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Abstract

Ecological momentary assessment (EMA) is an approach to collect self-reported data repeatedly 

on mobile devices in natural settings. EMAs allow for temporally dense, ecologically valid data 

collection, but frequent interruptions with lengthy surveys on mobile devices can burden users, 

impacting compliance and data quality. We propose a method that reduces the length of each 

EMA question set measuring interrelated constructs, with only modest information loss. By 

estimating the potential information gain of each EMA question using question-answer prediction 

models, this method can prioritize the presentation of the most informative question in a question-

by-question sequence and skip uninformative questions. We evaluated the proposed method by 

simulating question omission using four real-world datasets from three different EMA studies. 

When compared against the random question omission approach that skips 50% of the questions, 

our method reduces imputation errors by 15%−52%. In surveys with five answer options for 

each question, our method can reduce the mean survey length by 34%−56% with a real-time 

prediction accuracy of 72%−95% for the skipped questions. The proposed method may either 

allow more constructs to be surveyed without adding user burden or reduce response burden for 

more sustainable longitudinal EMA data collection.
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1 INTRODUCTION

Ecological momentary assessment (EMA), also known as the experience sampling method 

(ESM), is a method for repeatedly measuring self-reported behaviors and states using mobile 

devices in real-world settings [10, 61]. Users receive prompts on their mobile devices to 

complete self-reported surveys consisting of a set of questions; the questions may ask about 

in-situ behavior and/or states, especially those that passive sensors cannot reliably measure 

yet (e.g., perceived fatigue [11] and pain [34]). EMAs may reduce recall biases compared to 

retrospective recall surveys and enhance ecological validity; measurements can be repeated 

many times in a day, thus capturing temporal changes within individuals over time [56]. 

Because of these benefits, EMA is frequently used to gather in-situ self-reports by health 

behavior researchers [8, 25, 57] and by human-computer interaction researchers [5, 16, 

24] to study free-living behavior, and to gather person- and context-specific data to inform 

just-in-time adaptive interventions (JITAI) in digital health applications [3, 29, 53].

In the past two decades, researchers have been increasingly interested in deploying EMA in 

longitudinal data collection, with temporally dense self-report [34, 68, 78], but sustaining 

long-term user engagement is difficult, partly because of heavy user burden [65]. A typical 

EMA protocol used in health or psychology could have eight prompts a day, with question 

sets up to 36 questions long and take 1–2 min to answer (e.g., [27]). The frequent requests 

for responses to lengthy surveys impose disruption in daily life, which cumulatively may 

lead to poor EMA compliance and inattentive responding [13, 14, 59]. Thus, improving 

data collection efficiency and minimizing user burden has been a critical challenge in EMA 

methodology research [19, 47].

One way to reduce burden might be to prompt surveys at less disruptive times, and 

previous studies have explored methods to predict such moments using passive sensing data; 

examples are prompting surveys during unproductive usage sessions [69], activity transitions 

[1], and breakpoints in social contexts [43]. This approach may, however, exacerbate 

selective non-response bias and limit the generalizability of the data to all contexts and 

situations [66]. Alternatively, a protocol might use random-time sampling but reduce the 

survey length to only those questions that provide valuable information at that moment. 

Researchers have recently proposed to deliver adaptive-length psychological assessment by 

integrating EMA with psychometric techniques from item-response theory (IRT) [21, 53]. 

These methods use IRT-calibrated sets of questions (i.e., ‘item banks’) to drive computer 

adaptive testing/measurement (CAT) whereby a subset of questions is selected from the item 

bank to assess a single construct efficiently. This method, while promising, is dependent 

upon the development of IRT-calibrated item banks [53].

Inspired by the prior work, we propose a question-selection method that can be used with 

random-time sampling and that does not rely on a pre-calibrated item bank. We define the 
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potential information gain of obtaining the answer to a question as the prediction uncertainty 

of the question-answer, inferred from prior EMA answers in the study and participants’ 

answers to other questions in the current EMA survey. The proposed method starts with 

building person-specific prediction models based on responses to the full-set EMA surveys 

in the first several weeks of longitudinal data collection. Then when a survey is initiated, 

questions from the question set are selected one-by-one, where at each step the question 

yielding the highest information gain is chosen. By strategically skipping the unselected 

questions that are likely to provide little new information given the questions already 

answered, user burden may be reduced, but with minimal information loss. The results 

from question omission simulations using real-world longitudinal EMA datasets suggest that 

our method could significantly reduce survey length while causing less information loss 

compared to random-question omission.

Our work makes three contributions:

• We present a practical method to shorten survey length with minimal information 

loss by quantifying the information gain of each question in a survey set 

using only prior responses to EMA survey questions. Unlike IRT-based CAT 

techniques that measure a single construct with fewer questions, our method can 

be applied to EMA surveys with one or multiple questions per construct, as long 

as the questions or constructs to be modeled are interrelated.

• We assessed the performance of the proposed method in both longitudinal 

observational and interventional EMA data collection settings. The simulation 

studies on four real-world EMA datasets show that our method effectively 

predicts responses for real-time monitoring, allowing us to skip 34–56% of 

questions while maintaining answer prediction accuracy of 72–95% for skipped 

questions with five answer options. Additionally, the method results in lower 

imputation errors for post-study analysis compared to a planned missing data 

design, which randomly omits questions to shorten surveys [58].

• We demonstrate the generalizability of the proposed method by testing it on 

four datasets from real-world longitudinal EMA studies, each with different 

study objectives, study populations, study durations, prompt schemes, and 

question sets. Specifically, we show the efficacy of employing the proposed 

method in EMA studies using time-based (e.g., report every hour or every day) 

and event-contingent (e.g., report after each interpersonal interaction) prompt 

schemes, asking questions about both mental state and behavior, and using 

single-item rating scales (rapid assessment for easily understandable constructs) 

and composite rating scales (precise assessment for complex constructs).

In the remainder of this paper, we review prior work on reducing user burden in EMA 

in Section 2. We outline our research questions and hypotheses in Section 3. In Section 

4, we describe the main components of our proposed method. In Section 5, we describe 

the four real-world EMA datasets used for simulation studies, demonstrate the prompt 

question-selection process through examples, and we report the evaluation results of our 

method through a series of simulation studies using real-world longitudinal EMA datasets. 
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Finally, we discuss the implications of our results in Section 6 and possible directions for 

future research in Section 7.

2 RELATED WORKS

In this section, we review the problem of user response burden with EMAs and prior 

research aimed at reducing the burden using adjustments to prompt timing and survey 

length.

2.1 Impact of User Burden on EMA Studies

Long-term monitoring is critical for longitudinal studies that study behavior changes [12, 

64] and mental disorders [48, 74], as well as developing digital health interventions [31]. 

The intensive longitudinal data collection made possible using EMA may provide deep 

insight into individuals’ daily life experiences, but maintaining high-quality self-report data 

collection over time is challenging. Van Berkel et al. [65] conducted a survey of 110 

experience-sampling papers published between 2005 and 2016. Most of these EMA studies 

(70.9%) ran for less than a month, with an average length of 32 days. Earlier researchers 

running diary studies [60] found that incomplete or incorrect data increased after two to 

four weeks. As a result, Van Berkel recommended a data collection duration of one to three 

weeks for EMA studies that study a phenomenon that requires multiple self-report surveys 

each day. With a one-month study duration on average, the average response rate of studies 

included in the survey [65] was 69.6% (i.e., the number of fully completed questionnaires 

divided by the number of questionnaires presented). This average response rate falls below 

the 75% threshold, above which samples are typically considered with high compliance and 

less prone to selection bias [62]. In sum, the user burden associated with EMA hinders 

longitudinal data collection using the method.

2.2 Computational Methods to Reduce EMA Response Burden

Three broad strategies can be used to reduce EMA response burden: improving the 

presentation of questions (e.g., enhancing text readability [9], using multiple modalities [6]), 

improving the timing of prompts (i.e., identifying less disruptive moments to prompt [35]), 

and reducing the need for self-report data (i.e., reducing survey length, number of surveys 

prompted per day, and observation duration) [65]. The timing-related and data-related design 

components of EMA are illustrated in Figure 1. In this section, we summarize previous work 

on using computational methods to improve the timing of prompts and reduce the length of 

surveys.

2.2.1 .Reducing Response Burden by Adjusting Prompt Timing.—Fogarty et al. 

