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ABSTRACT TheGram-positive pathogen Listeriamonocytogenes
is able to promote its entry into a diverse range of mammalian
host cells by triggering plasma membrane remodeling, leading
to bacterial engulfment. Upon cell invasion, L. monocytogenes
disrupts its internalization vacuole and translocates to the
cytoplasm, where bacterial replication takes place. Subsequently,
L. monocytogenes uses an actin-based motility system that
allows bacterial cytoplasmic movement and cell-to-cell spread.
L. monocytogenes therefore subverts host cell receptors,
organelles and the cytoskeleton at different infection steps,
manipulating diverse cellular functions that include ion transport,
membrane trafficking, post-translational modifications,
phosphoinositide production, innate immune responses as
well as gene expression and DNA stability.

Listeria monocytogenes is a facultative intracellular
pathogen that has the capacity to actively invade and
multiply within mammalian cells. Intracellular replica-
tion of L. monocytogenes within mononuclear cells was
noted in the 1926 publication by Murray and colleagues
reporting on this bacterial pathogen for the first time (1).
In the 1960s, the seminal work of Mackaness that
identified the main actors of cellular immunity against
bacterial intracellular pathogens took advantage of the
L. monocytogenes intracellular lifestyle as a model (2).
In the late 1980s and early 1990s, major L. mono-
cytogenes virulence factors involved in bacterial adap-
tation to intracellular life were molecularly characterized
(3–7) and the precise stages of the L. monocytogenes
intracellular life-cycle were morphologically identified
(8, 9). Since then, cellular effectors involved in the in-
fection process have been also identified and character-

ized (10–12). In this article, we review the molecular
mechanisms drivingL. monocytogenes adaptation to the
mammalian host cell intracellular environment.

ADAPTATION TO INTRACELLULAR LIFE:
GENERALITIES
L. monocytogenes is able to invade and proliferate
within macrophages and epithelial nonphagocytic cells.
For entry into the latter, bacterial surface molecules
(InlA, InlB) interact with cellular ligands, activating sig-
naling cascades that lead to internalization of the path-
ogen within a membrane-bound compartment (Fig. 1).
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Residency in the internalization vacuole is prevented
by secretion of a pore-forming toxin (listeriolysin O
[LLO]) and two phospholipases (PlcA, PlcB) that disrupt
the vacuolar membrane, promoting L. monocytogenes
translocation to the host cell cytoplasm. In this intra-
cellular location, L. monocytogenes activates several
bacterial metabolic pathways that favor the uptake of
cellular resources sustaining bacterial proliferation. The
pathogen also displays several strategies to escape cyto-
plasmic innate immune responses, which include the
polymerization of actin by a bacterial surface protein
(ActA), allowing L. monocytogenes to spread to neigh-
boring cells. In secondary infected cells, L. monocyto-
genes is located in a double-membrane compartment
that is disrupted by the same set of secreted enzymes that
favor lysis of the primary internalization vacuole. L.
monocytogenes translocation to the cytoplasm of sec-
ondary infected cells leads to a new bacterial replication
cycle and further spread to other cells in infected tissues.
The intracellular lifestyle is therefore critical for L.

monocytogenes virulence: it allows escape from extra-
cellular host defense mechanisms, including the comple-
ment or antibodies, and hinders detection by patrolling
cell populations, e.g., neutrophils; in macrophages, cy-
toplasmic translocation allows escape from degradative
components of the phagocytic cascade, while it provides
access to a “Trojan horse” host cell population that can
safely transport bacteria to distant locations within the
infected organism.

THE CELLULAR INVASION PROCESS
Upon L. monocytogenes contact with host target tissues,
cellular invasion is morphologically characterized by a
localized extension of the plasma membrane around
invading bacteria, triggering bacterial internalization
within a tight vacuolar compartment. Mechanistically,
bacterial surface proteins interact with host cell recep-
tors that are posttranslationally modified (phosphory-
lation, ubiquitylation), favoring the recruitment of

FIGURE 1 Cellular receptors for L. monocytogenes in host cells. The receptor for InlA in
nonphagocytic polarized cells (including goblet cells) is the transmembrane molecule E-
cadherin. Interaction takes place between the InlA leucine-rich repeats (LRRs) and the first
extracellular domain of E-cadherin, leading to phosphorylation and ubiquitylation of the
cytoplasmic domain of E-cadherin by the kinase Src and the ubiquitin ligase Hakai, re-
spectively. Clustering of E-cadherin requires the presence of lipid rafts (left panel). Via
its C-terminal glycine-tryptophan (GW) repeats, InlB interacts with the receptor for the
globular part of the C1q complement component (gC1qR) and glycosaminoglycans,
which enable interaction of the N-terminal LRRs of InlB with the tyrosine receptor kinase
Met in nonphagocytic cells (including trophoblasts). Met dimerization upon interaction
with InlB leads to autophosphorylation and recruitment of the ubiquitin ligase Cbl, which
ubiquitylates the cytoplasmic tail of Met (center panel). In fibroblasts and monocytes, a
function for the FcγRIA receptor has been described for L. monocytogenes internalization,
via interaction with a still unidentified L. monocytogenes surface molecule (right panel).
Modified from reference 12.
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protein adaptors and enzymes that contribute to actin
polymerization, the key molecular event required for
plasma membrane reorganization. Depending on the
invaded cell type, bacterial modulation of the phos-
phoinositide (PI) metabolism is also critical to trigger
cortical actin polymerization.

