iso-
lates (188). In a study of 318 ETEC, non-ETEC from
cases of diarrhea, and commensal E. coli isolates from
healthy pigs in Canada, the genes catA1, cmlA, and floR
were detected among the chloramphenicol-resistant iso-
lates. The gene catA1 was significantly more frequent in
ETEC than in non-ETEC and commensal E. coli (189).
The genes floR and cmlAwere detected among 48 E. coli
isolates from calves with diarrhea. Of the 44 isolates for
which florfenicol MICs were ≥16 mg/liter, 42 carried the
floR gene. Twelve E. coli isolates were positive for cmlA,
and their corresponding chloramphenicol MICs were
≥32 mg/liter. In addition, eight isolates were positive for
floR and cmlA, and their florfenicol and chlorampheni-
col MICs were ≥64 mg/liter (190). In a study of antimi-
crobial resistance in German E. coli isolates from cattle,
pigs, and poultry, not further specified catA genes were
found in seven isolates from cattle and six isolates each
from pigs and poultry. Moreover, cmlA1-like genes were
detected in a single isolate from cattle, six isolates from
pigs, and three isolates from poultry. The floR gene was
not detected (191). Among 116 avian-pathogenic E. coli
isolates from chickens in Egypt, 98 (84.5%) were resis-
tant to chloramphenicol. The resistance genes catA1,
catA2, and cmlA were found in 86, four, and eight
isolates, respectively, while the genes catA3 and cmlB
were not detected (192). Among 102 chloramphenicol-
resistant E. coli isolates from horses in the UK, 75 har-
bored the gene catA1. The remaining 27 isolates were
PCR negative for the genes catA2, catA3, and cmlA,
while the presence of the genes floR and cfr was not
tested (193). The cassette-borne chloramphenicol resis-
tance genes catB3 and cmlA6 were identified in four and
two canine E. coli isolates, respectively, all from the
United States. The gene catB3 was located together with
the resistance genes aacA4 and dfrA1, and the gene
cmlA6 was located together with the genes aadB and
aadA1 in class 1 integrons of different sizes (194). In a
study of 62 E. coli isolates from dogs in Iran, three
isolates harbored the cmlA gene, whereas six isolates
were positive for the floR gene (195). Among 36 chlor-
amphenicol- and florfenicol-resistant E. coli isolates
from dogs suffering from urinary tract infections in
Taiwan, all isolates harbored the cmlA gene and 18
carried the floR gene (196). The cmlA gene was also
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detected in two chloramphenicol-resistant E. coli isolates
from fecal samples of free-range Iberian lynx (143). Of
89 E. coli isolates from giant pandas, 28 and 23 were
resistant to chloramphenicol and florfenicol, respective-
ly. The floR gene was detected in 23 isolates and the
cmlA gene in nine isolates, with two isolates carrying
both genes. The cfr gene was not detected in any of the
isolates, and cat genes were not tested (128). The genes
catA1 and cmlA were also detected in two and one
multiresistant E. coli isolates, respectively, from shellfish
in Vietnam (197).

The genes catA1, cmlA, and floR are often found on
plasmids. In bovine E. coli from the United States, the
floR gene was located on large plasmids of 225 kb (190),
which were larger than those found in E. coli from sick
chickens (198). Southern blot analysis confirmed the
presence of the cmlA gene on plasmids of >100 kb in
E. coli from pigs (199). Conjugation assays identified
two distinct class 1 integrons that linked cmlA to the
streptomycin/spectinomycin resistance genes aadA1 and
aadA2 and to the sulfonamide resistance genes sul1 or
sul3 (199). Transformation experiments conducted with
Canadian E. coli from pigs revealed that aadA and sul1
were located together with catA1 on a large ETEC plas-
mid (189). Plasmids that harbored the gene cmlA also
carried the resistance genes aadA and sul3. Moreover,
plasmids that harbored the genes aadB and floR also
carried sul2, tet(A), blaCMY-2, strA, and strB but occa-
sionally also aac(3)-IV (189). Among Brazilian E. coli
from dogs, a 35-kb IncF/IncFIB plasmid was identified
that harbored the genes strA and strB, and an unusual
class 1 integron with the genes dfrA12, aadA2, cmlA1,
and aadA1 linked to a sul3 gene (185). The ca. 35-kb
plasmid pMBSF1 from porcine E. coli in Germany car-
ried the floR gene together with the genes strA and strB
(200). The floR gene was also detected on conjugative
plasmids ranging in size from 110 to 125 kb from bovine
E. coli in France. All these plasmids mediated additional
resistances to sulfonamides, streptomycin, ampicillin,
and/or trimethoprim (201). These examples show that
phenicol resistance genes can also be coselected under
the selective pressure imposed by nonphenicol antimi-
crobial agents.