[17] demonstrated that environmental sensors can be used to estimate human interruptibility 

as well as people can. Using manually simulated video and auditory sensors and machine 

learning models, they achieved an accuracy of 82.4% in detecting interruptibility, which 

was better than humans on the same task (76.9%). Subsequent studies have attempted to 

predict less disruptive moments for prompting using passive sensing data to enhance users’ 

self-report response rates. For example, Obuchi et al. [41] found higher response rates (58% 

vs 50%) when prompts were delivered during activity-based breakpoints (e.g., from walking 
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to stationary) detected by the Activity Recognition API in iOS. Similarly, Aminikhanghahi 

et al. [1] used unsupervised change point detection algorithms to identify activity transitions 

in real-time using smart home sensors (passive infrared motion and door sensors) and 

found a higher response rate during the transitions (84.26%) compared to random-time 

prompting (78.62%). Visuri et al., [69] prompted surveys during unproductive smartphone 

usage sessions after the phone screen was unlocked. Zhang et al. [79] investigated ‘unlock 

journaling’ (i.e., answering a question while unlocking the phone), which led to a higher 

frequency of reporting as well as decreased perceived intrusiveness. Park et al. [43] deferred 

notifications until breakpoints in a social context and thereby reduced the number of 

disruptive notifications by 54.1%.

Although finding opportune prompting times may help to decrease perceived burden and 

increase response rates, prompting only at moments with high response rates may exacerbate 

participant compliance bias and selective nonresponse bias [66]. Van Berkel et al. [66] 

analyzed four smartphone EMA studies and found considerable differences in survey 

compliance rates among participants. They found that participant compliance bias was 

significantly impacted by contextual factors detected using smartphones, such as time of 

day, weekday/weekend, screen status, last phone usage. A more recent study examined 

various contextual factors such as time, device use, physical activity and mobility and 

found most of them may be associated with non-response to prompts on smartphones and 

smartwatches [45]. In addition, nonresponses have been found to be associated with higher 

levels of stress and negative affect, resulting in biased parameter estimates [39]. These 

results suggest that participant response rates are not consistent across time and context, and 

prompting only at moments when participants are more willing to answer may worsen such 

biases in the data collected, potentially affecting the reliability of models built from those 

data [66].

2.2.2 Reducing Response Burden by Adjusting Survey Length.—Although 

both sampling frequency and length of surveys contribute to participants’ perceived burden 

[56], previous studies suggest that longer surveys may impact burden more negatively than 

high-sampling frequency [14, 28]. For instance, Morren et al. [37] reviewed 62 papers 

published from 1991 to 2006 on assessing daily pain using electronic diaries. Across these 

studies, the survey length varied from one item to 63 items per survey, and the number of 

diaries ranged from 1 to 10 per day. The regression analysis showed that diary length had 

a statistically significant negative association with compliance, while the number of diaries 

per day did not. Specifically, with each additional item in the survey, the compliance rate 

was reduced by 0.48%. In a more recent study, Eisele et al. [14] conducted randomized 

controlled trials with 150 participants to investigate how survey length and sampling 

frequency influence perceived burden, compliance, and careless responding. They found that 

longer surveys had statistically significantly lower compliance, higher momentary burden, 

and more careless responses than short versions of the surveys, and that increased sampling 

frequency only influenced retrospective burden through interaction with longer surveys.

Planned missing data designs, also known as random-question omission, have been used to 

reduce the length of surveys by randomly omitting survey questions [23, 58]. Silvia et al. 

[58] investigated the effect of applying two variations (matrix sampling and anchor test) of 

LI et al. Page 5

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



planned missing data designs to EMA research. For instance, the matrix sampling method 

randomly assigns a subset of questions for each prompt occasion. Simulation studies showed 

that the planned missing data designs yielded unbiased parameter estimates at the cost of 

higher standard errors against the complete-case sample.

Rather than dropping questions randomly, the information contribution of each question can 

be considered [22]. Schneider et al. [53] introduced just-in-time adaptive EMA (JITA-EMA) 

to classify a person’s momentary state with high accuracy using a small subset of EMA 

questions. They extended the use of computerized adaptive testing (CAT) methods that 

are rooted in item response theory (IRT) to classify momentary states that inform timing 

decisions of JITAI treatment. The method uses an ‘item bank’ consisting of rigorously tested 

collections of questions that can be used to estimate the true value of a unidimensional 

construct of interest. Strategic question selection can be achieved by selecting the next 

question that is the most informative given the current estimate of the true value of 

the hidden construct; this question selection continues until a classification decision on 

users’ momentary states can be made with sufficient confidence (e.g., 95% confidence 

interval of the estimated construct level did not include the cutoff for classification). In 

simulation studies, JITA-EMA with only two to three questions on average (out of the total 

13 questions) per prompt achieved better classification accuracy than using a fixed five 

questions per prompt. The method leverages information value in survey question selection 

when calibrated IRT question sets are available and provides reliable estimates of tailoring 

variables for JITAI with reduced-length surveys.

3. REASERCH QUESTION

We extend the prior work by considering the following research question: In longitudinal 

data collection, without altering sampling schemes or requiring a calibrated item bank of 

questions, how might we quantify the information gain of each survey question and use 

this to deliberately shorten the length of EMA surveys, possibly reducing user burden while 

minimizing information loss?

We propose a method to explicitly predict the potential information gain of answers to 

survey questions by leveraging individuals’ response patterns from prior answer history. 

An idiographic model can be fitted to an individual’s response data during the longitudinal 

data collection that can encode predictive relationships between constructs of interest. The 

underlying assumption is that constructs being surveyed are, to some degree, interrelated 

(i.e., exhibit probabilistic dependency [20]), which is typically observed in EMA studies 

and digital health applications that assess interconnected aspects of human behaviors (e.g., 

social activities) and mental states (e.g., affect and feelings). Thus, a prediction model can be 

used to determine the uncertainty in predicting the current states of unobserved constructs, 

quantifying the potential information gain if the participant answers the survey question 

about a construct. Using information gain has been explored in active learning [54], where 

the goal is to find a small set of informative samples that can optimize the performance of 

prediction models. In this work, we apply these concepts to longitudinal EMA to achieve 

adaptive question selection at each survey prompt occasion.
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We evaluate the proposed adaptive prompt-question selection method by simulating data 

collection using existing real-world smartphone EMA study datasets from prior work. Our 

hypotheses are:

• H1: As more questions of a survey are answered, the uncertainty about 

the remaining question answers will decrease based on past observations. 

Compared to random-question omission (i.e., planned missing data design), the 

proposed method, prioritizing the presentation of the most uncertain question, 

can accelerate the uncertainty reduction for the remaining questions and skip 

low-uncertainty questions with minimal information loss, resulting in higher 

real-time prediction accuracy for skipped questions.

• H2: Compared to random-question omission, the proposed method can skip 

the same total number of questions while incurring less information loss in 

self-report data collection, resulting in lower imputation errors for missing data.

• H3: The proposed method can be applied to different types of constructs 

(e.g., mental states and behaviors), prompt schemes (e.g., time-based or event-

contingent), and question sets (e.g., single-item or composite rating scales) 

because each prompted survey is treated independently and the method has the 

flexibility in modeling interrelated constructs that measure different aspects of 

human behavior at different levels.

4 METHDOLOGY: ADAPTIVE EMA PROMTING

This section introduces the components of the proposed adaptive EMA prompting. We first 

describe how to estimate potential information gain when questions are answered based on 

prior answer history (Section 4.1). Then, we describe how to select questions based on the 

estimated information gain and when to stop asking questions to achieve adaptive survey 

lengths (Section 4.2).

4.1 Estimation of Potential Information Gain from Obtaiing Answer to an EMA Survey 
Question

To assess the potential information gain from obtaining answers to an EMA survey question, 

we leverage prediction models to learn the relationships between constructs from the 

past data and determine the uncertainty level of states of unobserved constructs based on 

observed constructs for each occasion.

4.1.1 Prediction Model on Question-Answer.—The adaptive EMA method requires 

building prediction models for users’ answers to survey questions. Although many models 

can achieve this, we use Bayesian networks (BN) in this work because they can be used 

to reason about uncertainty [15]. BNs can represent a set of random variables and their 

conditional dependencies via a directed acyclic graph (DAG) and a set of node probability 

tables (NPTs). In the DAG, the nodes represent random variables (discrete or continuous) 

and the directed arcs represent causal or influential relationships. A directed arc connecting 

A→B means A is the parent node of B and the dependency can be quantitatively represented 

as the conditional probability P(B|A) in the NPT of node A. By making conditional 
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independence assumptions between unlinked variables, a BN simplifies the calculation of 

the joint probability distribution. The inference process, based on Bayes’ theorem [4], refers 

to information of observed variables (evidence) being propagated through the DAG to 

update prior probability distributions for every unobserved variable, in both forward (from 

parent nodes to child nodes) and backward directions (from child nodes to parent nodes). 

Because of these features, the BN models are widely used to reason with uncertainty in 

disease diagnosis and complex healthcare decisions involving multiple factors that influence 

each other [33].

We use a BN to support question-selection decisions. The BN can be used to reason 

about the uncertainty level of states of multiple variables that represent answers to survey 

questions. Because a BN can update uncertainties with incomplete data, it only requires a 

single model to estimate the probabilities of states for all unobserved question variables, 

based on the responses to any other set of question variables. In other words, when 

a participant answers a survey question, the prediction model can revise the posterior 

probability distributions for all the other survey questions that have not been answered. 