InlA is the archetypal member of a family of L.
monocytogenes surface proteins named internalins,
which are characterized by the presence of N-terminal
leucine-rich repeats (LRR) which mediate interaction
with host cell ligands (6, 13). The internalins InlA and
InlB, encoded within a single locus in the L. mono-
cytogenes genome, are the two major surface molecules
driving bacterial entry into host cells. More than 20
other internalins have been identified, but they do not
necessarily participate in the cell invasion process, con-
tributing instead to diverse functions including cell-to-
cell spread and escape from innate immune responses
(i.e., InlC [14, 15]) and escape from autophagy (i.e., InlK
[16]). The pore-forming toxin LLO, the actin polymer-
izing factor ActA, and other bacterial surface proteins
have been described as supporting bacterial entry inde-
pendently of the InlA and InlB invasion pathways (see
below).

InlA/E-Cadherin-Mediated Entry
InlA displays a C-terminal LPXTG domain that favors
covalent binding to the L. monocytogenes cell wall (6).
The LRR domain of InlA interacts with the cellular re-
ceptor E-cadherin (17, 18), a transmembrane glycopro-
tein present in the adherens junctions of polarized tissues
(e.g., the intestine and the placenta). E-cadherin nor-
mally plays a key role in the maintenance of tissue sta-
bility, and while the ectodomain participates in most
cases in homotypic interactions (E-cadherin/E-cadherin
intercellular binding), the cytoplasmic domain interacts
with the actin cytoskeleton machinery. By subverting the
E-cadherin physiological function, L. monocytogenes
promotes cortical actin polymerization and plasma
membrane rearrangements, favoring cellular invasion
and traversal of the intestinal and the feto-maternal
barriers (19, 20). InlA access to intestinal E-cadherin
mostly occurs at the level of goblet cells, which expose
this cellular receptor to bacteria during mucus secretion
(21). Exposure of E-cadherin to L. monocytogenes
during apoptotic cell extrusion at the tip of intestinal villi
has also been documented (22). The interaction between
InlA and E-cadherin is species-specific (23). A proline at
position 16 allows interaction between InlA and human
E-cadherin, while a glutamic acid at the same position,
as observed in the mouse E-cadherin, does not allow

InlA binding. A transgenic mouse model specifically
expressing the human E-cadherin in the murine intestine
allows a more efficient animal infection through the oral
route, demonstrating the pivotal role of InlA in the
crossing of the intestinal barrier (19).

In in vitro polarized cellular systems, lipid rafts are
critical for InlA-dependent E-cadherin clustering (24).
InlA binding promotes two successive posttranslational
modifications in the cytoplasmic tail of E-cadherin:
phosphorylation by the host kinase Src, followed by
ubiquitylation by the ubiquitin ligase Hakai (25). These
events are critical for the recruitment of a clathrin coat
via the adaptor Dab2; the coat is stabilized by tyrosine
phosphorylation of the clathrin heavy chain, followed
by sequential recruitment of the protein adaptor Hip1R,
which in turn coordinates recruitment of actin; myosin
VI and unconventional myosin VIIa provide the pulling
force that finally leads to bacterial internalization (26,
27). Interestingly, the nonmuscle myosin heavy chain IIA
is specifically phosphorylated by Src upon L. mono-
cytogenes infection and restricts bacterial entry (28).
Several other molecules modulate actin association
to the E-cadherin cytoplasmic site during L. monocy-
togenes InlA-dependent invasion: β- and α-catenins
provide a physical link between E-cadherin and actin
filaments during bacterial entry (29, 30), while cortactin
and Src participate in the activation of the Arp2/3
complex, a major actin nucleator (31), highlighting
the exploitation of adheren junctions and classical E-
cadherin endocytosis components by L. monocytogenes
during invasion of polarized tissues (32, 33). In the in-
testinal barrier, the constitutive PI 3-kinase activity is
required for promoting actin polymerization during
L. monocytogenes cell entry; in the placenta, PI 3-kinase
activity is not constitutive, and InlB is required for PI
3-kinase activation and InlA-mediated cell invasion (34,
35).