The multiresistance gene cfr—originally identified in
staphylococci of animal origin—was also found to be
functionally active in E. coli (202). The gene cfr was first
reported in E. coli from a nasal swab of a pig in China
(203). Later, it was identified on the 135,615-bp IncA/C
multiresistance plasmid pSCEC2 from a pig in China.
This plasmid also harbored the resistance genes sul2,
tet(A), floR, strA, and strB (157). In another study in

China, the cfr gene was detected on plasmids of ca. 30 kb
in E. coli isolates from pigs (204). The complete se-
quence of the 37,672-bp plasmid pSD11, again from
E. coli of porcine origin in China, was reported by Sun
and colleagues (205). The colocation of cfr with the
ESBL gene blaCTX-M-14b on the 41,646-bp plasmid
pGXEC3 from a porcine E. coli isolate was reported in
2015 (206). In the same year, another cfr-carrying
plasmid, the conjugative 33,885-bp plasmid pFSEC-01,
was reported (207). Although this plasmid was found in
a porcine E. coli isolate, it closely resembled in its struc-
ture the plasmid pEA3 from the plant pathogen Erwinia
amylovora. Most recently, another six cfr-carrying
E. coli isolates—five from pigs and one from a chicken—
were identified. In all cases, the cfr gene was located as
the only resistance gene on plasmids of either 37 or 67 kb.
Two of these plasmids were completely sequenced: the
37,663-bp IncX4 plasmid pEC14cfr and the 67,077-bp
F14: A–: B– plasmid pEC29cfr (161).

RESISTANCE TO SULFONAMIDES
AND TRIMETHOPRIM
Sulfonamides and trimethoprim are synthetic antimi-
crobial agents that inhibit different steps in the folic
acid synthesis pathway. Each of these agents acts in a
bacteriostatic manner, whereas the combination of a
sulfonamide with trimethoprim results in synergistic
bactericidal actions on susceptible organisms; as such,
the combination is referred to as a “potentiated” sul-
fonamide. Sulfonamides and trimethoprim have been
used for decades in animals and humans. Acquired re-
sistance mechanisms have been frequently identified,
mainly due to (i) mutational modifications in the genes
encoding the target enzymes, namely, the dihydroptero-
ate synthase or dihydrofolate reductase, respectively, or
(ii) the acquisition of sul genes encoding dihydropteorate
synthetases that are insensitive to sulfonamides or dfr
genes encoding dihydrofolate reductases that are insen-
sitive to trimethoprim (208).

Resistance to Sulfonamides
In E. coli from food-producing and companion ani-
mals, sulfonamide resistance is mediated by any of the
following three sul genes: sul1, sul2, or sul3. The sul1
gene is particularly widespread because it is part of
the 3′-conserved segment of class 1 integrons (209). As
such, the sul1 gene is often found together with other
antimicrobial resistance genes that are located on gene
cassettes in the variable part of class 1 integrons (209).
Class 1 integrons are present in E. coli from healthy and
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diseased food-producing animals, companion animals,
and wildlife all over the world as illustrated in the fol-
lowing examples. In Germany, 58 of 417 E. coli isolates
from diseased swine, horses, dogs, and cats, collected in
the BfT-GermVet monitoring study, harbored class 1
integrons (210). Other studies identified class 1
integrons in E. coli from healthy and diseased dogs
in Brazil (185), in clinical avian E. coli isolates in the
United States (211), in E. coli from lizards in Indonesia
(212), in Shiga toxin-producing E. coli from cattle in the
United States (213), in E. coli from free-range reindeer in
Norway (214), in calf-pathogenic E. coli in China (215),
inE. coli from pigs in Denmark (216), and even in E. coli
from giant pandas in China (128). Class 1 integrons
including the sul1 gene are often located on plasmids,
including ESBL-gene-carrying multiresistance plasmids
(14, 216–218).

The gene sul2 is also widely disseminated among
E. coli of various animal species in different parts of the
world. It has been found in E. coli from pigs in Canada
(219) and Denmark (216), in food-producing animals in
Kenya (220), in poultry in Nigeria (221) and Germany
(222), and in horses in the Czech Republic (93). The sul2
gene is often linked to the streptomycin resistance genes
strA-strB. Similarly to sul1, the sul2 gene is commonly
found on plasmids that also harbor other antimicrobial
resistance genes (93, 157, 220, 221, 223).

