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Abstract

Identifying differentially methylated cytosine-guanine dinucleotide (CpG) sites between

benign and tumour samples can assist in understanding disease. However, differential anal-

ysis of bounded DNA methylation data often requires data transformation, reducing biologi-

cal interpretability. To address this, a family of beta mixture models (BMMs) is proposed that

(i) objectively infers methylation state thresholds and (ii) identifies differentially methylated

CpG sites (DMCs) given untransformed, beta-valued methylation data. The BMMs achieve

this through model-based clustering of CpG sites and by employing parameter constraints,

facilitating application to different study settings. Inference proceeds via an expectation-

maximisation algorithm, with an approximate maximization step providing tractability and

computational feasibility. Performance of the BMMs is assessed through thorough simula-

tion studies, and the BMMs are used for differential analyses of DNA methylation data from

a prostate cancer study. Intuitive and biologically interpretable methylation state thresholds

are inferred and DMCs are identified, including those related to genes such as GSTP1,

RASSF1 and RARB, known for their role in prostate cancer development. Gene ontology

analysis of the DMCs revealed significant enrichment in cancer-related pathways, demon-

strating the utility of BMMs to reveal biologically relevant insights. An R package

betaclust facilitates widespread use of BMMs.

Introduction

Epigenetics is the study of heritable changes in gene activity that do not involve explicit

changes to the DNA sequence [1]. DNA methylation is an epigenetic process where a methyl

group is added to or removed from the 50 carbon of the cytosine ring [2]. This process assists

in regulating gene expression and is essential for the development of an organism, but irregu-

lar changes in DNA methylation patterns can lead to damaging health effects [3]. A cytosine-
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guanine dinucleotide (CpG) site is hypomethylated if neither of the DNA strands in a diploid

individual are methylated, hemimethylated if either of the DNA strands are methylated or

hypermethylated if both the strands are methylated. A differentially methylated CpG site

(DMC) is a CpG site that has different methylation states between DNA samples collected

from different biological conditions, which may have been taken from tissues of an individual

over time, different tissues from the same individuals or distinct individuals.

The DNA methylation process has been extensively studied in the context of cancer, and its

treatment [4]. CpG islands that remain unmethylated in normal cells can become methylated

in abnormal cells such as cancer cells [5], and it has been shown that tumour suppressor genes

are silenced by hypermethylation of their promoter regions [6, 7]. For example, in prostate

cancer, the fifth major cause of cancer-related mortality globally [8], hypermethylation of cer-

tain tumour suppressor genes, such as GSTP1, RARB, APC and RASSF1, has been observed

during the early stages of the disease [9–11]. A better understanding of disease can therefore

be achieved by identifying regions that are differentially methylated between benign and

tumour samples.

The Illumina MethylationEPIC BeadChip microarray [12] is used to interrogate over

850,000 CpG sites and retrieve methylation profiling of the CpG sites in the human genome.

The Illumina microarray produces a sample of methylated (Methylated) and unmethylated

(Unmethylated) light signal intensities, and the level of methylation, or the beta value, is beta =

max(Methylated)/(max(Methylated) + max(Unmethylated) + χ), where χ is a constant offset

added for regularisation in case of very low Methylated and Unmethylated values [13]. The

methylation level at a CpG site is quantified by this beta value and is constrained to lie between

0 and 1. The beta values are continuous with a value close to 1 suggesting that a site is hyper-

methylated, while values close to 0 represent hypomethylation. The two probe intensities are

assumed to be gamma-distributed as they can take only positive values, and their ratio results

in beta distributed variables. Thus, the beta values can be modelled using a beta distribution.

The beta values in general have higher variance in the center of the [0,1) interval than

towards its endpoints. This leads to heteroscedasticity, which imposes challenges for analyses

as assumptions for the ubiquitous Gaussian models are violated. Hence, beta values are usually

converted to M-values using a logit transformation as these values are statistically more conve-

nient; Gaussian models can be used as the transformed data lie within (−1,1) [13]. However,

such transformations make inference less biologically interpretable and hence there is a need

to model the beta values in their innate form.

In many methylation array studies, thresholds of beta values are subjectively selected to

identify the three methylation states. For instance, [14] deemed a CpG site to be hypomethy-

lated if its beta value was<0.2 and hypermethylated if its beta value was>0.8, while [15]

employed 0.3 and 0.7 as thresholds. Such subjective selection of thresholds may increase the

likelihood of false positives and negatives, leading to incorrect inference and necessitating an

objective approach to determining methylation state thresholds.

Mixture models for transformed beta values have been proposed in several studies to find

biologically meaningful clusters. For instance, [16, 17] use mixture models to model a subset

of CpG sites and cluster samples into latent groups of biologically related samples. Addition-

ally, methods such as the variational Bayes beta mixture model [18] and the Dirichlet process

beta mixture model [19] analyse untransformed beta values; the former addresses the feature

selection problem in the context of DNA methylation data, whereas the latter models the beta

values to identify DNA methylation subgroups. The Methylmix [20] R [21] package uses a

univariate beta mixture model to uncover patient subgroups with similar DNA methylation

levels for a specific CpG site, with Wilcoxon rank sum tests used to establish hypermethylated

and hypomethylated genes. Beta mixture models have also been proposed for intra-array

PLOS ONE Beta mixture models for differential analysis of DNA methylation data

PLOS ONE | https://doi.org/10.1371/journal.pone.0314014 December 11, 2024 2 / 21

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0314014


quantile normalization [22] and for clustering individual DNA samples into the three methyla-

tion states which can then be used to classify cancer tissue type [23]. The use of a beta mixture

model has been extended for classifying the methylation states of CpG sites; the approach

accounts for boundary values and employs a method-of-moments approach to inference, but

considers only small numbers of CpG sites [24]. While mixture models for DNA methylation

data have been used for a range of purposes, they have not been utilised to uncover differential

methylation across the genome using untransformed beta values.