InlB/Met-Mediated Entry
InlB was identified as a second L. monocytogenes inva-
sion protein (6, 36). InlB allows L. monocytogenes entry
into nonpolarized epithelial cells in vitro (37), and it
cooperates with InlA during placental invasion in vivo
(34, 35). In nonpregnant animals, InlB expression is
associated with an increase of necrotic foci in the liver
and spleen (38). The C-terminal region of InlB is char-
acterized by the presence of glycine-tryptophan (GW)
repeats that favor loose binding to bacterial membrane-
tethered lipoteichoic acids (39, 40) and pedptidoglycan-
bound wall teichoic acids (41). At the surface of host
cells, the GW repeats mediate binding to the receptor of
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the globular part of the complement component C1q
(42) and to glycosaminoglycans (43). The N-terminal
region displays LRRs that are critical for cell invasion
(44, 45) and bind the hepatocyte growth factor receptor
Met (46) in a species-specific manner (47). Met expres-
sion is modulated by epithelial keratins, which promote
InlB-mediated L. monocytogenes infection of epithelial
cells (48). Met is a tyrosine kinase receptor, and its in-
teraction with InlB leads to Met autophosphorylation
and recruitment of the protein adaptors Gab1, Shc, Cbl,
and CrkII (49–51), which play key roles in the activation
of PI 3-kinase (52–54). Production of PI(3,4,5)P3 and its
accumulation in lipid rafts leads to Rac1 activation (24,
55) and recruitment of Ena/VASP, WAVE, and N-
WASP, which activate the Arp2/3 complex promoting
actin polymerization in a tightly regulated manner (56,
57). The serine/threonine kinases mTOR and protein
kinase C-α also control actin polymerization down-
stream of the InlB/Met interaction (58). The host 5′-
phosphatase OCRL restricts L. monocytogenes entry by
reducing PI(3,4,5)P3 levels and actin polymerization at
bacterial entry foci (59). Production of PI 4P by type II PI
4-kinases, downstream of the tetraspanin CD81, is also
critical for L. monocytogenes entry into host cells (60,
61). The PI 3-kinase adaptor Cbl also displays ubiquitin
ligase activity and promotes ubiquitylation of Met upon
InlB binding, leading to modulation of actin polyme-
rization via clathrin recruitment (62–64). InlB also
modulates exocytosis and favors the delivery of the
endocytic GTPase dynamin 2 to bacterial entry sites
(65). Finally, the septin cytoskeleton is recruited during
cell invasion by L. monocytogenes in an InlB-dependent
manner (66), and it controls the anchorage of Met to the
cortical actin cytoskeleton (67–69).

Additional Adhesion/Entry Effectors
L. monocytogenes displays other surface and secreted
molecules that can modulate adhesion and entry into
host cells by indirectly affecting the surface exposure of
InlA or InlB, by behaving as adhesins, by directly bind-
ing putative cellular receptors, and/or by activating cel-
lular pathways that lead to actin rearrangements and
bacterial engulfment. For example, the internalins InlE,
InlG, and InlH support the InlA-dependent-invasion
pathway in Caco-2 cells and might modulate the bac-
terial cell wall organization, consequently affecting InlA
exposure (70). On the other hand, InlJ favors bacterial
adhesion but not invasion in a specific subset of polar-
ized epithelial cells (71, 72). A role for InlF in cell ad-
hesion and invasion has been detected only upon
inhibition of the RhoA/Rho kinase pathway (73, 74).

Several L. monocytogenes autolysins modulate cell
adhesion and/or entry processes: Ami is involved in cell
adhesion (75, 76), and Auto has been implicated in entry
(77), while IspC is required for adhesion and/or invasion
in a cell line-dependent manner (78). The lipoteichoic
acid modifiers GtcA and DltA (79, 80), the lipoprotein
LpeA (81), the prolipoprotein transferase Lgt (82), and
the lysylphosphatidylglycerol modifier MprF (83) play
roles in host cell adhesion or invasion probably by
modulating the bacterial surface charge and/or by al-
tering the organization of bacterial surface proteins.
The surface protein ActA, involved in cytoplasmic actin-
based motility (see below), has been proposed to favor
host cell invasion through interaction with heparan
sulfate (84, 85). Additional L. monocytogenes surface
adhesins or invasins include Vip (86, 87), Lap (88), LapB
(89), and FbpA (90).

LLO, a secreted cholesterol-dependent pore-forming
toxin that is required for L. monocytogenes vacuolar
escape (see below), is also secreted by extracellular
bacteria and induces a transient influx of extracellular
calcium within host cells that correlates with increased
cell invasion (91). Mitochondrial fragmentation also
correlates with the LLO-dependent calcium influx, and
it has been proposed that L. monocytogenes modulates
the bioenergetic state of resting cells to trigger cell in-
vasion (92). LLO has been recently proposed to mediate
L. monocytogenes entry into epithelial cells in a Ca2+/
K+-, cholesterol-, dynamin-, tyrosine kinase- and actin-
dependent but InlA/InlB- and clathrin-independent
manner (93, 94). A broad-range phospholipase C of
L. monocytogenes, PlcB (see below), has been reported
to induce a calcium influx required for efficient bacterial
internalization in macrophages (95).