The gene sul3 was first described in 2003 in E. coli
isolates from pigs in Switzerland (224). Since then, this
gene has been identified mostly on plasmids in E. coli
from pigs in the United States (199), Canada (219), and
Denmark (216); from poultry in Germany (222); and
from dogs in Spain (138) and Brazil (185). Several re-
ports described the sul3 gene to be linked to other re-
sistance genes, such as the macrolide resistance gene
mef(B) (225), and to unusual class 1 integrons (39, 185,
199, 226).

Resistance to Trimethoprim
Numerous dfr genes that confer trimethoprim resistance
have been detected in Enterobacteriaceae and other
Gram-negative bacteria. Based on their sizes and struc-
tures, they have been divided into two major groups,
dfrA and dfrB (227). The dfrA genes code for proteins of
152 to 189 amino acids, while the dfrB-encoded proteins
are only 78 amino acids in size. Most of the dfrA and
dfrB genes found in E. coli of animal origin are located
on gene cassettes that are inserted into class 1 or class
2 integrons. Some examples are given for dfrA genes
that have been identified in E. coli from dogs (dfrA1,
dfrA12, dfrA17, dfrA29) (138, 185, 210), cats (dfrA1,

dfrA12) (210), horses (dfrA1, dfrA9, dfrA12, dfrA17)
(193, 210), pigs (dfrA1, dfrA5, dfrA8, dfrA12, dfrA13,
dfrA14, dfrA16, dfrA17) (144, 156, 210, 228, 229),
cattle (dfrA1, dfrA8, dfrA12, dfrA17) (14, 215, 229),
chickens (dfrA1, dfrA5, dfrA12, dfrA14, dfrA16) (144,
229), and giant pandas (dfrA1, dfrA7, dfrA12, dfrA17)
(128). In contrast to dfrA genes, dfrB genes have rarely
been detected in E. coli from animals. A dfrB4 gene and
a dfrA17 gene were detected in class 1 integrons from
sea lions (230). In the study by Seputiené et al. (229), the
dfrA8 gene was located in neither class 1 nor in class
2 integrons. Moreover, only seven of the 13 dfrA14
genes in E. coli isolates of animal origin were integron-
associated. In previous studies of E. coli from food-
producing animals, a functionally active dfrA14 gene
was found outside an integron but inserted into a
plasmid-borne strA gene (220, 231).

RESISTANCE TO POLYMYXINS
Colistin (also known as polymyxin E) is a polypeptide
antimicrobial agent that targets the LPS in the outer
membrane of Gram-negative bacteria (232). Colistin
is widely used in veterinary medicine, mainly for the
treatment or prevention of intestinal infections, partic-
ularly neonatal and postweaning diarrhea in pigs and
intestinal infections in poultry and cattle (233). Very
recently, due to the considerable concerns that colistin
resistance might be transferable from animals to hu-
mans, specific regulations on the use of colistin have
been set up in Europe under the umbrella of the Euro-
pean Medicines Agency (234). In April 2017, a ban of
colistin as a growth promoter also became effective in
China (235). Colistin is active against various species
of Enterobacteriaceae, including E. coli, whereas others
such as Proteus spp. and Serratia spp. are intrinsically
resistant (232). Resistance to colistin can be due to mu-
tations in chromosomal genes or to acquired resistance
genes.

Chromosome-Encoded Polymyxin Resistance
Polymyxin resistance in E. coli isolates may be related
to genes encoding LPS-modifying enzymes. The operon
pmrCAB codes for three proteins, namely, a phospho-
ethanolamine phosphotransferase PmrC, a response
regulator PmrA (also called BasR), and a sensor kinase
protein PmrB (also called BasS) (232). Mutations either
in PmrA or in PmrB have been found to be responsible
for polymyxin resistance in E. coli isolates recovered
from poultry in Spain (236). However, most of the
mutations leading to polymyxin resistance in that op-
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eron or in others, such as the PhoPQ two-component
system or its regulator MgrB, have been identified in
human E. coli isolates. Ongoing studies are being con-
ducted to evaluate whether the same mechanisms might
be responsible for polymyxin resistance in animal iso-
lates. In one such study, mutations in the genes pmrA,
pmrB, mgrB, phoP, and phoQ of E. coli isolates from
pigs were identified (237).