Several methods have been developed for detecting DMCs in different DNA sample types.

For instance, the PanDM method [25] leverages joint modeling to perform methylation site

clustering, differential methylation detection, and pan-cancer pattern discovery by modelling

the transformed p-values associated with each CpG site for a given cancer type. A principal

component analysis and tensor decomposition approach involving unsupervised feature selec-

tion [26] was proposed where principal component scores were associated with each CpG site

and used to identify DMCs. Another approach, termed FastDMA [27], employs an analysis of

covariance to perform both single probe analysis and differentially methylated region scanning

while modelling the M-values. The popular limma method [28] identifies DMCs by model-

ling the M-values using an empirical Bayesian approach. Other studies identify the DMCs by

modelling the beta values via multiple moderated t-tests or Wilcoxon rank-sum tests [29, 30].

Additionally, a multiple hypothesis testing approach, combined with multivariate permutation

tests, has been proposed to detect group differences in epigenetic data [31], as has a nonpara-

metric test to identify DMCs between multiple treatments [32]; while this approach can ana-

lyze smaller arrays with e.g., 28,000 CpG sites, it is computationally intensive for modern,

larger-scale arrays. These approaches to DMC identification use subjective thresholds, trans-

formed values, moderated t-tests and/or nonparameteric methods [33]. Crucially, such

approaches lack biological interpretability and often face reproducibility and computational

scalability challenges when considering data from different studies, of the scale resulting from

current microarray technologies.

Several mixture models for bounded data are available. For instance, in the context of semi-

parametric density estimation, [34] fit a Gaussian mixture model to range-power transformed

bounded data, from which the density for the original data is obtained. Mixture models of

bounded Laplace distributions also allow for modelling bounded data by truncation of the

Laplace distribution, but are computationally expensive for large datasets [35]. Similarly,

bounded support asymmetric generalized Gaussian mixture models are adaptable to different

distributional shapes but can be computationally expensive as inference requires numerical

optimisation [36]. A beta mixture model is an appropriate choice for bounded DNA methyla-

tion data: the support of the beta distribution is congruent with the beta values, its flexibility

allows for skew and symmetric distributional shapes, and it is computationally feasible to work

with given its parsimony. Importantly, the beta distribution parameters provide relevant bio-

logical interpretations enabling biologically intuitive and meaningful inference.

Here we propose a family of beta mixture models (BMMs), which address specific research

questions arising in the context of differential analysis of DNA methylation data, by introduc-

ing a range of constraints on the parameters of a BMM. The resulting novel family of BMMs

facilitates a model-based approach to clustering CpG sites given their innate beta-valued meth-

ylation data to (i) objectively identify methylation state thresholds and (ii) identify DMCs

between different sample types. The BMMs are capable of clustering the entire microarray of

CpG sites, from DNA samples collected from multiple tissues from each of several patients, in

a computationally efficient manner. Performance is assessed through simulation studies, and

the BMMs are used to analyse a motivating prostate cancer (PCa) dataset. The capability of the

BMMs is demonstrated to appositely model the beta values, to objectively identify thresholds
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and to identify existing and novel DMCs, including those related to genes implicated in pros-

tate cancer, such as GSTP1, RARB and RASSF1. An R package, betaclust, freely available

on github and CRAN, facilitates widespread use of the BMMs.

Methods

Prostate cancer data

A prostate cancer study [37], which involved collection of DNA methylation samples from

four patients with metastatic prostate cancer disease, motivated the development of the

BMMs. Tissue samples from matched biopsy cores (tumour and histologically matched nor-

mal—herein benign) were collected from each patient, and DNA was extracted from the sam-

ples. Methylation profiling of the DNA samples was conducted using the Infinium

MethylationEPIC Beadchip [38]. The raw DNA methylation data are freely available for down-

load on the Gene Expression Omnibus (GEO) repository (GSE119260); datasets

GSM3362390-GSM3362397 were analysed here and were accessed on 26th of January, 2021 for

research purposes. The authors had no access to information that could identify individual

participants.

Observed beta values for each of 694,923 CpG sites for the two DNA sample types were col-

lected from each of the four patients. Raw methylation array data was quality controlled and

pre-processed as in [37], where the data were normalized, and probes overlapping with SNPs,

probes with the highest fraction of unreliable measurements, probes lying outside of CpG sites

and those on the sex chromosome were removed. The resulting dataset had 103 CpG sites

(< 0.014% of the total number of CpG sites) with missing beta values. While imputation tech-

niques exist for DNA methylation data, missing values were not imputed here due to their

very low percentage, and the high uncertainty associated with imputed values in diseased sam-

ples due to their heterogeneity [39]; here the 103 CpG sites with missing data were therefore

removed. No observed beta values were equal to 0. The resulting dataset contained beta values

for C = 694, 820 CpG sites from each of R = 2 DNA sample types collected from each of N = 4

patients. Here, these data are appositely modeled in their innate beta form to (i) objectively

identify methylation state thresholds and (ii) uncover DMCs between two sample types using

a model-based clustering approach.

A beta distribution

The beta distribution has support on [0, 1] and is parameterized by two positive shape parame-

ters, α and δ. Given the properties of the beta values, the beta distribution is used here to appo-

sitely model the methylation level xcnr of the cth CpG site (c = 1, . . ., C), from the nth patient

(n = 1, . . ., N), from their rth DNA sample type (r = 1, . . ., R) i.e.,

f ðxcnrja; dÞ � Betaðxcnrja; dÞ ¼
xcnra� 1ð1 � xcnrÞ

d� 1

Bða; dÞ
;

for 0� xcnr� 1, where B(α, δ) = (Γ(α)Γ(δ))/Γ(α + δ), where Γ(�) is the gamma function. The

DNA methylation data are collected in the C × NR dimensional dataset X where each of the

NR columns contains the methylation levels of the C CpG sites in one of the R sample types

from each of the N patients.