For example, when asked about stress levels, if a participant reports being “Quite a bit” 

or “Extremely” stressed, that report may make the model more certain about the state of 

constructs such as “happy” and “relaxed” if such relationships have been present in prior 

data. As more responses are entered, the model’s predictions on the states of unobserved 

variables become more certain. The process of question selection may then stop at some 

predetermined uncertainty threshold using a stopping rule (discussed later in Section 4.2).

4.1.2 Intializtion and Continuous Updating of the Trediction Model.—Before 

starting the question selection process, the method requires collecting participants’ responses 

to full surveys for a short period to initiate the model training. This full-survey training 

data can be sourced from previous studies that measured similar constructs for the same 

user groups. Alternatively, the training data may be obtained from pilot studies or the early 

stages of longitudinal data collection, during which participants typically exhibit higher 

motivation to engage in EMA compared to later stages. If surveys include more constructs 

or have weak correlations between constructs, or if respondents are less consistent in their 

responses, more training data may be required. After initialization, the model can be used 

to skip questions and collect partial survey data. As data collection progresses, the model 

may be continuously updated with participant responses from all prior completed surveys. 

An alternative is to keep training the model using a shifting window of the most recent 

response data. In this work, we chose the former updating strategy because it ensures that 

the model benefits from the full breadth of participant responses up to a given point in time. 

When training the model, we used observed responses for presented questions and predicted 

responses for skipped questions from previously completed surveys. This approach, known 

as pseudo-labeling, is a semi-supervised learning technique that incorporates unlabeled data 

into supervised learning to improve prediction performance [42].

4.1.3. Estimation of Expected Information Gain—The method allows survey 

constructs to be measured on either discrete or continuous scales. In this work, we used 

discrete options because our test data have discrete question answers. The state of a 
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discrete random variable represents the participant’s selected answer option to a question. 

For prediction models, the input is the states of observed variables, and the output is the 

estimated likelihood of all possible states of the unobserved variables. There are many ways 

to summarize the prediction uncertainty with a single quantity (e.g., the posterior probability 

of the most probable label, the margin between the first and the second most probable labels) 

[54]. In this work, we use entropy from information theory [55], which is often used as an 

uncertainty measure in machine learning. The function of expected information gain for a 

survey question is:

Expected information gain = H X = − ∑
i
p xi log p xi

where X represent states of an unobserved variable, xi ranges over all possible discrete states 

of the variable, p xi  is the likelihood of the state predicted by the idiographic model, H X
is the entropy of the predicted likelihood of all possible states of the variable. Intuitively, 

a high value of entropy resulting from an even probability distribution means we are less 

certain about the outcome, and vice versa. For example, a binary variable with an answer 

probability (0.5, 0.5) has an entropy of 0, while the same variable with an answer probability 

(1.0, 0.0) has an entropy of 1 with a logarithm base 2. For representation simplicity, one 

can use a base set to the number of response options (e.g., in this work, we use a base 

5 for 5-point rating scales and a base 3 for 3-point rating scales) to scale the range of 

entropy value to 0–1. The prediction uncertainty inferred from the model can then be used to 

quantitatively represent the potential information gain of a survey question to be presented.

4.2 EMA Survey Question Selection and Stopping Rules for Each Prompt Occasion

The question selection process of a hypothesized EMA survey is conceptually illustrated 

in Figure 2. The EMA survey question selection rule is to include the survey question 

with the highest information gain (estimated by prediction uncertainty) among all unknown 

questions. For each survey to be prompted, the first question is selected based on the 

prior distribution of the BN model because no survey question has been answered. Starting 

from the second question, all prior responses will be included as evidence to update the 

probability distribution for all other unknown questions. The updated probability distribution 

will then inform the selection of the next survey question. Each prompted question set is 

considered independently of prior question sets. Question selection continues until either all 

questions in a question set are answered, or a stopping rule ends question presentation.

We implemented three stopping rules:

• Fixed length: Questions are picked one-by-one based on the expected 

information gain until a fixed number of questions is reached for each prompt.

• Variable length: Questions are picked one-by-one based on the expected 

information gain until the prediction uncertainty of all unobserved questions is 

lower than a threshold.
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• Variable length with cap: Similar to the variable-length strategy, except there is 

an additional constraint that no survey can be longer than a maximum number of 

questions.

5 SIMULATION STUDIES

In this section, we first describe the datasets used for simulation studies to evaluate the 

proposed method and the technical details of model building. Next, we discuss the insights 

we learn from the prompt decision process through a real-world survey example. We then 

present the results from a series of simulation studies that systematically evaluate the 

proposed method using four real-world EMA datasets with various data collection settings.

5.1 Datasets

We conducted question omission simulations on four datasets from three real-world 

longitudinal EMA studies. The comparison of EMA datasets can be found in Table 1. 

Dataset 1 and Dataset 2 were from the same study [46, 71] and were mainly used to test 

H1 and H2 on the feasibility and efficacy of our method; Dataset 3 and Dataset 4, from two 

EMA studies [18, 76] that differ from the first study in terms of study population, study 

duration, prompt scheme, and question set, were used to test H3 on the generalizability of 

our method.

5.1.1 Dataset 1 and 2: Daily and Hourly Surveys of a Year-Long EMA Study.—
We used the data collected as part of the Temporal Influences on Movements and Exercise 

(TIME) study [46, 71]. The goal of that study was to explore temporal factors that influence 

health behavior change and maintenance in young adults (ages 18–29 years) using EMA and 

mobile sensing. Participants answered self-report surveys using both EMA on smartphones 

and μEMA [28] on smartwatches for up to 12 months; in this work, we only used EMA data 

collected on the smartphones. A mixed sampling design was used in this study, from which 

we extracted two datasets: Dataset 1 (daily-EMA) and Dataset 2 (hourly-EMA).

The daily-EMA dataset consists of responses to end-of-day surveys prompted on all 

days before the participant’s anticipated sleep time. The end-of-day question sets have 12 

questions about different mental state constructs, taken directly or adapted from established 

measures [75]: affective and feeling states (happy, energetic, relaxed, sad, fatigued, tense, 
stressed, frustrated, nervous), attention (focused), self-control (resist), and productivity 

(procrastinate). For the daily-EMA, questions asked, “Over the last day, how [construct] 

did you feel?” to capture daily summaries, with response options on a five-point scale 

labeled “Not at all,” “A little,” “Moderately,” “Quite a bit,” and for the fifth item, either 

“Extremely” or “Very much so.” Some other questions with different answer styles relating 

to sleep time and health behavior are less relevant to this work and were excluded from the 

analysis.

The hourly-EMA dataset consists of responses to surveys prompted every waking hour 

on days of ‘burst periods.’ Each month, there were two burst periods when participants 

answered the EMA surveys once an hour during the waking hours. Waking hours were 

set by the participants. Each burst period consisted of four days with two weekend days 

LI et al. Page 10

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



guaranteed. There was at least a one-week gap between the two burst periods each month. 

A participant who self-reported 16 h of wake and 8 h of sleep was expected to receive 15 

prompts per burst-day. The hourly surveys on burst days used the same 12 questions as in 

the daily-EMA surveys with minor modifications on question text (i.e., “Right now, how 

[construct] do you feel?” instead of “Over the last day[…]”) to capture momentary reports.

The full list of survey questions can be found in Table 7 of the Appendix. Using all 

responses in the datasets, we examined the correlation matrices for measured constructs in 

both daily and hourly-EMA surveys (Appendix, Figure 9). Moderate to strong correlations 

were found between surveyed constructs, which indicates potential prediction relationships 

between each other.

Of 135 participants who completed the one-year study, we excluded 15 participants who 

responded to less than 250 daily-EMA surveys (i.e., response rate below ~70%) from the 

daily-EMA dataset to ensure data quality and sufficient data points for one-year analysis 

[62]. We also excluded one participant from both datasets who was reported in the dataset 

codebook as having admitted to inattentive responses in the exit-interview. Descriptive 

statistics about the daily and hourly-EMA survey datasets can be found in Table 2.

5.1.2 Dataset 3: Fixed-Time Surveys of a Two-Week EMA Study.—This dataset 

was derived from an EMA study in which investigators aimed to explore the changes in 

mental health and social contact of college students during the outbreak of the COVID-19 

pandemic in the Netherlands [18]. Participants answered EMA surveys at four fixed times 

(noon, 3 p.m., 6 p.m., and 9 p.m.) each day for 14 days. During the two-week study 

period, the Dutch government announced a series of strict rules on social distancing, group 

gatherings, and home quarantine. The study found that participants’ mental health and social 

behavior were significantly changed over the two weeks due to the release of these policies. 