Plasmid-Mediated Polymyxin Resistance
In November 2016, the first plasmid-borne polymyxin
resistance gene was identified. This gene was designated
mcr-1, and it encodes the MCR-1 phosphoethanolamine
transferase (238). Production of MCR-1 leads to the
modification of the lipid A moiety of the LPS, resulting
in a more cationic LPS and, consequently, to resistance
to polymyxins. Production of MCR-1 in E. coli leads
to a 4- to 8-fold increase in the MICs of polymyxins
(232).

The mcr-1 gene has been detected mainly in E. coli
isolates but also in other Enterobacteriaceae genera,
such as Salmonella, Shigella, Klebsiella, and Ente-
robacter (239). This gene has now been identified
worldwide, in both animal and human isolates. Themcr-
1 gene has been found to be located on plasmids of
various incompatibility groups (IncI2, IncHI2, IncP,
IncX4, IncY, IncFI, and IncFIB) and variable sizes (58 to
251 kb) (232). A few reports showed that it may be
colocated with ESBL-encoding genes and/or other re-
sistance genes (71, 240–244); nonetheless, most of the
reports identifiedmcr-1 as the sole resistance gene on the
respective plasmids. This may suggest that a polymyxin-
related selective pressure is responsible for the mcr-1
acquisition, with corresponding plasmids providing no
other obvious selective advantage. Upstream of themcr-
1 gene, the ISApl1 insertion sequence element is fre-
quently identified, although it is often, but not always,
also identified downstream of it. Recent studies dem-
onstrated that the mcr-1 gene is mobilized by transpo-
sition when bracketed by two copies of ISApl1 that form
a composite transposon structure (242, 245). So far, 11
variants of the mcr-1 gene, designated mcr-1.2 to mcr-
1.12 have been identified, with mcr-1.3 being found in
E. coli from chickens in China (246), mcr-1.8 in E. coli
from poultry in Brunei (GenBank accession no.
KY683842.1), mcr-1.9 in E. coli from swine in Portugal
(KY964067.1), and mcr-1.12 in E. coli from pork in
Japan (LC337668.1).

Recently, the plasmid-mediated colistin-resistance
mcr-2 gene was identified in E. coli isolates recovered
from piglets in Belgium (247). It shared 77% nucleotide

sequence identity with mcr-1 and was located on an
IncX4 plasmid. The mcr-2 gene has been sporadi-
cally identified so far (248). In addition, further mcr
genes—mcr-3 to mcr-7—and variants thereof have been
described. Among them, the mcr-3 gene was initially
identified together with 18 additional resistance genes
on the 261-kb IncHI2-type plasmid pWJ1 from por-
cine E. coli (249). The mcr-3 gene showed 45.0% and
47.0% nucleotide sequence identity tomcr-1 andmcr-2,
respectively. So far, ten variants of mcr-3, designated
mcr-3.2 to mcr-3.11, have been identified, with the mcr-
3.2 gene being originally detected in E. coli from cattle
in Spain (250). A recent study in France reported the
spread of a single E. coli clone harboring mcr-3 in the
veal calves sector from 2011 to 2016 (251). The com-
bination in those isolates of mcr-3 and blaCTX-M-55,
an ESBL gene that is highly prevalent in Asian countries
and rarely detected in Europe, may suggest the intro-
duction and further dissemination of mcr-3 in that spe-
cific animal setting due to international trade. Themcr-4
gene was detected among E. coli from pigs in Spain and
Belgium that suffered from postweaning diarrhea (252).
The gene mcr-5 and a variant, designated mcr-5.2, have
recently been found in E. coli from pigs (253).

Epidemiology of mcr-1
The mcr-1 gene is a resistance gene identified in human
and animal E. coli isolates. Its occurrence in animal
isolates is quite elevated (232), and it has been identified
worldwide. MCR-1-producing E. coli isolates have been
identified in several food-producing animals and meat,
including chickens and chicken meat, pigs and piglets,
cattle, calves, and turkeys (254, 255) (Table 4). Those
isolates are from many Asian countries (Cambodia,
China, Japan, Laos, Malaysia, Taiwan, Singapore,
Vietnam, India, Pakistan, South Korea), from Europe
(Belgium, Denmark, France, Germany, Portugal, Italy,
the Netherlands, Spain, Sweden, Switzerland, the UK),
the Americas (Argentina, Brazil, Canada, the U.S.,
Ecuador, Bolivia, Venezuela), Australia, and Africa
(Algeria, Egypt, South Africa, Tunisia). Worryingly, a
recent study performed in China identified a series of
MCR-1-producing E. coli isolates recovered from
poultry, with many of the isolates coproducing the
carbapenemase NDM-1 (71). In addition, such multi-
drug-resistant isolates were recovered from flies and
dogs present in the same farm environment, thus high-
lighting that those latter animals might also constitute
sources of transmission (71). Additionally, some studies
highlighted that mcr-1-positive E. coli may be also
present in the environment or in food, being, for in-
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stance, identified in rivers but also in Asian imported
vegetables in Switzerland (243). The environmental
emission of MCR-1-producing and multiresistant E. coli
isolates was recently stressed by studying the close sur-
roundings of pig farms in Germany (256).