A beta mixture model

A mixture model assumes the observed data have been generated from a heterogeneous popu-

lation composed of K groups or clusters. In the context of DNA methylation data, there are
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G = 3 possible methylation states: hypomethylation, hemimethylation or hypermethylation.

Hence, when analysing methylation data from a single DNA sample type (i.e., where R = 1)

each CpG site exhibits one of K = GR = 3 methylation states characterised by each of the K clus-

ters. Here, interest lies in objectively inferring thresholds between these K = 3 methylation

states.

When analysing methylation data across multiple (i.e., R> 1) DNA sample types to identify

DMCs, each CpG site will exhibit one of a possible K = GR combinations of methylation states,

here characterised by each of K clusters in a mixture model. For example, given the three

methylation states and considering a CpG site across R = 2 sample types (e.g., across benign

and tumour samples), the CpG site can potentially exhibit any of the K = 32 = 9 combinations

of these three states (for example hypermethylated in both samples, hypermethylated in one

sample and hypomethylated in the other, etc). Therefore, in this scenario, K = 32 = 9 with each

cluster characterising one of the possible methylation state combinations.

We propose a beta mixture model for the methylation data for all cases R� 1. Here θ is

used to denote the shape parameters in a beta mixture model, i.e., θ = (α1, δ1, . . ., αK, δK),

where αk and δk are the shape parameters of cluster k. The shape parameters are allowed to

vary among the clusters, patients and sample types. The mixing proportions τ = (τ1, . . .,τK) lie

between 0 and 1,
PK

k¼1
tk ¼ 1, and denote the probability of belonging to cluster k 8k = 1, . . .,

K. Independence is assumed across patients and samples, given a CpG site’s cluster member-

ship, leading to the probability density function for such a beta mixture model (BMM):

f ðXjτ; θÞ ¼
YC

c¼1

XK

k¼1

tkf ðXjαk; δkÞ ¼
YC

c¼1

XK

k¼1

tk

YN

n¼1

YR

r¼1

Betaðxcnrjaknr; dknrÞ ð1Þ

Computation of maximum likelihood estimates (MLEs) of τ and θ from the associated log

likelihood function is complex, and an incomplete data approach is therefore used here. The

latent vector zc = (zc1, . . ., zcK) is introduced for each CpG site c, where zck is 1 if CpG site c
belongs to the kth group and 0 otherwise. The C × K matrix Z is combined with the beta values

to form the complete data (X, Z). The complete data log-likelihood function is

‘Cðτ; θ;ZjXÞ ¼
XC

c¼1

XK

k¼1

zckflog tk þ
XN

n¼1

XR

r¼1

log½Betaðxcnrjaknr; dknrÞ�g: ð2Þ

The complete data log-likelihood function (2) can be used to find the MLEs τ̂ and θ̂ using

the expectation-maximisation (EM) algorithm [40]; on convergence a probabilistic clustering

solution is also available from the expected value of zck, the posterior probability of CpG site c
belonging to cluster k.

A family of BMMs. The most generalised BMM is defined in (1) which models the CpG

sites as belonging to K latent groups. By introducing a variety of constraints on the parameters

of this generalised BMM, a family of three beta mixture models is proposed. Each model serves

a specific purpose e.g., to cluster the CpG sites into the 3 methylation states allowing objective

inference of methylation state thresholds, or to facilitate the identification of DMCs between

different sample types.

The K��model. The K��model facilitates objective inference of thresholds between meth-

ylation states by clustering C CpG sites into one of K = G = 3 methylation states, based on a

single sample type (R = 1) from each of N patients. Under the K��model the shape parameters

of each cluster are constrained to be equal for each patient, but allowed to vary across clusters.
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The complete data log-likelihood function is therefore

‘Cðτ; θ;ZjXÞ ¼
XC

c¼1

XK

k¼1

zckflog tk þ
XN

n¼1

X1

r¼1

log½Betaðxcnrjak��; dk��Þ�g:

The KN�model. The KN�model facilitates objective inference of methylation state thresh-

olds by clustering each of the C CpG sites into one of K = G = 3 methylation states, based on

data from a single sample type (R = 1) from each of N patients. While the KN�model has a sim-

ilar purpose to the K��model, it differs in that it is less parsimonious as it allows cluster and

patient-specific shape parameters. The complete data log-likelihood function is therefore

‘Cðτ; θ;ZjXÞ ¼
XC

c¼1

XK

k¼1

zckflog tk þ
XN

n¼1

X1

r¼1

log½Betaðxcnrjakn�; dkn�Þ�g:

The K�R model. The K�R model facilitates identification of differentially methylated CpG

sites between R> 1 DNA sample types collected from each of N patients. The K�R model

assumes conditional independence between CpG sites from paired samples from the same

patient, given the CpG sites’ cluster membership. The K�R model also assumes each of the K
clusters characterises a different combination of the G methylation states across the R biologi-

cal conditions where K = GR = 9 here. Under the K�R model the shape parameters are allowed

to vary for each sample type and for different clusters but are constrained to be equal for each

patient. The complete data log-likelihood function for the K�R model is therefore

‘Cðτ; θ;ZjXÞ ¼
XC

c¼1

XK

k¼1

zckflog tk þ
XN

n¼1

XR

r¼1

log½Betaðxcnrjak�r; dk�rÞ�g:

This family of beta mixture models enables the objective inference of methylation state

thresholds (via the K�� and/or KN�models) and the identification of DMCs between R DNA

sample types (via the K�R model), as illustrated in the simulation studies and applications that

follow.