Each survey contains 17 questions, including nine questions on mental health states and 

eight questions on social contact behavior and COVID-19-related behavior. We excluded 

the hunger question from the original survey because it was found to be independent of all 

other constructs in the learned DAG structure (discussed more in Section 5.2). The full list 

of questions can be found in Table 8 of the Appendix. The mental health questions, adapted 

from standardized scales, inquired about participants’ feelings over the past three hours, with 

five-point answer options ranging from ‘Not at all’ to ‘Extremely.’ The behavior questions, 

created by the researchers, asked participants to report the time they spent on different 

activities over the past three hours, using one of the five categories: “0 min,” “1–15 min,” 

“15–60 min,” “1–2 hours,” and “> 2 hours.” For both types of questions, responses were 

scored on a scale of 1 to 5, with 1 representing “Not at all” or “0 min” and 5 representing 

“Extremely” or “> 2 hours.” Of 79 participants in the original dataset, we excluded five 

participants who had missing data for five days or more from the dataset to ensure sufficient 

data for analysis.

5.1.3 Dataset 4: Event-Contingent Surveys of a Three-Week EMA Study.—The 

study that generated this dataset explored how personality disorder affects the dynamics of 

romantic relationships [76]. Participants were recruited using a stratified design, ranging 

from minimal or no symptoms to a positive screen for personality disorders. The EMA study 
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used an event-contingent prompt scheme where participants were asked to actively report 

their mood and interpersonal behavior on smartphones immediately after every interpersonal 

interaction for 21 days. The survey included 31 distinctive items of momentary affect 

adjectives from the extended version of the Positive and Negative Affect Schedule (PANAS-

X [73]). Unlike the single-item scales used in Datasets 1–3, where one item is used to 

define each construct, this question set is a composite scale that consists of six multi-item 

subscales in a hierarchical structure: two general dimension subscales about the valence 

of the mood (positive affect and negative affect), and four specific affect subscales about 

the distinctive qualities of the negative affect (anxiety/fear, anger/hostility, shame/guilt, and 

depression/sadness). Although the positive affect subscale consists of a distinctive item set, 

the negative affect subscale shares 0–4 items with each specific negative affect subscale. The 

detailed item composition of each subscale can be found in Table 9 of the Appendix. Each 

question is rated on a scale of zero to four, with zero representing “Not at all” and four 

representing “Extremely.” The composite score of each high-level affect construct is created 

by the average score of multiple low-level affect items contributing to the high-level affect 

construct.

5.2 Building the Model

We used the bnlearn (v0.8.2) Python package [63] to learn the DAG structure and NPTs 

to build the BN model. First, we learned the DAG structure of constructs measured in 

surveys. Using score-based approaches, we chose the commonly used Bayesian information 

criterion (BIC) [40] as the score function to evaluate how well the model fits the data, 

and we used the hill climb search algorithm [50] to traverse the search space. Because the 

structure search algorithm for BN models requires a large amount of data, we used initial 

full-survey training data from all participants to learn the DAG structure. Separate DAGs 

were learned for each EMA dataset. Example DAG structure plots can be found in Figure 

10 of the Appendix. Second, the initial full-survey training data from individual participants 

were used to learn the NPT parameters to obtain person-specific models. We estimated the 

conditional probability distributions of the individual variables using maximum likelihood 

estimation (i.e., relative frequencies).

The amount of initial training data needed is still an open question and, in this work, we 

tested how the amount of initial training data impacts method performance over time (see 

Section 5.4.4). For the initial full-survey training periods, the models used for Dataset 1 

and 2 surveys were initially trained on data from one to three months at the beginning of 

the study. One month’s data includes about 30 days of daily EMA data in Dataset 1, but it 

only corresponds to about eight days of hourly EMA data in Dataset 2. To test whether our 

method can work with a small amount of training data, the model used for the Dataset 3 and 

4 surveys was initially trained only on the data from the first one-to-two weeks of the study.

In this work, we examine the applicability of our method to different types of EMA surveys. 

We demonstrate two model-building scenarios using different EMA datasets. For surveys in 

Datasets 1–3, each single question item corresponds to a construct measured. For example, 

the question “Right now, how happy do you feel?” in the hourly survey measures the 

momentary happiness construct. In this scenario, we fitted the model directly on question 
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score data and made prompt decisions on individual questions. For surveys in Dataset 4, 

multiple question items contributed to each high-level construct. For example, the scores of 

six question items were used to compute the composite score of the anxiety/fear construct 

(Table 9). We assume researchers are interested in using the composite scores of high-level 

affect constructs rather than the scores for individual question items. Therefore, in this 

scenario, we constructed the BN model to learn the relationships between composite scores 

of different high-level affect constructs. Each node in the DAG represents one of these 

constructs. As a result, when one affect construct was selected to be omitted, we could skip 

the entire question set contributing to that affect construct.

5.3 Example of the Prompt-Question Selection Process

Before discussing method performance, we present an intuitive example of prompt-question 

selection process using predicted information gain. Consider one example survey from an 

individual in Dataset 1. Using the first three months of daily EMA data for initial model 

training, we applied the proposed method to the surveys presented in the fourth month. We 

illustrate the step-by-step question selection process for a survey in Figure 3. One survey 

consisting of 12 questions on daily affect and feelings is presented to the participant. In 

a question-by-question sequence, the algorithm selects the question item with the highest 

prediction uncertainty level and obtains the answer to that question from the participant. 

The answer is used to update the question-answer prediction (integer 0–4) and uncertainty 

level (float 0–1, in parenthesis) of all unselected survey question items. For example, the 

first column (“0 (None)”) of the figure shows the initial answer prediction and uncertainty 

level of all survey items (inferred from prior answer history) when no questions have been 

answered. The question on ‘Resist’ is then selected. The cell values of all other unselected 

questions are shown in the second column (“1” question answered) and reflect the new 

levels of uncertainty after incorporating information from the first answer. Green cells 

indicate when the predicted responses match the ground-truth responses; red cells indicate 

where the prediction would fail. The bottom two rows of the figure show the average 

prediction uncertainty and accuracy of all unselected questions each time a new question is 

answered.

From this example, we can observe several important phenomena. First, as more questions 

were answered, the average uncertainty level of unknown questions decreased from 74% 

to 9%, and the overall average prediction accuracy increased from 42% to 100%. This 

suggests that the question selection strategy based on information gain could reduce the 

overall uncertainty level so that the model becomes more certain about unknown questions 

as more evidence/information is observed. Second, we observed that predictions for three 

questions (tense, stressed, and nervous) were corrected after observing responses to the 

previous highly uncertain questions. At step seven, the level of being tense increased from 

0=“Not at all” to 1=“A little” after observing the increase of the participant’s procrastination 

level from originally predicted 0=“Not at all” to 1=“A little.” Similarly, the model predicted 

the participant to be more stressed (from 0=“Not at all” to 1=“A little”) after the participant 

reported more frustration (from 0=“Not at all” to 1=“A little”) at step six; the model 

predicted the participant to be more nervous (from 0=“Not at all” to 1=“A little”) after 

the participant reported to be not relaxed (from 1=“A little” to 0=“Not at all”) at step 
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nine. This result suggests the model may achieve accurate predictions on unselected 

questions after enough evidence is observed. In fact, after nine questions were answered 

by the participant (step nine in Figure 3), the answers to the three remaining questions 

were all correctly predicted by the model. Thus, for this prompt moment, there exists an 

optimal prompt strategy that stops the survey after nine questions are observed in the order 

suggested by the model, reducing the original survey length by three questions yet losing no 

information. Thus, this example demonstrates the feasibility of reducing the survey length 

while minimizing information loss by using information gain to select survey questions.

We also observe that the average accuracy rate is not monotonously increasing; it has small 

fluctuations for the first six steps. In this example, the first bits of information show the 

participant was in a state that is not commonly seen (feeling in control and focused quite 

a bit but not happy at all). Therefore, the model was highly uncertain at first (average 

uncertainty level entering a plateau), but when at step 7 and 8 the participant reported 

procrastinating and being stressed, the average uncertainty level decreased. This inspired us 

to experiment with a variable-length stopping rule based on uncertainty level rather than a 

fixed number of questions (see Study 2 in Section 5.4.2).

5.4 Results of Simulation Studies

In this section, we present the results from a series of studies that simulated question 

omission using our method on real-world EMA datasets. To test our hypotheses, we first 

investigated the impact of the proposed question-selection method (Study 1). We then 

evaluated the model performance in both interventional EMA data collection (Study 3, 

real-time prediction) and observational EMA data collection (Study 6, imputation errors). 

To test the generalizability of the proposed method, we replicated Study 3 and Study 6 

on two additional datasets with different study settings (Study 7). Additionally, to inform 

real-world implementation, we examined the impact of using different types of stopping 

rules (Study 2), the impact of initializing the prediction model using different lengths of 

initial full-survey training periods (Study 4), and the impact of measurement precision 

(Study 5).

5.4.1 Study 1: Impact of Question Selection Using Information Gain.—Study 

1 aims to examine the feasibility of using information gain in question-selection decisions 

using Dataset 1 (H1). Motivated by the example in Section 5.3, we analyzed how answering 

each question selected by our method impacts two factors: uncertainty and accuracy of 

predicting question answers. We compared the changing trend of these two factors between 

our method and random-question selection. We also examined the impact of the proposed 

method on question presentation order.