THE VACUOLAR STAGE
The modulation of the actin cytoskeleton and the re-
arrangements of the plasma membrane upon L. mono-
cytogenes interaction with its host cell receptors lead to
bacterial engulfment and internalization in a membrane-
bound vacuole (Fig. 2). In the intestinal epithelium, and
particularly in the goblet cells, L. monocytogenes does
not escape from this compartment and is directly
transcytosed to the lamina propria, where the bacteria
disseminate systemically (21). In other cell types, L.
monocytogenes is able to disrupt its containing com-
partment and translocates to the host cell cytoplasm.
The cholesterol-dependent pore-forming toxin LLO,
together with two bacterial phospholipases, are the
major bacterial effectors controlling L. monocytogenes
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FIGURE 2 L. monocytogenes intracellular stages. L. monocytogenes is able to induce its
entry into nonphagocytic cells mainly via the interaction of InlA and InlB with host cells
receptors that promote actin recruitment, remodeling of the plasma membrane, and
bacterial engulfment. The surface molecule ActA and the secreted pore-forming toxin
LLO have also been implicated in the early L. monocytogenes entry steps (left cell, upper
left). In goblet cells, upon internalization, L. monocytogenes is localized in a vacuole, and
through transcytosis the bacterium is translocated to the lamina propria (left cell, left). In
other cells, the combined activity of diverse virulence factors, including the pore-forming
LLO, the metalloprotease Mpl, the phospholipases PlcA and PlcB, and the pheromone
pPplA, favor disruption of the vacuole and L. monocytogenes release in the cytosol, where
the bacteria takes advantage of host metabolites via the phosphate transporter Hpt and
the lipoate protein ligase LplA. The surface protein ActA promotes actin-based motility,
and the secreted protein InlC favors reduction of plasma membrane cortical tension,
allowing L. monocytogenes to form protrusions and to invade neighboring cells. LLO and
the phospholipases PlcA and PlcB contribute to the disruption of the double-membrane
vacuole (right cell). L. monocytogenes has been observed in large spacious compartments
that may arise rapidly after internalization of bacteria or upon decrease of ActA expres-
sion in already cytoplasmic bacteria (left cell, upper center). Extracellular LLO is able to
modulate different cellular functions, including mitochondrial fission, lysosomal perme-
abilization, protein SUMOylation, ER stress, DNA damage, and chromatin remodeling. The
phospholipases PlcA and PlcB, together with actin polymerization by ActA, have been
implicated in the resistance to autophagy (195). The secreted molecule InlC prevents
NF-κB translocation to the nucleus. Modified from reference 12.
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vacuolar escape. L. monocytogenes residency and per-
sistence in vacuolar compartments have also been de-
scribed (96, 97) (see below).

LLO and Vacuolar Disruption
LLO is able to induce hemolysis in vitro, and early on,
this activity was correlated with L. monocytogenes
virulence (98). This toxin is encoded by the hly gene,
located within a pathogenicity island that also encodes
other important virulence factors, including two phos-
pholipases, a metalloprotease, the actin polymerizing
factor ActA, and the transcriptional activator PrfA
(99). Inactivation of the hly gene coupled with electron
microscopic observations subsequently demonstrated
that LLO is required for bacterial escape from internal-
ization vacuoles (100). LLO belongs to the family of
cholesterol-dependent cytolysins which also includes
perfringolysin O from Clostridium perfringens and
streptolysin O from Streptococcus pyogenes (101).
Perfringolysin O studies indicate that a conserved
undecapeptide provides a structural conformation for
a threonine-leucine pair at the C-terminal region of
cholesterol-dependent cytolysins responsible for choles-
terol binding (102, 103). Theoretically predicted to form
large pores (20 to 80 monomers), based on initial
perfringolysin O studies (104), electron microscopy and
atomic force microscopy analyses indicate that LLO
oligomers actually form arc-like structures that assemble
into lineactants, and these heterogenous structures are
responsible for membrane disruption and vacuolar
rupture (105, 106). Membrane perforation by LLO not
only facilitates L. monocytogenes translocation to the
cytoplasm, but it also controls the vacuolar pH and
calcium concentration, delaying the maturation of the
bacteria-containing compartment and inhibiting lyso-
somal fusion (107, 108).