Parameter estimation

The parameters of the BMMs are estimated and the cluster membership for each CpG site

inferred using the EM algorithm. Here, we delineate this for the generalised BMM (1). Deriva-

tions for the K��, KN� and K�R models are detailed in Appendices S1–S3 in S1 File.

The EM algorithm consists of two steps: in the expectation step the expected value of the

complete data log-likelihood function is obtained, conditional on the observed data and cur-

rent parameter estimates. The maximisation step maximises the expected complete data log-

likelihood with respect to the parameters. To obtain τ̂ and θ̂, the expectation and maximisa-

tion steps are iterated until convergence to at least a local optimum of the log-likelihood

function.

An initial clustering of CpG sites is obtained using k-means clustering and the method of

moments is used to calculate initial values of τ and θ. The two steps proceed as follows:
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• Expectation-step: the expected value of zck is calculated, i.e., the posterior probability of CpG

site c belonging to cluster k, conditional on current parameter estimates. At iteration t + 1

ẑ ck ¼ E½zckjX; τðtÞ; θ
ðtÞ
� ¼

t
ðtÞ
k

QN
n¼1

QR
r¼1

Betaðxcnrja
ðtÞ
knr; d

ðtÞ
knrÞ

XK

k0¼1

h
t
ðtÞ
k0
QN

n¼1

QR
r¼1

Betaðxcnrja
ðtÞ
k0nr; d

ðtÞ
k0nrÞ
i :

• Maximisation-step: estimates of the parameters τ and θ are calculated by maximising the

expected complete data log-likelihood function, given the Ẑ values from the E-step.

For the maximisation-step, the expected complete data log-likelihood function is maxi-

mised by differentiating it w.r.t the parameters. Closed form solutions for the mixing propor-

tions are available as t̂k ¼
PC

c¼1

ẑ ck=C; 8 k ¼ 1; . . . ; :K: For the shape parameters, the expected

complete data log-likelihood function to be maximized is

‘Cðτ; θjX; ẐÞ ¼
XC

c¼1

XK

k¼1

ẑ ckflog tk þ
XN

n¼1

XR

r¼1

½ðaknr � 1Þlog xcnrþ

ðdknr � 1Þlogð1 � xcnrÞ � log Bðaknr; dknrÞ�g:

ð3Þ

Differentiating (3) w.r.t αknr yields

@‘C
@aknr

¼
XC

c¼1

ẑ ckflog xcnr � ½cðaknrÞ � cðaknr þ dknrÞ�g ð4Þ

where ψ is the logarithmic derivative of the gamma function known as the digamma function,

ψ(αknr) = @logΓ(αknr)/@αknr. Similarly, the derivative of ‘Cðτ; θjX; ẐÞ w.r.t δknr is

@‘C
@dknr

¼
XC

c¼1

ẑ ckflogð1 � xcnrÞ � ½cðdknrÞ � cðaknr þ dknrÞ�g: ð5Þ

Closed form solutions for âknr and d̂knr are not available due to the presence of the digamma

function. To obtain the MLEs, numerical optimisation algorithms such as BFGS [41] and

BHHH [42] could be used. However, for the large datasets considered here, use of these algo-

rithms proved to be computationally infeasible.

A digamma approximation. Here an approximation to the digamma function is used to

allow for closed form solutions for the shape parameters. The lower bound for the digamma

function for all y> 1/2 is ψ(y)> log(y − 1/2) [43]. Given the context, we assume that the beta

distributions in the family of BMMs are unimodal and bounded, meaning the shape parame-

ters are >1. Thus, the lower bound approximation holds and was empirically observed to be a

very close approximation of the digamma function. The lower bound is used in (4) and (5) to

give

@‘C
@aknr

�
XC

c¼1

ẑ ck
XN

n¼1

XR

r¼1

log xcnr � log
aknr � 1=2

aknr þ dknr � 1=2

� �

ð6Þ
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and

@‘C
@dknr

�
XC

c¼1

ẑ ck
XN

n¼1

XR

r¼1

logð1 � xcnrÞ � log
dknr � 1=2

aknr þ dknr � 1=2

� �

: ð7Þ

Equating Eqs (6) and (7) to zero, we get closed-form, approximate estimates as

âknr ¼ 0:5þ
0:5expð� y2Þ

f½expð� y2Þ � 1�½expð� y1Þ � 1�g � 1

and

d̂knr ¼
0:5expð� y2Þ½expð� y1Þ � 1�

f½expð� y2Þ � 1�½expð� y1Þ � 1�g � 1
;

where y1 ¼ ð
PC

c¼1

ẑ cklog xcnrÞ=ð
PC

c¼1

ẑ ckÞ and y2 ¼ ð
XC

c¼1

ẑ cklogð1 � xcnrÞÞ=ð
XC

c¼1

ẑ ckÞ.

Utilising the digamma function approximation brings notable computational gains with

run times, for example, reducing from 65 hours (when using numerical optimisation at the

maximisation step) to 15 minutes (when using the digamma approximation) when analysing

the PCa data on a computer equipped with an Intel Core i7 CPU with 2.70GHz speed, 6 physi-

cal cores and 16 GB of RAM.

Inferring methylation state thresholds

To objectively infer thresholds between methylation states, without loss of generality, we

denote by clusters 1 and 2 the clusters representing hypomethylated and hypermethylated

CpG sites respectively. The ratio of fitted density estimates ωj for cluster j = 1, 2 is

oj ¼
tjf ðXjαj; δjÞX

k6¼j

tkf ðXjαk; δkÞ
:

The threshold separating e.g., the hypomethylated and hemimethylated clusters is calcu-

lated as the minimum beta value at which ω1� 1. Similarly, the threshold dividing the hemi-

methylated and hypermethylated clusters is the maximum beta value at which ω2� 1.