Dating the emergence ofmcr-1-positive E. coli isolates
remains difficult, although a Chinese study retrospec-
tively identified mcr-1-positive isolates from chickens
in the 1980s (255) and as early as 2005 in veal calves in
France (254). It seems, therefore, that the emergence of
mcr-positive isolates, at least in animals, is not a recent
event. Very likely, there has been some silent dissemi-
nation of mcr genes through the past decades, and the
current situation shows ongoing further dissemination
rather than an emerging phenomenon.

CONCLUSIONS
Antimicrobial resistance in E. coli is an issue of the
utmost importance since it occurs in both the human and
animal sectors in a One Health perspective. In animals,

multidrug resistance in E. coli may lead to difficult-to-
treat infections, but even more importantly, it constitutes
a major and shared reservoir of resistance determi-
nants to most families of antimicrobial agents across a
vast number of animal species, including humans. Even
though the different transmission pathways of resistant
E. coli isolates from animals to humans remain to be
clarified and their relative importance quantified, some
data may support the role of the food chain since those
bacteria have been demonstrated as common colonizers
of foodstuffs at retail in many countries and continents.
Other routes of transmission may include direct contacts
with animals or indirect transfers through the environ-
ment. Since E. coli is a bacterium that is widely spread in
all sectors, antimicrobial resistance in E. coli in animals
has led to numerous cross-sectorial and joint initiatives,
encompassing translational research, epidemiology, and
surveillance in both human and veterinary medicine. It is
now considered that the battle against the increased
occurrence of antimicrobial resistance in E. coli from
humans cannot be won without acting on a very large

TABLE 4 Examples of acquired mcr genes in E. coli of animal origin from Europe, North and South America, and Asia

mcr gene
Geographical
origin Source Sequence type(s) Reference

mcr-1 China Pig 238

China Pig 242

China Pig 48, 54, 90, 156, 165, 167, 410, 1114, 1178, 1437,
2439, 3331, 4429, 4463, 4656

277

China Poultry 10, 48, 58, 77, 88, 101, 117, 178, 215, 361, 501, 542, 616, 617, 648,
744, 761, 870, 873, 952, 971, 1290, 1431, 1642, 2345, 2491, 2599,
3044, 3133, 3481, 3944, 5542, 5815, 5865, 5879, 5909, 6050,

246

Vietnam Reptiles 117, 1011 282

South Korea Poultry, pig 1, 10, 88, 101, 156, 162, 226, 410, 1141, 2732 283

Germany Pig 1, 10, 846 240

Germany Pig (manure), fly, dog 10, 342, 1011, 5281 256

France Cattle 241

Italy Poultry (meat) 602 243

U.S. Pig 132, 3234 284

Venezuela Pig 452 285

Brazil Magellanic penguin 10 286

mcr-1.3 China Poultry 155 246

mcr-1.8 Brunei Poultry 101 KY683842.1a

mcr-1.9 Portugal Pig KY964067.1a

mcr-1.12 Japan Pig LC337668.1a

mcr-2 Belgium Pig, cattle 10, 167 247

mcr-3 China Pig 1642 249

France Cattle 744 251

mcr-3.2 Spain Cattle 533 250

mcr-4 Spain, Belgium Pig 10, 7029 252

mcr-5 Germany Pig 29, 349 253

mcr-5.2 Germany Pig 1494 253

aGenBank accession number.
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scale. To tone down some current and alarming specu-
lations, and in view of all the studies that have been
conducted during recent years, it is, however, likely that
the occurrence of carbapenemase-producing E. coli in
animals does not represent a significant threat for human
health (31). In contrast, recent data have demonstrated
that animals are very significant reservoirs of plasmid-
mediated colistin resistance genes—mostly present in
E. coli isolates—which may represent a further risk for
humans.
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