Several physical parameters and host molecules
modulate the activity of LLO. Removal of LLO pores
from the host cell plasma membrane is mediated by an
LLO PEST-like sequence recognized by the clathrin
adaptor Ap2a2, favoring pore endocytosis and protec-
tion of plasma membrane integrity (109). At 37°C and
neutral pH, LLO undergoes denaturation, but it is
in a stable conformation at acidic conditions (105).
Consequently, within mammalian hosts, the LLO pore-
forming activity is compartmentalized to slightly acidi-
fied bacteria-containing compartments (110, 111). Cy-
toplasmic LLO activity, which is cytotoxic to host
cells and detrimental to intracellular L. monocytogenes
(112), is limited by translational regulation of LLO
synthesis (113) and by cytoplasmic LLO degradation by

the ubiquitin system (114). LLO is activated by reducing
agents (115), and within the vacuole of macrophages,
the γ-interferon-inducible lysosomal thiol reductase is
responsible for reducing and activating LLO (116). The
increase in vacuolar chloride concentration mediated by
the cystic fibrosis transmembrane conductance regula-
tor has been proposed to enhance LLO oligomerization
and L. monocytogenes cytoplasmic escape (117). LLO-
disrupted vacuoles trigger the recruitment of the protein
kinase C (PKC) ε, suggesting that this enzyme is involved
in the recognition of damagedmembrane organelles (118).

Phospholipases PlcA/PlcB and Vacuolar
Disruption
L. monocytogenes secretes two phospholipases, a phos-
phatidylinositol-specific phospholipase C named PlcA
(119) and a broad-range phospholipase C/sphingomye-
linase named PlcB (120, 121), which is activated by
the metalloprotease Mpl (122–124). Both enzymes have
been shown to contribute to L. monocytogenes escape
from primary vacuoles and from secondary vacuoles
during bacterial cell-to-cell spread (4, 125–128).

PlcA from L. monocytogenes is the only bacterial-
phosphatidylinositol-specific phospholipase C that lacks
a Vb β-strand that increases activity toward glycosyl-
phosphatidylinositol-anchored proteins (129); interest-
ingly, expression of this β-strand in PlcA impairs
bacterial escape from vacuoles and cell-to-cell spread
(130), suggesting that an L. monocytogenes adaptation
to the intracellular environment requires reduced activity
against glycosylphosphatidylinositol-anchored proteins.
It has been proposed that PlcA translocating via LLO
pores reaches the host cell cytoplasm, and in this com-
partment PlcA cleaves intracellular phosphatidylinositol
into inositol phosphate and diacylglycerol (131); pro-
duction of diacylglycerol, which might also take place
through activation of host phospholipases C and D in an
LLO-dependent signaling pathway (132), leads to acti-
vation of PKC βI and βII, which are required for vacuolar
disruption (133). Because both PKC βI and βII are re-
cruited to the L. monocytogenes internalization vacuole
(134), it is speculated that the phosphorylation of PKC
βI and βII targets at the surface of the bacteria-containing
compartment is critical for a still unidentified signaling
cascade leading to vacuolar rupture (133).

PlcB maturation and activation by the metallo-
protease Mpl requires acidification of the vacuole (135,
136), and as has been observed for LLO, compartmen-
talization of this phospholipase C activity is critical for
intracellular survival of L. monocytogenes (137). Both
PlcA and PlcB have been found to activate NADPH
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oxidase during L. monocytogenes infection, which
might be harmful to internalized bacteria via the pro-
duction of reactive oxygen species; however, modulation
of vacuolar maturation by LLO restricts NADPH oxi-
dase localization to the L. monocytogenes-containing
compartments (138).

Additional Mechanisms Regulating Vacuolar
Disruption
Several other bacteria- and host-related mechanisms
have been proposed to modulate the L. monocytogenes
vacuolar stage. A recent study indicates that L. mono-
cytogenes secretes a pheromone, pPplA, that triggers the
production of an unknown factor that cooperates with
LLO in facilitating vacuolar disruption (139): pPplA is
processed from the N-terminal secretion signal sequence
of the lipoprotein PplA; pPplA is secreted, accumulates
in the space of theL. monocytogenes vacuole, and is then
exported by the CtaP peptide transporter; cytoplasmic
pPplA induces the production of a factor that accelerates
vacuolar disruption mediated by LLO in a still uniden-
tified manner (139).

Modulation of bacterial gene expression by “revers-
ible lysogeny” has also been proposed to modulate L.
monocytogenes vacuolar escape (140). The prophage
A118 is inserted within the coding region of the gene
comK, a master regulator of competence genes that are
normally not expressed by L. monocytogenes; interest-
ingly, during the bacterial vacuolar stage, A118 is ex-
cised, and this event allows reactivation of comK and
expression of the competence machinery by L. mono-
cytogenes; by a still unknown mechanism, the compe-
tence system promotes efficient bacterial translocation to
the host cell cytoplasm. In this environment, the phage
reinserts into comK (140).