The relationship between the number of answered questions, prediction uncertainty, and 

prediction accuracy on all daily surveys from the fourth month of data collection across 

all participants is shown in Figure 4 (left). First, by selecting each question based on 

information gain, the average uncertainty level of unknown questions decreases, and the 

average prediction accuracy increases as more questions are answered by participants; the 

prediction uncertainty has a strong negative correlation with prediction accuracy (r = −0.48, 
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p < 0.05), indicating the feasibility of using uncertainty to estimate information gain. Second 

and more importantly, compared to the results of selecting each question at random, our 

method reduced the overall prediction uncertainty level and increased the overall prediction 

accuracy of the unknown questions to a greater degree for each step (i.e., steeper slopes). 

These results indicate the effectiveness of our method in reducing prediction uncertainties on 

unknown questions by selecting more informative questions, which enables more efficient 

prompting by asking fewer questions.

A side-effect of question selection based on information gain is the permutation of 

question presentation order. We found only 36.8% of surveys (SD = 0.24) are repetitive 

in presentation order on average, although some questions were more likely to be selected 

in the earlier steps than others (Appendix, Figure 11). The varying presentation order of 

questions may reduce the chances of participants providing neutral or inattentive responses 

in repeated surveys [70].

5.4.2 Study 2: Comparison of Stopping Rules.—In Study 2, we compared three 

different stopping rules (i.e., fixed-length, variable length, variable length with cap) using 

Dataset 1. We varied the values of parameters associated with different stopping rules to 

examine how they influence the number of questions skipped and prediction accuracy on 

unselected questions. For the variable-length rule, we selected a range of stopping thresholds 

from 0.001 to 1.0. For the fixed-length rule, we tested the number of prompted questions 

from none to all (0 to 12). The variable-length with caps rule used caps of 6, 8, and 10. The 

same testing set was used for evaluation as indicated in Section 5.3.

Figure 4 (right) shows the comparison results. By varying the stopping thresholds of 

the variable-length rule, one could control the trade-off between the question skipping 

percentage and prediction accuracy. With a lower (i.e., stricter) stopping threshold for 

skipping questions, the model would skip a smaller percentage of questions on average 

(from 100% to 3.8%) with a higher prediction accuracy (from 55.7% to 87.6%); and 

the optimal performance (skipped percentage = 12.5%, prediction accuracy = 87.6%) 

was achieved with a threshold of 0.2. Similarly, with the fixed-length strategy, prediction 

accuracy increases as the percentage of skipped questions decreases. As expected, the 

variable-length rule in general outperforms the fixed-length rule. This may be because, 

without an uncertainty threshold to inform stopping decisions, questions with higher 

uncertainty in answers might not provide enough information to make predictions, while 

questions with lower uncertainty in answers may provide unnecessary information they do 

not need. The variable length with caps rule might be used to achieve a balanced solution 

between prediction accuracy and the number of skipped questions.

5.4.3 Study 3: Simulation of One-Year Data Collection: Question Skipping 
and Real-Time Predictions.—In study 3, we simulated year-long data collection of 

both daily-EMA (Dataset 1) and hourly-EMA (Dataset 2) using our method to mimic 

implementation in the real world. Again, we benchmarked the performance by the number 

of questions skipped and real-time prediction accuracy on unselected questions.
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Based on the results of Study 2, the simulation used the variable length (without cap) 

stopping rule with an uncertainty threshold of 0.4. For the forecasting setting, we took 

an expanding window approach to iteratively accumulate training datasets, as illustrated 

in Figure 12 in the Appendix. We started by using a period of training data with full 

survey responses to train the model and tested the performance in the following month. 

Then we progressed to testing on the next month by incorporating the testing dataset of 

the last iteration into the new training dataset. The incorporated testing dataset from the 

last iteration would include both observed responses to selected questions and predicted 

responses to unselected questions based on observed questions. Again, the DAG structure 

was learned using all participants’ training data and the idiographic NPT was learned from 

each individual’s training data.

Figure 5(1) and 5(2) show the one-month ahead prediction performance over time for daily 

and hourly-EMA using five response options. We found that as the model was trained 

on more survey data across time, the performance of the model increased steadily. For 

example, for daily-EMA with five options in Figure 5(1), the mean skipping percentage 

increased from 34.2% to 51.0% (i.e., progressively shorter surveys) while the mean 

prediction accuracy remained stable above 60.0%. A similar phenomenon was observed on 

the trajectory of hourly-EMA. The mean prediction accuracy and mean skipping percentage 

across the year (see more analysis about initial training periods and measurement precision 

in Study 7 and 8) are shown in Table 3. Compared to daily-EMA surveys, hourly-EMA 

demonstrated both enhanced prediction accuracy and skipping percentage. The enhanced 

performance might be because hourly-EMA collected data with less recall errors given 

shorter recall periods and the models were trained on a larger number of surveys in hourly-

EMA datasets (three times higher sampling frequency than daily-EMA). For daily-EMA, 

the best model could skip 33.8% of questions overall with an accuracy of 71.8%; For 

hourly-EMA, the best model could skip 38.5% of questions overall with an accuracy of 

77.5% on unselected questions, using five options and three-month data in the initial training 

period.

5.4.4 Study 4: Simulation of One-Year Data Collection: Impact of Lengths 
of Initial Full-Survey Training Periods.—This study explored how the method 

performance would differ by training models on different lengths of initial full-survey 

training periods. We experimented with three different lengths of the initial training period 

(1 mo, 2 mo, 3 mo). By prolonging the length of the initial training period, we observed 

a trade-off between the number of questions skipped and prediction accuracy (Table 3). 

The mean prediction accuracy increased from 63.7% to 71.8%, and the mean skipping 

percentage decreased from 42.9% to 33.8%. This shows a minor performance improvement 

with an initial training period beyond one month and that one-month of intensive survey data 

might suffice to initialize the model.

5.4.5 Study 5: Simulation of One-Year Data Collection: Impact of 
Measurement Precision.—This study examined the impact of measurement precision 

on performance. The measurement precision indicates the number of response options for 

Likert-style EMA survey questions. Past affect recognition research has benchmarked the 
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classification performance using datasets with two or three classes of emotional states (e.g., 

positive, negative, neutral) [52, 72]. To compare the performance with this prior work, we 

reduced the measurement precision from five response options to three. The three options 

combined the first and last two options from the original five options (0 = “Not at all” and 

“A little,” 1 = “Moderately,” 2 = “Quite a bit” and “Extremely”).

Shown in Table 3 is the impact of using three classes for the same simulation as 

described in Study 3 (Section 5.4.3). As expected, with lower measurement precision, 

both prediction accuracy and skipping percentage increased greatly. For daily-EMA, the 

mean skipping percentage increased from 33.8%−42.9% to 48.1%−53.3% and the mean 

prediction accuracy increased from 63.7%−71.8% to 80.1%−85.2%. For hourly-EMA, the 

mean skipping percentage increased from 38.5%−43.7% to 51.9%−54.1% and the mean 

prediction accuracy increased from 73.2%−77.5% to 85.7%−87.4%.

5.4.6 Study 6: Missingness (Skipped Questions) Imputation of One-Year 
Simulated Datasets.—This study assessed whether our method could result in datasets 

with a higher amount of information than the planned missing data design via random 

omission (i.e., matrix sampling [58]) (H2). We examined how imputation error differs 

between the datasets simulated by our method and by planned missing data design via 

random omission. For comparison, datasets collected by planned missing data design 

were simulated by randomly selecting six questions from each complete-questions survey 

(random6). The datasets simulated using our method followed the same setting as Study 3 

but using the variable-length stopping rule with cap. The purpose of capping the survey 

length is to ensure a fair comparison, with the resulting datasets simulated using our 

method having the same (or higher) percentage of skipped questions as those simulated 

by random-question omission. Different datasets were simulated using the cap of three, 

four, five, and six questions from each survey (cap3–6). Random6 and cap6 datasets should 

have 50% of planned missingness in simulated datasets, and cap3–5 datasets should have 

about 58%−75% data missing in total. Imputation error was estimated using mean squared 

error (MSE), calculated as the average squared difference between imputed and ground-truth 

values.

To impute missing data, we used the IterativeImputer method implemented in the Python 

scikit-learn package [44]. This method has a multiple imputation mechanism similar to the 

R MICE package (Multivariate Imputation by Chained Equations) [67], but differs from it 

by returning a single imputation instead of multiple imputations. Specifically, it estimates 

missing values of a feature as a function of other features and iterates for each feature 

at each round. The process repeats for 20 imputation rounds, and the results of the final 

imputation round are returned. We applied the same imputation method to both datasets 

simulated by our method and random omission.