In the K��model, as the shape parameters are constrained to be equal for each patient, a sin-

gle set of thresholds is calculated for all patients. In the KN�model, the shape parameters vary

for each patient, so a set of thresholds is calculated for each patient. Unless one model is appro-

priate given the question of interest, to choose the optimal model between the K�� and KN�

models, here the well utilised model selection tools of the Akaike information criterion (AIC)

[44], Bayesian information criterion (BIC) [45] and the integrated complete log-likelihood cri-

terion (ICL) [46] are examined.

Identifying the most differentially methylated clusters

While the K�R model clusters the CpG sites into K clusters, subsequent quantification of the

degree of differential methylation of CpG sites in each cluster is required. Here, this is quanti-

fied by comparing the R = 2 beta distributions associated with the two sample types in each

cluster (e.g., benign and tumour) using the area under the curve (AUC) of the receiver operat-

ing characteristic (ROC) curve as a measure of separability, which has an advantage of being

widely used in biology.
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The ROC curve for a cluster is generated by drawing 1000 samples from each of the two fit-

ted beta distributions, corresponding to two sample types, after convergence of the EM algo-

rithm. By varying threshold values from 0 to 1, the sampled beta values are used to compute

sensitivity and specificity for discriminating between sample types, which are in turn used to

construct the ROC curve and associated AUC. Higher AUC values indicate greater separation

between the fitted beta distributions for two sample types within a cluster, and therefore that

the CpG sites within that cluster are more differentially expressed between the two. In the case

where R> 2, the beta distributions linked to each sample type within a cluster are compared

to one another, and the maximum AUC across pairs of sample types is selected as the cluster’s

AUC. A large AUC would then indicate distinct methylation patterns between at least two

sample types. We also consider the Wasserstein distance (WD) [47], which computes the dis-

parity between cumulative distributions, as an additional approach to quantifying the degree

of differential methylation of CpG sites between sample types in each cluster.

A process flow diagram that summarises the overall approach to inferring subjective thresh-

olds and identifying DMCs using the proposed BMMs is given in Fig 1.

Results

Simulated data results

Simulated data. One hundred simulated datasets consisting of methylation values for

C = 600, 000 CpG sites are generated using R [21]. Each simulated dataset consists of Beta val-

ues from two biological sample types (sample A and sample B) from each of N = 4 patients.

Hypomethylated CpG sites were generated from a Beta(2,20) distribution, with hemi- and

hyper- values generated from Beta(4,3) and Beta(20,2) distributions respectively. To emulate

the noisy data observed in real settings, zero-centred Gaussian noise with standard deviation

0.01 was added to the beta-generated data; resulting values outside [0, 1] were replaced by the

closest minimum or maximum value from the beta-generated data. Reflecting typical behav-

iour in DNA methylation data, 35%, 35% and 30% of CpG sites in a single sample were simu-

lated as hypomethylated, hemimethylated and hypermethylated, respectively. This resulted in,

on average, 64% of the CpG sites being differentially methylated between the two sample

types. Of these DMCs, on average, 30% were hypomethylated in one sample and hypermethy-

lated in the other, or vice versa; such highly differentially methylated CpG sites are of prime

interest. Fig 2 illustrates a single simulated data set, with clusters of CpG sites ordered from

most to least differentially methylated between samples, according to AUC.

Fig 1. Process flow diagram for the differential analysis of beta-valued DNA methylation data using a novel family of beta mixture models.

https://doi.org/10.1371/journal.pone.0314014.g001
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Estimating methylation state thresholds. To cluster the CpG sites in a sample type into 3

clusters representing the 3 methylation states and to infer the thresholds between these states,

the K�� and KN�models were fitted to the data from sample type A in each of the 100 simulated

datasets. The true K�� generating model was selected by AIC, BIC and ICL to be optimal in

each case. Fig 3 illustrates the density estimates under the clustering solution of the K��model

for a single simulated dataset. The hemimethylated CpG sites are clustered in cluster 1, while

the hypomethylated and hypermethylated CpG sites are in clusters 2 and 3 respectively. The

estimated mixing proportion of CpG sites for each cluster (see Fig 3) are notably similar to the

true mixing proportions. As parameters are constrained to be equal for each patient in the K��

model, a single set of thresholds is inferred for all 4 patients. The threshold (see Fig 3) of 0.258

indicates that any CpG site with a lower beta value is likely to be hypomethylated. Similarly

Fig 2. Violin plots of a simulated dataset. Each panel illustrates the simulated beta-distributed values in samples A and B. The proportion of CpG sites

in each cluster is detailed in the panel title. Clusters are ordered numerically from most to least differentially methylated, according to AUC.

https://doi.org/10.1371/journal.pone.0314014.g002
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any CpG site with a beta value greater than the second threshold of 0.802 is likely to be hyper-

methylated. These objectively inferred thresholds are very close to the true thresholds of 0.244

and 0.808.

The adjusted Rand index (ARI) [48] gives a measure of agreement between two clustering

solutions, where an ARI of 1 indicates full agreement. The mean ARI across the 100 simulated

datasets for the K��model was 0.9949 (s.d. 0.0002) and for the KN�model was 0.9949 (s.d.

0.0002), demonstrating accurate and stable clustering solutions. The mean ARI when compar-

ing the K�� and KN� clustering solutions was 0.999 (s.d. 0.00001). A summary of the parameter

estimates and kernel density plots under the K��model are available in Appendices S4–S5 in S1

File.

Identifying DMCs. To identify differentially methylated CpG sites between multiple

DNA sample types in the simulated data, the K�R model is fitted to each of the C × NR dimen-

sional datasets. For each CpG site, as there are R = 2 sample types, GR = 9 different combina-

tions of the three methylation states are possible across sample types A and B. The CpG sites

that are e.g., hypomethylated in one sample type and hypermethylated in the other are of inter-

est as they indicate potential epigenetic changes in the genome.