Additional host factors have been reported to
control L. monocytogenes vacuolar residency. Rab5a
was shown to control the accelerated maturation of
L. monocytogenes-containing vacuoles (141, 142); the
product of the gene Lmo2459 was subsequently shown
to induce the specific ADP ribosylation of Rab5a, inhi-
biting its activation and reverting its bactericidal func-
tions (143). The activity of the cytosolic cysteine protease
calpain has been shown to be required for efficient L.
monocytogenes vacuolar escape, but the targets of this
protease remain to be identified (144).

THE CYTOPLASMIC STAGE
By translocating from the vacuolar stage toward the
cytoplasm, L. monocytogenes escapes cellular degrada-

tive mechanisms associated with phagosomal pathways.
On the other hand, L. monocytogenes must adapt its
metabolism to nutrients and metabolites found in this
novel intracellular compartment and must also escape
from additional innate immunity defenses including
autophagy. The hexose phosphate transporter Hpt and
the actin-polymerizing surface protein ActA play key
roles in the survival of L. monocytogenes in the host cell
cytoplasm.

Utilization of Host Metabolites
Glucose-1-phosphate is the primary degradation prod-
uct of glycogen and is broadly available within
mammalian cells. The observation that L. mono-
cytogenes uses glucose-1-phosphate as a carbon source
in a PrfA-dependent manner suggested that related
hexose phosphates could be important growth substrates
for intracellular bacteria (145). In silico analysis of the
L. monocytogenes genome identified the gene hpt as
encoding a hexose phosphate transporter responsible for
the uptake of glucose-6-phosphate in the cytoplasm of
host cells, playing a key role in L. monocytogenes in vivo
virulence (146). A subsequent screen for identification of
additional genes required for bacterial intracellular rep-
lication recognized lplA1 as a lipoate protein ligase that
could potentially use host-derived lipoic acid to modify
bacterial substrates (147). LplA1 was later confirmed to
be essential for intracellular growth of L. monocytogenes
under limiting concentrations of available small mam-
malian lipoylated peptides (148). A genetic screen led
to the discovery that the menaquinone synthesis inter-
mediate 1,4-dihydroxy-2-naphtoate is required for L.
monocytogenes cytosolic survival, but full-length mena-
quinone is not (149).

Cytoplasmic Innate Immune Responses
Autophagy is a cellular mechanism responsible for
protein turnover and removal of abnormal or superflu-
ous subcellular components. The pioneering work of
Rich et al. (150) demonstrated that cytoplasmic and
metabolically arrested L. monocytogenes can be tar-
geted for destruction by the autophagic machinery.
Different mechanisms have been proposed to participate
in the active escape of cytoplasmic L. monocytogenes
from autophagy: polymerization of actin by the surface
protein ActA favors cytoplasmic motility and avoidance
of autophagosomes (151); polymerized actin or Arp2/3
sequestering by ActA may also act as a protective
physical barrier preventing the accumulation of signal-
ing molecules (i.e., ubiquitin) that are required for
autophagy activation (152, 153). PlcA and PlcB have
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also been implicated in autophagosomal avoidance
(151, 154, 155), and recent studies suggest that these
PLCs decrease cytoplasmic levels of PI 3P, causing stal-
ling of preautophagosomal structures and preventing
efficient targeting of cytosolic bacteria (156). The sur-
face internalin InlK has also been proposed to recruit
the major vault protein and to protect cytoplasmic L.
monocytogenes from autophagic recognition (16), but
these results have been recently challenged using a dif-
ferent L. monocytogenes strain (157).

Cytoplasmic L. monocytogenes secretes small mole-
cules leading to activation of an IRF3-dependent cyto-
solic pathway, resulting in type I interferon activation
(158). One of these small molecules, cyclic-di-AMP, is
sufficient to activate production of interferon β in
macrophages (159). Sensing of tri-phosphorylated RNA
via RIG-I and aMAVS-dependent pathway triggers type
I interferon production in epithelial cells (160, 161). L.
monocytogenes cytoplasmic DNA is recognized through
STING, TBK1, IRF3, and IRF7, leading to the upre-
gulation of the di-ubiquitin-like protein ISG15 and
ISGylation of endoplasmic reticulum (ER) and Golgi
proteins, which correlate with increased secretion of
cytokines that counteract infection (162). L. mono-
cytogenes also activates the type III interferon pathway
(163).

Persistence
It is increasingly recognized that bacterial pathogens
may persist within host tissues in a dormant state that
allows resistance to antibiotics and subsequent reinfec-
tion. In macrophages of severe combined immunode-
ficient (SCID) mice, L. monocytogenes can persist in
large compartments termed spacious Listeria-containing
phagosomes (SLAPS), which are formed in an LLO-de-
pendent manner (96). LC3-associated phagocytosis has
been proposed to precede the formation of SLAPS (164).
A recent study indicates that in epithelial cells, cyto-
plasmic L. monocytogenes bacteria in which ActA pro-
duction is halted are trapped in acidic vacuoles that are
not associated with classical autophagosomal markers
and in which bacteria enter a viable but nonculturable
state (97). These studies indicate that L. monocytogenes
may persist in different host cellular populations, fa-
voring the asymptomatic carriage of this pathogen.