Multiple dependent t-tests for paired samples were performed to compare participants’ 

average imputation errors between simulated datasets using random missingness (random6) 

and simulated datasets using our method with different cap levels (cap3–6). The 

distributions of participants’ average imputation errors of datasets are shown in Figure 6 

and the results of statistical tests are summarized in Table 4. We found that cap5 and cap6 
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had significantly lower mean imputation errors compared to random6 by 9% and 15%, 

respectively (both p<0.05). The effect sizes, as measured by Cohen’s d, were d = 0.14 and 

d = 0.28. The overall mean imputation errors of cap3 and cap4 were slightly higher than 

random6 but were not found significantly different (d = −0.01 and d = −0.10, indicating 

negligible differences).

5.4.7 Study 7: Generalizability Test on Two Additional Datasets.—This study 

assessed whether our method could generalize to other EMA studies with different study 

populations, study durations, prompt schemes, and question sets (H3). We replicated Study 3 

and Study 6 on two additional EMA datasets (Dataset 3 and Dataset 4).

Unlike Dataset 1 and Dataset 2 that only have questions on affect and feelings, the original 

EMA study of Dataset 3 employed EMA surveys that included a combination of questions 

regarding mental health states and behaviors (social contact and COVID-19 related). To 

build the BN model, we followed the same procedures as in Section 5.2 for Dataset 1 and 

Dataset 2. The challenge lies in the limited training data available from a two-week study to 

model 17 construct variables. To avoid some construct variables being isolated from other 

variables, the DAG structure was learned using two weeks’ data from all participants and 

then each model was personalized by estimating NPT parameters using the first week of 

each individual’s data. We evaluated the performance of the model on the second week’s 

survey data.

The results are summarized in Table 5. By varying the stopping threshold from 0.2 to 0.4, 

our method allowed us to skip on average 45.0%−71.7% of questions from each survey with 

a real-time prediction accuracy of 77.3%−81.2% for skipped affect constructs. Compared 

to the dataset simulated by randomly omitting nine out of 17 questions from each survey 

(random8), our method (setting the stopping threshold to 0.3) results in a dataset collected 

with a similar amount of data missingness but lower imputation errors (cap8) (Figure 7). The 

paired-sample t-test showed that the mean of participant’s average imputation errors of cap8 

dataset (Mean = 0.58, SD = 0.33) were lower than those in the random8 dataset (Mean = 

0.79, SD = 0.29) by about 27%, t(73) = −7.3, p < 0.001. The effect size d = 0.65 indicated 

a medium effect. The selected questions were evenly split between mental health questions 

(51.5%) and behavior questions (48.5%). The mean of participant’s average imputation 

errors of skipped mental health questions in the cap8 dataset (Mean = 0.30, SD = 0.40) 

was lower than those in the random8 dataset (Mean = 0.38, SD = 0.44). The difference, 

however, was not statistically significant, t(70) = −1.6, p = 0.11, with an effect size d = 0.05. 

The mean of participant’s average imputation errors of skipped behavior questions in cap8 

dataset (Mean = 0.68, SD = 1.71) was lower than those in the random8 dataset (Mean = 

0.78, SD = 1.38) and the difference was also not statistically significant, t(69) = −0.94, p = 

0.35, with an effect size d = 0.01.

The original EMA study of Dataset 4 employed a composite scale to assess multi-

dimensional mood constructs in precision for couples with personality disorders. Instead of 

building prediction models on individual question items, we built prediction models on the 

high-level affect constructs. This allows us to omit the entire question sets for the skipped 

affect constructs. The model building followed the same procedures as in Section 5.2 for 
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Dataset 1 and Dataset 2, except that only one week of data were used to initialize the model, 

including the DAG structure learning and NPT parameter estimation.

The results are summarized in Table 6. By setting the stopping threshold to 0.2, the 

simulated data collection showed that we could skip, on average, 60.3% (SD = 16.1%) 

of high-level affect constructs from each survey; survey questions used five response 

options. After correcting the number of question items shared between affect constructs, 

the proposed method allowed us to skip, on average, 53.3% (SD = 11.7%) of questions from 

each survey with a prediction accuracy of 94.5% (SD = 6.5%) for skipped high-level affect 

constructs.

Compared to the dataset simulated by randomly omitting three out of six constructs from 

each survey (random3), our method results in a dataset collected with a similar amount 

of data missingness but lower imputation errors (cap3) (Figure 8). The paired-sample 

t-test showed that cap3 had a statistically significant lower mean of participant’s average 

imputation errors than random3 by 52% (t(216) = −11.1, p < 0.001, d = 0.66; medium 

effect).

6 DISCUSSION

In this work, we propose a question-selection method to reduce user response burden by 

shortening the survey length per prompt. By strategically skipping questions whose answers 

are confidently predicted from observed information, we proactively reduce user burden, 

improving user engagement with longitudinal data collection, while minimizing overall 

information loss. We demonstrated the feasibility of using the question informativeness in 

question-selection decisions using self-reported data from four real-world EMA datasets. By 

simulating the question selection of each prompted survey, we evaluated the performance 

of EMA data collection using the proposed method. Performance was evaluated by the 

percentage of questions skipped and the resulting information loss.

Our results show that it is feasible to quantify the information gain of each survey question 

using prediction uncertainty and to use the information gain to support the question-

selection process. For both our method and random-question selection for each prompted 

survey, the prediction uncertainty decreased and prediction accuracy increased as more 

questions were answered. The rate of uncertainty reduction and accuracy enhancement, 

however, were higher when using our method than when using random-question selection, 

indicating the effectiveness of using prediction uncertainty to select informative questions 

compared to baseline random omission. In machine learning studies, prediction uncertainty 

is used to optimize training sample selection to improve model performance [49], whereas 

here we introduce the technique to optimize question selection in prompt decisions to 

improve the efficiency of intensive longitudinal EMA data collection. Previous research 

[53] reduced survey length by relying on psychometrically calibrated item banks. Our 

method, which learns the associations between constructs directly from an individual’s prior 

responses, can support self-report data collection as long as the survey instruments measure 

multiple interrelated constructs. We validated our method’s applicability across different 

question sets, including those with a mix of questions on mental states and behaviors 
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(Dataset 3) and those with composite multi-item scales (Dataset 4). The results demonstrate 

our method’s flexibility in modeling and supporting question selection across different types 

and levels of self-reported constructs. Moreover, our method does not change sampling 

schemes that are often specific to study objectives, which makes it a practical method of 

reducing user response burden in most EMA data collection situations.

By simulating question selection using real-world datasets, we evaluated the number of 

questions skipped and the information loss by comparing inferred answers to skipped 

questions with the ground-truth labels. The results of simulating data collection on the year-

long daily and hourly EMA survey datasets (Dataset 1 and 2) show that our method could 

greatly reduce the survey length while maintaining good real-time prediction performance 

on unselected questions throughout a year. By using full-survey responses from the first 

month to initiate model training, our method could achieve a reduction in survey length by 

33% to 43% (about 4 or 5 out of 12 questions) with prediction accuracy of 64% to 72% 

for skipped daily EMA of five options; For hourly-EMA of five options, the method could 

achieve a reduction in survey length by 39% to 44% (about 5 out of 12 questions) with 

prediction accuracy of 73% to 78%. When reducing the measurement precision from five 

options into three, the method could achieve a skipping rate of 48% to 53% (about 6 out 

of 12 questions) with an accuracy of 80% to 85% for daily EMA and achieve a skipping 

rate of 52% to 54% (about 6 out of 12 questions) with an accuracy of 85% to 87% for 

hourly EMA. In EMA studies only lasting two to three weeks (Dataset 3 and 4), our method 

could still skip on average more than 50% of questions from each survey and achieve 

prediction accuracies of 80.7% (Dataset 3) and 94.5% (Dataset 4) for skipped questions with 

five options. When the data collection extends over a longer period, the average skipping 

percentage may increase over time while the prediction accuracy remains stable, as shown in 

Study 3 with the year-long dataset (Dataset 2).

Our results suggest that researchers using our method might be able to cut a survey length in 

half while incurring only a small prediction error rate on the unselected questions. Applied 

to real-time monitoring, our method could help digital health applications to deliver more 

personalized, just-in-time adaptive interventions (JITAIs) in real time by simultaneously 

monitoring more aspects of behavior and mental states. The prediction accuracy for skipped 

questions is comparable to studies that predict affective and emotional states using complex 

deep learning models trained on multimodal wearable sensing data [52, 72]. A recent 

review [72] reported studies achieving 74%−92% accuracy in three-emotion recognition 

using physiological signals. Predicting affective state is difficult because it varies greatly 

across occasions. One reason our method may achieve good prediction accuracy is because 

it inherently simplifies the prediction task by requesting labeling for difficult-to-predict 

(uncertain in answer) constructs and selectively makes predictions for easy-to-predict 

constructs. Another reason might be because our method uses a model that builds on the 

association between self-reported constructs assessed at each moment. From a participant’s 

prior answer history, the model learns the participant’s response patterns under certain types 

of contexts (e.g., the participant usually feels less energetic when stressed out) that may stay 

stable over time. The consistency of response patterns was validated in extreme cases, as 

shown in Dataset 3, where more informative questions could still be inferred from the first 

week’s response data, despite participants experiencing significant life changes and shifts in 
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mental health and social behavior due to government COVID-19 policies in the second week 

of the study.