Under the K�R model, for each simulated data set, the AIC, BIC and ICL criteria were non-

informative as they consistently decreased for K = 2, . . ., 30 (see Appendix S6 in S1 File). Thus,

the biologically motivated K�R model with K = GR = 9 was considered here. The AUC and WD

Fig 3. Fitted density estimates under the K��model on a simulated dataset from sample type A. The thresholds between methylation states are

illustrated by black dotted lines. The estimated mixing proportions are also displayed.

https://doi.org/10.1371/journal.pone.0314014.g003
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metrics were employed to assess the similarity between the R = 2 probability distributions

within each cluster, giving insight to the degree of differential methylation within clusters.

Table 1 shows the mean and standard deviation of the AUC and WD values for each cluster

across the 100 simulated datasets. Throughout, clusters are presented in descending order of

their degree of differential methylation, based on decreasing AUC and, in the case of ties, WD

values. The six differentially methylated clusters i.e., those in which the methylation state was

different between the two sample types, are correctly highlighted as the most differentially

methylated.

The graph in Fig 4 shows the fitted density estimates of the clustering solution under the

K�R model for a single simulated dataset. The associated dissimilarity metrics correctly indi-

cate clusters 1–6 as the most differentially methylated clusters, with 65.1% of CpG sites

Table 1. Mean and standard deviation (s.d.) of the AUC and WD metrics for each cluster across the 100 simulated datasets.

Cluster

1 2 3 4 5 6 7 8 9

AUC Mean 1.0000 1.0000 0.9951 0.9940 0.9726 0.9456 0.5225 0.5139 0.5041

S.D. 0.0000 0.0000 0.0009 0.0009 0.0028 0.0508 0.0147 0.0115 0.0076

WD Mean 0.8187 0.8185 0.4796 0.4797 0.3377 0.3162 0.0043 0.0040 0.0005

S.D. 0.0001 0.0001 0.0005 0.0004 0.0012 0.0456 0.0091 0.0089 0.0015

https://doi.org/10.1371/journal.pone.0314014.t001

Fig 4. Fitted density estimates under the K�R model on a simulated dataset. The estimated mixing proportions are displayed in the relevant panel.

https://doi.org/10.1371/journal.pone.0314014.g004
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belonging to these clusters, which is very close to the true mixing proportions. The density esti-

mates show that, for example, cluster 1 captures DMCs which are hypomethylated in sample

type A and hypermethylated in sample type B while cluster 2 contains DMCs which are hyper-

methylated in sample type A and hypomethylated in sample type B. Mean standard perfor-

mance metrics across the 100 simulated datasets signify an accurate and stable clustering

process, with a mean false discovery rate (FDR) of 0.0041 (s.d. 0.0121), mean sensitivity of

0.9742 (s.d. 0.0563), mean specificity of 0.9921 (s.d. 0.0244) and mean ARI of 0.9758 (s.d.

0.0370). A summary of parameter estimates under the K�R model is available in Appendix S4

in S1 File with kernel density estimates in Appendix S7 in S1 File.

All computations were conducted using R [21] on a Windows 11 operating system

equipped with an Intel Core i7 CPU with 2.70GHz speed and 16GB RAM. In terms of compu-

tational cost, for example, fitting the K�R model to a single simulated dataset took 55.86 sec-

onds on a computer with 6 cores. To explore the impact of an increasing value of N on the

computational cost, further simulation studies in which N = {8, . . ., 60}, where N increased in

increments of 4, demonstrated a linear increase in computational cost. This is intuitive given

the form of the model’s likelihood function with respect to N. Further details on computational

cost are provided, for all three BMM models, in Appendix S8 in S1 File.

The ability of the K�R model to detect DMCs was compared with that of the state-of-the-art

limma method [28], which requires the beta values to be transformed into M-values for analy-

sis. Results indicate limma also performs well but with lower accuracy than the BMM

approach: limma had a mean FDR of 0.0080 (s.d. 0.0001), mean sensitivity of 0.9074 (s.d.

0.0008), mean specificity of 0.9864 (s.d. 0.0003) and mean ARI of 0.7562 (s.d. 0.0018). The

lower mean sensitivity value in particular suggests that limma identified fewer DMCs than

the BMM. Boxplots displaying the performance metrics across the 100 simulations for the K�R

model and limma are available in Appendix S9 in S1 File.

Finally, to explore the robustness of the BMM approach to model misspecification, the

same simulation settings were considered but where the data were simulated from a t-distribu-

tion with 8 degrees of freedom. Both the K�R model and limma demonstrated mixed ability

to detect DMCs when applied to the expit-transformed and logit-transformed data respec-

tively. The BMM and limma approaches attained, respectively, a mean FDR of 0.4918 (s.d.

0.076) and 0.7018 (s.d. 0.0006), a mean sensitivity of 0.4558 (s.d. 0.0908) and 0.9995 (s.d.

0.0002) and a mean specificity of 0.875 (s.d. 0.0203) and 0.3279 (s.d. 0.0019). The BMM’s low

sensitivity and high specificity suggests that the BMM identified the non-DMCs correctly but

failed to detect a large portion of true DMCs, while limma demonstrated the opposite ability.

Boxplots of the performance metrics are provided in Appendix S10 in S1 File.

Prostate cancer data results

Estimating methylation state thresholds. For the PCa data, to cluster the CpG sites into

the 3 methylation states and objectively infer the methylation state thresholds in the benign

and tumour sample types, the K�� and KN�models were fitted. The AIC, BIC and ICL suggest

the KN�model as optimal for both the benign and tumour sample types. This is intuitive, par-

ticularly for the tumour sample types where the degree of disease varies for each patient, as the

KN�model allows for patient specific shape parameters.

The fitted density estimates and inferred thresholds for patient 1 are discussed here; those

for patients 2, 3 and 4 are available in Appendix S11 in S1 File.