CELL-TO-CELL SPREAD
Actin-based motility allows L. monocytogenes not only
to escape autophagy but also to reach neighboring
cells within infected tissues, favoring cell-to-cell spread

and bacterial dissemination in organs, avoiding expo-
sure to humoral immunity.MotileL.monocytogenes first
induces the formation of a membrane protrusion in the
primary infected cell that is accompanied by membrane
internalization in the neighboring bystander cell, leading
to bacterial entrapment in a double-membrane vacuole
that is then disrupted (9). Several bacterial virulence
factors, including ActA, the internalin InlC, the pore-
forming toxin LLO, and the phospholipases PlcA and
PlcB, participate at different stages of L. monocytogenes
cell-to-cell spread.

Cytoplasmic Actin-Based Motility
The surface protein ActA is sufficient to trigger actin
polymerization at the surface of L. monocytogenes
(7). The central region of ActA contains four short
proline-rich repeats that bind members of the enabled/
vasodilator-stimulated phosphoprotein (Ena/VASP)
family; these molecules contribute to the persistence of
speed/directionality of bacterial movement by recruit-
ing profilin, which provides polymerization-competent
actin monomers (165). The N-terminal region of ActA
recruits the Arp2/3 complex which drives actin nucle-
ation (166, 167). The Arp2/3 complex is formed of seven
subunits, and it has been traditionally considered a sin-
gle molecular entity (168). A genome-wide small inter-
fering RNA screen demonstrated that different Arp2/3
complexes are required to control L. monocytogenes cell
invasion and actin-based motility: the Arp2, Arp3,
ARPC2, and ARPC3 subunits are conserved, but the
ARPC1B subunit is only involved in cell invasion, while
the ARPC1A subunit is required for actin-based motili-
ty, and the ARPC4 subunit is dispensable for cell inva-
sion, while the ARPC5 subunit is dispensable both for
cell invasion and actin-based motility (169). Multiple
actin cross-linking proteins, actin filament-capping or -
severing proteins, and protein scaffolds are recruited to
the L. monocytogenes actin tail (170). Cryo-electron
tomography of actin tails has demonstrated that actin
bundling is critical for ensuing actin-based motility
(171).

Cortical Actin Rearrangements and
Protrusion Formation
In mammalian tissues, cortical membrane tension rep-
resents a physical barrier for motile L. monocytogenes,
inhibiting the deformation of the plasma membrane into
protrusions. InlC, a secreted member of the internalin
family devoid of a cell wall anchoring motif (13), per-
turbs apical cell junctions by interacting with the protein
adaptor Tuba, inhibiting the recruitment of the actin
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regulatory protein N-WASP and COPII proteins and
therefore relieving cortical membrane tension favoring
L. monocytogenes protrusion formation (14, 172, 173).
The downregulation by L. monocytogenes of the small
GTPase Cdc42, another Tuba interactor, is also required
for efficient protrusion formation (174). Within the
protrusion, the membrane-cystoskeletal linker ezrin has
been proposed to support the formation and stabiliza-
tion of protrusions (175). Arp2/3 drives actin polymeri-
zation at the proximalL.monocytogenes rear-endwithin
protrusions, but at distal locations the recruitment of
Rho GTPases activate diaphanous-related formins which
promote the formation of unbranched actin filaments
(176). Inhibition of actin polymerization by components
of the AIP1-dependent actin disassembly machinery
(177) and ActA processing by the metalloprotease Mpl
(178) are proposed mechanisms for the resolution of
membrane protrusions into double membrane vacuoles.
Efficient cell-to-cell spread can be facilitated by the exo-
facial exposure of phosphatidylserine at the tip of pro-
trusions promoted by the pore-forming activity of LLO,
which leads to phosphatidylserine binding by the TIM-4
receptor in macrophages and protrusion internalization
(179).

Lysis of Secondary Vacuoles
Internalization of L. monocytogenes-induced protru-
sions into neighboring bystander cells leads to bacterial
localization within a double-membrane compartment
(9). Initial studies suggested that phospholipases PlcA
and PlcB, together with LLO, contributed to cell-to-cell
spread (4, 125, 127), and a more specific contribution of
PlcB to double-membrane vacuolar rupture was sug-
gested (128). A current model proposes that PlcA and
PlcB contribute to the disruption of the inner membrane
of the spreading vacuole, while LLO participates more
precisely in the disruption of the outer membrane of this
vacuole (180). Bacterial translocation to the cytoplasmic
space of neighboring cells allows L. monocytogenes to
start a new infection process.