From the perspective of researchers that conduct analysis using EMA datasets collected, we 

evaluated the missingness imputation performance of the dataset collected using our method. 

Compared to the dataset with questions randomly omitted from each complete-questions 

survey, we found datasets generated with questions selected by our method produced 

statistically significantly lower imputation errors with the same number of selected questions 

(Dataset 3 and 4) and even fewer questions per survey (Dataset 2). The results show that 

with a similar number of questions skipped, our method may result in lower imputation 

errors than planned random missingness or enable skipping of more questions with similar 

imputation errors. These results suggest that researchers using the method may cut the 

participants’ completion time by half for each prompted survey without sacrificing the 

overall data quality. The method may also enable researchers to include even more survey 

questions in future EMA studies without inducing extra burden on participants.

Finally, we experimented with different stopping rules and model settings to guide 

real-world implementation. Experimental results showed the variable-length stopping rule 

outperformed the fixed-number stopping rule. The findings suggest that allowing the model 

to make decisions based on the informativeness of EMA questions may lead to optimal 

outcomes. In cases where question space is limited, one can also use variable length with 

a cap to limit the maximum survey length while leaving some space for the model to 

make decisions. For example, microinteraction-based EMA [28] prompts only one question 

at a time, but many more times per hour or day than standard EMA. Our method may 

make methods such as microinteraction-based EMA more feasible by enabling selection 

of the most informative questions to prompt. Lastly, our results indicate that increasing 

the initial training duration of answering full-set surveys beyond one month did not yield 

the anticipated performance improvement. Simulation results on Dataset 3 and Dataset 4 

indicate that the method remained effective even when the model was trained on just one to 

two weeks of response data. The recent data may be more informative of the current states of 

people than data from many months prior, indicating that training the prediction model using 

the most recent data might be sufficient.

7 LIMITATIONS AND FUTURE RESEARCH

There are several limitations of this work that provide opportunities for future research. In 

this work, we evaluated our method by simulating EMA data collection based on real-world 

EMA datasets already collected. By simulating the omission of a subset of questions in 

each prompted survey, we evaluated the information loss by comparing predicted survey 

responses against ground truth survey responses obtained from participants. Previous 

researchers have demonstrated significant benefits of reducing survey length on enhancing 

participant compliance and mitigating perceived burden [14, 37]. From that work, it follows 

that if our proposed method can reduce the number of questions that must be asked at 

most prompts, it is likely to reduce perceived burden. Future work could include real-world 

studies to assess how surveys with varying number of questions and randomized question 

presentation order (a side-effect of our method) impact participant compliance and perceived 
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burden compared to surveys with fixed number and order of questions. Although we show 

that our method results in datasets with lower imputation errors in post-study analyses 

compared with the planned missing data design [58], future work might include evaluation 

of the quality of the resulting datasets in statistical modeling tasks to examine the potential 

bias and standard errors in parameter estimation.

The naïve version of BN models we implemented could be extended in future work. In 

addition to mental state constructs with discrete response options, the prediction model can 

also be built on question-answer variables with continuous response values (e.g., when using 

visual analogue scales) by using discretization techniques [7] or hybrid Bayesian networks 

[51]. We demonstrated in this work that behavioral and mental constructs measured in self-

report surveys could be modeled simultaneously for a comprehensive evaluation of a person. 

With advancements in wearable sensing [26], behavioral and contextual constructs may be 

derived from sensing data passively collected on wearable devices [77] and incorporated 

into the model to inform self-reported constructs. The prediction model we used in this 

work (Bayesian networks) only considers the associations between questions within any 

given single prompted survey. Although momentary mental states such as affect are transient 

in nature, recent research found emotional states at a given time point may be carried 

over to subsequent time points [32]. Future research should consider leveraging temporal 

associations between prompted surveys using dynamic models (e.g., dynamic Bayesian 

networks [38]).

Moreover, the data-driven approach of learning DAG structure requires a large amount of 

training data and may not be feasible in studies that both only last for weeks and use large 

and complex question sets. Future researchers may explore incorporating expert knowledge 

in structure estimation (e.g., setting soft and hard constraints in structure learning [30]) to 

reduce the amount of initial training data required to make accurate predictions or to avoid 

the cold start problem when adding new questions in surveys [2].

Finally, future researchers might investigate adjusting the length of surveys based on user 

context to further reduce response burden at inconvenient moments. Previous research, as 

summarized in Section 2.2, found EMA participants considered interruptions in specific 

contexts to be more disruptive to their daily lives than in other situations (e.g., during 

activities versus during activity transitions). Lengthy surveys presented at disruptive 

moments can be particularly burdensome. Therefore, shorter surveys at disruptive moments 

may reduce response burden more as compared to other moments. Given previous studies 

have successfully inferred times when people might be less receptive to EMAs using multi-

modal passive mobile sensing data (e.g., [36]), strategies of combining both question-answer 

information gain and momentary interruptibility in the prompt question selection process 

should be explored. For example, researchers could add a question in randomly selected 

surveys to collect self-report feedback on the disruptiveness of prompted surveys [71]. The 

alternative could be using non-response information, assuming participants may have a low 

probability of answering prompts in some moments [45]. With that additional information, 

momentary interruptibility may be predicted using commonly-measured passive sensing 

data (e.g., day of week, time of day, phone usage, location type). The estimated momentary 
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interruptibility might then be used to adjust the stopping rule, thereby limiting the survey 

length according to the user’s current capacity to be burdened.

8 CONCLUSION

User burden is one of the primary limitations of EMA in collecting high-quality intensive 

longitudinal data. In this work, we propose a machine-learning-based prompt-question-

selection method to shorten the survey length for each prompt. Unlike prior work that 

changed sampling schemes or used psychometrically calibrated collections of questions, the 

method explicitly quantifies the potential question-answer information gain by modeling 

associations between surveyed constructs using prior survey response history. The results 

show that the method could reduce survey length with less information loss compared 

to random-question omission; the method might generalize to data collection tasks with 

different study objectives, populations, study durations, prompt schemes, and types of 

question sets. The proposed method might be used to create survey space for measuring 

more constructs and reduce response burden to improve user engagement in longitudinal 

data collection. For real-time intervention, this method might facilitate the real-time 

monitoring of various aspects of human behavior and states. Future research could explore 

deriving constructs from passive sensing data, leveraging temporal associations between 

survey questions, and combining question-answer information gain with momentary 

interruptibility in the question selection process.
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A APPENDICES

Table 7.

Twelve affect and feeling questions in daily and hourly-EMA surveys (Dataset 1 and 2). The 

5-point response options include “Not at all,” “A little,” “Moderately,” “Quite a bit,” and 

“Extremely” or “Very much so.”

Construct Daily-EMA Question Hourly-EMA Question

Happy Over the past day, how HAPPY did you feel? Right now, how HAPPY do you feel?

Energetic Over the past day, how ENERGETIC did you feel? Right now, how ENERGETIC do you feel?

Relaxed Over the past day, how RELAXED did you feel? Right now, how RELAXED do you feel?

Sad Over the past day, how SAD did you feel? Right now, how SAD do you feel?

Fatigue Over the past day, how FATIGUED did you feel? Right now, how FATIGUED do you feel?

Tense Over the past day, how TENSE did you feel? Right now, how TENSE do you feel?

Stressed Over the past day, how STRESSED did you feel? Right now, how STRESSED do you feel?

Frustrated Over the past day, how FRUSTRATED did you feel? Right now, how FRUSTRATED do you feel?
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Construct Daily-EMA Question Hourly-EMA Question

Nervous Over the past day, how NERVOUS did you feel? Right now, how NERVOUS do you feel?

Attention Over the past day, I felt FOCUSED. Right now, I feel FOCUSED.

Self-control Over the past day, I felt like I could RESIST doing 
things that aren’t good for me.

Right now, I feel IN CONTROL.

Productivity Over the past day, I PROCRASTINATED. Right now, I am PROCRASTINATING.

Table 8.

Eighteen mental state and behavior questions EMA surveys (Dataset 3). The 5-point 

response options include “Very slightly or not at all,” “A little,” “Moderately,” “Quite a bit,” 

and “Extremely” for mental health questions. The 5-point response options include “0 min,” 

“1–15 min,” “15–60 min,” “1–2 hours,” and “> 2 hours” for social contact and COVID-19-

related behavior questions.

Construct Question

Mental health (10)

Relax I found it difficult to relax.

Irritable I felt (very) irritable.

Worry I was worried about different things.

Nervous I felt nervous, anxious or on edge.

Future I felt that I had nothing to look forward.

Anhedonia I couldn’t seem to experience any positive feeling at all.

Tired I felt tired.

Hunger I was hungry.