In the benign sample type from patient 1, the estimated mixing proportions were 0.244 for

hypomethylation, 0.363 for hemimethylation, and 0.393 for hypermethylation. The inferred

methylation state thresholds are 0.258 and 0.747 for the benign sample type, and 0.19 and
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0.751 for the tumour sample type. The hypermethylation state thresholds in the benign and

tumour sample types are very close; in contrast, the hypomethylation state thresholds are quite

different. While these objective thresholds are close to the subjective values suggested in the lit-

erature of 0.2 and 0.8, the difference results in more hypo- and hypermethylated CpG sites

being identified by the BMM as DMCs.

Patient 1 was known to have a greater degree of disease severity than the other patients with

a matched normal DNA methylation profile more tumour-like than benign. For patient 1, the

hypermethylation threshold (0.747) was lower than that for the other patients (0.774, 0.766

and 0.814 for patients 2, 3 and 4 respectively) suggesting more hypermethylated CpG sites in

patient 1’s benign sample type than in the other patients’ samples. A similar pattern was

observed in the methylation thresholds inferred from the patients’ tumour sample types (see

Appendix S11 in S1 File) in that the threshold was lower for patient 1.

The ARIs of 0.94 and 0.96 between the KN� and K�� solutions for the benign and tumour

sample types respectively indicate good clustering agreement. Summaries of parameter esti-

mates and the kernel density estimates under the KN�model are available in Appendices S4

and S12 in S1 File.

Identifying DMCs in the PCa data. To identify differentially methylated CpG sites in the

PCa data, the K�R model was fitted to the C × NR dimensional dataset. Similar to the simula-

tion study, the AIC, BIC and ICL were non-informative and consistently decreased across

models with K = 2, . . ., 30 (see Appendix S13 in S1 File). Thus, motivated by the GR = 9 unique

methylation state combinations that could be biologically present across the benign and tumor

sample types, a model with K = GR = 9 was fitted to the PCa data.

Fig 5 illustrates fitted density estimates of the clustering solution, ordered by AUC or WD

in the case of equal AUC values. Kernel density estimates are in Appendix S14 in S1 File.

Table 2 summarises the parameter estimates and details the AUC and WD metrics for each

cluster. As the extent of disease progression varied across patients, the PCa data were noisier

than the simulated data, and the AUC and WD metrics were lower in general. Both the AUC

and WD metrics suggest that clusters 1 and 2 contain the CpG sites that are most differentially

methylated in nature. Inspection of the density and parameter estimates of clusters 1 and 2

provides insight: cluster 1 captures CpG sites exhibiting a downward trend in methylation val-

ues for tumor samples with increased methylation values in the benign samples. On the other

hand, CpG sites in cluster 2 tend to have higher methylation levels in tumor samples than in

benign samples. While there are visual differences between the benign and tumor density esti-

mates in clusters 3–5, the density estimates in later clusters are almost visually indistinguish-

able between the two samples, particularly in the case of clusters 6, 7 and 9. This is intuitive as

clusters with smaller AUC (and WD) values contain the least differentially methylated CpG

sites between the benign and tumour samples and their respective density estimates within

such clusters will be very similar. Fig 6 shows the empirical cumulative distribution functions

(ECDFs) for the DMCs within clusters 1 and 2, for both benign and tumor sample types. The

ECDF for cluster 1 shows an increase in beta values within the benign samples, relative to the

tumor samples while the ECDF of the CpG sites in cluster 2 indicates an elevation in beta val-

ues in the tumor samples, compared to the benign samples. The K�R model identifies 102,757

CpG sites, belonging to clusters 1 and 2, as being mostly differentially methylated.

On performing gene ontology analysis [49], CpG sites in cluster 2 were found to be related

to known genes e.g., RARB, GSTP1, RASSF1, SFRP2, which are implicated in prostate cancer.

For example, hypermethylation of RARB promoter genes is a significant biomarker in diag-

nosing prostate cancer [50]. The methylation levels of the DMCs in cluster 2 that belong to the

RARB genes suggest the median beta value is higher in the tumour sample type than in the

benign sample type for all patients (see Appendix S15 in S1 File). Through non-parametric
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tests, the beta values were shown to be significantly higher in the tumour samples than in the

benign samples for the CpG sites related to these genes (p< 0.05). Further, the ECDF for

DMCs related to the RARB genes for benign and tumour sample types illustrated that the

DMCs have increased beta values in the tumour samples compared to the benign samples (see

Table 2. Beta distributions’ parameter estimates for the benign and tumour samples, and the AUC and WD metrics, for the PCa data under the K�R model.

Benign Tumour

Cluster α̂ δ̂ Mean S.D. α̂ δ̂ Mean S.D. AUC WD

1 8.815 2.277 0.795 0.116 5.076 2.231 0.695 0.160 0.683 0.100

2 2.324 10.223 0.185 0.106 1.975 5.040 0.282 0.159 0.667 0.096

3 8.005 4.810 0.625 0.130 12.058 5.170 0.700 0.107 0.639 0.075

4 13.006 3.387 0.793 0.097 27.000 5.249 0.837 0.064 0.624 0.044

5 33.720 4.006 0.894 0.050 56.506 5.734 0.908 0.036 0.593 0.015

6 84.926 5.023 0.944 0.024 111.727 5.978 0.949 0.020 0.572 0.005

7 4.842 112.897 0.041 0.018 5.455 133.043 0.039 0.016 0.542 0.002

8 4.071 4.924 0.453 0.157 4.686 4.990 0.484 0.153 0.537 0.032

9 3.749 41.317 0.083 0.041 4.194 45.197 0.085 0.039 0.523 0.002

* Standard deviation is denoted as S.D.

https://doi.org/10.1371/journal.pone.0314014.t002

Fig 5. Fitted density estimates under the clustering solution of the K�R model. The model estimates parameters for K = 9 clusters for the DNA

methylation data from benign and tumour prostate sample types. The estimated mixing proportions are displayed in the relevant panel.

https://doi.org/10.1371/journal.pone.0314014.g005
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Appendix S16 in S1 File). Analysis of genes linked to CpG sites in clusters 3–9, the less differ-

entially methylated clusters, did identify some genes previously implicated in prostate cancer

e.g., AKT1 [51]. However, non-parametric tests also suggested no statistically significant dif-

ference (p> 0.05) in beta values between benign and tumour samples for CpG sites in clusters

3–9 linked to the gene AKT1, as did associated box and ECDF plots (see Appendix S17 in S1

File).