MODULATIONOFCELLULAR, ORGANELLAR,
AND NUCLEAR FUNCTIONS
L. monocytogenes is able to modulate a broad range of
cellular functions, even before being internalized within
host cells. The pore-forming toxin LLO, which plays a
major role in vacuolar escape (see above) is able to
modulate from the extracellular space the function of
mitochondria, the ER, lysosomes, protein posttransla-
tional modifications, and DNA stability. Several bacte-

rial nucleomodulins have been identified which directly
affect the transcription of host genes involved in the
control of immune responses.

LLO Influence on Mitochondria
Mitochondria are critical organelles involved in the gen-
eration of chemical energy in eukaryotic cells. As men-
tioned above, extracellular LLO triggers the influx of
calcium, which leads to transient fission of mitochondria,
triggering a bioenergetic change of host cells that is
beneficial for L. monocytogenes host cell invasion (92).
Interestingly, atypical mitochondrial fission through a
Drp1-independent fragmentation process has been
associated with L. monocytogenes cellular infection
(181).

LLO Influence on the ER
The unfolded protein response is a signaling cascade
that maintains the function of the ER under stress
conditions. L. monocytogenes activates the unfolded
protein response in an LLO-dependent manner prior
to bacterial entry into host cells (182). The induction of
ER stress by drugs such as thapsigargin or tunicamycin
leads to a decrease in bacterial intracellular numbers,
suggesting that the unfolded protein response repre-
sents an innate immune response to bacterial infection
(182).

LLO Influence on Lysosomes
The integrity of lysosomes has been shown to be com-
promised by extracellular LLO, which induces permea-
bilization and release of lysosome content, including
cathepsins, which remain transiently active in the cyto-
plasm (183). The functional significance of this finding
for L. monocytogenes infection and survival remains to
be identified.

LLO Influence on Protein Posttranslational
Modifications
Posttranslational modifications allow the rapid modi-
fication of the activity of cellular proteins. Sumoyla-
tion is an essential posttranslational modification that is
impaired by L. monocytogenes through the proteasome-
independent degradation of the E2 enzyme Ubc9 fol-
lowing calcium influx mediated by extracellular LLO
(184). The downregulation of cellular protein sumoyla-
tion, together with the proteasome-dependent degradation
of some sumoylated proteins, favors bacterial infection in
vitro and in vivo (184). Histone modifications are also
associated with the L. monocytogenes infection process
(185) (see below).
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LLO Influence on DNA Stability
L. monocytogenes modulates general DNA stability
in host cells in different manners. L. monocytogenes
induces DNA strand breaks and simultaneously blocks
the DNA damage response through degradation of
the sensor Mre11 in an extracellular LLO-dependent
manner (186), promoting a cell cycle delay that favors
bacterial intracellular replication (187). Interestingly, it
has been also reported that LLO-induced calcium influx
leads to the proteasomal degradation of the human
telomerase reverse transcriptase, an event that is detri-
mental to bacterial replication (188).

Bacterial Influence on Gene Expression
LntA is the first nucleomodulin discovered in L.
monocytogenes (189): it targets the chromatin repres-
sor BAHD1 and fine-tunes transcription of interferon-
stimulated genes, which is required for efficient in vivo
infection (190, 191). More recently, the nucleomodulin
OrfX has been shown to interact and decrease the levels
of the regulatory protein RybP, dampening the oxidative
response in macrophages probably through modulation
of host transcriptional responses (192). The secreted
internalin InlC interferes with innate immune responses
by targeting the IκB kinase subunit IKKα, inhibiting
NF-κB translocation to the nucleus (15). LLOmodulates
gene transcription with opposite effects for infection:
LLO induces a dramatic dephosphorylation of histone
H3 and deacetylation of histone H4 that leads to re-
duced transcriptional activity of key immunity host
genes (185); LLO has also been shown to modulate
the functionality of the promyelocytic leukemia pro-
tein nuclear bodies, activating a signaling response that
decreases L. monocytogenes infection (193). Finally,
an InlB/PI 3-kinase pathway is required for the SIRT2-
dependent deacetylation of histone H3 on lysine 18,
which is involved in efficient bacterial infection in vitro
and in vivo (194).

CONCLUSIONS
The study of the interactions of L. monocytogenes
with eukaryotic host cells during bacterial invasion,
intracellular growth, and cell-to-cell spread has proven
to be fundamental to better understanding the exqui-
site adaptation of this bacterial pathogen to mamma-
lian hosts. Indeed, L. monocytogenes is able to hijack
multiple cellular functions including receptor signaling,
membrane trafficking, cytoskeletal rearrangements, or-
ganellar dynamics, DNA stability, and gene transcrip-
tion. The work reviewed in this article also highlights

that L. monocytogenes is an extraordinary tool to ma-
nipulate and to unravel host cell signaling cascades, in
particular, innate immune responses that allow us to
expand our understanding of the control of bacterial
intracellular infections.
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