Alone I felt like I lack companionship, or that I am not close to people.

Angry I felt angry.

Social contact behavior (5)

Social offline I spent ___ minutes on meaningful, offline, social interaction

Social online I spent __ minutes using social media to kill/pass the time

Music I spent __ minutes listening to music

Procrastination To what degree did you postpone working on a task?

Time spent outdoors I spent __ minutes outside (outdoors)?

COVID-19-related behavior 
(3)

COVID-19 occupied I spent __ occupied with the coronavirus (e.g. watching news thinking about it talking 
to friends about it)

COVID-19 worry I spent __ thinking about my own health or that of my close friends and family 
members regarding the coronavirus

Home I spent __ at home (including the home of parents/partner)
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Table 9.

Item construction of six multi-item rating scales in event-contingent EMA surveys (Dataset 

4). The 5-point response options include “Very slightly or not at all,” “A little,” 

“Moderately,” “Quite a bit,” and “Extremely.”

Construct Item

General dimension scales

Positive affect (10) active, alert, attentive, determined, enthusiastic, excited, inspired, interested, proud, 
strong

Negative affect (10) afraid, scared, nervous, jittery, irritable, hostile, guilty, ashamed, upset, distressed

Specific negative affect scales

Fear (6) afraid, scared, frightened, nervous, jittery, shaky

Hostility (6) angry, hostile, irritable, scornful, disgusted, loathing

Guilt (2) guilty, ashamed

Sadness (5) sad, blue, downhearted, alone, lonely
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Figure 9. 
Correlation (Spearman) matrices of survey questions/constructs in daily (top) and hourly 

(bottom) EMA question sets.

Correlation (Spearman) matrices of survey questions/constructs in fixed-time (top) and 

event-contingent (bottom) EMA question sets.
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Figure 10. 
DACs for daily EMA (top left), hourly EMA (top right), fixed-time EMA (bottom left), 

and event-contingent EMA (bottom right) surveys using initial training data (one month/one 

month/one week/one week) of all participants.
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Figure 11. 
Order number in which the questions were presented, where 12 indicates the question was 

presented last, and one indicates the question was presented first.
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Figure 12. 
Expanding window design of one-month ahead prediction across a year.
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Figure 1. 
Timing-related and data-related design components of EMA for user burden reduction. Each 

blue rectangle represents a prompted survey, with the size of the rectangle indicating the 

survey length. Survey length, number of surveys per day, observation duration, and prompt 

timing are the key EMA design components that can be adjusted by algorithms to reduce 

user response burden.

LI et al. Page 37

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Conceptual illustration of the question selection process of a hypothesized EMA survey. The 

survey contains three questions. For each step, the EMA system selects the most informative 

question to be presented. After observing the responses to Q2 and Q3 in sequence, the 

system finds the information gain of Q1 is so low that Q1 can be confidently skipped with 

a high prediction accuracy. As a result, the length of this prompted survey is reduced from 

three to two with minimal information loss.
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Figure 3. 
Breakdown of prompt-question selection process of one daily-EMA survey. For each step 

of question selection, one survey question with the highest uncertainty was picked and the 

response was obtained from the participant. Each column represents a snapshot of predicted 

responses and prediction uncertainty of unselected survey question items after question 

selection of each step. Cell values in the survey question rows indicate predicted responses 

(integer 0–4) and prediction uncertainty (float 0–1, in parenthesis) for the corresponding 

unselected question of the row. The last column shows ground-truth responses to all 

questions. The cell color is green if the predicted response at that step matches the 

ground-truth responses; otherwise, it is red. The bottom two rows are the average prediction 

uncertainty and accuracy of all unselected questions for each step. Note that the optimal 

strategy is to stop asking questions after nine questions get answered by the participant, 

cutting the survey short for three questions (sad, tense, and frustrated), which are correctly 

predicted by the model.

LI et al. Page 39

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(left) Question selection using information gain versus at random. The slopes of reduction in 

uncertainty level of unknown questions and increase in prediction accuracy are much steeper 

when using information gain in question selection, (right) Comparison of stopping rules: 

fixed length, variable length, and variable length with cap. Different lengths (fixed length) 

and thresholds (variable length) changed the trade-off between skipping percentage and 

prediction accuracy. Overall, the stopping rule of variable length without cap outperforms 

variable length with cap, followed by the fixed-length rule.
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Figure 5. 
One-month ahead prediction performance of simulated data collection for (1) daily EMA 

with five options, (2) hourly EMA with five options, (3) daily EMA with three options, and 

(4) hourly EMA with three options. The illustrated model used one-month initial training 

data. The blue line indicates the mean prediction accuracy and the red line indicates the 

mean percentage of question skipping.
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Figure 6. 
Distribution of participants’ average imputation errors in simulated Dataset 2.
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Figure 7. 
Distribution of participants’ average imputation errors in simulated Dataset 3.
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Figure 8. 
Distribution of participants’ average imputation errors in simulated Dataset 4.
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Table 1.

Summary of real-world EMA survey datasets used in simulation studies

Dataset Population Duration Prompt scheme EMA question set

Dataset 1 
(Daily EMA) & 
Dataset 2 
(Hourly EMA) [46, 71]

Young adults 
(n=136)

One year Prompted once every day before 
participants’ anticipated sleep time / 
once every waking hour across four 
consecutive days every two weeks

12 questions on affect and feelings 
(daily summary/momentary)

Dataset 3
(Fixed-time EMA) [18]

College students 
(n=79)

14 days Prompted four fixed times (noon, 3 p.m., 
6 p.m., and 9 p.m.) each day

17 questions on mental health, 
social contact, and COVID-19-
related behavior

Dataset 4
(Event-based EMA) 
[76]

Couples with or 
without personality 
disorder (n=228)

21 days Active report immediately after every 
interpersonal interaction

31 questions from a hierarchical 
composite scale comprising 6 
multi-item subscales on affect
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Table 2.

Descriptive statistics about EMA survey datasets

Dataset 1 
(Daily EMA)

Dataset 2 
(Hourly EMA)

Dataset 3 
(Fixed-time EMA)

Dataset 4
(Event-based EMA)

Number of participants 120 134 74 228

Total number of responses 38,674 128,700 3,830 29,024

Mean number of responses per participant (SD) 322.3 (30.8) 960.4 (198.6) 51.8 (4.5) 127.3 (47.8)

Mean number of responses per participant per day (SD) 0.9 (0.1) 9.3 (1.8) 3.7 (0.3) 6.2 (2.1)
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Table 3.

Experiments with lengths of initial full-survey training peri ods and number of response options.

One month
(30 days/8 burst days)

Two months
(60 days/16 burst days)

Three months
(90 days/24 burst days)

Five options Three options Five options Three options Five options Three options

Daily EMA Mean prediction 
accuracy % (SD)

63.7 (10.9) 80.1 (10.5) 69.4 (10.5) 83.1 (9.9) 71.8 (10.1) 85.2 (8.8)

Mean skipping 
percentage % (SD)

42.9 (14.7) 53.3 (15.8) 36.5 (16.8) 50.5 (16.1) 33.8 (16.6) 48.1 (16.2)

Hourly 
EMA

Mean prediction 
accuracy % (SD)

73.2 (13.0) 87.1 (9.6) 76.5 (11.6) 85.7 (10.1) 77.5 (11.0) 87.4 (8.6)

Mean skipping 
percentage % (SD)

43.7 (18.2) 52.1 (20.4) 39.6 (18.0) 54.1 (17.8) 38.5 (18.3) 51.9 (17.5)
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Table 4.

Dependent t-test for paired samples: comparing participants’ average imputation errors of random6 and cap3–

6 (n = 134)

Dataset Mean SD t-test (df=133) Cohen’s d

random6 0.6187 0.3053

cap3 0.6229 0.3604 −0.1924 −0.01

cap4 0.6524 0.3812 −1.5921 −0.10

cap5 0.5704 0.3859 2.4992* 0.14

cap6 0.5285 0.3377 5.3183* 0.28

*
Statistically significant at p<.05
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Table 5.

One-week ahead prediction performance of simulated data collection for fixed-time EMA with five options.

Variable-length stopping thresholds

0.2 0.3 0.4

Mean prediction accuracy of question skipped (%) (SD) 81.2 (13.5) 80.7 (12.1) 77.3 (11.5)

Mean percentage of question skipped (%) (SD) 45.0 (17.6) 56.3 (11.7) 71.7 (19.5)
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Table 6.

One-week ahead prediction performance of simulated data collection for event-contingent EMA with five 

options.

Variable-length stopping thresholds

0.1 0.2 0.3

Mean prediction accuracy of constructs skipped (%) (SD) 95.0 (7.1) 94.5 (6.5) 93.3 (6.3)

Mean percentage of constructs skipped (%) (SD) 48.2 (16.1) 60.3 (16.1) 68.3 (14.8)

Mean percentage of items skipped (%) (SD) 45.1 (12.4) 53.3 (11.7) 59.4 (11.4)
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