Gene ontology analysis of the DMCs in cluster 1 also unveiled approximately 16 notewor-

thy biological processes. These processes, distinct from cancer-related pathways, encompass

vital functions such as nervous system processes. A substantial count of 1001 significant bio-

logical processes were revealed among the DMCs in cluster 2 (FDR-adjusted p-value<0.05).

Further, considering the KEGG pathways, the DMCs in cluster 1 were associated with one sig-

nificant pathway, while the DMCs within cluster 2 exhibited involvement in a noteworthy 61

significant pathways. Of these significant pathways, many were cancer related e.g., the proteo-

glycans in cancer pathway was the second most enriched pathway.

Given the BMM’s model-based approach to clustering, the uncertainty in CpG site c’s clus-

tering is available as 1 � max
k¼1;...;K

ðẑ ckÞ, with a maximum possible uncertainty of 1 − 1/K = 8/9. All

CpG sites have clustering uncertainties well below this maximum, demonstrating that the CpG

sites are clustered with high certainty (see Appendix S18 in S1 File).

Fig 6. Empirical cumulative distribution functions for DMCs. Empirical cumulative distribution functions for DMCs in (A) cluster 1 and (B) cluster

2 for all patients and sample types.

https://doi.org/10.1371/journal.pone.0314014.g006
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To demonstrate the general applicability of the approach, the BMMs were also fitted to a

publicly available DNA methylation dataset from an esophageal squamous cell carcinoma

study (ESCC); full details are available in Appendix S19 in S2 File.

Discussion

DNA methylation is widely studied for disease diagnosis and treatment. Technology advance-

ments have led to the development of microarrays that can assay e.g., 850,000 CpG sites from a

DNA sample [12], but the analysis of these large arrays has been limited by a lack of appropri-

ate statistical methods for the bounded and heteroskedastic nature of beta-valued DNA meth-

ylation data. The methylation states of CpG sites are often of interest and are typically

identified using thresholds which are defined in the literature based on intuition [14] rather

than using an objective approach. Additionally, to detect DMCs, it is common practice to

apply a logit transformation to beta values, and subsequently model them as Gaussian-distrib-

uted [13, 28]. Alternatively, comparisons between untransformed methylation levels among

sample types are often conducted using multiple moderated t-tests or Wilcoxon rank sum tests

[29, 30]. The approach proposed here advocates against transforming the data and instead pro-

poses modelling the data in its innate form when inferring methylation state thresholds and

DMCs.

In the context of prostate cancer, a family of beta mixture models is proposed which

employs novel constraints on the model parameters to cluster CpG sites based on untrans-

formed beta values to objectively identify methylation state thresholds and DMCs between

benign and tumour samples. The BMMs use a model-based clustering approach and inference

is computationally efficient through the use of a digamma approximation. The objective infer-

ence of methylation thresholds demonstrated that the thresholds of 0.2 and 0.8 or 0.3 and 0.7

defined in literature are not appropriate for every scenario. The thresholds inferred from each

patient’s data showed variability, reflecting the different stages of disease among patients. The

proposed K�R model clusters CpG sites from multiple DNA sample types to determine the

CpG sites with differential methylation. Gene ontology enrichment analysis of the genes asso-

ciated with CpG sites in the most differentially methylated clusters revealed several significant

biological processes, cancer-related pathways and genes implicated in prostate cancer, opening

new avenues of research. The results illustrate the ability of the BMMs to analyse large micro-

arrays consisting of samples from multiple conditions from several patients and to reveal bio-

logically relevant methylation patterns, thus contributing to advances in the field of

quantitative DNA methylation analysis.

In terms of the family of BMMs developed here, there are several potential future research

directions. For example, while DNA methylation can be influenced by environmental and clin-

ical variables, the proposed BMMs do not incorporate such covariates. However, the BMMs

could be extended, for example using a mixture of experts approach [52] where the parameters

of the BMM are modeled as functions of the covariates, to offer a richer modelling framework.

Further, a key assumption of the proposed BMMs is that the methylation states of adjacent

CpG sites are conditionally independent given their cluster membership. However, methyla-

tion levels of adjacent CpG sites are often highly correlated [53]. This phenomenon gives rise

to the emergence of biologically meaningful regions with discernible patterns. Expanding the

scope of the BMM family to encompass the spatial dependencies within the data would present

an opportunity to incorporate these structural nuances and ultimately facilitate the identifica-

tion of particularly relevant differentially methylated regions. While the scale of missing data

in the prostate cancer data considered here was almost negligible, it could be more prevalent

in other settings. Such cases would motivate the development of imputation approaches that
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are cognisant of the heterogeneity typical of DNA methylation datasets. Finally, the methyla-

tion state of a human genome changes over time depending on clinical conditions. Longitudi-

nal methylation data are often collected to study the effect of environmental changes or

treatments on disease progression. Such data are vast and current approaches struggle to han-

dle these extensive data in their innate form. In order to analyze methylation changes over

time in multiple patients, similar to [54], the BMMs could be further enhanced to model

dependency over time.
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